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A B S T R A C T   

Over the past three decades, a variety of programs have conducted extensive measurements of ocean properties 
at fixed stations throughout the water column, as well as in the surface ocean via oceanographic ships and ships 
of opportunity. Ships of opportunity were particularly used to determine the air-sea CO2 fluxes from automated 
measurements of sea-surface temperature, salinity, and CO2 fugacity. These underway measurements, often 
recorded at a frequency of every minute, generate large data files that need to be quality controlled, stored and 
analyzed. For practical use these data are often binned by 1◦ latitude x 1◦ longitude. Unfortunately, by doing so, 
there is a consequential loss of accuracy for these data sets. 

Here, using the original 2010 underway data sets of sea-surface temperature, sea-surface salinity, total 
alkalinity and total inorganic carbon, along the cruise track from Hobart (Tasmania) to Dumont D’Urville 
(Antarctica), we show what would had been a more appropriate sampling strategy for each of these properties, 
maintaining their full measurement accuracy, while improving their interpolation accuracy. Furthermore, this 
analysis illustrates a general methodology for objectively determining, under suitable conditions, the appropriate 
locations for each property measurement according to a required accuracy. These results should greatly facilitate 
future cruise preparation and reduce the cost of measurements, while improving their scientific value.   

1. Introduction 

In the actual context of global warming and increasing anthropo
genic carbon dioxide into the atmosphere (Komhyr et al., 1989; Kirk 
et al., 1989; Keeling et al., 1996; Tans et al., 1996, Stephens et al., 2000; 
Hall et al., 2021; https://gml.noaa.gov/ccgg/trends/), there is a 
growing interest in quantifying the role of the ocean in the absorption of 
part of this atmospheric anthropogenic carbon (DeVries, 2014; Fried
lingstein et al., 2020). Consequently, over a few decades, time-series 
stations and repeated transects of underway measurements (ICOS 
https://www.icos-cp.eu/; Dyfamed; http://www.obs-vlfr. 
fr/cd_rom_dmtt/sodyf_main.htm; HOT, BATS; https://scrippsco2. 
ucsd.edu/data/ seawater_carbon/ocean_time_series.html), were 
designed to quantify the penetration of anthropogenic carbon in the 
ocean. 

In the surface ocean (from the air-sea interface down to the depth of 
the wintertime mixed layer), many processes (such as air-sea exchanges 

[heat, gases, nutrients, etc.], mixing of water masses [fresh waters from 
rivers, surface currents, etc.], and seasonal biological activity), are at 
play. Thus, it is extremely difficult to disentangle the anthropogenic 
signal from the natural variations of total CO2 concentrations (CT). 

At present, the only way to attempt to quantify the penetration of 
anthropogenic carbon in the surface ocean and to determine CO2 sink 
and source areas of the ocean, is to assume the ocean is in quasi-steady- 
state (with negligible ocean circulation variation) and to perform 
repeated underway measurements. Thus, with the automation of 
measuring systems (such as thermosalinographs for the Temperature 
and Salinity, or Infra-Red based instruments for CO2 fugacity), it is 
possible to design programs based upon Ships of Opportunity (SOOP, 
https://community.wmo.int/ship-opportunity-programme), in 
addition to those based upon oceanographic research vessels. 

In France, ships that supply the bases of the Terres Australes et 
Antarctique Française (TAAF), also provide an excellent opportunity to 
acquire such valuable data sets. Thus, several programs such as 
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SURVOSTRAL (https://www.legos.omp.eu/survostral), and MIN
ERVE (https://campagnes.flotteoceanogra-phique.fr/series/128/fr 
/), were designed to perform measurements of sea-surface tempera
ture (SST), salinity (SSS), CO2 fugacity (fCO2), total CO2 (CT), and total 
alkalinity (AT) while the supply ship “L’Astrolabe” is underway between 
Hobart (Tasmania) and Dumont D’Urville (Terre Adélie, Antarctica). 

Yet, after more than a few decades of sea-surface measurements, it is 
still very difficult to disentangle the anthropogenic signal from the 
natural signal. The seasonal and inter-annual variations are still large 
compared with the anthropogenic perturbations (Laika et al., 2009; 
Morrow and Kestenare, 2014; Brandon et al., 2022). Thus, it is essential 
to intensify both the frequency of the sampling cruises, and the accuracy 
of measured and interpolated SSS, SST, CT and AT properties. 

In order to optimize the number of measurements during all cruises, 
sampling strategies are essentially designed via Observing System 
Simulation Experiments (OSSE). For instance, Valsala et al. (2021), and 
Ford (2021) performed such experiments based on dynamical and bio
geochemically consistent systems to design optimal sampling strategies 
for surface ocean CO2 properties on both global and regional scales. 

Here, the objective of this work is to show how to use another 
method first presented by Davis and Goyet (2021), which is significantly 
different from OSSE, to determine an appropriate sea-surface sampling 
strategy adapted to each measurable property. The two main advantages 
of the design of a sampling strategy based on this method using novel 
mathematical relationships, are to minimize the number of data while 
increasing their interpolation accuracy, and to appropriately and pre
cisely determine sample locations in high variability ocean areas. 

2. Materials and methods 

2.1. Data sets 

Over the past few decades, the French Antarctic supply ship “l’As
trolabe” provided the opportunity to scientists to perform (mainly in the 
austral summer), sea-surface measurements and sampling from Hobart, 
Tasmania (43◦S 147◦E) to the French Antarctic base Dumont D’Urville 
(66◦S, 140◦E). 

As part of the SURVOSTRAL program (https://www.legos.omp. 

eu/survostral), continuous underway temperature and salinity “sur
face” seawater (at around 5 m), were measured since 1993 from R/V 
“l’Astrolabe” via a thermosalinograph (TSG). The raw data were recor
ded every minute. These raw data were then corrected for any bias 
(compared with discrete sample measurements), and by a median filter 
(over ±12 min) to reduce the noise of the measurements. These raw and 
corrected data sets are freely available (https://sss.sedoo.fr; Alory 
et al., 2015). Below, we used the corrected data set. 

Similarly, as part of the MINERVE program (https://campagnes. 
flotteoceanogra-phique.fr/series/128/fr/), designed to quantify the 
interannual variability of the CO2 properties in the Southern Ocean 
south of Tasmania, total alkalinity (AT) and total CO2 (CT) were also 
sampled and measured from R/V “l’Astrolabe”. These data are freely 
available (https://data.ifremer.fr/SISMER). 

For the purpose of this work, we are focusing only on the transect 
Hobart – Dumont D’Urville which occurred in February 19–23, 2010. 
The choice of this transect was randomly picked among the transects 
where Total alkalinity (AT) and Total CO2 (CT) were measured. 

The measurement accuracy of sea-surface salinity (SSS), during this 
2010 cruise is estimated to be ±0.005 (Morrow and Kestenare, 2014). 
The measurement accuracy of sea-surface temperature (SST), is esti
mated to be ±0.001 ◦C (from the manufacturer). The measurement ac
curacy of total alkalinity (AT) and total CO2 (CT) measurements are 
estimated to be ±3.5 μmol.kg¡1 and ± 2.7 μmol.kg¡1, respectively 
(similar to the accuracies of these measurements performed on board 
previous MINERVE cruises [Laika et al., 2009]). 

Fig. 1 shows the result of the measurements of these four properties 
(SST, SSS, AT, CT) along the cruise track from Hobart (Tasmania) to 
Dumont D’Urville (Antarctica), in February 2010. These graphs clearly 
show the disparity in the frequency of the measurements. There are 
7815 data points for SST and SSS (one every minute; N = 7815 for SST 
and SSS), while there are only 238 data points for AT and CT (due to the 
difficulty and time of measurements; N = 238 for AT, CT). 

2.2. Method 

Based upon the work of Davis and Goyet (2021), who showed for 
example, how to determine appropriate Total CO2 (CT) sampling 

Fig. 1. Measured property as a function of latitude; a) SST and b) SSS measured every minute (7815 measurements), c) CT and d) AT measured roughly every 20min 
(238 measurements). 
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patterns throughout a water column from the surface to the bottom, we 
will use the same methodology to show how to determine appropriate 
sampling patterns for underway surface ocean measurements of SST, 
SSS, AT and CT. 

In practice, Davis and Goyet (2021) demonstrated that the common 
intuitive notion, that where an environmental variable is highly variable 
it should be sampled more frequently than where it is less variable, has a 
sound basis in an analysis based on specific properties of the data itself. 
This analysis leads to a new, and practical, methodology for analyzing 
and improving the sampling of data. 

The following is a very brief summary of the methods and results of 
this rigorous, analytic approach. For further details refer to (Davis and 
Goyet, 2021). 

Assume that the set {(Xi, Yi)}, i = 1, …,N represents a sample of a 
data field where the data signal Y is a function of the variable X, where X 
represents a position along some one-dimensional path through the data 
field. This path could be depths of a CTD cast, or surface sample posi
tions along a ship track, or the track of an autonomous vehicle, etc. 
Assume Xval is the value of a position in the sample interval [Xk, Xk+1], 
that is, 

Xk ≤ Xval ≤ Xk+1, and let Yval represent the value of the signal at the 
position Xval. Define the values Δ+Xval, Δ¡Xval, Δ+Yval, and Δ¡Yval by: 

Δ− Xval = Xval–Xk (1)  

Δ+Xval = Xk+1–Xval (2)  

Δ− Yval = Yval–Yk (3)  

and 

Δ+Yval = Yk+1–Yval (4) 

These values clearly represent differences in the spacing and the 
value of the data point (Xval, Yval) to the data points in the sample data 
nearest to it. 

Define three functions of the variable X as follows:  

1) The sample error (or interpolation error), at the data point (Xval, Yval) 
based on the sample data {(Xi, Yi)} is given by: 

Err(Xval,Yval, {(Xi,Yi)} ) = Yval − L(Xval, {(Xi,Yi)} ) (5) 

where L(Xval, {(Xi, Yi)}) is the Lagrange (linear) interpolated value of Y 
at Xval, given by: 

L(Xval, {(Xi,Yi)} ) = (Yk Δ+Xval +Yk+1 Δ− Xval)/(Δ− Xval +Δ+Xval) (6) 

(Note that Δ¡Xval + Δ+Xval = Xk+1 – Xk, is the length of the sample 
interval [Xk, Xk+1].)  

2) The sample variability at the data point (Xval, Yval) based on the 
sample data {(Xi,Yi)} is given by: 

If Δ¡Xval or Δ+Xval equals 0, Var(Xval, Yval, {(Xi, Yi)}) = 0, otherwise, 

Var(Xval,Yval, {(Xi,Yi)} )2

• ([Δ+Yval/Δ+Xval] − [Δ− Yval/Δ− Xval] )/(Δ+Xval +Δ− Xval) (7) 

The sample variability is a novel function, but it can be shown that 
the value of this function at any point (Xval, Yval) equals the value of the 
second derivative of the signal function Y(X) at some point along the 
sample path and in the sample interval [Xk, Xk+1], that contains Xval.  

3) The sample spacing at the data position Xval based on the sample 
positions {Xi} is given by: 

Space(Xval, {Xi}) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Δ− Xval • Δ+Xval

√
(8) 

Thus the sample spacing of a position Xval relative to a sample pattern 
equals the geometric mean of its distances from the closest positions of the 

pattern. 
The spacing function is purely a function of positions along this 

sample path and does not involve the data values at these positions. The 
spacing function squared is a positive parabolic function which equals 
0 at any sample position Xi. Its maximum value over any sample interval 
[Xk, Xk+1] equals one half the length of this interval and occurs at the 
midpoint of the interval. 

The first important result is called the Sample Error Theorem: 
Sample Error Theorem – Given the above definitions, then: 

Err(Xval,Yval, {(Xi,Yi)} ) = − (Var(Xval,Yval, {(Xi,Yi)} )/2 )

• (Space(Xval, {Xi}) )
2 (9) 

Since the values of Var(Xval, Yval, {(Xi, Yi)}) are inherently values of 
the second derivative of the function that describes the data along the 
path through the data field, the primary way to reduce the maximum 
error of any sample interval is to reduce the values of the sample spacing 
function, or in other words to decrease the spacing between sample 
points. This is the same as increasing the sampling frequency. It is also to 
be noted that according to the above result, the sample error varies with 
the square of the sample spacing. Thus, for example, if the sample 
pattern is evenly spaced, doubling the number of samples reduces the 
error to one fourth of its current error. 

In fact, the Sample Error Theorem is a rigorous analytical relation
ship between sample error, sample variability and sample spacing that 
partially explains the common intuitive notion described above. It also 
provides a practical methodology for improving the sample (interpola
tion) error accuracy of a sample pattern, by adjusting the lengths and 
positions of sample intervals to reduce the maximum sample error in 
each interval. 

Define MaxAbsErr({(Xi, Yi)}, k) to be the maximum absolute value of 
Err(Xval,Yval,{(Xi, Yi)}) over all the data points (Xval,Yval) in the sample 
interval [Xk,Xk+1] that contains Xval. 

Assume that B(X) is a positive function such that for any sample data 
on the same path through the same data field, B(X) has the property that 

|Var(Xval,Yval, {(Xi,Yi)} ) | ≤ B(Xval) (10) 

Then B(X) is called an absolute variability bound for sample data 
along this path. 

Consider any sample pattern of positions {Xi} along the same path 
and for each sample interval [Xk, Xk+1] of this pattern define 

MaxErrBnd(B, {Xi}, k) = maxXk≤X≤Xk+1

(
B (X)

2
• (Space(X, { Xi }) )

2
)

(11) 

By the Sample Error Theorem, it then follows that for any value k, or 
sample interval [Xk,Xk+1], 

|MaxAbsErr({(Xi,Yi)} , k) | ≤ MaxErrBnd(B, {Xi}, k) (12) 

In summary, any positive variability bound B(X) for data samples 
along the path leads to bounds on the maximum absolute sample error of 
that data over each sample interval [Xk,Xk+1]. 

A general goal of efficient sample pattern design is to find a pattern of 
a given size such that the maximum of the values |MaxAbsErr({(Xi,Yi)}, 
k)| on each sample interval [Xk,Xk+1] is a minimum. 

The following question then arises: Given a variability bounding 
function B(X), is there a sample pattern {Xi} of a given size, with the 
property that the values MaxErrBnd(B, {Xi}, k) for all k are equal, and 
thus define a uniform sample error bound for any sample data { Xi,Yi} 
using this sample pattern? 

The basic idea is that if the MaxErrBnd function is uniform on each 
sample interval, it is near, or equal to, its minimum maximum value 
overall. 

Given a bound on variability, a sample pattern {Xi} for which the 
right side of the above inequality (12) is uniform is called a balanced 
error pattern. Such patterns always exist, but can be very difficult to 
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calculate algorithmically. However, there is a very efficient, practical, 
algorithm shown in (Davis and Goyet, 2021) for calculating semi- 
balanced error sample patterns which have many of the same properties of 
balanced error patterns, and it is these efficient patterns which form the 
basis of the methodology to be illustrated here. Since the values Max
ErrBnd(B, {Xi}, k) are equal for each interval [Xk,Xk+1] of the sample 
pattern it can be denoted by the expression MaxErrBnd(B, {Xi}). That is, 

MaxErrBnd(B, {Xi}) = MaxErrBnd(B, {Xi}, k) for all k (13) 

(Note that an evenly spaced sample pattern is a balanced error sample 
pattern for a variability bounding function B(X) that is a constant.) 

The second important result is that for a balanced error sample 
pattern, there is a relationship between the sample size and the 
maximum sample error bound. 

2.2.1. Relation between maximum sample error bound and sample size (N) 
If B(x) is any positive, non-zero, function and {Xi} is a balanced error 

sample pattern of size N for B(X), then given the definitions above, it 
follows that 

MaxErrBnd(B, {Xi}) ≈
(

1
8 • N2

)

•

⎛

⎝
∫XN

X1

̅̅̅̅̅̅̅̅̅̅̅̅
B(X)

√
⎞

⎠

2

(14) 

Or, equivalently, 

N ≈

( ∫XN

X1

̅̅̅̅̅̅̅̅̅̅̅̅
B(X)

√
⎞

⎠

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
8 • MaxErrBnd(B, { Xi })

√ + 1 (15) 

(These are estimates whose accuracy is shown in (Davis and Goyet, 
2021)). 

Given a variability bound B(x), the sample positions of a semi- 
balanced error sampling pattern can be determined as follows (Davis 
and Goyet, 2021): 

First define the strictly increasing function A(X) =
∫X

X1

̅̅̅̅̅̅̅̅̅
B(t)

√
dt in the 

interval [X1, XN]. Then the following function calculates the X positions 
of a sample pattern {Xi} such that the Y values of A(X) are regularly 
spaced: 

Define Distribute(N,A(X) ) = {Xi} i = 1,…,N,X1 ≤ Xi ≤ XN} (16)  

such that A(Xi+1) - A(Xi) = (A(XN) – A(X1))/(N), with i = 1, …, N,where 
N represents the number of points to be distributed within the interval 
[X1, XN]. 

The sample positions {Xi} then define a semi-balanced error pattern of 
size N for the variability bound B(X). 

Note that if B(X) is a constant, then {Xi} is evenly spaced, and balanced. 
In this case only, Eqs. (14) and (15) are essentially exact (Davis and 
Goyet, 2021). 

Thus, the Eqs. (14) and (15) are valid estimates whenever the sam
pling pattern is even, balanced or semi-balanced, (Davis and Goyet, 
2021). 

In summary, the basic steps of this methodology are:  

1) Estimate a positive bound on the absolute variability of the 
signal to be sampled from calculations on existing sample data. 

Estimates of variability can be calculated from any set of sample data 
{(Xi, Yi)} i = 1,2,..,N, by using any three sample data points (Xk-1, Yk-1), 
(Xk, Yk), (Xk+1, Yk+1), for k = 2,3, …,N-1, in place of (Xi, Yi), (Xval, Yval), 
(Xi+1, Yi+1) respectively, in the definition of Var(Xval, Yval, {Xi, Yi}). 
Then take the absolute values of these values. Do this for as many sample 
data sets as possible to get a good estimate for the absolute variability 
bounding function B(X). 

2) Determine the scientific requirements of the sampling meth
odology. What is the desired maximum sample error between 
sample points? 

Using B(X) from 1) and the above relation between a maximum 
sample error bound and sample size, calculate the number of samples N 
(Eq. (15)) required to achieve the desired maximum sample error. 

3) Once a bound B(X) is known and the required number of sam
ples is known use the algorithm illustrated above (Eq.(16)) for 
calculating a semi-balanced error pattern of the required size to 
be used to sample the data. The resulting pattern is then known 
to approximate the desired maximum sample error. 

Note that a feature of this approach to sampling design is that it is 
data driven. In other words, everything is based on the specific properties 
of sample data along a path that has already been sampled, and for 
which some persistent variability bound has been determined from 
sampled data along this path, or a similar path. 

Also it should be clear that this method is narrowly focused on 
exploiting the persistent variability properties of much environmental 
data. It is entirely different in concept and principle from other ap
proaches to sample design such as OSSE. It is also very simple and can be 
used by anyone (a hand calculator can be sufficient to perform the 
calculations). In addition, it provides a precise knowledge of the 
maximum sample error (Eq. (14)) throughout the studied path. 

3. Results for underway SST and SSS measurements 

During the 2010 cruise, the SST and SSS properties were measured 
and recorded along with the ship’s position (latitude and longitude) 
every minute. Since the ship was mainly sailing southward, and at a 
more or less constant speed, we will consider that the”X" axis is only the 
latitude (L). 

Since the TSG instrument measurement error for the temperature 
and salinity can be estimated as ±0.001 ◦C and ± 0.005, respectively, 
we would desire an interpolation maximum error of half that of the 
measurements. Thus, we define MaxErrT = ± 0.0005 ◦C and MaxErrS =
± 0.0025, for SST and SSS, respectively. Consequently, the overall un
certainty of the interpolated data along the whole cruise track would be 
less than (0.001 + 0.0005) ± 0.0015 ◦C for temperature and (0.005 +
0.0025) ± 0.0075 for salinity. 

In practice the temperature and salinity errors can be higher 
(Morrow and Kestenare, 2014), if one takes into account the environ
mental errors in addition to the instrument errors. Thus, below, the re
sults will be shown for the three desired MaxErrT (± 0.0005 ◦C; ±
0.005 ◦C; ± 0.05 ◦C) and three MaxErrS (± 0.0025; ± 0.005; ± 0.01). 

3.1. Determination of the temperature and salinity variabilities and their 
bounds 

Fig. 2 illustrates each SST absolute variability (VarT(L)) and SSS 
absolute variability (VarS(L)), respectively, as calculated according to 
Eq. (7), as well as their respective bounds (BndT(L) and BndS(L)). For 
instance here, the bounding function of temperature variability is the 
suite of straight lines (solid red lines in Fig. 2a) using the selected points 
shown below(cpBndT(L); red stars in Fig. 2a): 

cpBndT(L) = {(43.2262, 16,600), (46, 16,600), (52, 10,545), (53.5, 
4500), (63, 4500), (64.1, 6940), (66.2598, 6940)}. 

(Note that these points were chosen to be close to, but always above 
the variability data values to form a kind of broad envelope over the 
variability values.) 

Similarly, the bounding function of salinity variability is the suite of 
straight lines (solid red lines in Fig. 2b) using the selected points shown 
(cpBndS(L); red stars in Fig. 2b): 

cpBndS(L) = {(43.2262, 3260), (44, 3260), (45.3, 1000), (45.5, 
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2000), (46.8, 2000), (46.91, 55,000), (46.98, 5500), (47, 1800), (52, 
1800), (53.5, 400), (60, 400), (62, 900), (65.5, 900), (65.7, 1900), (65.8, 
1900), (66.2598, 700)}. 

Fig. 2 shows that the temperature and salinity variability bounds 
have different shapes and thus, it may not be appropriate to measure 
them simultaneously. This observation is also in good agreement with 
the results based upon vertical (through a water column), temperature 
and salinity data, presented in Davis and Goyet (2021). Consequently, in 
order to minimize the number of measurements in the ocean (from the 

surface seawater throughout the bottom waters), while insuring the 
highest accuracy of each property, SST and SSS measurements should be 
performed at different locations. 

For instance, here, as illustrated in Fig. 2, there is a large difference 
between the SST and SSS variabilities at latitudes near 47◦S. There is a 
huge salinity variability while the temperature variability is almost 
constant. As shown in Fig. 3, these differences in variabilities reflect the 
differences in the SST and SSS signals. 

Thus Fig. 3, which is a zoom of Fig. 1 within the latitude interval 

Fig. 2. Variability of a) sea-surface temperature, and b) sea-surface salinity, as a function of latitude (in decimal degree). The solid (red) lines on each graph 
represents the variability bounds. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 3. Zoom of the SSS and SST data within the latitude interval [46,86◦S; 46,96◦S].  
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[46,86◦S; 46,96◦S], clearly shows that both the increase and the 
decrease in temperature and salinity occur at different latitudes, with a 
latitude shifted around 0.01◦ (about 1 km), and at a very different rate. 
Such features are typical of fine surface ocean structures. Thus, they are 
expected to occur within this ocean area, especially between the Sub
Tropical Front (STF), and the SubAntarctic Front (SAF) where there are 
many eddies, cold cores, and filaments with important SST and SSS 
small scale variations. 

Inside such fine structures (below meso-scale), SSS and SST vary on 
different time scales. In general SST varies much faster than SSS due to 
air-sea interactions. This was clearly illustrated in a previous study by 
Morrow et al. (2004). They showed that the front signatures of the 
minimum of SSS and SST in cold core eddies that can last one to two 
months after the ring detachment, are significantly sharper for SSS than 
for SST. 

In another time-series study, Morrow and Kestenare (2014) further 
illustrated the recurrent high SSS variability in this ocean area, in 
particular, near 47◦S and South of the STF. 

3.2. Determination of the temperature and salinity maximum 
interpolation errors 

For temperature measurements along the cruise track from 
43.2262◦S to 66.2598◦S, the result of Eq. (14) for an even sampling 
pattern is MaxErrBnd(SST)even = 0.018 ◦C and that of the same Eq. (14) 
for a semi-balanced error sampling pattern is MaxErrBnd(SST)sb =

0.009 ◦C. Thus, these results indicate that:  

1) Either it is unnecessary to use a temperature probe as accurate as 
0.001 ◦C since the interpolation accuracy cannot be better than 
0.018 ◦C. (Thus, a temperature probe with an accuracy of 0.036 ◦C 
would suffice for an even sampling pattern for an overall (mea
surement + interpolation) accuracy of 0.054 ◦C, or a temperature 
probe with an accuracy of 0.018 ◦C would suffice for a balanced error 
sampling pattern for an overall (measurement + interpolation) ac
curacy of 0.027 ◦C.) 

2) Or it is necessary to greatly increase the frequency of the measure
ments to keep the overall uncertainty below 0.0015 ◦C.  

3) Or it may be appropriate to use a higher order interpolation (Davis 
and Goyet, 2021). 

For salinity measurements along the cruise track from 43.2262◦S to 
66.2598◦S, the result of Eq. (14) for an even sampling pattern is Max
ErrBnd(SSS)even = 0.0597 and that of Eq. (14) for a semi-balanced error 
sampling pattern is MaxErrBnd(SSS)sb = 0.0013. Thus, these results 
indicate that:  

1) Either it is unnecessary to use a salinity probe as accurate as 0.005 
since the interpolation accuracy cannot be better than 0.0597. (A 
salinity probe with a measurement accuracy of 0.12 would suffice for 
an even sampling pattern for an overall (measurement + interpola
tion) accuracy of 0.18.)  

2) Or it is necessary to increase the frequency of the measurements to 
keep the overall uncertainty below 0.0075.  

3) Or it is necessary to use a semi-balanced error sampling strategy 
which will provide an interpolation error of only 0.0013 (below the 
desired maximum interpolation error of 0.0025), for an overall 
(measurement + interpolation) accuracy of 0.0063. (Thus, in this 
case, it would be possible to reduce the number of measurements 
performed.)  

4) Or in order to further reduce the number of measurements it may be 
appropriate to use a higher order interpolation (Davis and Goyet, 
2021). 

In other words, these results indicate that for SST, a more efficient 
sampling pattern would be a semi-balanced error sampling pattern. Yet, 

it will be necessary to considerably increase the number of measure
ments to reach a desired maximum interpolation error below 0.005 ◦C. 
In any case, SST sampling would be regularly spaced along the lat
itudinal axis when the variability remains constant in the three latitude 
intervals [43.2262◦S – 46◦S], [53,5◦S – 63◦S], [64,1◦S – 66,2598◦S]. 
And sampling would be irregularly spaced along the latitudinal axis 
when the variability varies in the three intervals [46◦S – 52◦S], [52◦S – 
53,5◦S], [63◦S – 64,1◦S]. 

Similarly, these results show that for SSS, a more efficient sampling 
pattern would be a semi-balanced error sampling pattern. But contrary 
to SST, it would be possible to reduce the number of measurements to 
reach the desired maximum interpolation error below 0.0025, if they 
were appropriately (irregularly) spread along the cruise track. 

In order to determine more appropriate sampling patterns for SST 
and SSS, it is necessary to calculate the number of samples needed prior 
to determining their locations. 

3.3. Determination of the number of samples needed to reach a desired 
accuracy using even and balanced error sampling patterns 

Since it is appropriate to use an even sampling pattern in areas where 
the bounds of the variability signal are constant, and to use a balanced 
error sampling pattern in areas where the bounds of the variability 
signal varies, the calculated number of samples needed for SST and SSS 
along the cruise track (depending upon the desired accuracy), between 
Hobart and Dumont D’Urville can be calculated using Eq. (15). The 
results are summarized in Table 1 for measurements of SST and in 
Table 2 for measurements of SSS. 

Remark: In these tables the number of samples calculated over the 
whole latitudinal interval (last line in the tables) are less than the sum of 
samples within the sub-intervals. This is due to rounding of the result 
(since a fraction of a sample would be meaningless), and of the limits 
(ex: one sample at 52◦S would be counted twice; once in the interval 
[46◦S; 52◦S] and once in the interval [52◦S; 53.5◦S]). 

These results (Table 1) indicate that the desired SST maximum 
interpolation error of 0.0005 ◦C is far from being reached with “only” 
7815 measurements (quasi-evenly spaced), since it would require a 
minimum of 32,958 measurements (more than 4 times 7815 points) 
judiciously located along the cruise track. The target of a maximum 
interpolation error of 0.005 ◦C could not even be reached with the 7815 
measurements (which represent a measurement every minute), since it 
would need at least 10,423 data. 

On the other hand, if the maximum interpolation error needed were 
only 0.05 ◦C, then 7815 measurements would be more than twice too 
many since only 3297 measurements would suffice. 

As expected, it is in the latitude interval [53.5◦S; 63◦S], where the 
SST variability is the lowest, that the number of samples measured 
(3109) is the closest (per degree of latitude), to the one calculated 

Table 1 
Numbers of samples needed within each latitudinal interval to reach the 
desired maximum interpolation error for SST measurements. The gray boxes 
indicate that the number of samples are calculated (Eq. (15)) for a semi- 
balanced sampling pattern. The white boxes indicate that the number of 
samples are calculated (Eq. (15)) for an even sampling pattern. 
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(3187) for an desired maximum interpolation error of 0.005 ◦C. 
Table 2 illustrates that to reach the desired maximum interpolation 

error of 0.0025 for SSS, the number of measurements could be signifi
cantly reduced if they were performed at key locations rather than 
evenly spaced. Using a semi-balanced pattern strategy, only 5527 
measurements would suffice while the 7815 measurements evenly 
spaced are not enough to reach the desired maximum interpolation error 
of 0.0025. Furthermore, if the desired maximum interpolation error is 
set to only 0.05, the number of SSS measurements needed would drop 
down to 3908 (a reduction by a factor close to 2 of the 7815 
measurements). 

Overall, these results indicate that currently, temperature and 
salinity data recorded every minute along a cruise track do not guar
antee linear interpolation errors less than half that of these accurate 
measurements. They also emphasize the fact that the SSS and SST var
iabilities may significantly differ in time and space. Thus, it would be 
best if SSS and SST were measured at different rates to preserve their 
respective measurement accuracies. This would further avoid over 
sampling. 

These results allow us to quantify the required frequency of the 
measurements as the expected accuracy decreases. Thus, it would be 

judicious to ensure that the objectives in terms of interpolation errors 
could be reached given the accuracy of the measuring systems. 

In practice, it may not be possible (or desirable if scientists do not 
wish to study cold cores, eddies, or filaments), to considerably increase 
the frequency of measurements when there is a very sharp variation of 
the variability property (such as that observed for salinity near 47◦S). In 
such case, it may be appropriate to choose to ignore this very high 
localized variability to determine reasonable variability bounds over the 
whole signal. 

For example, assume the bounding function of salinity variability is 
the suite of straight lines (solid red lines in Fig. 4) using the following 
selected points (cpBndS(L); red stars in Fig. 4): 

cpBndS(L) = {(43.2262, 3260), (44, 3260), (45.3, 1800), (52, 1800), 
(53.5, 400), (60, 400), (62, 900), (65.5, 900), (65.7, 1900), (65.8, 1900), 
(66.2598, 700)}. 

With these new bounds, using Eq. (14), MaxErrBnd(SSS)even =

0.0354 and MaxErrBnd(SSS)sb = 0.0012. Compared with the ones above 
(MaxErrBnd(SSS)even = 0.0597 and MaxErrBnd(SSS)sb = 0.0013), these 
results illustrate the importance of the choice of a variability bound. The 
closer such a bound is to a variability signal, the lower is the number of 
samples needed to recover the full signal (with a minimum interpolation 

Table 2 
Numbers of samples needed within each latitudinal interval to reach the desired maximum inter
polation error for SSS measurements. The gray boxes indicate that the number of samples are 
calculated (Eq. (15)) for a semi-balanced sampling pattern. The white boxes indicate that the 
number of samples are calculated (Eq. (15)) for an even sampling pattern. 

Fig. 4. Variability of sea-surface salinity as a function of latitude. The red lines represent the variability bounds if the highest SSS variability is ignored. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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error). As expected, these results further show that the largest difference 
is with an even sampling pattern. Thus, there is always a significant 
advantage to using a semi-balanced error sampling pattern, to minimize 
the number of measurements while ensuring the lowest interpolation 
error. 

Using these new bounds, the results of the sample size needed in each 
latitudinal interval are summarized below in Table 3. 

Table 3 illustrates that without taking into account the high vari
ability near 47◦S, to reach the SSS desired maximum interpolation error 
of 0.0025 the number of measurements could be reduced to 5349. This 
represents a reduction of 178 measurements compared with the number 
of measurements needed (5527, Table 2) to take into account the full 
SSS variability. 

Furthermore, as expected, if the desired maximum interpolation 
error is set to only 0.05, the number of SSS measurements needed would 
drop down to only 3783 (a reduction of only 125 measurements 
compared with result [3908] in Table 2). As the expected maximum 
interpolation error increases, the number of measurements decreases 
and this reduces the effect of increasing the variability bounds. 

Then, knowing the number of measurements needed in each latitude 
interval, it is easy to determine their positions. In areas where the 
variability bound is constant, the measurements would be regularly 
spaced, while in areas where the variability bound is variable, the po
sition of measurements would be simply determined by using Eq. (16). 

Remark: here, since the function BndY(t) is a simple linear function 
(a•t + b), the integral of its square-root can be calculated exactly; 
∫ t2

t1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(a • t + b)

√
dt = (a • t2 + b)3/2 • 2/(3•a) - (a • t1 + b)3/2 • 2/ 

(3•a). However, if the function BndY(t) were more complex, the integral 
could simply be done numerically. 

Given the relatively high number of data points, a figure of the re
sults of Eq. (16) would not help to visualize them. Thus, we choose to 
show the results of Eq. (16) only for the AT and CT sampling (below) 
which are considerably less numerous. 

4. Results for underway AT and CT measurements 

Since the accuracy of the total alkalinity and total CO2 concentra
tions are 3.5 μmol.kg¡1 and 2.7 μmol.kg¡1, respectively, for both 
properties, we would desire an interpolation accuracy of half the accu
racy of the measurements. Thus, we define MaxErrAT = 1.75 μmol.kg¡1 

and MaxErrCT = 1.35 μmol.kg¡1. 

4.1. Determination of the AT and CT variability bounds 

Fig. 5 illustrates the variabilities and their bounds for total alkalinity 
and total CO2 data. 

Consequently, the bounding function of AT variability is the suite of 
straight lines (solid red lines in Fig. 5a) using the following points 
(cpBndAT(L); red stars in Fig. 5a): 

cpBndAT(L) = {(43.25, 3900), (48.8, 3900), (52.8, 2800), (54, 
1000), (63, 1000), (64.4, 1750), (66.25, 1750)}, 

and similarly, the bounding function of CT variability is the suite of 
straight lines (solid red lines in Fig. 5b) using the following points 
(cpBndCT(L); red stars in Fig. 5b): 

cpBndCT(L) = {(43.25, 2700), (52.8, 2700), (54, 1000), (60, 1000), 
(61.2, 1520), (64.4, 1520), (66.25, 2320)}. 

Fig. 5 further shows that the AT and CT bounds do not have the same 
shape. Thus, knowing the maximum of variability (MaxBndAT = 3900 
for AT, and MaxBndCT = 2700 for CT), the maximum errors of interpo
lation of these data sets with 238 points, can be easily calculated using 
Eq. (14). The results along the cruise track (43.25◦S - 66.25◦S) are: 

MaxErrBnd(AT)even = 4.59 μmol.kg¡1; MaxErrBnd(CT)even = 3.18 
μmol.kg¡1; 

MaxErrBnd(AT)sb = 2.42 μmol.kg¡1; MaxErrBnd(CT)sb = 2.16 μmol. 
kg¡1. 

Since the results for both (an even pattern sampling or an irregular 
sampling pattern), indicate a maximum interpolation error larger than 
the desired interpolation error (±1.75 μmol.kg¡1 for AT and ± 1.35 
μmol.kg¡1 for CT, as mentioned above), it is clear that 238 samples 
evenly spaced along the latitude axis between Hobart and Dumont 
D’Urville are not enough. These results clearly show that the position of 
the samples has a significant impact on the interpolation accuracy. 

Given the acquired knowledge on the AT and CT variability bounds, it 
is now possible to design an appropriate sampling strategy with a min
imum of samples. Thus, where the bound is constant, samples will be 
evenly spaced along the latitudinal axis, and in areas where the bound 
varies, samples will be unevenly spaced along the latitudinal axis. 

In order to determine the exact position of samples to be measured 
throughout the cruise track, it is necessary to first determine the number 
of samples to be taken (depending upon the desired maximum inter
polation error), within each latitudinal area defined by the variability 
bound, and then to calculate the sample positions in the areas where the 
variability bound varies. 

Tables 4 and 5 illustrate the results of the sample size needed 
(calculated using Eq. (15)), in each latitudinal interval for AT and CT, 

Table 3 
Numbers of samples needed within each latitudinal interval to reach the desired maximum inter
polation error for SSS measurements assuming the high SSS variability near 47◦S does not exist. The 
gray boxes indicate that the number of samples are calculated (Eq. (15)) for a semi-balanced 
sampling pattern. The white boxes indicate that the number of samples are calculated (Eq. (15)) 
for an even sampling pattern. 

V. Guglielmi et al.                                                                                                                                                                                                                               



Journal of Sea Research 191 (2023) 102336

9

respectively. These Tables further show the results of the calculation 
performed for three desired maximum interpolation errors. 

The first one is guided by our effective cruise measurement accu
racies. The second and third ones assume the measurements are per
formed with an improved accuracy of 2 μmol.kg¡1 and 1 μmol.kg¡1, 
respectively. Note that these improved targeted accuracies are reason
able and reachable. 

For total alkalinity, the results (Table 4) indicate that the desired 
maximum interpolation error of 1.75 μmol.kg¡1 was reached within the 
two latitudinal intervals [54◦S, 63◦S] and [64.4◦S, 66.25◦S] since in 
these intervals 77 and 22 samples respectively, are needed while during 
the cruise 90 and 21 samples were effectively measured in these in
tervals, respectively. In the interval [52.8◦S, 54◦S], the desired 
maximum interpolation error could have been reached only if, the 15 
measured samples would have been measured according to a semi- 
balanced error sampling pattern (unevenly spaced along the 

latitudinal axis). Within the remaining three intervals ([43.25◦S, 
48.8◦S], [48.8◦S, 52.8◦S], [63◦S, 64.4◦S]), they were not enough sam
ples to reach the desired maximum interpolation error of 1.75 μmol. 
kg¡1. 

These results further show the significant increase in the number of 
samples needed as the desired maximum interpolation error decreases. 

For total inorganic carbon, the results (Table 5) indicate that the 
desired maximum interpolation error of 1.35 μmol.kg¡1 can be reached 
only within the latitudinal interval [54◦S, 60◦S]. All the other latitudinal 
intervals need to be sampled at a higher rate. This is logical since the 
desired maximum interpolation error is reduced compared with that of 
AT. Here too, the results reported in Tables 4 and 5, show the significant 
differences in the number of samples needed as the desired maximum 
interpolation error decreases. 

Since the shape of the AT variability bound is different from that of 
the CT variability bound, ideally their sampling patterns would be 

Fig. 5. Variability of a) total alkalinity as a function of latitude, and b) total inorganic carbon as a function of latitude. The solid (red) lines on each graph represent 
the variability bounds. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 4 
Numbers of samples needed within each latitudinal interval to reach the desired maximum inter
polation error for AT measurements. The gray boxes indicate that the number of samples are 
calculated (Eq. (15)) for a semi-balanced sampling pattern. The white boxes indicate that the 
number of samples are calculated (Eq. (15)) for an even sampling pattern. 
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different. However, as mentioned above, for various reasons (technique 
of measurement, convenience, …), it may be required or desirable, to 
collect samples simultaneously for AT and CT measurements. In this case, 
according to the various areas it will be necessary to oversample one 
property or the other. For instance, here, assuming the desired inter
polation accuracy is 1.75 μmol.kg¡1 for AT and 1.35 μmol.kg¡1 for CT, a 
common sampling strategy would require the sample, within each lat
itudinal interval, to have the maximum of the calculated number of 
samples required for AT and that for CT. The result is summarized in 
Table 6. 

These results show that in order to reach the desired maximum 
interpolation error of 1.35 μmol.kg¡1 for CT and 1.75 μmol.kg¡1 for AT 
measurements along this cruise track between 43.25◦S and 66.25◦S, it 
would be necessary to collect at least 324 samples at specific locations, 
while only 238 samples were measured at quasi-regularly spaced loca
tions along the latitude axis. Thus, in some areas, such as within the 
interval [54◦S; 60◦S], the location and number of samples measured 
were almost sufficient, while in other areas, such as within the interval 
[43.25◦S; 48.8◦S], the number of samples measured is clearly not 
enough (by almost a factor 2). Yet in other areas, such as within the 
intervals [52.8◦S; 54◦S] and [60◦S; 61.2◦S], the number of samples 
measured is close to sufficient but only if, they would have been 
measured at appropriate (as calculated below) irregular spacing 
locations. 

Fig. 6 below, illustrates the results of the computation of the sample 
positions within the latitudinal interval [52.8◦S – 54◦S]. In this example, 
using Eq. (16) in which the function A(x) =

∫ x
a

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
BndY(t)

√
dt is calculated 

with “x” the latitude within the interval [52.8◦S – 54◦S], and BndY(t) is 

BndCT(L) within this same interval [52.8◦S – 54◦S]. The 16 samples 
needed in this latitudinal interval are then regularly distributed along 
the A(x) axis to find the position of the samples on the latitude (“x”) axis. 

This figure shows that within the 0.2◦ latitudinal interval [52.8◦S – 
53◦S] four samples would be needed, while within the other 0.2◦ lat
itudinal interval [53.8◦S – 54◦S], only three samples would be needed. 
Thus, with this function, an appropriate irregular spacing between 
samples can be easily calculated. 

Fig. 7 illustrates the result (of Eq. (16)) for an appropriate number of 
samples and their positions within the interval [43.25◦S; 66.25◦S], to 
reach a desired maximum interpolation error of 1.35 μmol.kg¡1 for CT 
and 1.75 μmol.kg¡1 for AT. 

This Fig. 7 illustrates that spacing between samples should vary from 
very small in the area [61.2◦S; 63◦S], to much larger in the area [54◦S; 
60◦S]. The number of samples required within each degree of latitude is 
shown below in Fig. 8. 

Thus, these two figs. (7 and 8) illustrate that the property variability 
bound determines the relative proportion of samples spread over the 
latitudinal interval (‘x’ axis). These results confirm not only what is 
intuitively expected; where the property variability is high, the number 
of samples should be high. But in addition they indicate both the exact 
number of samples needed and their position. Where the property 
variability bound is constant, the samples should be regularly spaced, as 
illustrated in figure8, by the same number of samples per degree of 
latitude at the beginning and at the end of the cruise track. Elsewhere, 
the number of samples per degree varies (see Figs. 7 and 8, within the 
latitudinal areas [50◦S; 55◦S] and [58◦S; 62◦S]), and the samples should 
be collected at specific locations as determined by Eq. (16). 

It should be emphasized that this methodology cannot only be 
applied directly to data sets of properties to be sampled but also to data 
derived from other properties (such as CT and AT functions of SST and 
SSS (Guglielmi et al., 2022)). 

5. Discussion 

It is generally the case that little is known about the interpolation 
properties of sample data along the path where it is collected. The 
Sample Error Theorem shows that if data is collected along a path using 
an evenly spaced sample pattern then the variation of sample (interpo
lation) error over this path follows the variation of the variability of the 
sampled data. If the variability of the sample data is steady and even 
then the interpolation error will also be steady and even. However if the 
data has a high variability along some portions of the path but not over 
other portions, the interpolation error will exhibit the same variation. It 
follows that if a sample pattern with the same number of points could be 
found that ‘equalizes’ the interpolation error by increasing the sample 
frequency (decreasing the spacing) along the portions of the path where 
the variability is higher, and decreasing the sample frequency 

Table 5 
Numbers of samples needed within each latitudinal interval to reach the desired maximum inter
polation error for CT measurements. The gray boxes indicate that the number of samples are 
calculated (Eq. (15)) for a semi-balanced sampling pattern. The white boxes indicate that the 
number of samples are calculated (Eq. (15)) for an even sampling pattern. 

Table 6 
Numbers of samples needed for common sampling within each latitudinal in
terval to reach the desired maximum interpolation error of 1.75 μmol.kg¡1 for 
AT and 1.35 μmol.kg¡1 CT measurements. The bold italic numbers are from CT 
(Table 5), while the others are from AT (Table 4).  

Latitudinal 
interval 

N 
measured 

N for common AT and CT sampling with 1.75 μmol. 
kg¡1 and 1.35 μmol.kg¡1 maximum interpolation 
error, respectively 

43.25◦S - 
48.8◦S 

55 94 

48.8◦S - 52.8◦S 43 63 
52.8◦S - 54◦S 15 16 
54◦S - 60◦S 59 59 
60◦S - 61.2◦S 11 13 
61.2◦S - 63◦S 20 39 
63◦S - 64.4◦S 14 15 
64.4◦S - 

66.25◦S 
21 25 

43.25◦S - 
66.25◦S 

238 317  
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Fig. 6. Function A(x) =
∫ x

a

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
BndCT(t)

√
dt within the latitude interval [52.8◦S – 54◦S].  

Fig. 7. Sample location for each of the 317 samples within the latitudinal interval [43.25◦S; 66.25◦S]. In order to best visualize the position of the samples, the figure 
is split in three latitudinal areas; [43.25◦S; 50.5◦S], [50.5◦S; 58◦S], and [58◦S; 66.25◦S]. 

Fig. 8. Number of samples per degree of latitude within the interval [43.25◦S; 66.25◦S].  
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(increasing the spacing) along the portions of the path where the vari
ability is lower, then the interpolation error would be more uniform 
between sample points and the overall maximum interpolation error 
would be reduced. The primary steps of the new protocol proposed here 
are shown in the following flowchart: 

Available/historical Sample data set

1. Calculate sample data variabilities

2. Estimate a positive bound B(X) on the absolute variabilities of the sample 
data

3. Determine the scientific requirement of sampling (maximum sample error)

4. Calculate the number of samples to satisfy 2 & 3 above

5. Calculate the semi-balanced pattern to use to sample the data

In particular, this study shows that with simple calculations, it is 
possible not only to know the maximum linear interpolation error of any 
measured property, but also to precisely determine the positions of these 
measurements along a cruise track (based upon previous data sets) while 
minimizing both the number of these measurements and the maximum 
interpolation error. 

Since the accuracy of each property measurement depends upon the 
measuring system, each property would be ideally measured using its 
proper sampling pattern. However, if for any (practical) reason, two (or 
more) properties should be sampled simultaneously, then it is possible to 
determine a common sampling strategy. Such common strategy will 
increase the number of measurements required to preserve the desired 
maximum interpolation error of each of these properties. 

All these calculations are based upon the variability of the signal or 
more exactly upon bounds of the variability property. In areas where the 
variability bounds of properties (such as here, SST, SSS, AT, or CT), are 
constant, sampling would ideally be regularly spaced along the ‘x’ axis 
(here, the “latitude” axis). However, in areas where the variability 
bounds vary, sampling would ideally be irregularly spaced along the “x” 
axis. 

The choice of a variability bound of a property is particularly 
important since all the calculations are based upon these bounds. In 
order to capture the complete signal variability, it is good to define 
somewhat larger variability bounds than those calculated from one or a 
few examples of sample data, but that also means that the property could 
be oversampled. On the other hand, if the variability bounds are chosen 
too small, there will be fewer measurement samples but with the risk of 
missing the highest signal variability. Thus, depending upon the objec
tives, priorities and various practical constraints, one would have to find 
an equilibrium between sample size and accuracy. A challenge of this 
method is to determine and estimate persistent and precise variability 
bounds in the particular data environment that is being sampled. 

A key factor to designing an appropriate sampling strategy (with a 
minimum of samples/measurements), is to know both the accuracy of 
the measurements and the desired maximum interpolation error. 

In any case, all the results as presented above for SSS, SST, AT, and 
CT, show that the current sampling strategy can be significantly 
improved by using a semi-balanced interpolation error sampling 

strategy. 
In particular, this study emphasizes the large difference in the 

number of SSS and SST measurements needed (5527 and 32,958, 
respectively), along a cruise track between Hobart and Dumont D’Ur
ville to ensure that the maximum interpolation errors remain below half 
the property measurement accuracy. Concerning AT, and CT, “only” 317 
measurements could be sufficient. Even if it can be assumed that AT, and 
CT can be measured with an improved accuracy of 1 μmol.kg¡1, “only” 
380 measurements could be sufficient. Yet, this would still represent a 
significant effort since a measurement of AT and/or CT usually takes 
much more time and is much more expensive than a SSS or SST 
measurement. 

Why is there such a large difference between the AT and/or CT and 
SSS number of measurements? As mentioned above, all the calculations 
are based upon the estimate of the property variability bounds. Since the 
number of SSS data is large (7815), all short-scale SSS variabilities (such 
as those near 47◦S), are likely to be detected, thus raising the maximum 
of the bound. On the other hand, since the number of AT and/or CT data 
is relatively small (238), some small-scale variabilities may remain un
detected, thus lowering the maximum variability bound. 

Furthermore, this work shows that some ocean areas require special 
attention when processing the underway data, such as the data from 
eddies as well as convergence and divergence zones, and polar fronts 
(such in the Barents Sea, or the Antarctic and Sub-Antarctic fronts). 
These zones can be characteristic of five general processes; 1) the 
crossing of any boundary between a cold and a warm current (such as 
the Gulf-Stream and its eddies, or the Sargasso Sea front, etc.), as well as 
gyres (such as the cyclonic sub-polar gyres in the Wedell and Ross Seas), 
2) the crossing of any boundary between coastal and oceanic waters 
(such as coastal front of the Iroise Sea, etc.), 3) off estuaries (such at the 
meeting of the Amazon river with the Atlantic waters, etc.), 4) Arounds 
banks, reefs, shoals, and an island shelf, 5) along the margin of up
welling areas (such as the equatorial front between Peru and Galapagos 
Islands, or the Benguela upwelling, or the Mediterranean upwelling near 
the Sicilian coast, etc.). 

6. Conclusions 

Overall, this study is based upon a methodology (in Section 2.2), that 
significantly facilitates the determination of appropriate sampling and 
measurement locations, even when the number of measurements is 
limited by various constraints (time, cost, technology, accuracy, etc.). 
The methodology illustrated above is a rigorously based, practical, data 
driven approach to the design of sampling patterns that achieves these 
goals. As illustrated here, the somewhat novel concepts of sample 
variability, sample spacing and the Sample Error Theorem enable sci
entists to not only estimate sample error (interpolation error) from the 
sampled data itself, but also can be used to establish the existence of 
persistent bounds on variability and from this to determine unique 
sample patterns that meet the scientific requirement of a given 
maximum interpolation error. Moreover, this methodology is general 
and can be applied to any kind of environmental study (geology, 
meteorology, etc.), with any kind of data (in situ, remotely sensed, etc.), 
and provides a path to significant improvements to the overall scientific 
value of sampled data. 

In summary, the results presented above raise further questions 
about the scientific need for improvement of both measurement and 
interpolation accuracy. 

Given the present technology, how should sample measurements be 
distributed to achieve the minimum maximum interpolation error? 
Which scientific questions could be precisely answered with this present 
technology? Is there a need to create new technologies with better ac
curacy (and/or measurement frequency) to make significant scientific 
progress? 

For instance, here, one could conclude that there is an urgent need to 
develop new reliable technologies for much faster (and cheaper) 
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measurements of AT and CT in seawater. 
Thus, this study opens the route to more efficient sampling strategies 

(and cruise designs), which could significantly enhance scientific 
progress. 
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