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On the asymptotic of the maximal weighted increment
of a random walk with regularly varying jumps: the

boundary case

Alfredas Račkauskas* Charles Suquet†

Abstract

Let (Xi)i≥1 be i.i.d. random variables with EX1 = 0, regularly varying with exponent
a > 2 and taP (|X1| > t) ∼ L(t) slowly varying as t→∞. We give the limit distribution
of Tn(γ)=max0≤j<k≤n |Xj+1 + · · ·+Xk|(k−j)−γ in the threshold case γa :=1/2−1/a

which separates the Brownian phase corresponding to 0 ≤ γ < γa where the limit of
Tn(γ) is σT (γ), with σ2 = EX2

1 , T (γ) is the γ-Hölder norm of a standard Brownian
motion and the Fréchet phase corresponding to γa < γ < 1 where the limit of Tn(γ)
is Ya with Fréchet distribution P (Ya ≤ x) = exp(−x−a), x > 0. We prove that
c−1
n (Tn(γa)− µn), converges in distribution to some random variable Z if and only if
L has a limit τa ∈ [0,∞] at infinity. In such case, there are A > 0, B ∈ R such that
Z = AVa,σ,τ + B in distribution, where for 0 < τ < ∞, Va,σ,τ := max(σT (γa), τYa)

with T (γa) and Ya independent and Va,σ,0 := σT (γa), Va,σ,∞ := Ya. When τ < ∞, a
possible choice for the normalization is cn = n−1/a and µn = 0, with Z = Va,σ,τ . We
also build an example where L has no limit at infinity and (Tn(γ))n≥1 has for each
τ ∈ [0,∞] a subsequence converging after normalization to Va,σ,τ .
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1 Introduction

Consider a sequence of independent identically distributed (i.i.d.) zero mean random
variables (Xk, k ≥ 1) and the associated partial sums

S0 = 0, Sn = X1 + · · ·+Xn, n ≥ 1.
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Asymptotic properties of various extremal statistics based on the random walk (Sk, k ≥ 0)

and the random field (Sk − Sj , 0 ≤ j < k ≤ n, n ≥ 1) of its increments are important
from both theoretical and practical points of view and have been widely discussed in
the literature. We refer to Darling, Erdös [6], Einmahl [8], Bertoin [3], Révész [21]
Csörgő and Révész [5], Shao [22], Kabluchko [13], Račkauskas and Suquet[17], and the
references therein for a comprehensive information on the subject.

The main object of this paper is the maximal weighted increment of the random walk
(Sn, n ≥ 0) defined by

Tn(γ) := max
0≤j<k≤n

|Sk − Sj |
(k − j)γ

, γ ∈ [0, 1).

Throughout, we denote by X a generic random variable which is identically distributed
with each Xk and we assume that X is regularly varying with index a > 0, denoted
X ∈ RVa, in the sense that the tail balance condition

P (X > x) ∼ px−aL(x) and P (X ≤ −x) ∼ qx−aL(x), as x→∞, (1.1)

is satisfied, where L is a slowly varying function, and p, q ∈ (0, 1), p+q = 1. We refer to [4]
for an encyclopeadic treatment of regular and slow variation. For reader’s convenience,
we gathered in Appendix A.4 the basics on slow variation used in this paper. In what
follows, we denote

X ∈ RVa(τ) if (1.1) holds with L(x) −−−−→
x→∞

τa, 0 ≤ τ ≤ ∞.

Condition (1.1) imposes a priori two requirements on the choice of L. First, x−aL(x) has
to be equivalent to a nonincreasing function with limit 0 at infinity, which is automatically
satisfied, see Cor.A.12. Next, x−aL(x) has to be equivalent to a left continuous function,
which discards none slowly varying L since L is always equivalent to a C∞ function [4,
Th.1.3.3]. As L has not necessarily a limit at infinity, see the example built in the proof of
Th.2.5, it is clear that ⋃

0≤τ≤∞

RVa(τ) ( RVa.

It is known that the limit distribution of Tn(γ) has a threshold at γ = γa := 1/2− 1/a

for a > 2, separating two phases named Fréchet and Brownian in the space of parameters
{(a, γ); a > 0, 0 < γ < 1}, see Figure 1. In the Fréchet phase γ ∈ (max(1/2 − 1/a, 0), 1]

and denoting by
D−−−−→

n→∞
the convergence in distribution,

a−1n Tn(γ)
D−−−−→

n→∞
Ya, (1.2)

where Ya has the standard Fréchet distribution with parameter a, that is

P (Ya ≤ x) = exp(−x−a), x > 0, (1.3)

and an denotes the 1/n quantile of |X|, that is

an := inf{x ∈ R : P (|X| ≤ x) ≥ 1− 1/n}. (1.4)

This result has been proved in [15]. In the Brownian phase, 0 ≤ γ < 1/2− 1/a and

n−1/2+γTn(γ)
D−−−−→

n→∞
σT (γ) := σ max

0<|t−s|≤1

|W (t)−W (s)|
|t− s|γ

, (1.5)

where W = (W (t), t ∈ [0, 1]) is a standard Brownian motion and σ2 = EX2. This follows
obviously from the Hölderian weak invariance principle proved in [16]. On the threshold
γ = γa, the limit distribution of Tn(γa) depends on the slowly varying function L(x) in
(1.1) and the following holds:
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Brownian phase

Fréchet phase

a0 2

γ

1

γ = 1/2 − 1/a

Figure 1: Fréchet and Brownian phases

• if X ∈ RVa(∞), the convergence (1.2) holds like in Fréchet phase [12, Th.5(b)];

• if X ∈ RVa(0), the convergence (1.5) occurs like in Brownian phase [16].

Our main result for the case where X ∈ RVa(τ), a > 2, 0 < τ < ∞, Theorem 2.4
below, establishes the convergence

n−1/aTn(γa)
D−−−−→

n→∞
Va,σ,τ := max{σT (γa), τYa, }, (1.6)

where the random variables Ya and T (γa) are independent. To unify the notations, we
define also

Va,σ,0 := σT (γa), Va,σ,∞ := Ya. (1.7)

Up to now, no analytic formula seems to be known for the distribution of T (γ).
Fatalov [9] obtained the following exact asymptotic equivalent for the tail:

P (T (γ) > x) ∼ 1

x
exp

(
− x2

2

)8
√

2√
π

(
1− γ
1− 2γ

)2

, x→∞, 0 ≤ γ < 1/2. (1.8)

This shows that Va,σ,0 is subgaussian (hence with light tail).
Baldi and Roynette [1, Th.4.4] have the small ball estimate

lim
ε→0

ε2/(1−2γ) logP (T (γ) ≤ ε) = −k(γ), 0 < γ < 1/2,

for some positive constant k(γ).
By independence of T (γa) and Ya, the distribution function of Va,σ,τ in (1.6) verifies

P (Va,σ,τ ≤ x) = P (max{σT (γa), τYa, } ≤ x) = P
(
σT (γa) ≤ x

)
exp

(
−τax−a

)
. (1.9)

In view of (1.8), this gives for 0 < τ <∞,

P (Va,σ,τ > x) = 1− exp(−τax−a) + P (σT (γa) > x) exp(−τax−a)

= τax−a +O(x−2a), x→∞. (1.10)

Hence Va,σ,τ has a heavy tail asymptoticaly equivalent to the tail of τYa.
In the neighborhood of zero we have

lim
ε→0

εa logP (Va,σ,τ ≤ ε) = −σak(γa)− τa.
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Roughly speaking for 0 < τ <∞, Va,σ,τ “interpolates” (in distribution) between Va,σ,0
and Va,σ,∞. In this spirit, one may remark that

P (Va,σ,τ ≤ σy) = P (T (γa) ≤ y) exp

(
−τa

σaya

)
P (Va,σ,τ ≤ τy) = P

(
T (γa) ≤ τy

σ

)
exp(−y−a),

whence
σ−1Va,σ,τ

D−−−−−→
τσ−1→0

T (γa) and τ−1Va,σ,τ
D−−−−−−→

τσ−1→∞
Ya.

To sum up the case where X ∈
⋃
τ∈[0,∞] RVa(τ), we have the convergence

b−1n Tn(γa)
D−−−−→

n→∞
Va,σ,τ , with bn :=

{
n1/a if τ <∞,

an if τ =∞.
(1.11)

Now it is natural to ask what happens if X ∈ RVa but in none RVa(τ). A first answer is
provided by Th.2.5 where we build an RVa distribution for X such that

(
b−1n Tn(γa)

)
n≥1

does not converge in distribution but has for each τ ∈ [0,∞] a subsequence converging
to Va,σ,τ .

Finally, we complete the picture by proving in Th.2.6 that if for some increasing
positive sequence (cn)n≥1 and a sequence of reals (µn)n≥1, c−1n (Tn(γa)− µn) converges
in distribution to some random variable Z then L has a limit τa ∈ [0,∞] at infinity, hence
X ∈ RVa(τ), and Z = AVa,σ,τ +B in distribution for some A > 0, B ∈ R.

Section 2 contains the statements of our results. Theorem 2.1, Corollary 2.2 and
Theorem 2.3, dealing with truncated versions of Tn(γa) with respect to the length ` of
increments Sk+` − Sk, are preparatory for Theorem 2.4.

The proofs are presented in Section 3. Auxiliary material and results are shifted in
the Appendix section in the hope to keep a tolerable size of the proofs.

2 Statement of results

Throughout the paper we will need to split the range of length ` of increments
Sk+` − Sk in two or three consecutive intervals. This leads us to introduce the following
generic notation for the induced blocs of weighted increments in Tn(γ). We set for any
real numbers u, v such that 0 ≤ u < v ≤ n,

Tu,vn (γ) := max
u<`≤v

max
0≤k≤n−`

|Sk+` − Sk|
`γ

. (2.1)

As γ = γa almost everywhere in the sequel, we will abbreviate Tu,vn (γa) as Tu,vn .
From the weak invariance principle in C[0, 1] it follows that for any fixed 0 < θ < 1,

n−1/aσ−1T θn,nn
D−−−−→

n→∞
T (θ)(γ) := max

θ<|t−s|≤1

|W (t)−W (s)|
|t− s|γa

, (2.2)

see Appendix A.2 for a proof. It is proved in [15] (see Lemma 2.4 there) that for any fixed
d ≥ 1,

n−1/aT 0,d
n

D−−−−→
n→∞

τYa. (2.3)

Corollary 2.2 and Th. 2.3 below extend (2.2) and (2.3) to the cases where θ = θn → 0

and d = dn →∞ as n→∞ respectively.
Theorem 2.1 is used in the paper only through Corollary 2.2 but the more general

formulation given here may have its own interest beyond the RVa setting.
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Theorem 2.1. Let X be a non degenerate mean zero random variable such that

E |X|b <∞, for some b > 2. (2.4)

Put σ2 := EX2, σ > 0. Then for every 0 < γ < 1/2,

n−1/2+γT dn,nn
D−−−−→

n→∞
σT (γ), (2.5)

provided that with β := min(b, 3),

dn
n
−−−−→
n→∞

0 and
n1−β/2 logβ−1 n(

dn
n

)βγ −−−−→
n→∞

0. (2.6)

In particular, the convergences (2.6) are satisfied with dn = nαλ(n) where λ is slowly
varying and max{0 ; (1− (1/2− γ)β)/(βγ)} < α < 1.

Corollary 2.2. Let X be a non degenerate mean zero random variable whose tail
function P (|X| > x) is regularly varying with index −a, a > 2. Then

n−1/aT dn,nn
D−−−−→

n→∞
σT (γa), (2.7)

provided

dn
n
−−−−→
n→∞

0 and n1−(2+δ)/ad(2+δ)(1/a−1/2)n log1+δ n→ 0 as n→∞, (2.8)

with 0 < δ < a− 2, if a ≤ 3 and δ = 1 if a > 3.

If dn = cnκ for n ≥ n0, then the convergence (2.7) holds if κ ∈
(

2(a−2−δ)
(2+δ)(a−2) , 1

)
. The

above assumption of regular variation of the tail is obviously satisfied when X ∈ RVa but
is more general since we do note require here the tail balance property.

Theorem 2.3. Let a > 2 and 0 < τ <∞. Assume that X ∈ RVa(τ), EX = 0 and

dn →∞,
dn
n
→ 0 as n→∞. (2.9)

Then
n−1/aT 0,dn

n
D−−−−→

n→∞
τYa. (2.10)

Theorem 2.4. Let a > 2 and 0 < τ <∞. Assume that X ∈ RVa(τ), EX = 0. Then

n−1/aTn(γa)
D−−−−→

n→∞
max{σT (γa), τYa, }, (2.11)

where Ya and T (γa) are independent random variables, Ya has Fréchet distribution with
parameter a and T (γa) is defined by (1.5).

Theorem 2.5. There exists a random variable X ∈ RVa \
⋃
τ∈[0,∞] RVa(τ) such that the

following convergences hold, with limits Va,σ,τ as in (1.6) and (1.7).

i) There is an increasing sequence of integers (ni)i≥1 such that

n
−1/a
i Tni(γa)

D−−−→
i→∞

σT (γa) = Va,σ,0. (2.12)

ii) For every τ ∈ (0,∞), there is an increasing sequence of integers (ni)i≥1 such that

n
−1/a
i Tni(γa)

D−−−→
i→∞

max{σT (γa), τYa, } = Va,σ,τ . (2.13)
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iii) There is an increasing sequence of integers (ni)i≥1 such that n−1/ai Tni(γa) is not
stochastically bounded and denoting by ani the 1/ni quantile of |X|,

a−1ni Tni(γa)
D−−−→

i→∞
Ya = Va,σ,∞. (2.14)

Theorem 2.6. Assume that X ∈ RVa with a > 2 and EX = 0 and there exists an
increasing positive sequence (cn)n≥1 and a sequence of reals (µn)n≥1 such that

c−1n (Tn(γa)− µn)
D−−−−→

n→∞
Z, (2.15)

where Z is non degenerate random variable. Then the function L from (1.1) has a limit
τa ∈ [0,∞] at infinity and there are constants A > 0, B ∈ R such that

Z
d
= AVa,σ,τ +B. (2.16)

3 Proofs

3.1 Proof of Theorem 2.1

Write

T dn,nn = sup
`,k∈In

∣∣∣∣∣∣
n∑
j=1

Xjδj(`, k)

∣∣∣∣∣∣ ,
where In = {(`, k) : dn ≤ ` ≤ n, 0 ≤ k ≤ n− `}, and

δj(`, k) :=

{
`−γ , if k + 1 ≤ j ≤ k + `

0 otherwise.

In what follows, we denote by kn the number of elements of In. It is easily seen that
2kn = (n− [dn])(n− [dn] + 1), so kn < n2/2. Let us choose and fix some enumeration of
In. Then we introduce for j = 1, . . . , n, the random vector

Xn,j = n−1/2+γ(Xjδj(`, k), (`, k) ∈ In),

viewed as a random vector in Rkn . This leads to the representation

n−1/2+γT dn,nn =
∥∥∥ n∑
j=1

Xn,j

∥∥∥
∞
,

where ‖x‖∞ = max1≤i≤kn |xk|, x = (xk) ∈ Rkn and dimension kn ≤ n2.
Let Y, Yk, k ≥ 1, be i.i.d. Gaussian random variables, such that EY = 0, EY 2 = EX2.

Following Lindeberg method, we substitute step by step each Xn,j by Yn,j where Yn,j =

n−1/2+γ(Yjδj(`, k), (`, k) ∈ In) ∈ Rkn , in order to compare the distribution of T dn,nn with
that of

T̂ dn,nn := max
dn<`≤n

`−γ max
0≤k≤n−`

|Yk+1 + · · ·+ Yk+`| =
∥∥∥ n∑
j=1

Yn,j

∥∥∥
∞
.

To this aim we consider for each r > 0 and ε > 0 the function fr,ε : Rkn → R which enjoys
the following two properties:

(i) for each x ∈ Rkn ,

1{‖x‖∞ ≤ r} ≤ fr,ε(x) ≤ 1{‖x‖∞ ≤ r + ε};
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(ii) the function fr,ε is three times differentiable and for each m = 1, 2, 3, there exists
an absolute constant cm > 0 such that, recalling that kn + 1 < n2,

‖f (m)
r,ε ‖ := sup{|f (m)

r,ε (x)(h)m| : x, h ∈ Rkn , ‖h‖∞ ≤ 1} ≤ cmε−m logm−1 n.

Here f (m)
r,ε denotes the mth derivative of the function fr,ε and f (m)

r,ε (x)(h)m the correspond-
ing differential. Such functions are constructed in Bentkus [2].

By using (i), we have

P (n−1/2+γT dn,nn ≤ r) = P
(∥∥∥ n∑

j=1

Xn,j

∥∥∥
∞
≤ r
)
≤ E fr,ε

( n∑
i=1

Xn,i

)
= ∆(n, ε) + E fr,ε

( n∑
i=1

Yn,i

)
≤ ∆(n, ε) + P (n−1/2+γ T̂ (dn)

n ≤ r + ε),

(3.1)

where

∆(n, ε) := E fr,ε
( n∑
i=1

Xn,i

)
− E fr,ε

( n∑
i=1

Yn,i

)
.

Now, we introduce the hybrid sums Zn,j with hole at index j,

Zn,j :=
∑

1≤i<j

Xn,i +
∑
j<i≤n

Yn,i, j = 0, . . . , n, n+ 1,

with the convention
∑
i∈∅ := 0. In particular

∑n
i=1Xn,i = Zn,n+1 and

∑n
i=1 Yn,i = Zn0.

Defining Xn0 := 0 and Yn,n+1 := 0, we notice also that

Zn,j + Yn,j = Zn,j−1 +Xn,j−1, j = 1, . . . , n+ 1.

With these notations, we can describe the progressive substitution of the Xn,j ’s by the
Yn,j ’s as

fr,ε

( n∑
i=1

Xn,i

)
− fr,ε

( n∑
i=1

Yn,i

)
= fr,ε(Zn,n+1)− fr,ε(Zn,0)

=

n∑
j=1

(
fr,ε(Zn,j +Xn,j)− fr,ε(Zn,j−1 +Xn,j−1)

)
=

n∑
j=1

(
fr,ε(Zn,j +Xn,j)− fr,ε(Zn,j + Yn,j)

)
. (3.2)

whence

∆(n, ε) =

n∑
j=1

(
E fr,ε(Zn,j +Xn,j)− E fr,ε(Zn,j + Yn,j)

)
. (3.3)

Next we shall use Taylor’s expansion

fr,ε(x+ h) = fr,ε(x) + f ′r,ε(x)(h) + 2−1f ′′r,ε(x)(h, h) +R (3.4)

with interpolated remainder, see Lemma A.1 in Appendix A.1,

|R| ≤ 62−β‖f ′′r,ε‖3−β‖f ′′′r,ε‖β−2‖h‖β∞ ≤ 62−βc3−β2 cβ−23 ε−β‖h‖β∞ logβ−1 n, (3.5)
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valid for any 2 < β ≤ 3. Recalling that E |Xj |b <∞ for some b > 2, we choose from now
on β = min(b, 3). For each j = 1, . . . , n, the random vectors Zn,j and Xn,j of Rkn are
independent and the same holds for Zn,j and Yn,j . By Lemma A.2 in Appendix A.1, this
implies E f ′r,ε(Zn,j)(Xn,j) =

(
E (f ′r,ε(Zn,j)

)
(EXn,j) and similarly with Yn,j instead of Xn,j .

As Xn,j and Yn,j have null expectation, this gives

E f ′r,ε(Zn,j)(Xn,j) = E f ′r,ε(Zn,j)(Yn,j) = 0. (3.6)

As moreover Xn,j and Yn,j have the same covariance matrix, Lemma A.3 gives also

E f ′′r,ε(Zn,j)(Xn,j , Xn,j) = E f ′′r,ε(Zn,j)(Yn,j , Yn,j). (3.7)

Now applying Taylor’s formula (3.4) to each term in (3.3) and accounting (3.5) gives

|∆(n, ε)| ≤ (62−βc3−β2 cβ−23 )ε−β(logβ−1 n)

n∑
j=1

[
E ‖Xn,j‖β∞ + E ‖Yn,j‖β∞

]
.

Noticing that Xn,j is the product of the (scalar) real random variable Xj by the deter-
ministic vector

(
n−1/2+γδj(`, k), (`, k) ∈ In

)
of Rkn , it is clear that

‖Xn,j‖∞ = n−1/2+γ max
(`,k)∈In

δj(`, k)|Xj | = n−1/2+γd−γn |Xj |, (3.8)

whence,

E ‖Xn,j‖β∞ = n(−1/2+γ)βd−βγn E |Xj |β , E ‖Yn,j‖β∞ = n(−1/2+γ)βd−βγn E |Yj |β .

Therefore, puting Cβ := 62−βc3−β2 cβ−23 (E |X|β + E |Y |β),

|∆(n, ε)| ≤ Cβ ε−βn1+(−1/2+γ)βd−βγn logβ−1 n = Cβ ε
−β n

1−β/2 logβ−1 n(
dn
n

)βγ .

By condition (2.6), ∆(n, ε)→ 0 as n→∞ and we find from (3.1), for each ε > 0,

lim sup
n→∞

P (n−1/2+γT dn,nn ≤ r) ≤ lim sup
n→∞

P (n−1/2+γ T̂ dn,nn ≤ r + ε). (3.9)

From weak invariance principle in Hölder spaces, see [16] and Appendix A.2 below,

n−1/2+γ T̂ dn,nn (γ)
D−−−−→

n→∞
T (γ), (3.10)

for any sequence dn such that dn/n → 0 as n → ∞. Since the distribution function of
T (γ) is continuous, the lim sup in the right-hand side of (3.9) is a true limit equal to
P (T (γ) ≤ r + ε) and we obtain

lim sup
n→∞

P (n−1/2+γT dn,nn ≤ r) ≤ P (T (γ) ≤ r + ε). (3.11)

To find a lower bound for lim infn→∞ P (n−1/2+γT dn,nn ≤ r), we consider ε > 0 such
that 0 < ε < r and the function fr−ε,ε, which gives

P (n−1/2+γT dn,nn ≤ r) = P
(∥∥∥ n∑

j=1

Xn,j

∥∥∥
∞
≤ r
)
≥ E fr−ε,ε

( n∑
i=1

Xn,i

)
= ∆′(n, ε) + E fr−ε,ε

( n∑
i=1

Yn,i

)
≥ −|∆′(n, ε)|+ P (n−1/2+γ T̂ dn,nn ≤ r + ε),
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where

∆′(n, ε) := E fr−ε,ε
( n∑
i=1

Xn,i

)
− E fr−ε,ε

( n∑
i=1

Yn,i

)
.

Acting as above we estimate

|∆′(n, ε)| ≤ Cβ ε−βn1+(−1/2+γ)βd−βγn logβ−1 n,

which gives

lim inf
n→∞

P (n−1/2+γT dn,nn ≤ r) ≥ lim inf
n→∞

P (n−1/2+γ T̂ dn,nn ≤ r − ε) = P (T (γ) ≤ r − ε).

Combining with (3.11) we have

P (T (γ) ≤ r − ε) ≤ lim inf
n→∞

P (n−1/2+γT dn,nn ≤ r)

≤ lim sup
n→∞

P (n−1/2+γT dn,nn ≤ r) ≤ P (T (γ) ≤ r + ε). (3.12)

Since the distribution function of T (γ) is continuous, see the Appendix A.3, the proof is
completed by letting ε→ 0 in (3.12).

Proof of Corollary 2.2. If the tail function of |X| is regularly varying with index −a, a > 2,
then E |X|b <∞ for any 0 ≤ b < a. As a > 2, we can choose 2 < b < a and apply Th.2.2
with β = min(3, b) = 2 + δ which gives the result.

3.2 On L-subsequences

Before presenting the proof of theorems 2.3 and 2.4, it seems convenient to make
some remarks on the use of subsequences in this paper. In the first part of our contribu-
tion, i.e. until Th. 2.4, we obtain the limiting behavior of Tn(γa) for X ∈

⋃
0≤τ≤∞RVa(τ).

Next we investigate the complementary case where L has no limit at all at infinity. Our
main tool is then the exploitation of some L-subsequences versions of all the conver-
gence theorems leading to Th.4, see for instance the subsequence version of Hölderian
invariance principle, A.2–Th.A.4. By L-subsequence we mean a subsequence indexed by
an infinite subset I of N, whose construction depends on the asymptotic behavior of L.
Our main example is I such that

L(n1/a) −−−−−−−→
n→∞, n∈I

τa, for some τ ∈ [0,∞]. (3.13)

The convergence of (n−1/aTn(γa))n∈I cannot be inherited from the whole sequence
since (3.13) is weaker in general than X ∈ RVa(τ). This announces the tedious task of a
careful rereading of the proofs of Th.2.1 to Th.2.4 and also of the convergences results
for the special cases τ = 0, τ = ∞ to check if an adaptation to some L-subsequence
is possible. In order to minimize such a burden, we will write the forthcoming proofs
of the Theorems 2.3 and 2.4 for a generic subsequence indexed by an infinite subset
I of N, replacing the hypothesis L(x) → τa by (3.13). Then the proof of the theorem
will just be the special case where I = N, where (3.13) is automaticaly satisfied when
X ∈ RVa(τ). The reader interested by the proof of Th. 2.4 only, can ignore the mention
n ∈ I everywhere in the proof. To have minor modifications in the typesetting we adopt
the notation −−−−−−−→

n→∞,n∈I
which avoids double indexing by ni.

Before proceeding, let us remark that Th.2.1 and Cor.2.2 remain valid for any L-
subsequence because they are established under the hypothesis E |X|b < ∞ for some
2 < b < a which does not involve L at all.
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3.3 Proof of Theorem 2.3

The following auxiliary results are used in the proof.

Lemma 3.1. Let (Yi) be a sequence of i.i.d. random variables. Then, for any b > 0, γ ≥ 0,
h ≥ 1 and H ≤ n,

P

 max
h≤`≤H

`−γ max
0≤k≤n−`

∣∣∣ k+∑̀
j=k+1

Yj

∣∣∣ > b

 ≤ 2
∑

n/H≤2j≤n/h

Qj ,

Qj := 2jP
(

max
1≤k≤2n2−j

∣∣∣ k∑
j=1

Yj

∣∣∣ > b(n2−j)γ
)
.

This lemma is proved in [15], see Lemma 3.3 therein. The next one extends and
completes Lemma 2.4 in [19]. In view of its role in this current work, we provide a
detailed proof below.

Lemma 3.2. Assume that X satisfies for some a > 1 and some slowly varying L,

G(x) := P
(
|X| > x

)
∼ x−aL(x), x→∞. (3.14)

Denote by an the 1 − 1/n quantile defined by (1.4) and by (cn)n≥1 a nondecreasing
sequence of positive reals such that

P (|X| > cn) ∼ n−1, n→∞. (3.15)

i) For any 0 < s < a,

E |X|s1{|X|>ycn} ≤
2a

a− s
csnn
−1ys−a, (3.16)

for n large enough, uniformly in y ∈ [1,∞).

ii) For any s > a,

E |X|s1{|X|≤ycn} ≤
2a

s− a
csnn
−1ys−a, (3.17)

for n large enough, uniformly in y ∈ [1,∞).

iii) The inequalities (3.16) and (3.17) remain valid if we replace cn by bn ∼ an. Moreover
if (cn)n≥1 satisfies (3.15), then cn ∼ an as n→∞.

iv) an = n1/al(n) where l is a slowly varying function.

Proof. By (3.14), L̃(x) := xaG(x) ∼ L(x) hence L̃ is slowly varying and G(x) = x−aL̃(x)

is regularly varying with exponent −a.
To prove i), a Fubini argument gives with the notations Gs and G∗s defined by (A.19),

E |X|s1{|X|>ycn} = (ycn)sP (|X| > ycn) + s

∫ ∞
ycn

ts−1P (|X| > t) dt

= (ycn)sG(ycn) + sG∗s−1(ycn). (3.18)

By Karamata theorem, see (A.20) in A.4-Th.A.13 with λ = −(s− 1− a+ 1) = a− s > 0,

G∗s−1(ycn)

(ycn)sG(ycn)
−−−−→
n→∞

1

λ
=

1

a− s
.

For y ≥ 1, cny ≥ cn → ∞, so the above convergence is obviously uniform in y ∈ [1,∞).
Hence when n tends to infinity,

E |X|s1{|X|>ycn} ∼
a

a− s
(ycn)sG(ycn),
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uniformly in y ∈ [1,∞). Now since G has regular variation with exponent −a < 0,
G(ycn) ∼ y−aG(cn), uniformly in y ∈ [1,∞), see e.g. Th.1.5.2 in [4]. Accounting (3.15),

E |X|s1{|X|>ycn} ∼
a

a− s
csnG(cn)ys−a ∼ a

a− s
csnn
−1ys−a, (3.19)

uniformly in y ∈ [1,∞). Introducing the extra factor 2 to replace this equivalence by an
inequality gives (3.16) valid for n large enough uniformly in y ∈ [1,∞).

The proof of ii) is completely similar and will be omitted.
To prove iii), we note first that an obvious choice is cn = an. If we replace cn by

bn in the proof of i), everything works identically until the first equivalence in (3.19),
noting that the equivalence an ∼ bn implies that bn tends to infinity. To obtain the second
equivalence in (3.19) leading to (3.16), we note that L(an) ∼ L(bn) by A.4–Cor.A.10 ii),
so G(bn) ∼ b−an L(bn) ∼ a−an L(an) ∼ G(an) = n−1.

To check the second assertion in iii), we use the fact that (3.15) and (3.16) imply

c−1n max
1≤k≤n

|Xk|
D−−−−→

n→∞
Ya. (3.20)

Indeed if F and Fn are the distribution functions of |X| and max1≤k≤n |Xk|, Fn = Fn and
with some function u(x)→ 1 at infinity and for any fixed x > 0,

Fn(cnx) =
(
1− u(cnx)(cnx)−aL(cnx)

)n
= exp

(
n log

(
1− u(cnx)

L(cnx)

canx
a

))
.

As n → ∞, u(cnx)c−an x−aL(cnx) ∼ c−an x−aL(cn) ∼ x−aP (|X| > cn) ∼ x−an−1, whence
limn→∞ Fn(cnx) = exp(−x−a) = P (Ya ≤ x). Now the weak convergence (3.20) works
with the two sequences of normalizing constants (cn)n≥1 and (an)n≥1, so by the conver-
gence of types, see [11, Th.1, 2, p.40–42] or [20, Prop.0.2], there is a constant A > 0

such that cn/an converges to 1 and P (Ya ≤ x) = P (Ya ≤ Ax), so A = 1, that is cn ∼ an.
To prove iv), we first recall that the left continuous inverse of a non decreasing

function H(x) is H←(y) := inf{x : H(x) ≥ y}. In particular it is easily seen that an =

(1/G)←(n), noticing that the slowly varying L in (3.14) is positive on some neighborhood
of infinity which forbid G to vanish at some real x. Now 1/G(x) = xa/L̃(x), so 1/G varies
regularly with exponent a. By [20, Prop.0.8(v) p.23], this entails that (1/G)← varies
regularly with exponent 1/a.

Proof of Th. 2.3. Let X be in RVa and I be an infinite subset of N such that

L(n1/a) −−−−−−−→
n→∞, n∈I

τa. (3.21)

We prove the weak convergence of (n−1/aT 0,dn
n )n∈I to τYa under (2.9) restricted to I

and (3.21). Th. 2.3 follows when X ∈ RVa(τ), since this membership allows the choice
I = N in (3.21).

By [15, Lem.2.4] for fixed d ≥ 1, (a−1n T 0,d
n )n∈N converges to Ya in distribution. Us-

ing (3.21), one sees that P (|X| > τn1/a) ∼ n−1, as n→∞, n ∈ I. Hence by Lemma 3.2,
an ∼ τn1/a as n→∞, n ∈ I, whence (n−1/aT 0,d

n )n∈I converges to τYa. So by Lemma 3.1,
we only need to prove that for each ε > 0,

lim
h→∞

lim sup
n→∞, n∈I

Qn(h, ε) = 0, (3.22)

where

Qn(h, ε) := P
(

max
h≤`≤dn

`−γa max
0≤k≤n−`

∣∣Sk+` − Sk∣∣ > εn1/a
)
.
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Until the end of the proof, n belongs to I. Consider the truncated random variables

X ′i = Xi1{|Xi| ≤ τhγan1/a}, X̃i = X ′i − E (X ′i), i = 1, . . . , n, n ∈ I

and the corresponding partial sums

S′k =

k∑
i=1

X ′i and S̃k =

k∑
i=1

X̃i, k ≥ 1,

with S′0 = S̃0 = 0. From Lemma 3.1, we conclude

Qn(h, ε) ≤ P
(

max
1≤k≤n

|Xk| ≥ τhγan1/a
)

+ P

(
max

h≤`≤dn
`−γa max

0≤k≤n−`
|S′k+` − S′k| > εn1/a

)
≤ P

(
max

1≤k≤n
|Xk| ≥ τhγan1/a

)
+2

∑
n/dn≤2j≤n/h

2jQn,j(h, ε),

where

Qn,j(h, ε) := P

(
max

1≤k≤2n2−j
|S′k| > ε(n2−j)γan1/a

)
.

Since

lim
n→∞, n∈I

P

(
max

1≤k≤n
|Xk| > τhγan1/a

)
= 1− exp(−h−γaa)−−−−→

h→∞
0,

the proof of (3.22) reduces to

lim
h→∞

lim sup
n→∞, n∈I

∑
n/dn≤2j≤n/h

2jQn,j(h, ε) = 0. (3.23)

By Lemma 3.2 (i) applied with cn = τn1/a, n ∈ I and noticing that because EX = 0,

EX ′ = E (X −X1{|X| > τhγan1/a}) = −E (X1{|X| > τhγan1/a}),

we have

|E (S′k)| ≤ k|E (X ′)| ≤ kE
(
|X|1{|X| > τhγan1/a}

)
≤ k 2aτ

a− 1
n−1+1/ahγa(1−a).

This yields

max
1≤k≤2n2−j

|S′k| ≤ max
1≤k≤2n2−j

|S̃k|+ 2−j
4aτ

a− 1
n1/ahγa(1−a).

Moreover as j ≤ log2(n/h), we have 2−j ≤ 1 ≤ (n2−j)γa since γa ≥ 0. Hence for h
large enough and uniformly in j ≤ log2(n/h),

max
1≤k≤2n2−j

|S′k| ≤ max
1≤k≤2n2−j

|S̃k|+
ε

2
(n2−j)γan1/a.

Hence, for h large enough and uniformly in j such that 2j ≤ n/h,

Qn,j(h, ε) ≤ Q̃n,j(h, ε),

where

Q̃n,j(h, ε) := P

(
max

1≤k≤2n2−j
|S̃k| > (ε/2)(n2−j)γan1/a

)
.

Fix p > a. Since (|S̃k|, k ≥ 1) is a submartingale, by Doob and Markov inequalities we
obtain

Q̃n,j(h, ε) ≤
(

p

p− 1

)p(
2

ε

)p (
(n2−j)γan1/a

)−p
E
∣∣∣S̃2n2−j

∣∣∣p .
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By Rosenthal inequality,

E
∣∣∣S̃n2−j ∣∣∣p ≤ cp[(n2−j)p/2(E (|X|21{|X| ≤ τn1/ahγa})p/2 +n2−jE |X|p1{|X| ≤ τn1/ahγa}

]
,

where the constant cp > 0 depends on p only. Applying Lemma 3.2, we obtain

E
∣∣∣S̃n2−j ∣∣∣p ≤ cp[(n2−j)p/2(EX2)p/2 + n2−j

2aτp

p− a
np/an−1hγa(p−a)

]
.

This leads to

Q̃nj(h, ε) ≤ Cp
(

2

ε

)p
[(n2−j)γan1/a]−p

[
(n2−j)p/2σp + n2−j

2aτp

p− a
np/an−1hγa(p−a)

]
= Cp

(
2

ε

)p [
σpn−p/a(n2−j)−γap+p/2 +

2aτp

p− a
n−1hγa(p−a)(n2−j)−γap+1

]
,

where Cp := (1− 1/p)−pcp and σ2 = EX2. Hence, recalling that γa = 1/2− 1/a and p > a,
we obtain∑
n/dn≤2j≤n/h

2jQnj(h, ε) ≤
∑

n/dn≤2j≤n/h

2jQ̃nj(h, ε)

≤ Cp
(

2

ε

)p[
σpnp/an−p/a

∑
n/dn≤2j≤n/h

2−(p/a−1)j +
2aτp

p− a
n−γaphγa(p−a)

∑
n/dn≤2j≤n/h

2γapj
]

≤ Cp
(

2

ε

)p [
2p/a

2p/a − 2
σpKn +

2p/2+1aτp

(p− a)(2p/2 − 2p/a)
h1−a/2

]
,

where
Kn :=

∑
n/dn≤2j≤n/h

2−(p/a−1)j .

This completes the proof of (3.23) since Kn → 0 as n→∞, n ∈ I, since dn/n→ 0.

3.4 Proof of Theorem 2.4

We proceed as in the proof of Th.2.3 by proving the convergence (2.11) for X ∈ RVa

and a subsequence indexed by I verifying (3.21). Again, an ∼ τn1/a when n→∞, n ∈ I.
Throughout the proof, n belongs to I.

Choose dn = cnκ for n ≥ n0, with κ ∈
(

2(a−2−δ)
(2+δ)(a−2) , 1

)
and 0 < δ < a − 2 if a ≤ 3,

δ = 1 if a > 3. Then dn → ∞, dn/n → 0 as n → ∞, n ∈ I and (2.8) is satisfied. For
1 < h < dn < n, recalling the notation (2.1), Tn(γa) can be expressed as

Tn(γa) = max{T 0,h
n , Th,dnn , T dn,nn }.

We will use the abbreviations

T ′n = T 0,h
n , T ′′n = T dn,nn .

With our choice of dn, (3.22) is satisfied, see the proof of Th.2.3, hence for any ε > 0,

lim
h→∞

lim sup
n→∞, n∈I

P (n−1/aTh,dnn > ε) = 0. (3.24)

This will enable us to show that n−1/aTn(γa) and n−1/a max{T ′n, T ′′n } have the same
limiting distribution. For the moment, we just note for ulterior use the related inequali-
ties (3.25) and (3.26) below. First we notice that for any r > 0,

P (n−1/aTn(γa) ≤ r) = P (n−1/a max{T ′n, T ′′n , Th,dnn } ≤ r) ≤ P (n−1/a max{T ′n, T ′′n } ≤ r).
(3.25)
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For a lower bound, we write

P (n−1/a max{T ′n, T ′′n } ≤ r − ε) = P (n−1/a max{T ′n, T ′′n } ≤ r − ε, n−1/aTh,dnn ≤ ε)

+ P (n−1/a max{T ′n, T ′′n } ≤ r − ε, n−1/aTh,dnn > ε)

≤ P (n−1/a max{T ′n, T ′′n } ≤ r − n−1/aTh,dnn )

+ P (n−1/aTh,dnn > ε)

= P (n−1/a max{T ′n, T ′′n }+ n−1/aTh,dnn ≤ r)

+ P (n−1/aTh,dnn > ε)

≤ P (n−1/a max{T ′n, T ′′n , Th,dnn } ≤ r) + P (n−1/aTh,dnn > ε),

whence for any r > 0, ε > 0,

P (n−1/a max{T ′n, T ′′n } ≤ r − ε)− P (n−1/aTh,dnn > ε) ≤ P (n−1/aTn(γa) ≤ r). (3.26)

Now we analyse max{T ′n, T ′′n }. To this aim, introducing the random vectors of Rh

Uk = Uk,h :=
(
Sk−1,1, . . . , Sk−1,h

)
=
(
Xk, Xk +Xk+1, . . . . . . , Xk + · · ·+Xk+h−1

)
,

we consider the random measure Nn on (the Borel σ-field of) Rh defined by

Nn :=

n−h+1∑
k=1

δn−1/aUk ,

where δy denotes the Dirac mass at the point y of Rh.
Write for r > 0,

Br = Br,a = {(s1, . . . , sh) ∈ Rh : i−γa |si| ≤ r, i = 1, . . . , h}.

Then
{Nn(Bcr) = 0} = {n−1/aT ′n ≤ r}.

Indeed, Nn(Bcr) = 0, if and only if for each k = 1, . . . , n, δn−1/aUk(Bcr) = 0 or equiva-
lently n−1/a(Xk, . . . , Xk + · · · + Xk+h−1) ∈ Br. This means that for each k = 1, . . . , n,
n−1/ai−γa |Xk + · · ·+Xk+i| ≤ r for i = 1, . . . , h. Summing up, Nn(Bcr) = 0 if and only if

n−1/ai−γa |Xk + · · ·+Xk+i−1| ≤ r, i = 1, . . . , h, k = 1, . . . , n− h+ 1

or if and only if n−1/aT ′n ≤ r.
Introducing the interval of integers Ju, vK := [u, v] ∩ N, with the usual convention

[u, v] = ∅ when v < u, consider for j = 1, . . . , n the sets

Ij = I(j, h) := Jj − h, j + hK ∩ J1, n− h+ 1K
Icj := J1, n− h+1K \ Ij = J1, j − h− 1K ∪ Jj + h+ 1, n− h+ 1K.

Now define
N (j)
n =

∑
k∈Icj

δn−1/aUk .

In what follows we use the functions fr,ε and the random vectors Xn,i, Yn,i, Zn,i intro-
duced in the proof of Th. 2.2. We have

P (n−1/a max{T ′n, T ′′n } ≤ r) = P (n−1/aT ′n ≤ r, n−1/aT ′′n ≤ r)

= E
(
1{Nn(Bcr) = 0}1{n−1/aT ′′n ≤ r}

)
≤ E

(
1{Nn(Bcr) = 0}fr,ε

( n∑
i=1

Xn,i

))
.
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Recalling (3.2), we continue the above estimation by

P (n−1/a max{T ′n, T ′′n } ≤ r) ≤
n∑
j=1

E1{Nn(Bcr) = 0}[fr,ε(Zn,j +Xn,j)− fr,ε(Zn,j + Yn,j)]

+ E1{Nn(Bcr) = 0}fr,ε
( n∑
i=1

Yn,i

)
= Pn1(r, ε) + Pn2(r, ε) + Pn3(r, ε), (3.27)

where

Pn1(r, ε) =

n∑
j=1

E1{N (j)
n (Bcr) = 0}

[
f(Zn,j +Xn,j)− f(Zn,j + Yn,j)

]
,

Pn2(r, ε) =

n∑
j=1

E
[
1{Nn(Bcr) = 0} − 1{N (j)

n (Bcr) = 0}
][
f(Zn,j +Xn,j)− f(Zn,j + Yn,j)

]
,

and

Pn3(r, ε) = E1{Nn(Bcr) = 0}fr,ε(
n∑
j=1

Yn,j).

To estimate Pn1 we use Taylor’s expansion which gives

Pn1(r, ε) =

n∑
j=1

E
(
1{N (j)

n (Bcr) = 0}
[
f ′(Zn,j)(Xn,j) + f ′′(Zn,j(Xn,j)

2 +R1(j)

− f ′(Zn,j)(Yn,j)− f ′′(Zn,j)(Yn,j)2 −R2(j)
])
,

where

|Rm(j)| ≤ 6−δ‖f ′′r,ε‖1−δ‖f ′′′r,ε‖δ
(
‖Xn,j‖2+δ∞ + ‖Yn,j‖2+δ∞

)
≤ C ′δε−2−δd−γan n−(2+δ)/a

(
|Xj |2+δ + |Yj |2+δ

)
, m = 1, 2.

As 1{N (j)
n (Bc(x)) = 0} and Xn,j are independent, 1{N (j)

n (Bc(r)) = 0}f ′(Zn,j) and

1{N (j)
n (Bc(r)) = 0}f ′′(Zn,j) are respectively a random linear form on Rkn and a random

bilinear symetric form on Rk ×Rk, both independent of Xn,j . By lemmas A.2 and A.3 in
Appendix, recalling that Xn,j and Yn,j have the same (null) expectation and covariance
matrix, one sees that

E
(
1{N (j)

n (Bc(r)) = 0}[ f ′(Zn,j)(Xn,j) + f ′′(Zn,j)(Xn,j)
2 ]
)

=

E
(
1{N (j)

n (Bc(r)) = 0}[ f ′(Zn,j)(Yn,j) + f ′′(Zn,j)(Yn,j)
2 ]
)
.

This yields

|Pn1(r, ε)| ≤
n∑
j=1

E1{N (j)
n (Bc(x)) = 0}[|R1(j)|+ |R2(j)|] ≤ cδ

n∑
j=1

E [|R1(j)|+ |R2(j)|]

≤ C ′δε−2−δd−γan n1−(2+δ)/a[E |X1|2+δ + E |Y1|2+δ]

By our choice of dn, we have for each r > 0 and ε > 0,

lim sup
n→∞, n∈I

|Pn1(r, ε)| = 0. (3.28)
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To estimate Pn2(r, ε), we introduce

Ñ (j)
n = Nn −N (j)

n =
∑

k∈I(j,h)

δn−1/a(Xk,...,Xk+···+Xk+h−1)

and notice that E := {Nn(Bcr) = 0} ⊂ F := {N (j)
n (Bcr) = 0}. Therefore

1F − 1E = 1F\E = 1F∩Ec = 1{N (j)
n (Bcr) = 0, Nn(Bcr) 6= 0, }

= 1{N (j)
n (Bcr) = 0, Ñ (j)

n (Bcr) 6= 0}

≤ 1{Ñ (j)
n (Bcr) 6= 0}.

Now, as ‖f ′r,ε‖∞ ≤ c1ε
−1, the function fr,ε is Lipschitz with constant c1ε−1, that is

|fr,ε(x)− fr,ε(y)| ≤ c1ε−1‖x− y‖∞, whence

|Pn2(r, ε)| ≤
n∑
j=1

E1{Ñ (j)
n (Bcr) 6= 0}|f(Zn,j +Xn,j)− f(Zn,j + Yn,j)|

≤ c1ε−1
n∑
j=1

E1{Ñ (j)
n (Bcr) 6= 0}[‖Xn,j‖∞ + ‖Yn,j)‖∞].

Recalling (3.8), we get

|Pn2(r, ε)| ≤ c1ε−1n−1/ad−γan

(
P ′n2(r) + P ′′n2(r)

)
, (3.29)

where

P ′n2(r) =

n∑
j=1

E1{Ñ (j)
n (Bcr) 6= 0}|Xj |, P ′′n2(r) =

n∑
j=1

E1{Ñ (j)
n (Bcr) 6= 0}|Yj |.

As Yj and Ñ (j)
n are independent,

P ′′n2(r) =

n∑
j=1

P (Ñ (j)
n (Bcr))E |Yj |.

Since
‖(Xk, . . . , Xk + · · ·+Xk+h−1)‖∞ ≤ h max

k≤i≤k+h−1
|Xi|,

we see that

{Ñ (j)
n (Bcr) 6= 0} ⊂

⋃
k∈I(j,h)

{n−1/a(Xk, . . . , Xk + · · ·+Xk+h−1) ∈ Bcr}

=
⋃

k∈I(j,h)

{n−1/a‖(Xk, . . . , Xk + · · ·+Xk+h−1)‖∞ > r}

⊂
⋃

k∈I(j,h)

{
max

k≤i≤k+h−1
|Xi| > rn1/ah−1

}

=
⋃

k∈I(j,h)

k+h−1⋃
i=k

{|Xi| > rn1/ah−1}.

This yields

P ′′n2(r) ≤
n∑
j=1

∑
k∈I(j,h)

k+h−1∑
i=k

P (|Xi| > rn1/ah−1)E |Yj |

≤ n(2h)hP (|X1| > rn1/ah−1)E |Y1|
≤ 3τaE |Y1|h2+ar−a, (3.30)
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for n ≥ n0(h, r, L), n ∈ I, using (3.21) in the last step.

Similarly we estimate

P ′n2(r) ≤
n∑
j=1

∑
k∈I(j,h)

k+h−1∑
i=k

E1{|Xi| > rn1/ah−1}|Xj |

≤ 2h2n
[
E1{|X2| > rn1/ah−1}|X1|+ E1{|X1| > rn1/ah−1}|X1|

]
= 2h2n

[
P (|X2| > rn1/ah−1)E |X1|+ E1{|X1| > rn1/ah−1}|X1|

]
≤ 3τa(2E |X1|r−a + ar1−a)h2+an1/a, (3.31)

recalling that a > 2 and using (i) of Lemma 3.2 with cn = τn1/a, n ∈ I. Now (3.29), (3.30)
and (3.31) yield

lim sup
n→∞, n∈I

|Pn2(r, ε)| = 0. (3.32)

Since the sequences (Xk)k≥1 and (Yk)k≥1 are independent,

Pn3(r, ε) = P (Nn(Bcr) = 0)E fr,ε
( n∑
i=1

Yn,i

)
,

hence recalling that our choice of dn enables us to apply the versions of Cor.2.2 and
Th.2.3 for the subsequence indexed by I verifying (3.21), we obtain

lim sup
n→∞, n∈I

Pn3(r, ε) = P (τYa ≤ r)P (σT (γa) ≤ r + ε). (3.33)

Collecting (3.27), (3.28), (3.32) and (3.33), we find for any r > 0 and ε > 0,

lim sup
n→∞, n∈I

P (n−1/a max{T ′n, T ′′n } ≤ r) ≤ P (τYa ≤ r)P (σT (γa) ≤ r + ε).

Accounting (3.25), this implies for any r > 0 and ε > 0,

lim sup
n→∞, n∈I

P (n−1/aT (γa)
n ≤ r) ≤ P (τYa ≤ r)P (σT (γa) ≤ r + ε). (3.34)

In a similar way we prove for any r > 0 and 0 < ε < r/2,

lim inf
n→∞, n∈I

P (n−1/a max{T ′n, T ′′n } ≤ r − ε) ≥ P (τYa ≤ r − ε)P (σT (γa) ≤ r − 2ε).

Accounting (3.26), this implies for any h > 1, r > 0 and 0 < ε < r/2,

lim inf
n→∞, n∈I

P (n−1/aTn(γa) ≤ r) ≥ P (τYa ≤ r − ε)P (σT (γa) ≤ r − 2ε)

− lim sup
n→∞, n∈I

P (n−1/aTh,dnn > ε).

In this inequality, only the lim sup term depends on h. So letting h tend to infinity we
obtain by (3.24)

lim inf
n→∞, n∈I

P (n−1/aTn(γa) ≤ r) ≥ P (τYa ≤ r − ε)P (σT (γa) ≤ r − 2ε). (3.35)

Finally, gathering (3.34) and (3.35) and using the continuity of the distributions
functions of Ya and T (γa), we complete the proof by letting ε→ 0.
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3.5 Proof of Theorem 2.5

As a preliminary, we construct a sequence of reals (mi)i≥0 increasing to infinity and
a slowly varying function L = La such that

α) for every a > 2, x−aLa(x) decreases from 1 to 0 on [m0,∞);

β) La(m2i)i≥1 increases to infinity and La(m2i+1)i≥0 decreases to zero.

We start with an arbitrary sequence (mi) ↑ ∞ on which we will progressively put
some constraints. Choosing m0 ≥ e1/2, we define the function i : [m0,∞) → N by
i := 1{m0} +

∑∞
i=1 i1(mi−1,mi], that is

i(m0) = 1, i(u) = i if mi−1 < u ≤ mi, i ≥ 1.

Now we define La on [m0,∞) by

La(x) := ma
0 exp

(∫ x

m0

(−1)i(u)

log u

du

u

)
.

By A.4-Th.A.11 below, L is clearly a slowly varying function. We can already check α)
without additional conditions on (mi)i≥1. Obviously m−a0 La(m0) = 1. Writing

x−a = m−a0 exp

(∫ x

m0

−a du

u

)
, x ≥ m0,

gives

x−aLa(x) = exp

(∫ x

m0

(
−a+

(−1)i(u)

log u

)
du

u

)
.

For u ≥ e1/2, −a + (−1)i(u)/ log u ≤ −a + 2 < 0 which implies the decreasingness of
x−aLa(x) on [m0,∞) and its convergence to 0 at infinity.

To find conditions on mi implying β), we note that for i ≥ 2,

La(mi) = ma
0 exp

(∫ mi−2

m0

(−1)i(u)

log u

du

u
+

∫ mi−1

mi−2

(−1)i(u)

log u

du

u
+

∫ mi

mi−1

(−1)i(u)

log u

du

u

)

= La(mi−2) exp

(
(−1)i−1 log

(
logmi−1

logmi−2

)
+ (−1)i

(
logmi

logmi−1

))
.

Therefore

La(mi)

La(mi−2)
=


logmi−2 logmi

(logmi−1)2
if i is even,

(logmi−1)2

logmi−2 logmi
if i is odd.

Hence the increasingness of La(m2i)i≥1 as well as the decreasingness of La(m2i+1)i≥0
require that (mi)i≥2 satisfies the condition

logmi−2 logmi

(logmi−1)2
> 1.

This means that the sequence (log logmi)i≥0 has to be strictly convex. A simple choice
satisfying this condition is log logmi = ib, with b > 1. In particular with b = 2, mi =

exp(exp(i2)), since i2 + (i− 2)2 − 2(i− 1)2 = 2, we find

logmi−2 logmi

(logmi−1)2
= e2.
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In this case, La(m2i) ↑ ∞, La(m2i+1) ↓ 0. The same holds (with less explicit formulas) for
b 6= 2 since ib+(i−2)b−2(i−1)b = b(b−1)+o(1). From now on, we fix mi := exp(exp(i2)),
i ≥ 0.

Next, we choose the distribution of X symmetric such that

P (|X| > x) =

{
1 if x < e,

x−aLa(x) if x ≥ e.

Clearly, X ∈ RVa \
⋃
τ∈[0,∞] RV(τ), EX = 0 and as a > 2, σ2 = EX2 <∞.

To prove i), let us recall that La(m2i−1)→ 0 as i→∞. Now choose ni := [ma
2i−1]. It

is clear that n1/ai ∼ m2i−1 and by A.4–Cor.A.10 ii), one checks that La(n
1/a
i ) ∼ La(m2i−1),

whence La(n
1/a
i ) → 0 as i → ∞. Then the convergence (2.12) follows by a continuous

mapping argument from A.2-Th.A.4.
To prove ii), we can build the sequence ni = ni(a, τ) as follows. First we note that for

t ∈ [m2i−1,m2i],

La(t) = La(m2i−1) exp

(∫ t

m2i−1

1

log u

du

u

)
whence

La(t) =
La(m2i−1)

logm2i−1
log t, t ∈ [m2i−1,m2i]. (3.36)

Recalling that mi = exp(exp(i2)), we note also that

m2i

ma
2i−1

= exp
(

exp
(
4i2
)(

1− a exp(−4i+ 1)
))

> 1, i >
1 + log a

4
. (3.37)

So for i > (1 + log a)/4, m2i−1 < ma
2i−1 < m2i, whence by (3.36),

La(ma
2i−1) =

La(m2i−1)

logm2i−1
log(ma

2i−1) = aLa(m2i−1).

Therefore La(ma
2i−1) tends to 0 as i tends to infinity. As moreover La(m2i) tends to infinity,

La(ma
2i−1) < τa < La(m2i) for i large enough. Then by increasingness and continuity of

La in [ma
2i−1,m2i] there is a unique ti in (ma

2i−1,m2i) such that La(ti) = aτa. Furthermore,

since ti > ma
2i−1, t

1/a
i ∈ [m2i−1,m2i], so by (3.36), La(t

1/a
i ) = τa. Now puting ni := [ti],

we get by A.4–Cor.A.10 ii) that limi→∞ La(n
1/a
i ) = τa that is La satisfies (3.21). Then we

can apply the subsequence version established in the proof of Th. 2.4 which gives the
convergence in distribution of n−1/ai Tni(γa) to max{σT (γa), τYa, }.

To prove iii), we choose ni = [m2i]. Let us first recall that by [12, Th.10], the sequence(
n−1/aTn(γa)

)
n≥1 is stochastically bounded if and only if supt>0 t

aP (|X| > t) is finite.

We will adapt the argument given in the proof to prove that
(
n
−1/a
i Tni(γa)

)
i≥0 is not

stochastically bounded. Beforehand, we recall that for i > (1 + log a)/4, m1/a
2i > m2i−1,

so by (3.36), La(m
1/a
2i ) = a−1La(m2i). This together with the slow variation of La and

A.4–Cor.A.10 ii) gives for every r > 0

La(rn
1/a
i ) ∼ La(n

1/a
i ) ∼ La(m

1/a
2i ) = a−1La(m2i) −−−→

i→∞
∞. (3.38)

Now assume that
(
n
−1/a
i Tni(γa)

)
)i≥0 is stochastically bounded. This implies the stochas-

tic boundedness of (n
−1/a
i max1≤k≤ni |Xk|)i≥0, that is

lim
r→∞

sup
i≥0

P
(
n
−1/a
i max

1≤k≤ni
|Xk| > r

)
= 0. (3.39)
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By independence and identical distribution of the Xk’s and (3.38), for every r > 0,

P
(
n
−1/a
i max

1≤k≤ni
|Xk| > r

)
= 1−

(
1− La(rn

1/a
i )

rani

)ni

= 1−
(
1 + o(1)

)
exp

(
−La(rn

1/a
i )

ra

)
−−−→
i→∞

1,

whence
sup
i≥0

P
(
n
−1/a
i max

1≤k≤ni
|Xk| > r

)
= 1, r > 0,

which contradicts (3.39). Hence
(
n
−1/a
i Tni(γa)

)
i≥0 is not stochastically bounded.

Now let us turn on the proof of the convergence of a−1ni Tni(γa). By A.4–Cor.A.10 ii),
La(ni) ∼ La(m2i) which tends to infinity. In [12], Th. 5b) states that if X ∈ RVa(∞),
a−1n Tn(γa) converges in distribution to Ya. So we have only to check the adaptation of this
theorem for the subsequence indexed by ni under the weaker assumption La(ni)→∞
instead of La(x)→∞ as x→∞. In fact in the original proof of [12, Th. 5b)], including
the 3 premiminary lemmas, everything is writen under the more general assumption
X ∈ RVa, except the last paragraph starting by “We see that when a > 2, (35) and
(36) are valid provided that limn→∞ a−1n n1/a = 0. . . ”. Therefore everything works when
substituting n by ni until this last paragraph and it remains only to justify the convergence
limi→∞ a−1ni n

1/a
i = 0.

By (3.37), m1/a
2i /m2i−1 → ∞ whence n

1/a
i ∈ (m2i−1,m2i) for i large enough and

La(n
1/a
i ) = 1

aLa(ni). Hence

niP (|X| > n
1/a
i ) =

1

a
La(ni) −−−→

i→∞
∞.

On the other hand, as x−aLa(x) is continuous and decreasing on [m0,∞),

niP (|X| > ani) = 1.

Therefore for i large enough P (|X| > n
1/a
i ) > P (|X| > ani), whence n

1/a
i < ani . In

particular,

λ := lim sup
n
1/a
i

ani
≤ 1.

Suppose that λ is positive. Then there exists a subsequence (nij ) of (ni) such that

n
1/a
ij
/anij > λ/2, whence

1 = nijP (|X| > anij ) > nijP

(
|X| > 2

λ
n
1/a
ij

)
∼ λa

a2a
La(m2ij ) −−−→

j→∞
∞,

which is contradictory. Therefore λ = 0 and the proof of iii) is complete.

3.6 Proof of Theorem 2.6

Assume that L(x) as no limit as x→∞. Then

θa := lim inf
x→∞

L(x) < θ′
a

:= lim sup
x→∞

L(x) (3.40)

and there are two sequences of reals (ti)i≥1 and (t′i)i≥1 increasing to infinity such that

L(ti) −−−→
i→∞

θa, L(t′i) −−−→
i→∞

θ′a.
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Now puting ni := [tai ], we note that n1/ai ∼ ti and by A.4–Cor.A.10 ii),

L(n
1/a
i ) ∼ L(ti) −−−→

i→∞
θa.

In the case where θ = 0, then n−1/ai Tni(γa) converges in distribution to σT (γa) by Th.A.4
and continuous mapping. If 0 < θ <∞, as (3.21) is satisfied by (ni)i≥1, the corresponding

subsequence version of Th.2.4 gives the weak convergence of n−1/ai Tni(γa) to Va,σ,θ.
When θ′ <∞, the same argument applied with n′i := [t′i

a
] gives the weak convergence

of n′i
−1/a

Tn′i(γa) to Va,σ,θ′ . In the special case where θ′ = ∞ we have to modify the
definition of n′i in the following way. As the quantile sequence (an)n≥1 is nondecreasing
and tends to infinity, we set n′i := max{k ≥ 1 : ak ≤ t′i}. As (t′i)i≥1 is increasing, (an′i)i≥1
is nondecreasing and verifies an′i ≤ t

′
i < a1+n′i . As by Lemma 3.2 iv), an = n1/al(n) with l

slowly varying, this implies

1 ≤ t′i
an′i
≤
(

1 + n′i
n′i

)1/a
l(1 + n′i)

l(n′i)
−−−→
i→∞

1,

so an′i ∼ t
′
i and L(an′i)→∞. To deduce from this that a−1n′i

Tn′i(γa) converges to Va,σ,∞ it

remains only (see the proof of Th. 2.5 iii) to check that n′i
1/a

= o(an′i). This follows from

P (|X| > an′i) ∼ 1/n′i and P (|X| > an′i) ∼ L(an′i)a
−a
n′i

which give

aan′i
n′i
∼ L(an′i) −−−→i→∞

∞.

So we found two nondecreasing sequences of integers (ni)i≥1 and (n′i)i≥1 such that

n
−1/a
i Tni(γa)

D−−−→
i→∞

Va,σ,θ and c−1ni (Tni(γa)− µni)
D−−−→

i→∞
Z, (3.41)

b−1n′i
Tn′i(γa)

D−−−→
i→∞

Va,σ,θ′ and c−1n′i
(Tn′i(γa)− µn′i)

D−−−→
i→∞

Z, (3.42)

where bn′i = n′i
1/a if θ′ < ∞, bn′i = an′i , the 1 − 1/n′i quantile of X if θ′ = ∞. Applying

twice the convergence of types theorem, see [11, Th.1, 2,p.40–42] or [20, Prop.0.2], we
deduce from (3.41) and (3.42) that there exist constants α > 0 and β ∈ R such that

Va,σ,θ
d
= αVa,σ,θ′ + β. (3.43)

As P (Va,σ,θ ≤ ε) > 0 for every ε > 0, see Appendix A.3, it is easily seen that necessarily
β = 0 in (3.43), so we are left with

Va,σ,θ
d
= αVa,σ,θ′ . (3.44)

Now we check the impossibility of the inequality in (3.40) by examinating the following
cases.

• θ = 0 < θ′ ≤ ∞. Then (3.44) is impossible because Va,σ,0 has a subgaussian tail
by (1.8), while αVa,σ,θ′ has an heavy tail equivalent to (αθ′)ax−a when 0 < θ′ <∞
by (1.10) or to αax−a when θ′ =∞.

• 0 < θ < θ′ <∞. Looking again at the tails we see by (1.10) that necessarily θ = αθ′,
which reformulates (3.44) as

Va,σ,θ
d
=

θ

θ′
Va,σ,θ′ . (3.45)
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Noticing that for every x > 0,

P

(
θ

θ′
Va,σ,θ′ ≤ x

)
= P

(
θ

θ′
max(σT (γa), θ′Ya) ≤ x

)
= P

(
σ
θ

θ′
T (γa) ≤ x

)
P (θYa ≤ x),

we see by comparison with (1.9) that necessarily,

θ

θ′
T (γa)

d
= T (γa).

It is elementary to check that if a non negative random variable T non degenerated
to 0 has the same distribution as cT for some constant c then c = 1. Therefore
when 0 < θ < θ′, (3.44) is impossible.

• 0 < θ <∞ = θ′. Then (3.44) is equivalent to

P (σT (γa) ≤ x)P (θYa ≤ x) = P (αYa ≤ x), x > 0,

which we can rewrite as

P (σT (γa) ≤ x) = exp

(
θa − αa

xa

)
=: G(x), x > 0. (3.46)

Now if θ > α, G is not a distribution function. If θ = α, G(x) = 1 for every
x > 0 which is clearly not true for the left-hand side of (3.46). If θ < α, G is the
distribution function of a Fréchet distribution with scale parameter (αa − θa)1/a

hence heavy tailed while the d.f. in the left-hand side of (3.46) is subgaussian, so
(3.46) is false. Finally in this third case (3.44) cannot be true.

To conclude we have proved that θ = θ′, i.e. that L(x) has a limit τa ∈ [0,∞] when x
tends to infinity. By [16], [12, Th.5b)] and Th.2.4, b−1n Tn(γa) converges in distribution to
Va,σ,τ where bn is defined as in (3.42). By the convergence of types theorem applied to
the whole sequence we obtain that cn ∼ Abn for some positive constant A. This shows
that the only possible limits in distribution of Tn(γa) under affine normalisation are the
random variables Z = AVa,σ,τ +B, A > 0, B ∈ R.

A Appendix

A.1 Taylor expansions and Lindeberg method

The following special Taylor expansion is useful when applied to functions of random
variables having moments of order r ∈ [2, 3). We applied it in the proofs of Th. 2.2 and
Th. 2.4 to the functions f = fr,ε constructed by Bentkus, denoted ϕ in [2, Th.2], which
are C∞.

Lemma A.1. Let E be a Banach space and f : E → R be a C3 map with bounded Fréchet
second and third derivatives in the sense that

‖f (m)‖ := sup{‖f (m)(x)‖ : x ∈ E} <∞, m = 2, 3,

where ‖f (m)(x)‖ is the operator norm of the m-linear form f (m)(x) : Em → R, that is

‖f (m)(x)‖ := sup{|f (m)(x)(h1, . . . , hm)| : ‖hi‖E ≤ 1, i = 1, . . . ,m}.

Then for any x, h ∈ E,

f(x+ h) = f(x) + f ′(x)(h) +
1

2
f ′′(x)(h, h) +R, (A.1)

where the remainder term R = R(f, x, h) satisfies for 2 < β ≤ 3,

|R| ≤ 62−β‖f ′′‖3−β‖f ′′′‖β−2‖h‖βE . (A.2)
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Proof. By Taylor formula at the order 2 with integral remainder,

f(x+ h) = f(x) + f ′(x)(h) +
1

2
f ′′(x)(h, h) +

∫ 1

0

(1− t)2

2
f ′′′(x+ th)(h, h, h) dt,

whence R := f(x+ h)− f(x)− f ′(x)(h)− 1
2f
′′(x)(h, h) is bounded by

|R| ≤ 1

6
‖f ′′′‖‖h‖3E . (A.3)

The Taylor formula at the order 1 with integral remainder provides another bound for R.
Indeed

f(x+ h) = f(x) + f ′(x)(h) +

∫ 1

0

(1− t)f ′′(x+ th)(h, h) dt

= f(x) + f ′(x)(h) +
1

2
f ′′(x)(h, h) +

∫ 1

0

(1− t)(f ′′(x+ th)− f ′′(x))(h, h) dt,

which leads to
|R| ≤ ‖f ′′‖‖h‖2E . (A.4)

The bound (A.3) seems preferable for “small” values of ‖h‖E , while (A.4) can be privi-
legied for “large” values of ‖h‖E . More formally, for an arbitrary parameter t > 0 to be
precised later and 2 < β ≤ 3, we get the bound

|R| ≤


1

6
‖f ′′′‖‖h‖βE t3−β if ‖h‖E ≤ t,

‖f ′′‖‖h‖βE t2−β if ‖h‖E > t.

To unify these two bounds, we remark that for a, b > 0, at3−β = bt2−β for t = b/a. With
a = 1

6‖f
′′′‖ and b = ‖f ′′‖, this choice of t gives (A.2).

Before providing the justifications of (3.6) and (3.7), we need to introduce some
notations. For m ≥ 1, we denote by Lm(Rk,R) the space of m-linear forms on (Rk)m. A
norm ‖x‖ being choosen in Rk, we denote by ‖g‖∗m the corresponding operator norm of
g ∈ Lm(Rk,R), that is

‖g‖∗m := sup{|g(x1, . . . , xm)| : xi ∈ Rk, ‖xi‖ ≤ 1, i = 1, . . . ,m}.

As we work with finite dimensional spaces, Pettis and Bochner integrals coincide and we
say that a random element in Rk or in Lm(Rk,R) is integrable if its norm is an integrable
random variable in the usual sense.

Lemma A.2. Let f ′ be a measurable map from Rk into its dual L1(Rk,R) and X and
Z be two independent random vectors in Rk. Assume moreover that X and f ′(Z) are
integrable. Then f ′(Z)(X) is an integrable real random variable and

E
(
f ′(Z)(X)

)
=
(
E f ′(Z)

)
(EX). (A.5)

According to its order of apparition in (A.5), the expectation symbol E denotes
successively the expectation of a real valued random variable, of a random linear form
on Rk (or random element in L1(Rk,R)) and of a random vector in Rk.

Proof. Denote by P(Z,X), PX and PZ the respective distributions of (Z,X), X and Z. By
independence of Z and X, P(Z,X) is the product measure PZ ⊗ PX . The real valued
random variable f ′(Z)(X) is integrable since

E |f ′(Z)(X)| ≤ E
(
‖f ′(Z)‖∗1 ‖X‖

)
= E ‖f ′(Z)‖∗1 E ‖X‖ <∞,
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by independence and integrability of X and f ′(Z). This legitimates the use of Fubini
theorem to obtain

E
(
f ′(Z)(X)

)
=

∫
Rk×Rk

f ′(z)(x) dP(Z,X)(z, x) =

∫
Rk×Rk

f ′(z)(x) dPZ ⊗ PX(z, x)

=

∫
Rk

∫
Rk
f ′(z)(x) dPX(x) dPZ(z)

=

∫
Rk

E
(
f ′(z)(X)

)
dPZ(z)

=

∫
Rk
f ′(z)(EX) dPZ(z)

=
(
E f ′(Z)

)
(EX),

recalling that if g = f ′(z) is a linear form on Rk and E ‖X‖ <∞, g(X) is integrable and
E g(X) = g(EX). So (A.5) is established.

Lemma A.3. Let f ′′ be a measurable map from Rk into L2(Rk,R) and X, Y and Z are
random vectors in Rk such that

a) X and Y are square integrable (E ‖X‖2,E ‖Y ‖2 <∞), EX = EY = 0;

b) X and Y have the same covariance matrix;

c) X and Z are independent, Y and Z are independent;

d) f ′′(Z) is integrable (E ‖f ′′(Z)‖∗2 <∞).

Then
E
(
f ′′(Z)(X,X)

)
= E

(
f ′′(Z)(Y, Y )

)
. (A.6)

Proof. As f ′′(z) is a bilinear form on Rk for each z ∈ Rk, it admits the representation

f ′′(z)(x, y) =

k∑
i,j=1

ai,j(z)xiyj , x = (x1, . . . , xk), y = (y1, . . . , yk)

and the integrability of f ′′(Z) implies the integrability of the k2 random variables ai,j(Z)

because ai,j(Z) = f ′′(Z)(ei, ej) where e1, . . . , ek denotes the canonical basis of Rk. Writ-
ing X = (X1, . . . , Xk) and Y = (Y1, . . . , Yk), we see that

E
(
f ′′(Z)(X,X)

)
= E

 k∑
i,j=1

ai,j(Z)XiXj

 =

k∑
i,j=1

(E ai,j(Z))(EXiXj),

where the last equality uses the square integrability of X which gives the integrability of
XiXj , the integrability of ai,j(Z) and the independence of X and Z. Obviously the same
equality holds substituting X by Y and we conclude by b).

A.2 On the use of invariance principles

Proof of (2.2). We introduce first some notations.

Dθ := {(s, u) ∈ [0, 1]2; 0 ≤ s < s+ u ≤ 1, θ < u ≤ 1},
Dθ := {(s, u) ∈ [0, 1]2; 0 ≤ s < s+ u ≤ 1, θ ≤ u ≤ 1},

Dn,θ :=

{(
k

n
,
`

n

)
∈ Dθ; k, ` ∈ N

}
, n ≥ 1.
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For every x ∈ C[0, 1], we set

x̃(s, u) :=
|x(s+ u)− x(s)|

uγa
, (s, u) ∈ Dθ

and define the functionals g and gn, C[0, 1]→ R+ by

g(x) := sup
(s,u)∈Dθ

x̃(s, u), gn(x) := sup
(s,u)∈Dn,θ

x̃(s, u).

We note that g is Lipschitzian hence continuous on C[0, 1] because it satisfies the inequal-
ities g(x+ y) ≤ g(x) + g(y), and 0 ≤ g(x) ≤ 2θ−γa‖x‖∞, x, y ∈ C[0, 1].

Finally we denote by ξn the Donsker Prohorov polygonal partial sums processes, that
is the random polygonal line {ξn(t), t ∈ [0, 1]} with vertices the points (k/n, Sk), with
S0 := 0. The weak invariance principle in C[0, 1] states that n−1/2σ−1ξn converges in
distribution to the standard Brownian motion W in the space C[0, 1]. By continuous
mapping, this implies

g(n−1/2σ−1ξn)
D−−−−→

n→∞
g(W ) = T (θ)(γ) = max

θ<|t−s|≤1

|W (t)−W (s)|
|t− s|γa

. (A.7)

Recalling that γa = 1/2− 1/a, we notice that

n−1/aσ−1Tnθ,nn = gn(n−1/2σ−1ξn), (A.8)

so the weak convergence of n−1/aσ−1Tnθ,nn to T (θ)(γ) will follow from (A.7) if we prove
that g(n−1/2σ−1ξn)− gn(n−1/2σ−1ξn) converges to zero in probability.

In what follows, it is convenient to endow [0, 1]2 with the distance

d
(
(s, u), (s′, u′)

)
=: max(|s− s′|, |u− u′|).

By continuity of x̃ on Dθ and density of Dθ in Dθ, supDθ x̃ = supDθ x̃ and by compacity

of Dθ this supremum is reached at some (s0, u0) ∈ Dθ. Hence

g(x) = x̃(s0, u0).

It is easily checked that for the distance d, Dn,θ is a 1/n net in Dθ in the sense that for
any point (s, u) ∈ Dθ there is a point of Dn,θ at a d distance at most 1/n of (s, u). So we
can construct a sequence ((sn, un))n≥1 such that

(sn, un) ∈ Dn,θ and d
(
(sn, un), (s0, u0)

)
≤ 1

n
, n ≥ 1.

Denoting by ω(x, δ) := sup{|x(t)−x(s)|; |t−s| ≤ δ, s, t ∈ [0, 1]}, the modulus of uniform
continuity of x, we get the following estimates valid for any x ∈ C[0, 1].

x̃(s0, u0) ≤ 1

uγa0

(
|x(sn + un)− x(sn)|+ 2ω

(
x,

2

n

))
≤ |x(sn + un)− x(sn)|

uγa0
+ 2θ−γaω

(
x,

2

n

)
=

(
un
u0

)γa |x(sn + un)− x(sn)|
uγan

+ 2θ−γaω
(
x,

2

n

)
≤
(

1 +
1

nu0

)γa
gn(x) + 2θ−γaω

(
x,

2

n

)
≤
(

1 +
1

nθ

)γa
gn(x) + 2θ−γaω

(
x,

2

n

)
,
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Applied with any path of the random element n−1/2σ−1ξn in C[0, 1] and recalling that
gn(x) ≤ g(x), this gives

0 ≤ g(n−1/2σ−1ξn)− gn(n−1/2σ−1ξn) ≤
((

1 +
1

nθ

)γ
− 1

)
g(n−1/2σ−1ξn)

+ 2θ−γaω
(
n−1/2σ−1ξn,

2

n

)
As the sequence (n−1/2σ−1ξn)n≥1 is tight on C[0, 1], its image by the continuous functional
g is tight on R+, that is g(n−1/2σ−1ξn) is bounded in probability. Moreover the tightness
of (n−1/2σ−1ξn)n≥1 implies the convergence in probability to 0 of supn≥1 ω(n−1/2σ−1ξn, δ)

as δ tends to 0. This implies that ω(n−1/2σ−1ξn, 2/n) tends to 0 in probability as n tends
to infinity. All this gives

gn(n−1/2σ−1ξn)) = g(n−1/2σ−1ξn) + oP (1).

Recalling (A.7) and (A.8), this proves the convergence in distribution of n−1/aσ−1T θn,nn

to T (θ)(γa).

Proof of (3.10). We use the Hölderian functional central limit theorem (or Hölderian
weak invariance principle) in the space Hoγ [0, 1] which is defined for any 0 < γ < 1 as
follows. We denote by Hoγ [0, 1] the space of continuous functions x on [0, 1] such that

ωγ(x, δ) := sup
0<t−s≤δ
s,t∈[0,1]

|x(t)− x(s)|
(t− s)γ

−−−→
δ→0

0.

Endowed with the norm ‖x‖γ := |x(0)|+ ωγ(x, 1), Hoγ [0, 1] is a separable Banach space.
Let (Yk)k≥1 be the Gaussian i.i.d. sequence introduced in the proof of Th.2.2. Puting

Ŝj :=
∑j
i=1 Yi with the convention Ŝ0 := 0, we denote by ξ̂n the associated polygonal

partial sums process, that is the random polygonal line {ξ̂n(t), t ∈ [0, 1]} with vertices
the points (k/n, Ŝk), k = 0, 1, . . . , n. As Y1 has finite moments of all orders, it follows
from the functional central limit theorem proved in [16] that n−1/2σ−1ξ̂n converges in
distribution in Hoγ [0, 1] to the standard Brownian motion W for every 0 < γ < 1/2. In

particular it converges in Hoγa [0, 1]. It seems worth noticing here that n−1/2σ−1ξn, the
polygonal partial sums process built on the sequence (Xk)k≥1, does not converge in
Hoγa [0, 1]. Indeed this convergence requires that limt→∞ taP (|X1| > t) = 0, while in the
setting of Th. 2.2, this limit is τa > 0.

As the γ-Hölder norm of a polygonal line is reached at two vertices, see e.g. Lemma
3 in [14], we obtain by continuous mapping,

‖n−1/2σ−1ξ̂n‖γa = n−1/aσ−1T̂ 0,n
n (γa)

D−−−−→
n→∞

T (γa). (A.9)

So to prove (3.10), it suffices to prove that n−1/aσ−1(T̂ 0,n
n (γa)− T̂ dn,nn (γa)) converges to

0 in probability if dn/n tends to 0. To this aim we remark that

0 ≤ n−1/aσ−1
(
T̂ 0,n
n (γa)− T̂ dn,nn (γa)

)
≤ n−1/aσ−1 max

0<`≤dn
0≤k≤n−`

|Ŝk+` − Ŝk|(
`
n

)γa
≤ ωγa

(
n−1/aσ−1ξ̂n,

dn
n

)
. (A.10)

By Th.13 b) in [23], the tightness in Hoγa [0, 1] of (n−1/aσ−1ξ̂n)n≥1, which results from its
convergence in distribution in this space, implies for every positive ε that

lim
δ→0

sup
n≥1

P (ωγa(n−1/aσ−1ξ̂n, δ) > ε) = 0.
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This in turn, implies when dn/n→ 0, that

ωγa

(
n−1/aσ−1ξ̂n,

dn
n

)
P−−−−→

n→∞
0,

which accounting (A.9) and (A.10), completes the proof.

Theorem A.4. Let (Xk)k≥1 be i.i.d. with

P (|X1| > x) = x−aL(x), x > 0, (A.11)

with a > 2 and L slowly varying, EX1 = 0, σ2 = EX2
1 . Let ξn be the polygonal process

built on the partial sums of (Xk)k≥1. Assume that for some increasing sequence of
integers (ni)i≥1,

L(n
1/a
i ) −−−→

i→∞
0. (A.12)

Then n−1/2i ξni converges weakly to σW in the Hölder space Hoγa , where γa = 1/2− 1/a.

Proof. We refer to [16] where the Lamperti invariance principle is proved for the whole
sequence n−1/2ξn under the assumption limx→∞ xaP (|X1| > x) = 0, that is in our
notations limx→∞ L(x) = 0.

The convergence of finite dimensional distributions follows from the assumption a > 2

and does not involve L. Before looking at the tightness, we note that

∀t > 0, niP (|X1| > tn
1/a
i ) −−−→

i→∞
0. (A.13)

Indeed, puting x = tn
1/a
i in (A.11) gives niP (|X1| > tn

1/a
i ) = t−aL(tn

1/a
i ) and as L is

slowly varying, L(tn
1/a
i ) ∼ L(n

1/a
i ) which tends to zero by assumption (A.12).

Now for the tightness, following step by step the proof exposed in [16], with the same
notations, we obtain first

P2(ni, ε) ≤ niP
(
|X1| ≥

ε

2
n
1/a
i

)
.

This upper bound tends to 0 by (A.13). The same works for

P1,2(J, ni, ε) ≤ niP
(
|X1| ≥

ε

6
n
1/a
i

)
.

The hard part of the proof is the treatment of P1,1(J, ni, ε) where the Xk are truncated

at the level δn1/ai . Everything around the use of Rosenthal inequality works replacing
n by ni, except maybe the control of the moments of the truncated variables X̃k =

Xk1
{
|Xk| ≤ δn1/ai

}
which can be achieved by the following adaptations.

Since EX1 = 0, E X̃1 = −EX11{|X1| > δtn
1/a
i }. By a Fubini argument,

E
(
|X1|1{|X1| > δn

1/a
i }

)
= δn

1/a
i P (|X1| > δn

1/a
i ) +

∫ ∞
δn

1/a
i

P (|X1| > s) ds.

The first term in the right-hand side above tends to 0 by (A.13). To treat the second term,
we cannot use here sups>0 s

aP (|X1| > s) < ∞ like in [16], but we can exploit the slow
variation of L (which was not supposed in [16]). Indeed by Karamata A.4-Th.A.13,∫ ∞

δn
1/a
i

s−aL(s) ds ∼ 1

a− 1
δn

1/a
i (δn

1/a
i )−aL(δn

1/a
i ) ∼ 1

a− 1
δ1−an

1/a−1
i L(n

1/a
i ).

Since L(n
1/a
i )→ 0, there is a constant c such that E |X̃k| ≤ cδ−a+1n

−1+1/a
i , like in [16].
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The other truncated moment we have to take care of is E |X̃k

q
|, for q > a. We use

again Karamata theorem and slow variation of L as follows.

E |X̃k

q
| ≤

∫ δn
1/a
i

0

uq−1P (|X1| > u) du =

∫ δn
1/a
i

0

uq−a−1L(u) du

∼ 1

q − a
δn

1/a
i (δn

1/a
i )q−a−1L(δn

1/a
i )

∼ 1

q − a
δq−an

q/a−1
i L(n

1/a
i ).

As L(n
1/a
i ) tends to zero, one can again find a constant c such that E |X̃k

q
| ≤ cδq−anq/a−1i

like in [16].
There is no other modification to do in the proof presented in [16].

A.3 Continuity of the distribution function of T (γ)

Here we justify the continuity of the distribution function F (r) = P (‖W‖γ ≤ r) for
0 < γ < 1/2.

Let us check first the continuity at r = 0. Since obviously F (r) = 0 for r < 0 and F is
right continuous everywhere, this continuity is equivalent to F (0) = 0. As ωγ(x, 1) = 0

implies that x(1) = x(0),

F (0) = P (‖W‖γ = 0) ≤ P (W (1)−W (0) = 0) = 0,

since W (1)−W (0) is standard normal distributed.
Next we claim that F (r) > 0 for every r > 0. To see this, it may be convenient to use

the equivalent Ciesielski’s sequential norm ‖W‖seqγ built on the weighted dyadic second
differences of W , see e.g. [18]. In particular, for 0 < γ < 1/2, there is a positive constant
cγ such that ‖W‖seqγ ≥ cγ‖W‖γ . By [18, Th.4.1], the distribution function of ‖W‖seqγ is

G(t) := P
(
‖W‖seqγ ≤ t

)
= erf

(
2−1/2t

) ∞∏
j=1

{
erf
(
2j(1/2−γ)t

)}2j−1

, t > 0, (A.14)

where erf t := 2√
π

∫ t
0

exp(−s2) ds and the support of the distribution of ‖W‖seqγ is [0,∞)

because limj→∞ j1/22j(γ−1/2) = 0. In particular G(t) > 0 for every t > 0. Applying this
with t = cγr, r > 0, we obtain

0 < P
(
‖W‖seqγ ≤ cγr

)
≤ P

(
‖W‖γ ≤ r

)
,

that is F (r) > 0 for every r > 0.
To establish the continuity of F on (0,∞), we use the following Ehrhard’s theorem.

Theorem A.5 ([7, Th.3.3]). Let (E,µ) be a Gauss space: E is a locally convex Hausdorff
space and µ a Gaussian Radon measure on E; for any A,B convex Borelian subsets of E
and every u ∈ (0, 1), it holds

(Φ−1 ◦ µ)
(
uA+ (1− u)B

)
≥ u(Φ−1 ◦ µ)(A) + (1− u)(Φ−1 ◦ µ)(B), (A.15)

where Φ−1 : (0, 1)→ R is the inverse map of Φ : t 7→ Φ(t) := 1√
2π

∫ t
−∞ exp(−s2/2) ds.

Applying (A.15) to A and B closed balls with center 0 in Hoγ [0, 1] gives the concavity
of the function Φ−1(F (r)) on (F←(0),∞) where F←(0) := inf{r ∈ R : F (r) > 0}. As seen
above, F←(0) = 0, so this concavity implies the continuity of Φ−1 ◦ F hence also of F on
the open interval (0,∞). As moreover F is continuous at 0, the continuity of F on R is
established.
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A.4 Slow variation

We gathered here some properties of slow variation used in the paper.

Definition A.6. Let L be a positive measurable function, defined in some neighborhood
[A,∞) of infinity and satisfying

lim
x→∞

L(cx)

L(x)
= 1, ∀c > 0. (A.16)

Then L is said to be slowly varying.

Remark A.7. Every measurable function equivalent to a slowly varying function when x
tends to infinity is itself slowly varying on some [B,∞).

Proposition A.8 (Prop.1.3.6 in [4]). i) If L varies slowly, so does (L(x))a for every
a ∈ R.

ii) If L varies slowly and a > 0, then L(xa) varies slowly.

iii) If L1, L2, vary slowly, so do L1 + L2, L1L2 and L1

L2
.

iv) If L1, . . . , Lk, vary slowly and R(x1, . . . , xk) is a rational fraction with positive coeffi-
cients, R(L1(x), . . . , Lk(x)) varies slowly.

Theorem A.9 (uniform convergence theorem [4, Th.1.2.1]). If L varies slowly, then for
every compact subset K of (0,∞),

L(cx)

L(x)
−−−−→
x→∞

1, uniformly in c ∈ K. (A.17)

Corollary A.10. i) If L1 and L2 vary slowly and limx→∞ L2(x) =∞, then L1 ◦L2 varies
slowly.

ii) If L varies slowly varying and f verifies infx≥B f(x) > 0, supx≥B f(x) < ∞, then
L(xf(x)) ∼ L(x) and varies slowly.

Theorem A.11 (representation theorem [4, Th.1.3.1]). The function L is slowly varying
if and only if it may be written in the form

L(x) = c(x) exp

{∫ x

A

ε(u)

u
du

}
, x ≥ A, (A.18)

for some A > 0, where c, ε are measurable functions with c positive, c(x)→ C ∈ (0,∞),
ε(u)/u is locally integrable on [A,∞) and ε(x)→ 0 as x→∞.

Corollary A.12. If L varies slowly, then for every positive real a, xaL(x) is equivalent to
a function which increases ultimately to infinity and x−aL(x) equivalent to a function
which decreases ultimately to 0.

A positive measurable function G defined on some neighborhood [A,∞) (A ≥ 0) of
infinity and satisfying for some real p and every y > 0,

G(xy)

G(x)
−−−−→
x→∞

yp,

is said regularly varying (at infinity) with exponent p. In the special case where p = 0, G
is slowly varying. It is easily seen that each regulary varying function G with exponent p
can be writen as G(x) = xpL(x) where L is slowly varying.

Assuming for notational simplicity that A = 0 and that G is locally bounded and
regularly varying with exponent p, let us define for r real,

Gr(x) =

∫ x

0

yrG(y) dy, G∗r(x) =

∫ ∞
x

yrG(y) dy. (A.19)
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Theorem A.13 (Karamata [10, Th.1, p.281]). For G regularly varying with exponent p,

i) if G∗r(x) is finite (for some and then for every positive x),

xr+1G(x)

G∗r(x)
−−−−→
x→∞

λ = −(r + p+ 1) ≥ 0; (A.20)

ii) if r ≥ −p− 1, then
xr+1G(x)

Gr(x)
−−−−→
x→∞

λ = r + p+ 1. (A.21)
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[12] J. Gudan, A. Račkauskas, and Ch. Suquet, Testing mean changes by maximal ratio statistics,
To appear in Extremes (2021).

[13] Z. Kabluchko and Y. Wang, Limiting distribution for the maximal standardized increment of a
random walk, Stochastic Processes Appl. 124 (2014), 2824–2867. MR-3217426
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[15] T. Mikosch and A. Račkauskas, The limit distribution of the maximum increment of a random
walk with regularly varying jump size distribution, Bernoulli 16 (2010), no. 4, 1016–1038.
MR-2759167
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