
HAL Id: hal-04504243
https://hal.science/hal-04504243v1

Submitted on 14 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Direct Access for Conjunctive Queries with Negations
Florent Capelli, Oliver Irwin

To cite this version:
Florent Capelli, Oliver Irwin. Direct Access for Conjunctive Queries with Negations. In-
ternational Conference on Database Theory, Mar 2024, Paestum, Italy. pp.13:1-13:20,
�10.4230/LIPIcs.ICDT.2024.13�. �hal-04504243�

https://hal.science/hal-04504243v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Direct Access for Conjunctive Queries with
Negations
Florent Capelli #

Univ. Artois, CNRS, UMR 8188, Centre de Recherche en Informatique de Lens (CRIL),
F-62300 Lens, France

Oliver Irwin #

Université de Lille, CNRS, Inria, UMR 9189 - CRIStAL, F-59000 Lille, France

Abstract
Given a conjunctive query Q and a database D, a direct access to the answers of Q over D is the
operation of returning, given an index j, the jth answer for some order on its answers. While this
problem is #P-hard in general with respect to combined complexity, many conjunctive queries have an
underlying structure that allows for a direct access to their answers for some lexicographical ordering
that takes polylogarithmic time in the size of the database after a polynomial time precomputation.
Previous work has precisely characterised the tractable classes and given fine-grained lower bounds
on the precomputation time needed depending on the structure of the query. In this paper, we
generalise these tractability results to the case of signed conjunctive queries, that is, conjunctive
queries that may contain negative atoms. Our technique is based on a class of circuits that can
represent relational data. We first show that this class supports tractable direct access after a
polynomial time preprocessing. We then give bounds on the size of the circuit needed to represent
the answer set of signed conjunctive queries depending on their structure. Both results combined
together allow us to prove the tractability of direct access for a large class of conjunctive queries.
On the one hand, we recover the known tractable classes from the literature in the case of positive
conjunctive queries. On the other hand, we generalise and unify known tractability results about
negative conjunctive queries – that is, queries having only negated atoms. In particular, we show
that the class of β-acyclic negative conjunctive queries and the class of bounded nest set width
negative conjunctive queries admit tractable direct access.

2012 ACM Subject Classification Information systems → Relational database model

Keywords and phrases Conjunctive queries, factorized databases, direct access, hypertree decompos-
ition

Digital Object Identifier 10.4230/LIPIcs.ICDT.2024.13

Related Version Full Version: https://arxiv.org/abs/2310.15800 [10]

Funding This work was supported by project ANR KCODA, ANR-20-CE48-0004.

Acknowledgements We are thankful to Stefan Mengel and Sylvain Salvati for helpful discussions
while elaborating these results.

1 Introduction

The direct access (DA for short) task is the problem of outputing, given k, the k-th answer
of a query Q over a database D. An error is returned if k is greater than the number of
answers of Q. An order on JQKD, the answers of Q over D, is assumed. This task has been
introduced by Bagan, Durand, Grandjean and Olive in [2] and is very natural in the context
of databases. It can be used as a building block for many other interesting tasks such as
counting, enumerating [2] or sampling without repetition [13, 22] the answers of Q. Of course,
if one has access to an ordered array containing JQKD, answering DA tasks simply consists
in reading the right entry of the array. However, building such an array is often expensive,

© Florent Capelli and Oliver Irwin;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Database Theory (ICDT 2024).
Editors: Graham Cormode and Michael Shekelyan; Article No. 13; pp. 13:1–13:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:florent.capelli@univ-artois.fr
https://orcid.org/0000-0002-2842-8223
mailto:oliver.irwin@univ-lille.fr
https://orcid.org/0000-0002-8986-1506
https://doi.org/10.4230/LIPIcs.ICDT.2024.13
https://arxiv.org/abs/2310.15800
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Direct Access for Conjunctive Queries with Negations

especially when the number of answers of Q is large. Hence, a natural approach for solving
this problem is to simulate this method by using a data structure to represent JQKD that still
allows for efficient DA tasks to be solved but that is cheaper to compute than the complete
answer set. Moreover, one is rarely interested in accessing exactly one tuple of the answer
set but one is usually interested in having a data structure allowing to solve efficiently DA
tasks for any input k. Hence the time needed to solve exactly one DA task is not the best
measure of complexity. To compare algorithms for DA tasks, it is then relevant to allow a
preprocessing phase to construct a data structure that can be used later during the access
phase where one needs to efficiently answer any DA task. Hence, we say that a method
solves the DA problem if it consists in two algorithms P and A such that: on input Q and
D, P construct a data structure S and A(S, k) returns the k-th answer of Q for any k. To
measure the quality of such an algorithm, we hence separate the preprocessing time – that is
the time needed for executing P (Q, D) – and the access time, that is, the time needed to
execute A(S, k). For example, the method consisting in building an indexed array for JQKD

solves DA with preprocessing time at least equal to the size of JQKD (and much higher in
practice) and constant access time. While the access time is optimal in this case, the cost of
preprocessing is often too high to pay in practice.

Previous work has consequently focused on devising methods with better preprocessing
time while offering reasonable access time. In their seminal work [2], Bagan, Durand,
Grandjean and Olive give a method for solving the DA problem with linear precomputation
time and constant access time on a that works on the class of first order logic formulas
and bounded degree databases. Bagan [1] later studied the problem for monadic second
order formulas over bounded treewidth databases. Another line of research has focused on
classes of conjunctive queries that admit efficient method for solving the DA problem. In [13],
Carmeli, Zeevi, Berkholz, Kimelfeld, and Schweikardt give a method solving the DA problem
for acyclic conjunctive queries with linear preprocessing time and polylogarithmic access
time for a well-chosen lexicographical order. The results also hold for bounded fractional
hypertree width queries, a number measuring how far a conjunctive query is from being
acyclic. It generalises many results from the seminal paper by Yannakakis establishing the
tractability of testing non-emptiness of acyclic conjunctive queries [33] to the tractability of
counting the number of answers of conjunctive queries [30] having bounded hypertree width.
later improved this result by precisely characterising the lexicographical ordering allowing
for this kind of complexity guarantees. Fine-grained characterisation of the complexity of
solving the DA problem on conjunctive queries, whose answers are assumed to be ordered by
some lexicographical order, has been given by Carmeli, Tziavelis, Gatterbauer, Kimelfeld and
Riedewald in [12] for the case of acyclic queries and by Bringmann, Carmeli and Mengel in [7]
for the general case. Recently, Eldar, Carmeli and Kimelfeld [15] studied the complexity of
solving the DA problem for conjunctive queries with aggregation.

In this paper, we devise new methods for solving the DA problem for signed conjunctive
queries, that is, conjunctive queries that may contain negated atoms. This is particularly
challenging because only a few tractability results are known on signed conjunctive queries.
The problem of testing non-emptiness of signed conjunctive queries being NP-hard on acyclic
conjunctive queries with respect to combined complexity, it is not possible to directly build
on the work cited in the last paragraph. Two classes of negative conjunctive queries (that
is, conjunctive queries where every atom is negated) have been shown so far to support
efficient non-emptiness testing: the class of β-acyclic queries [29, 4] and the class of bounded
nested-set width queries [25]. The former has been shown to also support efficient (weighted)
counting [6, 9]. Our main contribution is a generalisation of these results to DA. More

F. Capelli and O. Irwin 13:3

precisely, we give a method that efficiently solves the DA problem on a large class of signed
conjunctive queries, which contains in particular β-acyclic negative conjunctive queries,
bounded nest-width negative conjunctive queries and bounded fractional hypertree width
positive conjunctive queries. For the latter case, the complexity we obtain is similar to the
one presented in [7] and we also get complexity guarantees depending on a lexicographical
ordering that can be specified by the user. Hence our result both improves the understanding
of the tractability of signed conjunctive queries and unifies the existing results with the
positive case. In a nutshell, we prove that the complexity of solving the DA problem for a
lexicographical order of a signed conjunctive query Q roughly matches the complexity proven
in [7] for the worst positive query we could construct by removing some negative atoms of Q

and turning the remaining ones to positive atoms. It is not surprising that the complexity of
solving the DA problem on signed conjunctive queries depends on the complexity of solving
the DA problem for subqueries since one could simulate direct access to such a subquery by
choosing a database where the removed negated atoms are associated with empty relations,
hence, making them virtually useless in the query. However, proving the actual combined
complexity upper bound is not trivial to obtain and necessitates introducing new tools to
handle negated atoms.

As a byproduct, we introduce a new notion of hypergraph width based on elimination
order, the β-hyperorder width, that is hereditary – in the sense that the width of every
subhypergraph does not exceed the width of the original hypergraph – which makes it
particularly well tailored for studying the tractability of negative conjunctive queries. We
show that this notion sits between nest-set width and β-hypertree width [18], but do not
suffer from one important drawback of working with β-hypertree width: our width notion is
based on a decomposition that works for every subhypergraph.

Our method is based on a two-step preprocessing. Given a signed conjunctive query
Q, a database D and an order ≺ on its variables, we start by constructing a circuit which
computes JQKD in a factorised way enjoying interesting syntactical properties. The size of
this circuit depends on the complexity of the order ≺ chosen on the variables of Q. We then
show that, with a second light preprocessing on the circuit itself, we can answer DA tasks
for the lexicographical order induced by ≺ on the circuit in time poly(n)polylog(D) where
n is the number of variables of Q and D is the domain of D. This approach is akin to the
approach used in factorised databases introduced by Olteanu and Závodný [27], a fruitful
approach allowing efficient management of the answer set of a query by working directly on a
factorised representation of the answer set instead of working on the query itself [26, 32, 3, 28].
However, the restrictions that we are considering in this paper are different from the one
used in previous work since we need somehow to account for the variable ordering in the
circuit itself. The syntactic restrictions we use have already been considered in [9] where
they are useful to deal with β-acyclic CNF formulas.

The paper is organised as follows: Section 2 introduces the notations and concepts
necessary to understand the paper. We then present the family of circuits we use to represent
database relations and the DA method for circuits in Section 3. Section 4 presents the
algorithm used to construct a circuit representing JQKD from a join query Q (that is a
conjunctive query without existential quantifiers) and a database D. Upper bounds on
the size of the circuits are given in Section 4.3 using hypergraph decompositions defined
in Section 4.2. Finally Section 5 explicitly states the results we obtain by combining both
techniques together, explains how one can go from join query to conjunctive query by
existentially projecting variables directly in the circuit and makes connections with the
existing literature. We conclude with interesting research directions in Section 6.

ICDT 2024

13:4 Direct Access for Conjunctive Queries with Negations

Due to space restriction, full proofs have been omitted from the paper. Proofs of theorems
and lemmas tagged with a star symbol ⋆ can be found in the full version of this paper [10].

2 Preliminaries

Given n ∈ N, we denote by [n] the set {0, . . . , n}. When writing down complexity, we use
the notation poly(n) to denote that the complexity is polynomial in n, polyk(n) to denote
that the complexity is polynomial in n when k is considered a constant (in other words, the
coefficients and the degree of the polynomial may depend on k) and polylog(n) to denote
that the complexity is polynomial in log(n).

Tuples and relations. Let D and X be finite sets. A (named) tuple on domain D and
variables X is a mapping from X to D. We denote by DX the set of all tuples on domain D

and variables X. A relation R on domain D and variables X is a subset of tuples, that is,
R ⊆ DX . Given a tuple τ ∈ DX and Y ⊆ X, we denote by τ |Y the tuple on domain D and
variable Y such that τ |Y (y) = τ(y) for every y ∈ Y . Given a variable x ∈ X and d ∈ D, we
denote by [x← d] the tuple on variables {x} that assigns the value d ∈ D to x. We denote
by ⟨⟩ the empty tuple, that is, the only element of D∅. Given two tuples τ1 ∈ DX1 and
τ2 ∈ DX2 , we say that τ1 and τ2 are compatible, denoted by τ1 ≃ τ2, if τ1|X1∩X2 = τ2|X1∩X2 .
In this case, we write τ1 ▷◁ τ2 the tuple on domain D and variables X1 ∪ X2 defined as
(τ1 ▷◁ τ2)(x) to be τ1(x) if x ∈ X1 and τ2(x) otherwise. If X1 ∩X2 = ∅, we write τ1 × τ2.
The join R1 ▷◁ R2 of R1 and R2, for two relations R1, R2 on domain D and variables X1, X2
respectively, is defined as {τ1 ▷◁ τ2 | τ1 ∈ R1, τ2 ∈ R2, τ1 ≃ τ2}. Observe that if X1 ∩X2 = ∅,
R1 ▷◁ R2 is simply the Cartesian product of R1 and R2. Then, we denote it by R1 ×R2.

Let R ⊆ DX be a relation from a set of variables X to a domain D. We denote σF (R) as
the subset of R where the formula F is true. Throughout the paper, we will assume that
both the domain D and the variable set X are ordered. The order on D will be denoted as
< and the order on X as ≺ and we will often write D = {d1, . . . , dp} with d1 < · · · < dp and
X = {x1, . . . , xn} with x1 ≺ · · · ≺ xn. Given d ∈ D, we denote by rank(d) the number of
elements of D that are smaller or equal to d. Both < and ≺ induce a lexicographical order
≺lex on DX defined as τ ≺lex σ if there exists x ∈ X such that for every y ≺ x, τ(y) = σ(y)
and τ(x) < σ(x). Given an integer k ⩽ #R, we denote by R[k] the kth tuple in R for the
≺lex-order. The following observation will prove useful to design a DA algorithm:

▶ Lemma 1 (⋆). Let τ = R[k] and x = min(var(R)). Then τ(x) = min{d | #σx⩽d(R) ⩾ k}.
Moreover, τ = R′[k′], where R′ = σx=d(R) and k′ = k −#σx<d(R).

Figure 1 gives an intuition of the result presented in Lemma 1 as a visual represention of
the index transformation.

Queries. A positive atom (resp. negative atom) is an expression of R(x) (resp. ¬R(x))
where R is a relation symbol and x a tuple of variables in X. A signed join query Q is a set
of (negative or positive) atoms Q = {R1(x1), . . . , Rp(xp),¬Sp+1(xp+1), . . . ,¬Sm(xm)}. In
this paper, we consider self-join free queries, that is, we assume that two distinct atoms of a
join query have distinct relation symbols. The set of variables of Q is denoted by var(Q), the
set of positive (resp. negative) atoms of Q is denoted by atoms+(Q) (resp. atoms−(Q)). A
positive (resp. negative) join query is a signed join query without negative (resp. positive)
atoms. The size |Q| of Q is defined as

∑m
i=1 |xi|, where |x| denotes the number of variables

in x. A database D for Q is an ordered finite set D called the domain together with a set of

F. Capelli and O. Irwin 13:5

𝜏

𝜎𝑥>𝑑

𝜎𝑥=𝑑

𝜎𝑥<𝑑

𝑥

𝑘

𝑘′

#𝜎𝑥<𝑑

Figure 1 Representation of the link between k and k′.

relations RD
i ⊆ Dai , SD

j ⊆ Daj such that ai = |xi|. The answers of Q over D is the relation
JQKD ⊆ Dvar(Q) defined as the set of σ ∈ Dvar(Q) such that for every i ⩽ p, σ(xi) ∈ RD

i and
for every p < i ⩽ m, σ(xi) /∈ SD

i . The size |D| of the database D is defined to be the total
number of tuples in it plus the size of its domain, that is, |D|+

∑ℓ
i=1 |Ri|+

∑m
i=ℓ+1 |Sj |. We

follow the definition of [25] about the size of the database. Adding the size of the domain
here is essential since we are dealing with negative atoms. Hence a query may have answers
even when the database is empty, for example, Q = ¬R(x) with RD = ∅ has |D| answers.

A signed conjunctive query Q(Y) is a join query Q together with Y ⊆ var(Q), called the
free variables of Q and denoted by free(Q). The answers JQ(Y)KD of a conjunctive query Q

over a database D are defined as JQKD|Y , that is, the projection over Y of answers of Q.

Direct Access tasks. Given a query Q, a database instance D on an ordered domain D and
a total order ≺ on the variables of Q, a Direct Access (DA for short) task [12] is the problem
of returning, on input k, the k-th tuple JQKD[k] for the order ≺lex if k < #JQKD and fail
otherwise. We are interested in answering DA tasks using the same setting as [12]: we allow
a precomputation phase during which a data structure is constructed, followed by an access
phase. Our goal is to obtain an algorithm for DA tasks with polynomial precomputation
time and access time that is polylogarithmic time in the size of D.

Hypergraphs and Signed Hypergraphs. A hypergraph H = (V, E) is defined as a set
of vertices V and hyperedges E ⊆ 2V , that is, a hyperedge e ∈ E is a subset of V . A
signed hypergraph H = (V, E+, E−) is defined as a set of vertices V , positive edges E+ ⊆
2V and negative edges E− ⊆ 2V . The signed hypergraph H(Q) = (var(Q), E+, E−) of a
signed conjunctive query Q(Y) is defined as the signed hypergraph whose vertex set is the
variables of Q and such that E+ = {var(a) | a is a positive atom of Q} and E− = {var(a) |
a is a negative atom of Q}.

A subhypergraph H ′ of H, denoted by H ′ ⊆ H is a hypergraph of the form (V, E′) with
E′ ⊆ E. For S ⊆ V , we denote by H\S the hypergraph (V \S, E′) where E′ = {e\S | e ∈ E}.
Given v ∈ V , we denote by E(v) = {e ∈ E | v ∈ e} the set of edges containing v, by
NH(v) =

⋃
e∈E(v) e the neighbourhood of v in H and by N∗

H(v) = NH(v) \ {v} the open
neighbourhood of v. We will be interested in the following vertex removal operation on
H: given a vertex v of H, we denote by H/v = (V \ {v}, E/v) where E/v is defined as
{e \ {v} | e ∈ E} \ {∅} ∪N∗

H(v), that is, H/v is obtained from H by removing v from every
edge of H and by adding a new edge that contains the open neighbourhood of v.

ICDT 2024

13:6 Direct Access for Conjunctive Queries with Negations

Given S ⊆ V and E ⊆ 2V , a covering of S with E is a subset F ⊆ E such that S ⊆
⋃

e∈F e.
The cover number cn(S, E) of S wrt E is defined as the minimal size of a covering of S with
E, that is, cn(S, E) = min{|F | | F is a covering of S with E}. A fractional covering of S

with E is a function c : E → R+ such that for every s ∈ S,
∑

e∈E(s) c(e) ⩾ 1. Observe that a
covering is a fractional covering where c has values in {0, 1}. The fractional cover number
fcn(S, E) of S wrt E is defined as the minimal size of a fractional covering of S with E, that
is, fcn(S, E) = min{

∑
e∈E c(e) | c is a fractional covering of S with E}. Fractional covers

are particularly interesting because of the following theorem by Grohe and Marx:

▶ Theorem 2 ([19]). Let Q be a join query and λ be the fractional cover number of var(Q).
Then for every database D, JQKD has size at most |D|λ.

3 Ordered relational circuits

In this section, we introduce a data structure that can be used to succinctly represent relations.
This data structure is an example of a factorised representation, such as d-representations [28],
but does not need to be structured along a tree, which will allow us to handle more queries,
and especially queries with negative atoms – for example β-acyclic signed conjunctive queries,
a class of queries that do not have polynomial size d-representations [9, Theorem 9].

3.1 Definitions
Relational circuits. A {▷◁, dec}-circuit C on variables X = {x1, . . . , xn} and domain D is a
multi-directed acyclic graph, that is, there may be more than one edge between two nodes u

and v, with one special gate out(C) called the output of C. The circuit is labelled as follows:
every gate of C with no ingoing edge, called an input of C, is labelled by either ⊥ or ⊤;
a gate v labelled by a variable x ∈ X is called a decision gate. We denote x by decvar(v).
Each ingoing edge e of v is labelled by a value d ∈ D and for each d ∈ D, there is at most
one ingoing edge of v labelled by d. This implies that a decision gate has at most |D|
ingoing edges; and
every other gate is labelled by ▷◁.

The set of all the decision gates in a circuit C is denoted by decision(C). Given a gate v

of C, we denote by Cv the subcircuit of C rooted in v to be the circuit whose gates are the
gates reachable from v by following a directed path in C. We define the variable set of v,
denoted by var(v) ⊆ X, to be the set of variables x labelling a decision gate in Cv. The size
|C| of a {▷◁, dec}-circuit is defined to be the number of edges of its underlying DAG. In the
example circuit of Figure 2, the decision gates are represented as containing the variable that
labels them. Considering v to be the leftmost x2 decision gate, we have var(v) = {x2, x3}.

We define the relation rel(v) ⊆ Dvar(v) computed at gate v inductively as follows: if v is
an input labelled by ⊥, then rel(v) = ∅. If v is an input labelled by ⊤, then rel(v) = D∅,
that is, rel(v) is the relation containing only the empty tuple. Otherwise, let v1, . . . , vk be
the inputs of v. If v is a ▷◁-gate, then rel(v) is defined to be rel(v1) ▷◁ . . . ▷◁ rel(vk). If v

is a decision gate labelled by a variable x, rel(v) =
(
[x ← d1] ▷◁ rel(v1) ×D∆(v,v1)) ∪ · · · ∪(

[x ← dk] ▷◁ rel(vk) × D∆(v,vk)) where ei is the incoming edge (vi, v) labelled by di and
∆(v, vi) = var(v) \ ({x} ∪ var(vi)). It is readily verified that rel(v) is a relation on domain
D and variables var(v). The relation computed by C over a set of variables X (assuming
var(C) ⊆ X), denoted by relX(C), is defined to be rel(out(C))×DX\var(out(C)). In Figure 2,
if v is the leftmost x3 decision gate, then rel(v) is the relation where x3 is set to 0 or 1.

F. Capelli and O. Irwin 13:7

Deciding whether the relation computed by a {▷◁, dec}-circuit is non-empty is NP-complete
by a straightforward reduction to testing non-emptiness of conjunctive queries [14]. Such
circuits are hence of little use to get tractability results. We are therefore more interested in
the following restriction of {▷◁, dec}-circuits where testing non-emptiness and other related
tasks are tractable: a {×, dec}-circuit C is a {▷◁, dec}-circuit such that: (i) for every ▷◁-gate
v of C with inputs v1, . . . , vk and i < j ⩽ k, it holds that var(vi) ∩ var(vj) = ∅, (ii) for every
decision gate v of C labelled by x with inputs v1, . . . , vk and i ⩽ k, it holds that x /∈ var(vi).
An example of such a circuit is presented in Figure 2.

Let X be a set of variables ordered by ≺. A {×, dec}-circuit C on domain D and
variables X is a ≺-ordered {×, dec}-circuit if for every decision gate v of C labelled with
x ∈ X, it holds that for every y ∈ var(v) \ {x}, x ≺ y. We simply say that a circuit C is
an ordered {×, dec}-circuit if there exists some order ≺ on X such that C is a ≺-ordered
{×, dec}-circuit. Observe that if v is a decision-gate in an ordered {×, dec}-circuit, then
rel(v) =

(
[x← d1]× rel(v1)×D∆(v,v1))⊎· · ·⊎(

[x← dk]× rel(vk)×D∆(v,vk)) since x /∈ var(vi)
by definition and that these unions are disjoint because of the value assigned to x. The circuit
presented in Figure 2 is an ordered {×, dec}-circuit for the order induced by the variables
x1, x2, x3.

0

0 1

0 1 2

1

0 1

0 1 2

2

2

0 1 2

𝑥1

𝑥2

𝑥3

⊤ ⊤ ⊥

𝑥2

𝑥3

⊥ ⊤ ⊤

×

𝑥2

⊤ ⊥ ⊤

(a) ordered {×, dec}-circuit.

x1 x2 x3

0 0 0
0 0 1
0 1 0
0 1 1
1 0 1
1 0 2
1 1 1
1 1 2
1 2 0
1 2 1
2 0 1
2 0 2
2 2 1
2 2 2

(b) relation computed by the circuit.

Figure 2 Example of a small ordered {×, dec}-circuit computing a simple relation.

Frontiers. Let X = {x1, . . . , xn} with x1 ≺ · · · ≺ xn. A prefix assignment of size p is an
assignment of variables τ ∈ D{x1,...,xp} with p ⩽ n. When answering DA tasks, we will need
to be able to find a representation of the tuples in rel(C) that agree with τ . To do that, we
introduce the notion of frontier. Given τ a prefix assignment, the frontier fτ of τ in C is
defined algorithmically as follows:
1. Instantiate a set F with out(C), the root of the circuit.
2. As long as F is not stable, do:

if v ∈ F is a ×-gate, F := (F \ {v}) ∪
⋃

w∈input(v) w,
if v ∈ F is a decision gate and the variable x labelling v is assigned in the prefix
(x ∈ {x1, . . . , xp}), F := (F \ {v}) ∪ {v′}} where v′ is the node connected to v by the
edge (v′, v) labelled by τ(x).

3. If F contains a ⊥-gate, then fτ = {⊥}, otherwise fτ = F .

ICDT 2024

13:8 Direct Access for Conjunctive Queries with Negations

Frontiers are particularly useful because they can be efficiently computed and the relation
they represent is essentially the tuples of the relation represented by C that agree with τ . We
denote by var(fτ) =

⋃
v∈fτ

var(v) the set of variables appearing below a gate in the frontier and
by rel(fτ) =×v∈fτ

rel(v). Given a prefix assignment τ of variables {x1, . . . , xp} and a relation
R, we slightly abuse notation by denoting στ (R) the relation σx1=τ(x1)∧···∧xp=τ(xp)(R). We
can prove by induction on p that:

▶ Lemma 3 (⋆). Let τ be a prefix assignment on variables x1, . . . , xp. Then fτ can be
computed in O(|X|) and στ (relX(C)) = {τ} × rel(fτ)×D{xp+1,...,xn}\var(fτ).

3.2 Direct Access for ordered {×, dec}-circuits
The main result of this section is an algorithm that allows for efficient solving of DA tasks
for an ordered {×, dec}-circuit on domain D and variables X. More precisely, we prove:

▶ Theorem 4. Let (X,≺) be a finite ordered set and C a ≺-ordered {×, dec}-circuit on
variables X and domain D. We can answer direct access tasks on relX(C) ordered by ≺lex with
precomputation time O(|C| · poly(|X|) · polylog|D|) and access time O(poly(|X|) · polylog|D|).

Precomputation. In this section, we assume that C is a ≺-ordered {×, dec}-circuit on
variables X. The count label of C, denoted by nrelC , is the mapping from decision(C)×D

to N such that nrelC(v, d) = #σx⩽d(rel(v)), that is, nrelC(v, d) is the number of tuples from
rel(v) that assign a value on x smaller or equal than d. The precomputation step aims to
compute nrelC so that we can access nrelC(v, d) quickly.

Our algorithm performs a bottom-up computation of the number of satisfying tuples in
rel(v) for every gate v of C. If rel(v) is a decision-gate on variable x, we have by definition:

|rel(v)| =
∑

w∈input(v)

|rel(w)| × |D||∆(v,w)| where ∆(v, w) = var(v) \ ({x} ∪ var(w)). (1)

Similarly, nrelC(v, d) can be computed by restricting the previous relation on the inputs
of v that sets x to a value d′ ⩽ d, that is:

nrelC(v, d) =
∑

w∈input(v),dw⩽d

|rel(w)| × |D||∆(v,w)| where dw is the label of edge (v, w). (2)

Finally observe that if v is a ×-gate, we clearly have |rel(v)| =
∏

w∈input(v) |rel(w)| and for
every gate v, var(v) =

⋃
w∈input(v) var(w).

Hence, using a dynamic programming algorithm that follows the structure of the circuit
in a bottom-up way, we can compute tables Trel, Tvar and TnrelC such that Trel[v] = |rel(v)|,
Tvar[v] = var(v) and TnrelC [v, d] = nrelC(v, d) for every gate v and value d ∈ D, allowing us to
prove the following (a full description of the dynamic programming algorithm can be found
in the full version):

▶ Lemma 5 (⋆). Given a ≺-ordered {×, dec}-circuit C, we can compute a data structure in
time O(|C| · poly|X|polylog|D|) that allows us to access var(v), |rel(v)| for every gate v of C

in time O(1) and nrelC(v, d) for every decision gate v and d ∈ D in time O(polylog(|D|)).

An example of what the nrelC values might look like in practice can be seen at the left of
the decision gates in Figure 3.

F. Capelli and O. Irwin 13:9

Direct access. We now show how the precomputation from Lemma 5 allows us to get direct
access for ordered {×, dec}-circuits. We first show how one can solve a DA task for any
relation as long as we have access to very simple counting oracles. We then show that one
can quickly simulate these oracle calls in ordered {×, dec}-circuits using precomputed values.

We start by illustrating our algorithm on an example.

▶ Example 6. Consider Figure 3, which represents two different direct access tasks on a
circuit where nrelC has been precomputed and which is represented as lists beside each node.

We start by explaining how we solve direct access for k = 7, depicted in Figure 3a. In
this paragraph, let τ7 be the 7-th solution of the circuit, that is, {x1 7→ 1, x2 7→ 1, x3 7→ 1}
(see Figure 2). Our algorithm iteratively finds the values of τ7 on x1, x2 and x3. It starts
by finding the value τ7(x1) from the decision node at the root of the circuit. Using nrelC ,
one can see that the smallest value one can assign to x1 to have at least 7 solutions is 1.
By Lemma 1, we know that τ7(x1) = 1. The algorithm then follows the edge labelled by 1
to find a subcircuit computing every solution of the circuit when x1 is fixed to 1. We can
now repeat the method to find τ7(x2). However, one has to be careful about the index. By
setting x1 to 1, we have discarded every solution of the circuit where x1 < 1, that is, every
solution where x1 ⩽ 0. From nrelC , we know that there are 4 such solutions. Hence, when
repeating the method, we now look for the third (7− 4 = 3) solution of the next gate. The
same reasoning yields that τ7(x2) = 1 and that we discard 2 solutions. Applying this method
once more yields the desired value for x3.

The algorithm is a bit more complex when encountering ×-gates. We illustrate it in
Figure 3b, where we solve direct access for k = 13. Again, we denote by τ13 the 13-th solution
of the circuit. We find that τ13(x1) = 2 exactly as before. We know that setting x1 to 2
discards 10 solutions. Hence, we need to find the 3-rd solution of the circuit rooted in the
×-gate. To do that, we first follow every edge going in the gate to find only decision-gates.
By 3, we know that the solution of the ×-gate are the Cartesian product of the solutions of
both decision-gates. Now to find the value τ13(x2), we do the same reasoning as before but
one has to be careful: nrelC only contains the number of solutions of the subcircuit but each
one of these solutions can be extended to a full solution of the circuit by completing it with
the value of x3. We now from nrelC on the decision-gate labelled by x3 that there are 2 such
solutions. Hence, each solution of the decision-gate labelled by x2 can be extended into 2
full solutions. Hence, we know that there are 2 solutions where x2 = 0 and 4 solutions where
x2 = 2. Hence, similarly as before, we can deduce that τ13(x2) = 2. We find the value of x3
similarly as before.

▶ Lemma 7 (⋆). Assume that we are given a relation R ⊆ DX with X = {x1, . . . , xn} and
an oracle such that for every prefix assignment τ of size p it returns #στ∧xp+1⩽d(R). Then,
for any k, we can compute R[k] using O(n · polylog|D|) oracle calls, where n = |X|.

Proof sketch. Let τ = R[k]. We apply Lemma 1 iteratively to find τ(xi) for each i = 1, . . . , n.
By Lemma 1, we know that τ(x1) = d where d is the smallest value in D such that
#σx1⩽d(R) ⩾ k. Now one can easily find d using a binary search that makes O(log|D|)
oracle calls. Now, finding τ(x2) boils down to find R′[k′] where the k′ = k − #σx1<d(R)
and R′ = σx1=d(R) which can be done similarly using oracle calls for R′, which could be
simulated by oracle calls to R, and so on for each value τ(xi). ◀

Now, it remains to show that oracle calls as in Lemma 7 can be efficiently solved on
ordered {×, dec}-circuits after preprocessing.

ICDT 2024

13:10 Direct Access for Conjunctive Queries with Negations

0

0 1

0 1 2

1

0 1

0

2

2

0 1 21 2

𝑥1

𝑥2

𝑥3

⊤ ⊤ ⊥

𝑥2

𝑥3

⊥

×

𝑥2

⊤ ⊥ ⊤⊤ ⊤

[1, 2, 2] [0, 1, 2] [1, 1, 2]

[2, 4, 4] [2, 4, 6] 4

[4, 10, 14] 7

3

1

(a) k = 7.

0

0 1

0 1 2

1

0 1

0

2

2

01 2 1 2

𝑥1

𝑥2

𝑥3

⊤ ⊤ ⊥

𝑥2

𝑥3

⊥

×

𝑥2

⊤⊤ ⊤ ⊥ ⊤

[1, 2, 2] [0, 1, 2] [1, 1, 2]

[2, 4, 4] [2, 4, 6] 4

[4, 10, 14] 13

31

(b) k = 13.

Figure 3 Examples of paths followed in the circuit for different direct access tasks. Precomputed
values of nrelC for decision gates are represented as lists at the left of each gate. The current index
of the tuple we are searching for is indicated next to the reached nodes.

▶ Lemma 8 (⋆). For a given prefix assignment τ of size p and d ∈ D, assuming that |rel(v)|,
nrelC(v, d) and var(v) have been precomputed for every gate v in C, #στ∧xp+1⩽d(rel(C)) can
be computed in time O(poly(n)polylog|D|), where n = |X|.

Proof sketch. To ease notation, let x = xp+1. We first compute fτ in O(n) with Lemma 3.
Now, στ (rel(C) = D∆ × rel(fτ)× {τ} for ∆ = {xp+1, . . . , xn} \ var(fτ). Now, either x ∈ ∆
and we have στ∧x⩽d(rel(C)) = D∆\{x} × σx⩽d(D{x}) × rel(fτ) × {τ} or xp+1 /∈ ∆ and we
can show that there exists a decision gate v in fτ such that decvar(v) = x. In this case,
στ∧x⩽d(rel(C)) = D∆ × σx⩽d(rel(v))× rel(fτ \ {v})×{τ}. In any case, we can compute each
part of the Cartesian product from precomputed values: |rel(fτ)| =

∏
w∈fτ

|rel(w)|, |D∆| =
|D||∆|, #σx⩽d(D{x}) = rank(d) and #σx⩽d(rel(v)) = nrelC(v, d), hence #στ∧xp+1⩽d(rel(C))
is computed with at most n multiplications of integers of size at most n · polylog(|D|). ◀

Theorem 4 now follows from Lemmas 5, 7, and 8. Indeed, after preprocessing the circuit
using Lemma 8, one can use the procedure described in Lemma 7 to solve direct access task
using oracle calls, that can be answered efficiently as shown in Lemma 8.

4 From join queries to ordered {×, dec}-circuits

In this section, we present a simple top-down algorithm such that on input Q, ≺ and D, it
returns a ≻-ordered {×, dec}-circuit C such that rel(C) = Q(D), where Q is a join query, ≺
an order on its variables and D a database. This algorithm is an adaptation of exhaustive
DPLL [31], an algorithm that has been originally devised to solve the #SAT problem, but
Huang and Darwiche [20] have shown that the trace of this algorithm implicitly builds a
Boolean circuit, corresponding to the {×, dec}-circuits on domain {0, 1}. We show how
to adapt it in the framework of signed join queries. The algorithm itself is presented in
Section 4.1. We study the complexity of this algorithm in Section 4.3 depending on the
structure of Q and ≺, using hypergraph structural parameters introduced in Section 4.2.

F. Capelli and O. Irwin 13:11

4.1 Exhaustive DPLL for signed join queries
The main idea of DPLL for signed join queries is the following: given an order ≺ on the
variables of a join query Q and a database D, we construct a ≻-ordered {×, dec}-circuit
(where x ≻ y iff y ≺ x)1 computing JQKD by successively testing the variables of Q with
decision gates, from the highest to the lowest wrt ≺. At its simplest form, the algorithm
picks the highest variable x of Q wrt ≺, creates a new decision gate v on x and then, for
every value d ∈ D, sets x to d and recursively computes a gate vd computing the subset of
JQKD where x = d. We then add vd as an input of v and proceed with the next value d′ ∈ D.
This approach is however not enough to get interesting tractability results. We hence add
the following optimisations. First, we keep a cache of already computed queries so that if we
recursively call the algorithm twice on the same input, we can directly return the previously
constructed gate. Moreover, if we detect that the answers of Q are the Cartesian product
of two or more subqueries Q1, . . . , Qk, then we create a new ×-gate v, recursively call the
algorithm on each component Qi to construct a gate wi and plug each wi to v. Detecting
such cases is mainly done syntactically, by checking whether the query can be partitioned
into subqueries having disjoint variables. However, this approach would fail to give good
complexity bounds in the presence of negative atoms. To achieve the best complexity, we
also remove from Q every negative atom as soon as it is satisfied by the current partial
assignment. This allows us to discover more cases where the query has connected components.
The theoretical performance of the previously described algorithm may however vary if one
is not careful in the way the recursive calls are actually made. We hence give a more formal
presentation of the algorithm, whose pseudocode is presented in Algorithm 1.

Algorithm 1 An algorithm to compute a ≻-ordered {×, dec}-circuit representing JQKD.

1: procedure DPLL(Q, τ, D,≺)
2: if (Q, τ) is in cache then return cache(Q, τ)
3: if Q is inconsistent with τ then return ⊥-gate
4: if τ assigns every variable in Q then return ⊤-gate
5: x← max≺ var(Q)
6: for d ∈ D do
7: τ ′ ← τ × [x← d]
8: if Q is inconsistent with τ ′ then vd ← ⊥-gate
9: else

10: Let Q1, . . . , Qk be the τ ′-connected components of Q ⇓ τ ′

11: for i = 1 to k do wi ← DPLL(Qi, τi, D,≺) where τi = τ ′|var(Qi)
12: vd ← new ×-gate with inputs w1, . . . , wk

13: end if
14: end for
15: v ← new dec-gate connected to vd by a d-labelled edge for every d ∈ D

16: cache(Q, τ)← v

17: return v

18: end procedure

1 While one could easily change the algorithm so that it produces a ≺-ordered {×, dec}-circuit instead,
the structural parameters we will be considering for the tractability of DPLL in Section 4.2 are more
naturally defined on ≺. We choose to present DPLL this way to ease the proofs later.

ICDT 2024

13:12 Direct Access for Conjunctive Queries with Negations

A few notations are used in Algorithm 1. Given a database D on domain D and a tuple
τ ∈ DY , we denote by JQKD

τ the set of tuples σ ∈ Dvar(Q)\Y that are answers of Q when
extended with τ . More formally, σ ∈ JQKD

τ if and only if (σ × τ)|var(Q) ∈ JQKD. Given an
atom R(x), a database D and a tuple τ ∈ DY , we say that R(x) is inconsistent with τ wrt
D (or simply inconsistent with τ when D is clear from context) if there is no σ ∈ RD such
that τ ≃ σ. Observe that if Q contains a positive atom R(x) that is inconsistent with τ then
JQKD

τ = ∅. Similarly, if Q contains a negative atom ¬R(x) such that τ assigns every variable
of x and τ(x) ∈ R, then JQKD

τ = ∅. If one of these cases arises, we say that Q is inconsistent
with τ . Now observe that if ¬R(x) is a negative atom of Q such that R(x) is inconsistent
with τ , then JQKD

τ = JQ′KD
τ ×DW where Q′ = Q \ {¬R(x)} and W = var(Q) \ var(Q′) (some

variables of Q may only appear in the atom ¬R(x)). This motivates the following definition:
the simplification of Q wrt to τ and D, denoted by Q ⇓ ⟨τ, D⟩ or simply by Q ⇓ τ when D
is clear from context, is defined to be the subquery of Q obtained by removing from Q every
negative atom ¬R(x) of Q such that R(x) is inconsistent with τ . From what precedes, we
clearly have JQKD

τ = JQ′KD
τ ×DW where Q′ = Q ⇓ ⟨τ, D⟩ and W = var(Q) \ var(Q′).

For a tuple τ ∈ DY assigning a subset Y of variables of Q, the τ -intersection graph IQ
τ

of Q is the graph whose vertices are the atoms of Q having at least one variable not in Y

and there is an edge between two atoms a, b of Q if a and b share a variable that is not in
Y . Observe that IQ

τ does not depend on the values of τ but only on the variables it sets.
Hence it can be computed in polynomial time in the size of Q only. A connected component
C of IQ

τ naturally induces a subquery QC of Q and is called a τ -connected component. Q is
partitioned into its τ -connected components and the atoms whose variables are completely
set by τ . More precisely, Q =

⋃
C∈CC QC ∪ Q′ where CC are the connected component of

IQ
τ and Q′ contains every atom a of Q on variables x such that x only has variables in Y .

Observe that if τ is an answer of Q′, then JQKD
τ =×C∈CC JQCKD

τC
where τC = τ |var(QC) since

if C1 and C2 are two distinct τ -connected components of IQ
τ , then var(QC1) ∩ var(QC2) ⊆ Y .

▶ Example 9. We illustrate the previous definitions on the signed join query Q(x1, . . . , x5)
defined as ¬R(x1, . . . , x5), S(x1, x2, x3), T (x1, x4, x5) and database D on domain {0, 1} with
RD = {(1, 1, 1, 1, 1)}. Let τ = [x1 ← 0]. The τ -intersection graph of Q is a path where
¬R(x1, . . . , x5) is connected to S(x1, x2, x3) and T (x1, x4, x5). There is no edge between
S(x1, x2, x3) and T (x1, x4, x5) since x1 is their only common variable and it is assigned by
τ . Hence, Q has one τ -connected component containing every atom of Q. Now, Q ⇓ τ =
S(x1, x2, x3), T (x1, x4, x5) since R(0, x2, . . . , x5) is inconsistent over D and the τ -intersection
graph of Q ⇓ τ consists in two isolated vertices S(x1, x2, x3) and T (x1, x4, x5). Hence Q ⇓ τ

has two τ -connected components. This example also illustrates the role of simplification for
discovering Cartesian products.

The correctness can be proven by induction: a recursive call DPLL(Q, τ, D,≺) returns a
gate computing JQKD

τ . This is formalised in the following theorem. We analyse the complexity
of DPLL in Section 4.3.

▶ Theorem 10 (⋆). Let Q be a signed join query, D a database and ≺ an order on var(Q),
then DPLL(Q, ⟨⟩, D,≺) constructs a ≻-ordered {×, dec}-circuit C and returns a gate v of C

such that rel(v) = JQKD.

4.2 Hyperorder width
In this section, we introduce the notions of width based on elimination orders rather than
tree decompositions that are relevant to pinpoint the complexity of the DPLL procedure.

F. Capelli and O. Irwin 13:13

Order based widths (how(·), fhow(·)). A hypergraph H = (V, E) and an order ≺ such that
V = {v1, . . . , vn} with v1 ≺ · · · ≺ vn induces a series of hypergraphs defined as H≺

1 , . . . , H≺
n+1

as H≺
1 = H and H≺

i+1 = H≺
i /vi. The hyperorder width how(H,≺) of ≺ wrt H is defined as

maxi⩽n cn(NH≺
i

(vi), E). The hyperorder width how(H) of H is defined as the best possible
width using any elimination order, that is, how(H) = min≺ how(H,≺). We similarly define
the fractional hyperorder width fhow(H,≺) of ≺ wrt H as maxi⩽n fcn(NH≺

i
(vi), E) and the

fractional hyperorder width fhow(H) of H as fhow(H) = min≺ fhow(H,≺).
It has already been observed many times ([23, Appendix C] or [16, 17, 24]) that how(H)

and fhow(H) are respectively equal to the generalised hypertree width and the fractional
hypertree width of H and that there is a natural correspondence between a tree decomposition
and an elimination order having the same width. However, to be able to express our
tractability results as function of the order, it is more practical to define the width of
orders instead of hypertree decompositions. In [7, Definition 9], fhow(H,≺) is called the
incompatibility number, though it is not formally defined on hypergraphs but directly on
conjunctive queries. The case k = 1, which corresponds to the α-acyclicity of the underlying
hypergraph, has also been previously called an order without disruptive trio [12]. However,
these notions are specifically used for the problem of direct access in conjunctive queries while
the characterisation of hypergraph measures in terms of elimination orders of hypergraphs
predates by several years this terminology (see [5] for a survey). We then choose a terminology
closer to the usual terminology for hypergraph decompositions.

Hereditary order based widths (β-how(·), β-fhow(·)). Hypertree width is not hereditary.
That is, the (fractional) hypertree width of a subhypergraph can be much bigger than
the (fractional) hypertree width of the hypergraph itself. It makes it not well suited to
discover tractable classes for signed join queries. Indeed, if a query Q contains a negative
atom ¬R(x) and if RD is empty in the database D, then JQKD is equal to JQ′KD, where
Q′ = Q \ {¬R(x)}. Hence if some aggregation problem for a fixed self-join free query Q on
an input database D can be solved in O(poly(|D|)) for any database D, it has to be tractable
for every Q′ obtained by removing a subset of the negative atoms from Q. This motivates the
following definitions: for a hypergraph H = (V, E) and an order ≺ on V , the β-hyperorder
width β-how(H,≺) of ≺ wrt to H is defined as maxH′⊆H how(H ′,≺). The β-hyperorder
width β-how(H) of H is defined as the width of the best possible elimination order, that is,
β-how(H) = min≺ β-how(H,≺). We define similarly the β-fractional hyperorder width of
an order ≺ and of an hypergraph – β-fhow(H,≺) and β-fhow(H) – by replacing how(·) by
fhow(·) in the definitions.

Comparison with existing measures. The fact that fractional hypertree width is not
hereditary has traditionally been worked around by taking the largest width over every
subhypergraph. In other words, the β-fractional hypertree width β-fhtw(H) of H is defined
as β-fhtw(H) = maxH′⊆H fhtw(H ′). The β-hypertree width β-htw(H) is defined similarly. If
one plugs the ordered characterisation of fhtw(H ′) in this definition, one can observe that
β-fhtw(H) = maxH′⊆H min≺ fhow(H ′,≺). Hence, the difference between β-fhtw(H) and
β-fhow(H) boils down to inverting the min and the max in the definition. It directly gives
that β-fhtw(H) ⩽ β-fhow(H) and β-htw(H) ⩽ β-how(H) for every H. The main advantage
of the β-fractional hyperorder width is that it comes with a natural notion of decomposition
– the best elimination order ≺ – that can be used algorithmically. This is not given by the
definition of β-fhtw(·) and has yet to be found.

ICDT 2024

13:14 Direct Access for Conjunctive Queries with Negations

The only exception is the case where β-fhtw(H) = 1, known as β-acyclicity, where an
order-based characterisation is known and has been used to show the tractability of many
problems such as SAT [29], #SAT or #CQ for β-acyclic instances [9, 6]. The elimination
order is based on the notion of nest points. In a hypergraph H = (V, E), a nest point is
a vertex v ∈ V such that E(v) is ordered by inclusion, that is, E(v) = {e1, . . . , ep} with
e1 ⊆ · · · ⊆ ep. A β-elimination order (v1, . . . , vn) for H is an ordering of V such that for
every i ⩽ n, vi is a nest point of H \ {v1, . . . , vi−1}. A closer inspection of the definition
of β-elimination order ≺ shows that β-fhow(H,≺) = β-how(H,≺) = 1, showing that it
corresponds to β-acyclicity. We can actually prove a more general result: the notion of
β-acyclicity has been recently generalised by Lanzinger in [25] using a notion called nest sets.
A set of vertices S ⊆ V is a nest set of H if {e \ S | e ∈ E, e∩ S ̸= ∅} is ordered by inclusion.
A nest set elimination order is a list Π = (S1, . . . , Sp) such that:

⋃p
i=1 Si = 1, Si ∩ Sj = ∅

and Si is a nest set of H \
⋃

j<i Sj .
The width of a nest set elimination is nsw(H, Π) = maxi |Si| and the nest set width

nsw(H) of H is defined to be the smallest possible width of a nest set elimination order of H.
It turns out that our notion of width generalises the notion of nest set width, that is, we have
β-how(H) ⩽ nsw(H). More particularly, any order ≺ obtained from a nest set elimination
order Π = (S1, . . . , Sp) by ordering each Si arbitrarily verifies nsw(H, Π) ⩾ β-how(H,≺).

We summarise the above discussion in the following theorem:

▶ Theorem 11 (⋆). For every hypergraph H = (V, E), we have: β-htw(H) ⩽ β-how(H) ⩽
nsw(H). In particular, H is β-acyclic iff β-how(H) = 1.

The goal of this paper is not to give a thorough analysis of β-fractional hyperorder width
so we leave for future research several questions related to it: what is the complexity of
computing the β-fractional hyperorder width of a hypergraph, how does it compare with other
widths such as (incidence) treewidth, (incidence) cliquewidth, MIM-width or point-width [11].
For these measures of width, #SAT, a problem close to computing the number of answers
in signed join queries, is known to be tractable (see [9] for a survey). We leave open the
most fundamental question of comparing the respective powers of β-fhtw(·) and β-fhow(·).
We also refer the interested reader to the full version where we discuss why the seemingly
natural notion of β-hyperorder width has not appeared earlier in the literature.

Signed hyperorder width. In the case of signed join queries, one can deal with positive
and negative atoms differently, which is not reflected by the definition of β-fhow(·). We
generalise these widths to signed hypergraphs by taking subhypergraphs only on the negative
part, generalising a notion of acyclicity introduced by Brault-Baron in [4] that mixes β-
and α-acyclicities for signed hypergraphs. Let H = (V, E+, E−) be a signed hypergraph.
Given an order ≺ on V , the signed hyperorder width show(H,≺) of ≺ wrt H is defined as
show(H,≺) = maxE′⊆E− how((V, E+ ∪ E′),≺). The signed hyperorder width show(H) of H

is defined as show(H) = min≺ show((H,≺). Fractional version of these widths could easily
be defined but will not be needed in this paper. It is clear from the definition that if E+ = ∅
then show(H,≺) = β-how(H,≺) and if E− = ∅, then show(H,≺) = how(H,≺).

4.3 Complexity of exhaustive DPLL
The complexity of DPLL on a conjunctive query Q and order ≺ can be bounded in terms of
the hyperorder width of H(Q) wrt ≺:

F. Capelli and O. Irwin 13:15

▶ Theorem 12. Let Q be a signed join query, D a database over domain D and ≺ an
order on var(Q). Then DPLL(Q, ⟨⟩, D,≺) produces a ≻-ordered {×, dec}-circuit C of size
O(polyk(|Q|)|D|k+1) in time O(polyk(|Q|)|D|k+1polylog|D|) such that rel(C) = JQKD where
k = fhow(H(Q),≺) if Q is positive and k = show(H(Q),≺) otherwise.

A full proof of Theorem 12 can be found in the full version. The proof is technical since
there is nothing connecting the structure of the hypergraph of Q and the runtime of DPLL.
Due to space constraints, we only give a short overview of the proof, trying to stress how
both notions connect.

In this section, we fix a signed join query Q that has exactly one ⟨⟩-component (the case
where Q has many ⟨⟩-component can be easily dealt with by constructing the Cartesian
product of each ⟨⟩-component of Q), a database D and an order ≺ on var(Q) = {x1, . . . , xn}
where x1 ≺ · · · ≺ xn. We let D be the domain of D, n be the number of variables of Q and
m be the number of atoms of Q. To ease notation, we will write X instead of var(Q). For
i ⩽ n, we denote {x1, . . . , xi} by X⪯i. Similarly, X≺i = X⪯i \ {xi}, X≻i = var(Q) \X⪯i and
X⪰i = var(Q) \X≺i. Finally, we let RD

Q be the set of (K, σ) such that DPLL(Q, ⟨⟩, D,≺)
makes at least one recursive call to DPLL(K, σ, D,≺). The first thing to observe, is that
thanks to the usage of a cache, the complexity of DPLL can naturally be stated as a function
of |RD

Q |:

▶ Lemma 13 (⋆). DPLL(Q, ⟨⟩, D,≺) produces a circuit of size at most O(|RD
Q |·|D|·poly(|Q|))

in time O(|RD
Q | · poly(|Q|) · |D|polylog|D|).

Hence to prove Theorem 12, one only needs to bound the size of RD
Q . To do that, we

characterise the elements (K, σ) ∈ RD
Q in terms of hypergraph structure. The key notion

we need is the notion of x-components, a definition akin to the one used in [9] to compile
β-acyclic CNF formulas. Let Q′ ⊆ Q be a subquery of Q and x, y two variables of Q′ such
that y ≺ x. An x-path to y in Q′ is a list x0, a0, . . . , xp where ai ∈ atoms(Q′) is an atom
of Q′ on variables xi, xi is a variable of xi, x0 = x, xp = y and xi ⪯ x for every i ⩽ p.
Intuitively, it maps to a path in the hypergraph of Q′ that starts from x and is only allowed
to use vertices smaller than x. The x-component of Q′ is the set of atoms a of Q′ such that
there exists an x-path to a variable y of a in Q′.

It turns out that the recursive calls of DPLL are x-components of some Q′ ⊆ Q and
x ∈ X where Q′ is obtained from Q by removing negative atoms. Intuitively, these removed
atoms are the ones that cannot be satisfied anymore by the current assignment of variables.

▶ Lemma 14 (⋆). Let (K, σ) ∈ RD
Q and let x be the biggest variable of K not assigned by σ.

There exists τ a partial assignment of X≻x such that τ |var(K) = σ and K is the x-component
of Q ⇓ τ .

Moreover, x-components are connected to the width notions from Section 4.2 as follows:

▶ Lemma 15 (⋆). Let Q be a signed join query on variables X = {x1, . . . , xn}, xi a variable
of Q and Ki its xi-component. We let H be the hypergraph of Q, H1 = H and Hj+1 = Hj/xj .
We have Nxi

(Hi) = var(Ki) ∩X⪰xi
.

Intuitively, Lemma 15 allows us to conclude that the variables from X≻x of an x-component
in a hypergraph H admit a fractional cover of value at most k where k = fhow(H,≺). Now
we illustrate how one can use it to get a bound on RD

Q . We start with the case of positive
conjunctive query. Let (K, σ) ∈ RD

Q , σ. By Lemma 14 that there exists τ ⊃ σ such that K

is the x-component of Q ⇓ τ , which is equal to Q in the case of positive conjunctive query.
Moreover, τ must be compatible with every atom of Q, otherwise DPLL would have returned

ICDT 2024

13:16 Direct Access for Conjunctive Queries with Negations

⊥ already. In other words, τ satisfies every atom from the x-component of Q restricted
to X≻x. But these atoms have a fractional cover of value at most k, hence by Theorem 2,
there are at most |D|k different τ for each x-component. Since there are at most n distinct
x-component, a bound on RD

Q follows.
We can have a similar bound for the signed case but now Q ⇓ τ is not Q anymore since

some negative atoms may have been removed from Q because they are incompatible with τ .
However, we know that the hypergraph of Q ⇓ τ is obtained by removing negative atoms of
Q, hence we know that the variables from X≻x of any x-component of Q ⇓ τ are covered by
at most k atoms. Moreover, Q ⇓ τ only contains atoms that are compatible with τ . Hence
by Theorem 2 again, we can show that for a given K, there are at most |D|k distinct τ

such that (K, τ) ∈ RD
Q . Moreover, we can show that the possible K can be characterised by

looking at the x-component of Q ⇓ τ for every τ that is a solution of the join of at most k

atoms projected on X≻x which allows us to derive an mk+1|D|k bounds on RD
Q in this case.

To wrap up, we can prove the following bounds on RD
Q :

▶ Lemma 16 (⋆). If Q is a positive join query with m atoms and n variables, |RD
Q | ⩽ n|D|k

where k = fhow(H(Q),≺). Otherwise |RD
Q | ⩽ nmk+1|D|k where k = show(H(Q),≺).

Theorem 12 is a direct corollary of Lemmas 13 and 16. One may wonder why we do not
use fractional width when Q contains negative atoms. The proof of Lemma 16 breaks in this
case when we try to bound the number, for a given x, of x-component K that can appear in
recursive calls. To prove Lemma 16, we bound it by taking at subset of at most k atoms of
Q. To do it with fractional cover, one would need to consider every combination of atoms of
Q having fractional cover at most k which we did not manage to bound by a polynomial in
Q. We therefore leave this question open for future research but observe that it would give a
complexity of at most O(2m|D|k+1polylog|D|) which is polynomial wrt data complexity.

5 Tractability results for signed join and conjunctive queries

Combining the algorithm for DA on ordered circuits from Section 3 with the algorithm of
Section 4 gives tractability results on the complexity of direct access for signed join queries:

▶ Theorem 17 (⋆). Given a signed join query Q, an order ≺ on var(Q) and a database
D on domain D, we can solve the direct access problem for ≺lex with precomputation
O(|D|k+1polylog|D| · polyk(|Q|)) and access time O(poly(n) · polylog|D|) where n = |var(Q)|
where k = fhtw(H(Q),≻) if Q is positive and k = show(H(Q),≻) otherwise.

Negative join queries and #SAT. Theorem 17 generalises many tractability results from
the literature. First of all, our result can directly be applied to #SAT, the problem of
counting the number of satisfying assignment of a CNF formula. A CNF formula F with
m clauses can directly be transformed into a negative join query QF with m atoms having
the same hypergraph and into a database DF on domain {0, 1} and of size at most m such
that JQF KDF is the set of satisfying assignments of F . Indeed, a clause can be seen as the
negation of a relation having exactly one tuple. For example, x ∨ y ∨ ¬z can be seen as
¬R(x, y, z) where R contains the tuple (0, 0, 1). Hence, Theorem 17 generalises both [9] and
[6] by providing a compilation algorithm for β-acyclic queries to any domain size and to
the more general measure of β-hyperorder width. It also shows that not only counting is
tractable but also the more general DA tasks. Theorem 17 also generalises the results of [25]
which shows the tractability of the evaluation of negative join queries with bounded nest set
width. Since a negative join query with nest set width k has β-hyperorder width at most

F. Capelli and O. Irwin 13:17

Incidence tree-width

Incidence clique-width

Incidence MIM-width

𝛽-hypertree width𝛽-fractional
hyperorder width

Primal tree-width

𝛽-acyclicity

nest-set width

𝛽-hyperorder width

𝛼-acyclicity

fhtw = fhow

Complexity of
#SAT open#SAT Tractable

Tractable Data
Complexity for

Direct Access on NJQ
Precomputation

𝑂(2𝑚poly𝑘(𝑚, 𝑛)|D|
𝑘+1)

Access
𝑂(𝑛 ⋅ polylog(|𝐷|))

Tractable Combined
Complexity for

Direct Access on NJQ
Precomputation

𝑂(poly𝑘(𝑚, 𝑛)|D|
𝑘+1)

Access
𝑂(𝑛 ⋅ polylog(|𝐷|))

Tractable Combined
Complexity for

Direct Access on PJQ
Precomputation

𝑂(poly𝑘(𝑚, 𝑛)|D|
𝑘+1)

Access
𝑂(𝑛 ⋅ polylog(|𝐷|))

Figure 4 Landscape of hypergraph measures and known inclusions (depicted as an arrow) with
tractability results for direct access on positive and negative join queries (PJQ/NJQ) and #SAT on
CNF formulas. Here n is the number of variables, D the database, D the domain ({0, 1} for #SAT),
m the number of atoms/clauses and k the width measure (k = 1 for α- and β-acyclicity).

k by Theorem 11, Theorem 17 implies that DA is tractable for the class of queries with
bounded nest set width. In particular, counting the number of answers is tractable for this
class, a question left open in [25].

Figure 4 summarises our contributions for join queries with negations and locates them in
the landscape of known tractability results. Even if our result applies to signed conjunctive
query, we summarise our contribution only for negative join queries and positive join queries
since it allows to compare hypergraph measures (where tractability of signed queries is stated
using signed hypergraphs parameters). The stated complexity are given assuming that a
decomposition is provided in the input. While the complexity of computing the β-fractional
hyperorder width is open, we observe that for nest set width, this decomposition could also
be computed in FPT time in the size of the hypergraph [25]. In particular, it gives the
following:

▶ Theorem 18. Computing #JQKD can be computed in polynomial time when parametrized
by nest-set width.

Despite the fact that computing an optimal nest-set width elimination order is FPT,
Theorem 18 only gives an XP algorithm for #SAT and not an FPT algorithm since the
complexity of DPLL has a O(mk) dependency where m is the number of atoms.

Direct access for positive conjunctive queries. Theorem 17 allows to recover the tractability
of DA for positive join queries with bounded fractional hypertree width proven in [12, 7].
Indeed, given an order ≺ on the vertices of a hypergraph, [7] introduces the notion of
incompatibility number of ≺ which corresponds exactly to its fractional hyperorder width.
Hence Theorem 17 implies the same tractability results for positive join query as [7, Theorem
10]. The complexity bounds from this paper are however better than ours and proven optimal
since the preprocessing is of the form polyk(Q)|D|k where we have polyk(Q)|D|k+1. We
nevertheless believe that with a more careful analysis of the implementation of Algorithm 1,
we could match this upper bound although this is not the focus of this paper. Another strong
point of [12] (and also [8, Theorem 39] which is the arXiv version of [7]) is that it handles
conjunctive queries, that is, join queries with projection which is not covered by Theorem 17.
We demonstrate the versatility of the circuit-based approach by showing how one can also
handle quantifiers directly on the circuit.

ICDT 2024

13:18 Direct Access for Conjunctive Queries with Negations

▶ Theorem 19 (⋆). Let C be a ≺-order circuit on domain D, variables X = {x1, . . . , xn}
such that x1 ≺ · · · ≺ xn and j ⩽ n. One can compute in time O(|C| · poly(n) · polylog(|D|))
a circuit C ′ of size at most |C| such that rel(C ′) = rel(C)|{x1,...,xj}.

Now we can use Theorem 19 to handle conjunctive queries by first using Theorem 12 on
the underlying join query to obtain a ≺-circuit and then by projecting the variables directly
in the circuit. This approach works only when the largest variables in the circuits are the
quantified variables. It motivates the following definition: given a hypergraph H = (V, E),
an elimination order (v1, . . . , vn) of V is S-connex if and only if there exists i such that
{vi, . . . , vn} = S. In other words, the elimination order starts by eliminating V \ S and then
proceeds to S. Given a conjunctive query Q and an elimination order ≺ on var(Q), we say
that the elimination is free-connex if it is a free(Q)-connex elimination order of H(Q) where
free(Q) are the free variables of Q2. We directly have the following:

▶ Theorem 20 (⋆). Given a conjunctive query Q(Y), a free-connex order ≻ on var(Q) and
a database D on domain D, we can solve direct access tasks for ≺lex with precomputation
O(|D|k+1polylog|D| ·polyk(|Q|)) and access time O(n ·polylog(|D|)) where n = |var(Q)| where
k = fhtw(H(Q),≻) if Q is positive and k = show(H(Q),≻) otherwise.

We observe that our notion of free-connex elimination order for Q is akin to [8, Definition
38] with two differences: first, in [8], it is allowed to only specify a preorder on free(Q) and
the complexity of the algorithm is then stated with the best possible compatible ordering,
which would be possible in our framework too. The second difference is that the orders are
presented in reverse, that is, in their definition, the orders start with free variables and end
with quantified variables. We decided to present free-connexity of elimination orders in this
way so that it corresponds to the existing notion of free-connexity of tree decompositions.
Now, Theorem 20 constructs a direct access for ≺lex when ≻ is free-connex, so Theorem 20
proves the same tractability result as [8, Theorem 39], again with an extra |D| factor but
compatible with negative and signed conjunctive queries.

6 Future Work

Our new tractability results for solving DA tasks on signed conjunctive queries relies on a
unifying framework for both positive and signed queries using factorised representation of
the answer sets of the query. It opens many avenues for research. First, contrary to the
positive query case, we do not yet have parameterised lower bounds on the preprocessing and
access time needed for solving DA tasks on signed queries. Having a better understanding
of what happens on the fractional relaxation of β-hyperorder width would be a first step
toward proving such lower bounds. Also, we believe our analysis of the complexity of DPLL
is not optimal and that with the right data structures, we should be able to prove an upper
bound of the order |D|fhow(Q) instead of the |D|fhow(Q)+1 for positive queries, hence matching
the existing upper bounds exactly. We leave a more involved analysis of this algorithm for
future work. Finally, we believe that the circuit representation we are using is promising for
answering different kind of aggregation tasks and hence generalising existing results to the
case of signed conjunctive queries. For example, FAQ and AJAR queries [24, 21] could be
answered using this data structure by annotating the circuit with semi-ring elements and

2 The notion of S-connexity already exists for tree decompositions. We use the same name here as the
existence of an S-connex tree decomposition of (fractional) hypertree width k is equivalent to the
existence of an S-connex elimination order of (fractional) hyperorder width k.

F. Capelli and O. Irwin 13:19

projecting them out as in Theorem 19. Similarly, we believe that the framework of [15] for
solving DA tasks on conjunctive queries with aggregation operators may be generalised in a
similar way to the class of ordered {×, dec}-circuits.

References
1 Guillaume Bagan. Algorithmes et complexité des problèmes d’énumération pour l’évaluation

de requêtes logiques. (Algorithms and complexity of enumeration problems for the evaluation
of logical queries). PhD thesis, University of Caen Normandy, France, 2009. URL: https:
//tel.archives-ouvertes.fr/tel-00424232.

2 Guillaume Bagan, Arnaud Durand, Etienne Grandjean, and Frédéric Olive. Computing the jth
solution of a first-order query. RAIRO-Theoretical Informatics and Applications, 42(1):147–164,
2008. doi:10.1051/ita:2007046.

3 Nurzhan Bakibayev, Tomáš Kočiskỳ, Dan Olteanu, and Jakub Závodnỳ. Aggregation and
ordering in factorised databases. Proceedings of the VLDB Endowment, 6(14):1990–2001, 2013.
doi:10.14778/2556549.2556579.

4 Johann Brault-Baron. De la pertinence de l’énumération: complexité en logiques pro-
positionnelle et du premier ordre. PhD thesis, Université de Caen, 2013. URL: https:
//tel.archives-ouvertes.fr/tel-01081392.

5 Johann Brault-Baron. Hypergraph acyclicity revisited. ACM Computing Surveys (CSUR),
49(3):1–26, 2016. doi:10.1145/2983573.

6 Johann Brault-Baron, Florent Capelli, and Stefan Mengel. Understanding model counting
for beta-acyclic CNF-formulas. In 32nd International Symposium on Theoretical Aspects
of Computer Science, volume 30 of LIPIcs, pages 143–156. Schloss Dagstuhl, 2015. doi:
10.4230/LIPIcs.STACS.2015.143.

7 Karl Bringmann, Nofar Carmeli, and Stefan Mengel. Tight fine-grained bounds for direct
access on join queries. In Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, pages 427–436, 2022. doi:10.1145/3517804.3526234.

8 Karl Bringmann, Nofar Carmeli, and Stefan Mengel. Tight fine-grained bounds for direct access
on join queries. arXiv preprint arXiv:2201.02401, 2022. doi:10.48550/arXiv.2201.02401.

9 Florent Capelli. Understanding the complexity of #SAT using knowledge compilation. In
32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik,
Iceland, June 20-23, 2017, pages 1–10. IEEE Computer Society, 2017. doi:10.1109/LICS.
2017.8005121.

10 Florent Capelli and Oliver Irwin. Direct access for conjunctive queries with negation. CoRR,
abs/2310.15800, 2023. doi:10.48550/arXiv.2310.15800.

11 Clément Carbonnel, Miguel Romero, and Stanislav Živnỳ. Point-width and max-csps. ACM
Transactions on Algorithms (TALG), 16(4):1–28, 2020. doi:10.1145/3409447.

12 Nofar Carmeli, Nikolaos Tziavelis, Wolfgang Gatterbauer, Benny Kimelfeld, and Mirek Rie-
dewald. Tractable orders for direct access to ranked answers of conjunctive queries. ACM
Transactions on Database Systems, jan 2023. doi:10.1145/3578517.

13 Nofar Carmeli, Shai Zeevi, Christoph Berkholz, Benny Kimelfeld, and Nicole Schweikardt.
Answering (unions of) conjunctive queries using random access and random-order enumeration.
In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, pages 393–409, 2020. doi:10.1145/3375395.3387662.

14 Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive queries in
relational data bases. In Proceedings of the Ninth Annual ACM Symposium on Theory of
Computing, STOC ’77, pages 77–90, New York, NY, USA, 1977. ACM. doi:10.1145/800105.
803397.

15 Idan Eldar, Nofar Carmeli, and Benny Kimelfeld. Direct access for answers to conjunctive
queries with aggregation. arXiv preprint, 2023. doi:10.48550/arXiv.2303.05327.

ICDT 2024

https://tel.archives-ouvertes.fr/tel-00424232
https://tel.archives-ouvertes.fr/tel-00424232
https://doi.org/10.1051/ita:2007046
https://doi.org/10.14778/2556549.2556579
https://tel.archives-ouvertes.fr/tel-01081392
https://tel.archives-ouvertes.fr/tel-01081392
https://doi.org/10.1145/2983573
https://doi.org/10.4230/LIPIcs.STACS.2015.143
https://doi.org/10.4230/LIPIcs.STACS.2015.143
https://doi.org/10.1145/3517804.3526234
https://doi.org/10.48550/arXiv.2201.02401
https://doi.org/10.1109/LICS.2017.8005121
https://doi.org/10.1109/LICS.2017.8005121
https://doi.org/10.48550/arXiv.2310.15800
https://doi.org/10.1145/3409447
https://doi.org/10.1145/3578517
https://doi.org/10.1145/3375395.3387662
https://doi.org/10.1145/800105.803397
https://doi.org/10.1145/800105.803397
https://doi.org/10.48550/arXiv.2303.05327

13:20 Direct Access for Conjunctive Queries with Negations

16 Johannes K Fichte, Markus Hecher, Neha Lodha, and Stefan Szeider. An smt approach
to fractional hypertree width. In Principles and Practice of Constraint Programming: 24th
International Conference, CP 2018, Lille, France, August 27-31, 2018, Proceedings 24, pages
109–127. Springer, 2018. doi:10.1007/978-3-319-98334-9_8.

17 Robert Ganian, André Schidler, Manuel Sorge, and Stefan Szeider. Threshold treewidth
and hypertree width. Journal of Artificial Intelligence Research, 74:1687–1713, 2022. doi:
10.1613/jair.1.13661.

18 Georg Gottlob and Reinhard Pichler. Hypergraphs in model checking: Acyclicity and hypertree-
width versus clique-width. SIAM Journal on Computing, 33(2):351–378, 2004. doi:10.1137/
S0097539701396807.

19 Martin Grohe and Dániel Marx. Constraint solving via fractional edge covers. ACM Transac-
tions on Algorithms (TALG), 11(1):4, 2014. doi:10.1145/2636918.

20 Jinbo Huang and Adnan Darwiche. DPLL with a Trace: From SAT to Knowledge Compilation.
In Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence,
pages 156–162, 2005. URL: http://ijcai.org/Proceedings/05/Papers/0876.pdf.

21 Manas R Joglekar, Rohan Puttagunta, and Christopher Ré. Ajar: Aggregations and joins over
annotated relations. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, pages 91–106, 2016. doi:10.1145/2902251.2902293.

22 Jens Keppeler. Answering Conjunctive Queries and FO+MOD Queries under Updates. PhD
thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2020.
URL: http://edoc.hu-berlin.de/18452/22264.

23 Mahmoud Abo Khamis, Hung Q Ngo, and Atri Rudra. Faq: questions asked frequently. arXiv
preprint, 2015. doi:10.48550/arXiv.1504.04044.

24 Mahmoud Abo Khamis, Hung Q Ngo, and Atri Rudra. Faq: questions asked frequently. In
Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, pages 13–28, 2016. doi:10.1145/2902251.2902280.

25 Matthias Lanzinger. Tractability beyond β-acyclicity for conjunctive queries with negation
and sat. Theoretical Computer Science, 942:276–296, 2023. doi:10.1016/j.tcs.2022.12.002.

26 Dan Olteanu. Factorized databases: A knowledge compilation perspective. In AAAI Workshop:
Beyond NP, 2016. URL: http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/
12638.

27 Dan Olteanu and Jakub Závodnỳ. Factorised representations of query results: size bounds and
readability. In Proceedings of the 15th International Conference on Database Theory, pages
285–298. ACM, 2012. doi:10.1145/2274576.2274607.

28 Dan Olteanu and Jakub Závodnỳ. Size bounds for factorised representations of query results.
ACM Transactions on Database Systems (TODS), 40(1):1–44, 2015. doi:10.1145/2656335.

29 S. Ordyniak, D. Paulusma, and S. Szeider. Satisfiability of acyclic and almost acyclic CNF
formulas. Theoretical Computer Science, 481:85–99, 2013. doi:10.1016/j.tcs.2012.12.039.

30 Reinhard Pichler and Sebastian Skritek. Tractable counting of the answers to conjunctive
queries. Journal of Computer and System Sciences, 79:984–1001, sep 2013. doi:10.1016/j.
jcss.2013.01.012.

31 Tian Sang, Fahiem Bacchus, Paul Beame, Henry A Kautz, and Toniann Pitassi. Combining
component caching and clause learning for effective model counting. Theory and Applications
of Satisfiability Testing, 2004. URL: http://www.satisfiability.org/SAT04/programme/21.
pdf.

32 Maximilian Schleich, Dan Olteanu, and Radu Ciucanu. Learning linear regression models over
factorized joins. In Proceedings of the 2016 International Conference on Management of Data,
pages 3–18. ACM, 2016. doi:10.1145/2882903.2882939.

33 Mihalis Yannakakis. Algorithms for acyclic database schemes. In Proceedings of the Seventh
International Conference on Very Large Data Bases – Volume 7, VLDB ’81, pages 82–94.
VLDB Endowment, 1981.

https://doi.org/10.1007/978-3-319-98334-9_8
https://doi.org/10.1613/jair.1.13661
https://doi.org/10.1613/jair.1.13661
https://doi.org/10.1137/S0097539701396807
https://doi.org/10.1137/S0097539701396807
https://doi.org/10.1145/2636918
http://ijcai.org/Proceedings/05/Papers/0876.pdf
https://doi.org/10.1145/2902251.2902293
http://edoc.hu-berlin.de/18452/22264
https://doi.org/10.48550/arXiv.1504.04044
https://doi.org/10.1145/2902251.2902280
https://doi.org/10.1016/j.tcs.2022.12.002
http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12638
http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12638
https://doi.org/10.1145/2274576.2274607
https://doi.org/10.1145/2656335
https://doi.org/10.1016/j.tcs.2012.12.039
https://doi.org/10.1016/j.jcss.2013.01.012
https://doi.org/10.1016/j.jcss.2013.01.012
http://www.satisfiability.org/SAT04/programme/21.pdf
http://www.satisfiability.org/SAT04/programme/21.pdf
https://doi.org/10.1145/2882903.2882939

	1 Introduction
	2 Preliminaries
	3 Ordered relational circuits
	3.1 Definitions
	3.2 Direct Access for ordered {x, dec}-circuits

	4 From join queries to ordered {x, dec}-circuits
	4.1 Exhaustive DPLL for signed join queries
	4.2 Hyperorder width
	4.3 Complexity of exhaustive DPLL

	5 Tractability results for signed join and conjunctive queries
	6 Future Work

