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Summary

Masting, a variable and synchronized variation in reproductive effort is a prevalent strategy
among perennial plants, but the factors leading to interspecific differences in masting remain
unclear. Here, we investigate interannual patterns of reproductive investment in 517 species
of terrestrial perennial plants, including herbs, graminoids, shrubs, and trees. We place these
patterns in the context of the plants’ phylogeny, habitat, form and function. Our findings reveal
that masting is widespread across the plant phylogeny. Nonetheless, reversion from masting
to regular seed production is also common. While interannual variation in seed production is
highest in temperate and boreal zones, our analysis controlling for environment and phylogeny
indicates that masting is more frequent in species that invest in tissue longevity. Our modeling
exposes masting-trait relationships that would otherwise remain hidden and provides large-scale
evidence that the costs of delayed reproduction play a significant role in the evolution of variable
reproduction in plants.

Introduction

In perennial plants, reproduction can occur through spatially synchronized seed production,
which varies substantially over time. In some years, investment in seed production is much
higher than average, while in other years plants allocate few or no resources to reproduction,
resulting in what is known as masting [1, 2]. The concentration of reproduction in intermittent
years appears heritable [3], and helps alleviate pollen limitation and reduce seed predation but
comes at the cost of skipped reproductive opportunities [4, 5, 6, 7]. The varying balance of
masting costs and benefits is likely responsible for the rich diversity of reproductive behaviors
observed in perennials, ranging from relatively regular fruiting to rare reproduction happening at
long lags [1, 8, 9, 10, 11]. Large-scale variation in masting benefits is better explored compared
to costs [1, 9, 12, 11]. For example, interannual variation in seed production is high in the
temperate zone, where the benefits of starving and satiating specialist seed predators are the
greatest [1, 13]. In contrast, the costs of missed reproductive opportunities have long been only
theorized to be higher in species with high population growth rates and low adult survivorship
[14, 5], but this has remained challenging to test. Here, using trait-based approaches, we provide
support for this central tenet of masting theory, showing that masting predominately occurs in
species with conservative plant tissues.

Accessible trait-based approaches can serve as indicators of life history strategies, aiding in
the identification of functional constraints and trade-offs [15, 16, 17, 18], and providing an avenue
to investigate how varying costs of reproduction (skipped reproduction) shapes the evolution of
masting. High stem tissue density (i.e. wood density) provides mechanical strength and reduces
mortality, but limits growth rates, which distinguishes strategies reliant on stress persistence
from rapid utilization of ephemeral opportunities[17]. We can thus expect stronger masting in
species with high stem tissue density, as lower mortality rates due to stronger stress resistance
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Figure 1: MASTREE-+ sites used in the analysis, and climatic space for the species analyzed. a) Location of
MASTREE-+ sites (red dots) included in this study (data displayed in Van der Grinten IV projection). b) Climatic
distribution of our sites. Each dot represents average climatic conditions (mean annual temperature, MAT, and
mean annual precipitation, MAP) at the species distribution level (n = 517 species). Data on species distribution
was largely derived from the Global Biodiversity Information Facility (GBIF, www.gbif.org) (see Methods).
The Whittaker biome plot is included in the background for context.

s2 should buffer against missed reproductive opportunities [14, 19, 20]. Similarly, productive but
ss  short-lived leaves with high nitrogen content and low leaf mass per area (LMA) are characteristic
s« of cheap, acquisitive leaves that are efficient in resource-rich environments and associated with
ss high population growth rates [20]. Such leaves should be thus associated with low interannual
s6 variation inreproduction [1, 21]. In addition, high interannual variation should be also associated
57 with large seeds if expensive reproduction strongly depletes resources after reproductive events
ss [22,5]. Although these links are theoretically established in the literature, supporting evidence is
se scarce, as data on seed production accumulate slowly and require significant investment [23, 24].
60 The relationships between traits at large scales are complicated by their often-neglected direct
st (conditional) and indirect (marginal) relationships [25, 26], through the intricate connection of
e2 climate, geography, or phylogeny. In the case of masting, stem tissue density tends to be high in
es the tropics where interannual variation in seed production is low [17, 9]. Therefore, a negative
e« correlation between interannual variation in seed production and stem tissue density could
es be an indirect relationship resulting from latitudinal covariance in these traits. Alternatively,
es the relationship could be direct if the low interannual variation in seed production requires
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species to produce conservative stems. Indirect relationships may also arise from phylogenetic
conservatism. Certain taxa may exhibit large interannual variations in seed production and
high stem tissue density even if environmental conditions that select one or both traits change.
Traditional summaries such as principal component analysis (PCA) summarize correlations that
include all the indirect ways traits could be associated [26, 27]. To address this issue, novel
methods such as joint attribute modeling enable the decomposition of relationships into direct
and indirect, driven by either climate or phylogeny [28, 26]. These statistical tools synergize with
the recent advancement of global coordination in monitoring and seed production data synthesis,
allowing tests of decades-old assumptions of the field while accounting for longstanding issues
with covariance between variables.

In this study, we explore the relationship between masting, phylogeny, climate, and functional
diversity across 517 species of vascular plants, including herbs, graminoids, shrubs, and trees
from various biomes (Fig. 1). We use MASTREE+, a database that provides information
on annual variations in plant reproductive effort [24]. We characterize the variability of seed
production in each species using two commonly used masting metrics, the coefficient of variation
(CV), and the lag-1 temporal autocorrelation (AR1), which describes the tendency of high
seed production years to be followed by low seed production [1, 29]. Using joint attribute
modeling, we extract conditional relationships driven by climate and phylogeny and associate
large interannual variation in seed production with a need for conservative tissues. This provides
large-scale evidence that the costs of delayed reproduction play a significant role in the evolution
of variable reproduction.

Results

Masting on the spectrum of plant form

We start with results derived from the traditional principal component analysis (PCA) approach to
illustrate the challenges associated with mixing conditional and marginal relationships. Principal
component analysis of functional traits and masting metrics indicates that masting is largely
independent of functional traits. The PCA of six functional traits and masting metrics indicated
that the 517 species examined here had two primary sources of variation: an axis of leaf
economics (Axis 1: leaf mass per area, leaf nitrogen, leaf area) and plant size (Axis 2: seed
mass, plant height, and stem tissue density), with no contributions from masting metrics (i.e.
coeflicient of variation, CV, and the lag-1 of temporal auto-correlation, AR1 of seed production).
Instead, masting generated a distinct axis of variation (Axis 3), with species exhibiting high CV
and negative temporal autocorrelation of seed production concentrated at one end of the axis (Fig.
2 & Fig. S1). However, the correlation summary mixed conditional and marginal relationships
conferred by phylogeny and climate, which each had strong effects on masting, as explained
below.
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Figure 2: Masting metrics (coefficient of variation, CV, and lag-1 temporal autocorrelation of seed production,
ART1) on the spectrum of plant functional traits. A) Biplot of principal components that summarized axes 1 and 2,
and B) and axes 1 and 3. The PCA included plant functional traits (stem tissue density, leaf area, leaf nitrogen, leaf
mass per area LMA, plant height, and seed mass) and masting metrics (CV and AR1). Arrow length indicates the
loading of each considered trait onto the axes. Points represent the position of species color-coded according to their
growth form (yellow for trees, purple for shrubs, and grey for others that included graminoid and non-graminoid
herbaceous and climbers). C) Summary of PCA loadings, and D) contributions to the three axes of variation. The
bars at C) and D) are color-coded to match the colors of axes (at A and B) to which the traits loaded the most. The
trait probability density function is given in Fig. S1, and CV/AR1 by growth form with PCA S2
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Masting on the Tree of Life of plants

The coefficient of variation (CV) and the lag-1 temporal auto-correlation (AR1) exhibited
phylogenetic coherence, with CV coherence being about twice as strong (CV: 1 = 048, p <
0.0001; AR1: 4 =0.27, p < 0.0001, as shown in Fig. 3 and Fig. S3). Several groups were
found to have a high concentration of species with a very high coefficient of variation in seed
production (Fig. 3). These groups included Poales’ Chionochloa and Miscanthus. The Pinales
order also included high-CV genera such as Abies, Juniperus, and Picea, as well as mixed ones
such as Pinus. Fagales were also mixed, including high-variability genera such as Betulaceae
and mixed ones such as Fagaceae, which had high-CV Fagus and diverse Quercus. Low CV
was common in Magnoliales, Gentianales, and some genera of Cornales and Malvales, such as
Cistaceae and Cornaceae. Highly negative temporal autocorrelation of seed production was a
characteristic trait of Fagales (Fig. S3). Other groups, such as Rosales or Pinales, were mixed,
while Malpighiales, Gentianales, and Magnoliales were dominated by positive autocorrelation.

Masting across climates

Although interannual variation (CV) and lag-1 temporal auto-correlation (AR1) of seed pro-
duction were not correlated (Fig. S5), they responded to the climate in opposite ways that
resulted in a convergence of high CV and negative AR1 in the same climates (Fig. 4). Positive
temporal autocorrelation was observed in species that grow in hot and dry environments, such as
subtropical deserts or tropical seasonal forests (Fig. S6), where low CV was also common (Fig.
S6). Conversely, negative AR1 and high CV were predicted in temperate and boreal forests,
which are characterized by intermediate annual temperatures and precipitation (Fig. 4). We
also explored models that were supplemented with climate variability (standard deviation of the
monthly mean temperatures and coefficient of variation of the monthly precipitation), but the
inclusion of climate variability has not improved our model’s fit (Table S2).

Masting and traits, accounted for climate and phylogeny

The conditional prediction from generalized joint attribute modeling (GJAM), which accounted
for the effects of phylogeny and species climatic niche on masting, revealed that species with
dense stems and conservative leaves characterized by high mass per area tend to have higher
coeflicients of variation in seed production (Fig. 5). There was also a weak (non-significant in
the full model) association between high CV and small seeds (Fig. 5, Table S1). These effects
suggest that correlations (or the lack thereof) observed by PCA between traits and masting
metrics were mainly driven by climate or shared ancestry. For instance, stem tissue density is
highest in climates where masting is lowest (Fig. S7), but this negative covariance changes sign
once the climate is taken into account.
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Discussion

Interannual variation in seed production across 517 species is associated with restricted climatic
and phylogenetic space and conservative tissues that include higher stem tissue (wood) density
and higher LMA. First, the coefficient of variation of seed production was highest in temperate
and boreal climates, which supports previous studies that have shown the CV to be highest at
mid-latitudes [1, 9]. Second, masting has evolved multiple times across the Tree of Life in
plants, in growth forms ranging from grasses to trees. Nonetheless, numerous branches have
split into high and low-variability groups, perhaps because species quickly lose their inherited
seed production variability once there is no ongoing selection for it (e.g., low seed predation
or high pollination can be achieved via other routes). Third, high interannual variation in seed
production is concentrated in life history strategies that invest in low mortality. High survival
rates decrease the costs of missed reproductive opportunities, which is a major masting cost that
can prohibit masting evolution even when there is a strong selection for it [19, 7]. Thus, costs
of delayed reproduction appear a major factor driving the evolution of masting across species.
Masting is a widespread phenomenon in the Tree of Life of plants. Although the coefficient of
variation (CV) of seed production exhibited relatively strong phylogenetic coherence, branches
lacking closely related species that have reverted from masting to regular seed production were
rare. For instance, the Betulaceae family, comprising Betula, Carpinus, and Alnus, displayed
generally high variability, with exceptions including Alnus hirsuta and Betula pendula. The
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closely related Chionochloa species all showed highly interannually variable seeding patterns,
with related Dactylis glomerata being a low-variability exception. Perhaps the high costs of high
seed production variability mean that if the need for masting (e.g., high seed predation rates or
low pollination efficiency) can be circumvented through less costly alternatives, regular seeding
re-evolves. In this context, oaks represent a notable example of diversity and rapid transitions
between low and highly variable strategies, contrasting with Pinales, where masting was lost
less frequently. A comparison of these two groups to understand why masting is almost always
beneficial in Pinales, such as Picea or Abies, but can quickly cease to be so in Quercus, is a
promising area for future research. Are the costs of masting systematically smaller in Pinales, or
is the need for masting (e.g., low pollination efficiency) systematically greater? One interesting
way forward is to examine this question in light of the high resprouting abilities of oaks but not
pines [30].

A high coefficient of variation in seed production does not necessarily imply a need for
negative lag-1 temporal autocorrelation, indicating that the two can evolve independently [9, 10].
High CV values without strongly negative AR1 may happen if mast years are not followed by
complete failure years [9, 10]. However, climate effects on these metrics lead to the convergence
of high CV and highly negative AR1 in the same boreal and temperate habitats. Predator
satiation is most effective at mid-latitudes [13], which is often explained by a lower diversity of
alternate food resources for seed consumers that helps control their populations [1, 9]. Thus,
the high potential effectiveness of predator satiation may lead to stronger selection for both high
CV and negative AR1 in such biomes. Alternatively, species in the boreal and temperate zones
may rely less on mutualistic interactions [31], which tend to select against masting [32, 1, 11].
For example, wind pollination is less frequent at low latitudes [33], and the absence of negative
ARIT may avoid the starvation of animal pollinators in these systems. Finally, to the extent that
negative ARI1 reflects resource depletion following high-seeding years [34, 35], convergence
between high CV and negative AR1 could be driven by stronger resource constraints in certain
climates [21]. Irrespective of the reason, in climates where high CV and negative AR1 co-
occur, masting-driven pulsed resources would be expected to involve frequent famines [36, 37],
creating an especially unstable base of food webs in these biomes.

Masting is associated with a restricted functional trait space. High interannual variation in
seed production is common in species with high stem tissue density and, to a lesser extent, in
species with high leaf mass per area (LMA). These species invest heavily in constructing tissues,
resulting in slower returns on nutrient investment but higher survival through higher defenses
against physical damage and herbivores [38, 39, 17]. Theoretical models suggest that the
significant costs of missed reproductive opportunities can prevent the evolution of masting, even
in the presence of significant benefits such as improved pollination and reduced seed predation
[14, 19, 7]. In this context, our results support this long-standing theory, testing of which has
previously been frustrated by lack of data. What is more, recent studies suggested that the other
theoretical masting cost, negative density-dependent seedling survival [5, 40], may be lower
than expected. Theory predicts that negative density-dependent seedling survival can prohibit
the evolution of masting in plants that have high adult survival [40]. However, recent evidence
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implies that masting does not result in lowered seedling survival in Sorbus aucuparia [12], and
may even increase seeding survival in tropical communities [41]. Generally, negative density
dependence appears fairly weak on average and highly variable among species, suggesting that
its generality may be overstated [42]. Together with our results, these suggest that the costs of
delayed reproduction may be a major mechanism driving the evolution of masting across plant
life history strategies.

We also found no support for theories linking high CV with large seed [22, 5]. We speculate
that the tendency for high CV in small-seeded species, in contrast to theoretical predictions,
may result from contrasting selection pressures. For example, small seeds are correlated with
seed bank persistence in the soil [43], which is another way to circumvent the costs of missed
reproductive opportunities [19]. Consequently, if there are ways that small-seeded species
can reduce the costs of missed reproduction, masting might evolve more readily, offsetting the
expected direct effect of large seeds on masting.

In summary, our analysis supports the idea that the extent of year-to-year variation in masting
is regulated by a species’ phylogeny, location (climate), and life history (plant form). The
effects of climate and phylogeny on mast seeding and functional traits necessitated conditional
predictions that extracted direct associations [28, 27]. A PCA analysis that combined all the
ways in which variables can be linked suggested that masting created a third, mostly independent
dimension of variation in plant traits. This outcome would support a twin-filter model, according
to which primary strategies, such as the fast-slow leaf economics spectrum [44], determine plant
persistence for climate and habitat norms, whereas traits involved in episodic events, including
reproduction, affect fitness regardless of other traits [45]. In other words, masting would evolve
whenever there is a need for it, regardless of the plant form. However, by extracting direct
effects, we showed that links among traits and variation in seed production were concealed by
their covariance with climate and phylogeny. That modeling reversed the analytical outcomes,
showing that the costs of delayed reproduction may prevent masting in fast-growing, low-survival
plant forms. The required next step is to directly link masting with life history traits (population
growth rate, size at sexual maturity, mortality rates) which, with growing data availability [46],
may soon become feasible.
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Methods

Data description

Our analysis is based on MASTREE+, a database of annual records of population-level repro-
ductive effort of 974 from all vegetated continents [24]. For our analysis, we excluded time
series that were on an ordinal scale and those based on pollen measurements. We analyzed two
subsets of the data. One, broader, was limited to time series with at least 5 years of observations.
That analysis is reported in the main text. Second, a more restrictive analysis included time
series with at least 10 years of records. Results of that analysis are reported in the Supplementary
Section and provide quantitatively the same outcomes.

Masting metrics

We computed the coefficient of variation (CV, standard deviation divided by mean of seed
production) for each site-species combination. The CV is commonly used in masting studies to
describe inter-annual variations of seed production [1, 29, 47]. We also computed lag-1 temporal
auto-correlation of seed production (AR1), which characterized the tendency of high-seeding
years to be followed by low-seeding years. For each species, we computed the average CV and
AR1. To compute auto-regressive correlation we used the acf function in R [48].

Functional traits

We extracted species-level functional traits from [49], which include Leaf Mass Area (LMA,
in g.m~2), stem tissue density (SSD, in mg.mm™?), plant height (ph, in m), leaf nitrogen (In, in
mg.g_l), seed size (sm, in mg), and leaf area (la, in mm~2), and plant growth form (Fig .S8).
We also obtained plant growth form, which includes trees, shrubs, and other categories, with
graminoid and non-graminoid herbaceous, and climbers (see distribution in Fig. S2).

Full trait information obtained from [49] was available for 210 species from MASTREE+
database. To increase species coverage, we performed a trait-imputation procedure. We used
machine learning that accounted for species phylogeny [50, 51]. We filled only species that had
information for at least three functional traits (out of six used in the analysis) [18, 50]. First, we
log10 transformed known functional traits and incorporated phylogenetic information for each
species [52]. The phylogenetic information was summarized by eigenvectors extracted from
a principal coordinate analysis (PCoA), which represented the variation in the phylogenetic
distances among species. We used the first ten axes of PCoA for the imputation process
[52, 50]. The phylogeny was obtained using the R package V.Phylomaker?2 [53, 54], with
the GROTB.extented.TPL tree as a backbone [55, 56], and scenario S3 to generate the
phylogeny [57, 54]. Imputation of missing trait information with machine learning has been
done through the R package missForest [58]. That imputation allowed us to increase the
sample size (i.e. species for which we had full traits and seed production data) to 517 species.
The GJAM model without trait data imputation generated qualitatively similar results for CV
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(Table S1). In the case of ARI, lack of trait imputation resulted in a positive association
between leaf N and AR1, and a negative between height and AR1 being significant. That hints
that acquisitive leaves may buffer against strong post-mast seeding failure [21], although it is
unclear why smaller plants have more negative AR1. For consistency, we discuss only the results
with the data imputation in the main text.

Abiotic variables

We determined the species’ climatic niche by using species occurrences extracted from Global
Biodiversity Information Facility (GBIF, , www.gb1i f . org) through the rgbi f package [59]
(datarequest: 10.15468/d1. jxyrhk, [60]). We removed species occurrences from GBIF

that are incorrectly or vaguely reported and outliers by using the R package CoordinateCleaner

[61] to keep precise species locations (mean number of occurrences for our species = 7,609,
CI975 = [1; 105,093]). Next, for each occurrence, we extracted a mean annual temperature
(MAT, in °C) and mean annual cumulative precipitation (MAP, in cm) by using CHELSA
data [62], and averaged those values from all occurrences per species to one value per species
range (MAT and MAP). For each species, we used average species climatic conditions from
MASTREE-+ if the number of sample sites from MASTREE+ was higher than the number of
species occurrences from GBIF (n = 55 species). We used GBIF-based climate to accommodate
functional traits and masting metrics at species-wide averages. Nonetheless, MAT and MAP
obtained through MASTREE+ sites and GBIF present strong correlations (Fig. S9), and using
both provides qualitatively the same results.

Analysis
Phylogenetic analysis

We estimated the phylogenetic signal of the coefficient of variation (CV) and temporal auto-
correlation (AR1) of seed production with Pagel’s A [63]. Pagel’s A is based on the Brownian
Motion evolutionary model and ranges from 0, when there is no phylogenetic signal, to 1 where
the phylogenetic signal is estimated to be very strong. The Pagel’s A was estimated by using the
phyolosig function from phytools R package [64] and visualized with ggt ree [65]. We
used a plant phylogenetic tree provided by [55].

Multivariate analysis

We used the principal component analysis (PCA) to describe the multivariate trait spectrum,
which included the six functional traits and two masting metrics (CV and AR1). We kept
functional traits log10 transformed. We standardized and centered variables. We used ade4
[66] R package. Moreover, we estimated the occurrence probability of trait combination in two-
dimensional space (determined by the PCA axis 1 and 2, or by axis 2 and 3) with their bivariate
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trait combinations. We used the two-dimensional kernel density estimation and determined the
highest probability trait occurrence [18, 51].

Joint model analysis

We jointly modeled functional traits and masting metrics using the generalized joint attribute
modeling (GJAM, [28]). Average climatic conditions per species range (occurrences obtained
via GBIF, see above) were included as predictors, i.e. mean annual temperature (MAT) and
mean annual precipitation (MAP). We tested a set of models with different combinations of the
interaction between MAP and MAT, and their quadratic terms. Model selection was based on the
Deviance information criterion (DIC). The GJAM allowed us to accommodate the dependence
between traits and phylogeny as random groups. To this end, we followed past studies that used
a similar approach [67, 27], and grouped species according to genus or family (when the genus
had less than 10 species). We used the *multiple’ category for families with less than 5 species.

We accommodated the mutual dependence structure of traits and isolated their effect on
masting metrics through conditional prediction [68, 27]. Conditional prediction offers an
estimation of the relationships between traits and masting metrics while accounting for the
effects that come through climate and phylogeny. These conditional parameters are obtained
via g jam R package [28], by specifying traits being conditioned (here, functional traits) on the
variable of interest (here, CV and AR1 of seed production). In doing this, we first estimate how
responses (functional traits and masting metrics) correlate with climate. Next, the relationships
among responses are estimated, after accounting for the predictors (climate and phylogeny). The
gjam is an open-access R package g jam available on CRAN.
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Data availability statement

The data used in this study have been deposited in the Open Science Framework (OSF)
(https://osf.io/57w2qg/). The full MASTREE+ dataset is available in [24]. Traits
have been downloaded from [49]. Climate data have been extracted from CHELSA at https:
//chelsa-climate.orqg/.

Code availability statement
R statistical software v4.3.0 was used in this work [48]. All analyses used published R packages.
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Figure Legends/Captions

Figure 1: MASTREE+ sites used in the analysis, and climatic space for the species analyzed. a) Location of
MASTREE-+ sites (red dots) included in this study (data displayed in Van der Grinten IV projection). b) Climatic
distribution of our sites. Each dot represents average climatic conditions (mean annual temperature, MAT, and
mean annual precipitation, MAP) at the species distribution level (n = 517 species). Data on species distribution
was largely derived from the Global Biodiversity Information Facility (GBIF, www . gbif.org) (see Methods).
The Whittaker biome plot is included in the background for context.

Figure 2: Masting metrics (coefficient of variation, CV, and lag-1 temporal autocorrelation of seed production,
AR1) on the spectrum of plant functional traits. A) Biplot of principal components that summarized axes 1 and 2,
and B) and axes 1 and 3. The PCA included plant functional traits (stem tissue density, leaf area, leaf nitrogen, leaf
mass per area LMA, plant height, and seed mass) and masting metrics (CV and AR1). Arrow length indicates the
loading of each considered trait onto the axes. Points represent the position of species color-coded according to their
growth form (yellow for trees, purple for shrubs, and grey for others that included graminoid and non-graminoid
herbaceous and climbers). C) Summary of PCA loadings, and D) contributions to the three axes of variation. The
bars at C) and D) are color-coded to match the colors of axes (at A and B) to which the traits loaded the most. The
trait probability density function is given in Fig. S1, and CV/ARI1 by growth form with PCA S2

Figure 3: Coefficient of variation of seed production mapped onto a plant phylogeny. Warmer colors (reds)
indicate higher, while blue lower CV (the phylogenetic signal is calculated using Pagel’s 1 = 0.48, p < 0.0001, n =
518 species). Distributions of the masting metrics are in Fig.S4. Orders of plants are provided at the periphery of
the phylogenetic tree.

Figure 4: Summary of climate effects on masting, derived from the GJAM model that included coeflicient of
variation (CV) and temporal autocorrelation (AR1) as responses (n= 517 species). a) Boxplots show the marginal
posterior distributions of the GJAM-derived coefficients. Specifically, boxes show mean effect size as vertical lines
and are bounded by 80% credible intervals (CI), with 95% CI as whiskers. Colors highlight signs of the correlation
(green for positive and purple for negative), with opacity increasing from 80% to 95% of the distribution outside
of zero. Grey indicates coefficients that overlap zero. b) Effects of mean annual temperature (MAP, in °C) and
mean annual precipitation (MAT, in cm) on CV and AR1. The surface shows the conditional relationship between
CV/ARI and MAT across levels of MAP. Convex hull is defined by species observations (red dots). MAT and
MAP are defined for each species’ distribution derived from the Global Biodiversity Information Facility (GBIF,
www.gbif.org). Biplots of relationships between CV/AR1 and MAT and MAP are in Fig. S6. Climate effects
on functional traits are in Fig. S7.

Figure 5: GJAM-derived, conditional relationship between masting metrics (CV and AR1) and functional traits
(stem tissue density, seed mass, LMA, leaf N, leaf area, and plant height) after accounting for effects of climate and
phylogeny (n= 517 species). Boxplots show the marginal posterior distributions of the GJAM-derived coefficients.
Specifically, boxes show mean effect size as vertical lines and are bounded by 80% credible intervals (CI), with
95% CI as whiskers. Colors highlight signs of the correlation (green for positive and purple for negative), with
opacity increasing from 80% to 95% of the distribution outside of zero. Grey indicates coefficients that overlap
ZEero.
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Supplementary material

Supplementary Notes

Analysis with time-series restricted to 10 years

In that Supplement, we report the results as in the main text, but with a more restrictive data filtering, i.e. we
limited the time series (site by species combinations) to have at least 10 years of observations.

Phylogenetic signal The strength of the phylogenetic signal slightly increased once the data was restricted
to fewer species. In the case of CV, A equaled 0.57 (p < 0.00001, n = 364 species), while in the case of AR1, 1
equaled 0.41 (p < 0.00001, n = 364 species, Fig. S10).

Principal Component Analysis (PCA) Patterns summarized by the PCA analysis on the restricted dataset
(n=368) resembled those run on a larger set of species (n=517). Masting metrics created a 3rd, largely independent
from the first two, axis of variation (Fig. S11).

Generalized Joint Attribute Modeling (GJAM) The coefficient of variation and lag-1 temporal
auto-correlation responded in the opposite way to climate (Fig. S12). Conditional parameters estimated with
GJAM support the conclusion that high CV is concentrated in species that are characterized by conservative tissue
construction, i.e. high stem (tissue) density (Fig. S13). That support comes from the relationship of CV with stem
tissue density, but not with leaf mass per area (LMA).
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Figure S1: Masting metrics on the spectrum of plant form and function. Trait probability density function
for principal components: a) axis 1 and axis 2; b) axis 1 and axis 3. Colors indicate the probabilistic distribution
of trait combinations in the functional trait space defined by a PCA. Contour lines indicate 0.99, 0. 50, and 0.25
quantiles of the probability distribution, and dots represent species. We estimated the occurrence probability of
a given combination of trait values determined by the principal components axis and bivariate trait combination
using two-dimensional kernel density estimation.
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Figure S2: Masting metrics on the spectrum of plant form and function, by growth form. Trait probability
density function for principal components between axis 3 and axis 1 according to plant growth form for a) other
groups, b) shrub, and c) trees. For each growth form group, the colors indicate the probabilistic distribution of
trait combinations in the functional trait space defined by a PCA (ranging from low probability in pale white to
high probability in red). Contour lines indicate 0.99, 0. 50, and 0.25 quantiles of the probability distribution. We
estimated the occurrence probability of a given combination of trait values determined by the principal components
axis and bivariate trait combination using two-dimensional kernel density estimation. Analysis and plots have been
made with the R package funspace [51]. d) Coefficient of variation (CV) and lag-1 temporal auto-correlation
(AR1) across growth forms (n = 517 species). The growth form follows a compilation from [49], with samples:
trees, n = 367 species; shrubs, n = 86 species; other n = 64 species. Other include graminoid and non-graminoid
herbaceous and climbers. Groups were compared with a one-sample t-test (** P < for 0.01, * P < for 0.05, and
n.s. for P > 0.05)
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Figure S3: Lag-1 temporal autocorrelation of seed production mapped onto a plant phylogeny. Warmer
colors (reds) indicate higher, while blue lower AR1 (4 = 0.27, p < 0.0001, n = 518 species). Distribution of the
masting metrics is given in Fig. S4.
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Figure S4: Distribution of masting metrics. Histogram of a) coefficient of variation (CV), and b) lag-1 temporal
auto-correlation (AR1) for the 517 species analyzed. Black dotted lines show median and quantiles at 2.5% and
97.5%.
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Figure S5: Relationship between the coefficient of variation (CV) and the lag-1 temporal auto-correlation
(AR1). The Hexagon color is scaled to the number of observations within each hexagon, n = 517.
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Figure S6: Summary of climate effect on masting metrics, derived from the GJAM model. Relationship
between the coefficient of variation (CV) and lag-1 temporal auto-correlation (AR1) and species climatic niche
(MAP, in cm and MAT, in °C). The predictions and associated standard error are derived from the GJAM model.
Each dot represents one species (n = 517).
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Figure S7: Summary of climate effect on functional traits, derived from the GJAM model. Effects of mean
annual temperature (MAP, in °C) and mean annual precipitation (MAT, in cm) on functional traits (a- leaf area,
b- LMA, c- leaf N, d- plant height, e- stem tissue density and f- seed mass). The surface shows the conditional
relationship between functional traits and MAT across levels of MAP. Convex hull is defined by species observations
(red dots). MAT and MAP are defined for each species’ distribution derived from Global Biodiversity Information
Facility (GBIF, www . gbif . org). Traits are log10 transformed.
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Figure S8: Bivariate relationships between plant functional traits, their distributions (histograms), and
correlations. The prediction lines at bivariate scatter plots are the loess regressions (estimate with 95% CI).
The dots represented each species (n=517), with 2D kernel density estimation. The significance of the Pearson
correlations: *** for p-values < 0.001, ** for 0.001, and * for 0.01. Traits were log10 transformed.
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Figure S9: Correlation of climatic variables obtained from average conditions of MASTREE+ sites and
from GBIF observations. a) Relation between MAT (in degree C) from MASTREE+ observations and GBIF
observations extracted from CHELSA. b) Relation between MAP (in cm) from MASTREE+ observations and
GBIF observations extracted from CHELSA. Each dot represents one species (n = 517). The regression line is
reported in black (estimate with 95 % CI), with the equation at the bottom right and correlation and the 1:1 line in
red dashed.
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Figure S10: Phylogeny of masting metrics on a restricted dataset. (a) Coefficient of variation of seed
production mapped onto a plant phylogeny restricted to time series of 10 years and longer. Warmer colors (reds)
indicate higher, while blue lower CV (1 = 0.56, p < 0.0001, n = 364 species). (b) Lag-1 temporal autocorrelation
of seed production mapped onto a plant phylogeny, restricted to time series of 10 years and longer. Warmer colors
(reds) indicate higher, while blue lower temporal autocorrelation (1 = 0.40, p < 0.0001, n = 364 species).
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Figure S11: Masting metrics on the spectrum of plant form and function, for time series of 10 years and
longer (n=368). A) Biplot of principal components that summarized axes 1 and 2, and B) axes 2 and 3. The PCA
included plant functional traits (stem tissue density, leaf area, leaf nitrogen, leaf mass per area LMA, plant height,
and seed mass) and masting metrics (CV and AR1). Arrow length indicates the loading of each considered trait
onto the axes. Points represent the position of species color-coded according to their growth form (green for trees,
blue for shrubs, and black for others that included graminoid and non-graminoid herbaceous and climbers). C)
Summary of PCA loadings and D) contributions to the guiee axes of variation.
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Figure S12: Summary of climate effects on masting metrics, derived from the GJAM model that included
coefficient of variation (CV) and temporal autocorrelation (AR1) as responses for time series of 10 years and
longer (n=368 species). a) Boxplot of standardized coefficients from the GIAM model with 95%CI, bounded by
80% interval. Colors highlight signs of the correlation (green for positive and purple for negative), with opacity
increasing from 80% to 95% of the distribution outside of zero. Grey is for coefficients that overlap zero. b)
Effects of mean annual temperature (MAP, in °C) and mean annual precipitation (MAT, in cm) on CV and ARI.
The surface shows the conditional relationship between CV/AR1 and MAT across levels of MAP. Convex hull is
defined by species observations (red dots). MAT and MAP are defined for each species’ distribution derived from
the Global Biodiversity Information Facility (GBIF, www . gbi f . org). Biplots of relationships between CV/AR1
and MAT and MAP are in Fig. S6.
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Figure S13: Conditional relationship between masting metrics and functional traits, restricted to time series
of 10 years and longer (n=368 species). Boxplots are based on the mean estimate, CI at 80% and 95% to determine
the ranges of the boxplot. Colors highlight signs of the correlation (green for positive and purple for negative), with
opacity increasing from 80% to 95% of the distribution outside of zero. Grey is for non-significant variables (i.e.
coeflicients overlap 0).
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Supplementary Tables

Table S1: Summary of the conditional relationship between masting metrics and functional
traits without trait imputation. GJAM-derived conditional relationship between masting
metrics (CV and ARI) and functional traits (stem tissue density, seed size, LMA, leaf N, leaf
area, and plant height) after accounting for the effect of climate and phylogeny. Coeflicients are
reported with 95%CI, with significance (95% CI overlapping 0) of functional trait coefficients
in bold. GJAM was used here on the dataset without functional trait imputation (total count of
species with missing traits for LMA = 90 species; seed size = 84 species; leaf N = 96 species;
leaf area = 111 species; stem density = 84 species; height = 51 species).

Masting metric  Conditional traits ~ Estimate SE 2.5% 97.5% significance

CvV
LMA 9.64e-04 4.26e-04 1.38e-04 1.79¢-03
Seed size -2.27e-05 8.60e-06 -3.92e-05 -5.60e-06
Leaf N -6.98e-04 3.95e-03 -8.44e-03  7.18e-03
Leaf area -8.00e-07 1.50e-06 -3.80e-06  2.10e-06
Stem density 5.68e-01 1.79e-01 2.17e-01 9.29¢-01 *
Height 3.97e-03 2.17e-03 -2.33e-04  8.28e-03

AR1
LMA -3.17e-05 2.36e-04 -4.94e-04 4.34e-04
Seed size 4.40e-06 4.80e-06 -4.80e-06 1.38e-05
Leaf N 4.82e-03 2.35e-03 3.11e-04 9.45e-03 *
Leaf area 2.00e-07 8.00e-07 -1.50e-06  1.90e-06
Stem density -1.01e-01 9.88e-02 -2.92e-01 9.72e-02
Height -2.77e-03  1.20e-03 -5.08e-03 -4.06e-04 *
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Table S2: Joint traits model selection (based on the DIC values). GJAM models were fitted
with different combinations of climate covariates, average species climatic conditions (MAP and
MAT), and climate variability (MAP, and MAT,). Some model combinations were excluded
due to collinearity issues. Note: in the top-scored models that included climate variability,
the effects of climate variability on masting metrics overlapped with 0. The other models that
included either MAP, and MAT, had the A DIC less than 10, which means that these model
fits received essentially no support. In other words, the probability that one of the alternative
models is the best for the data is O.

Climatic predictors in GJAM DIC
MAP x MAT + MAT? + MAP? 10,997
MAP x MAT + MAT? + MAP? + MAP, 11,005
MAP x MAT 11,063
MAP, x MAT + MAT? + MAP2 11,113
MAP, x MAT 11,149
MAT, x MAT 11,159
MAP x MAT,, + MAT2 + MAP? + MAP, 11,190
MAP, x MAT, + MAT2 + MAP2 11,314
MAP, x MAP + MAP? + MAP2 11,464
MAP x MAT,, 11,505
MAP x MAP,, 11,576
MAP,, x MAT,, 11,652
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