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1  |   INTRODUCTION

Age-related macular degeneration (AMD) is a leading 
cause of blindness worldwide, affecting the macula and 
causing central vision loss as it progresses (Fleckenstein 

et al., 2021). With the ageing population, the burden of 
AMD on healthcare systems is expected to increase. By 
2040, it is projected that 288 million people will be af-
fected by AMD globally (Wong et  al.,  2014). The eco-
nomic burden of visual impairment due to AMD is 
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Abstract
Objective: This study aimed to develop a deep learning (DL) model, named 
‘DeepAlienorNet’, to automatically extract clinical signs of age-related macu-
lar degeneration (AMD) from colour fundus photography (CFP).
Methods and Analysis: The ALIENOR Study is a cohort of French individu-
als 77 years of age or older. A multi-label DL model was developed to grade 
the presence of 7 clinical signs: large soft drusen (>125 μm), intermediate soft 
(63–125 μm), large area of soft drusen (total area >500 μm), presence of central 
soft drusen (large or intermediate), hyperpigmentation, hypopigmentation, 
and advanced AMD (defined as neovascular or atrophic AMD). Prediction 
performances were evaluated using cross-validation and the expert human in-
terpretation of the clinical signs as the ground truth.
Results: A total of 1178 images were included in the study. Averaging the 7 clini-
cal signs' detection performances, DeepAlienorNet achieved an overall sensi-
tivity, specificity, and AUROC of 0.77, 0.83, and 0.87, respectively. The model 
demonstrated particularly strong performance in predicting advanced AMD 
and large areas of soft drusen. It can also generate heatmaps, highlighting the 
relevant image areas for interpretation.
Conclusion: DeepAlienorNet demonstrates promising performance in auto-
matically identifying clinical signs of AMD from CFP, offering several notable 
advantages. Its high interpretability reduces the black box effect, addressing 
ethical concerns. Additionally, the model can be easily integrated to automate 
well-established and validated AMD progression scores, and the user-friendly 
interface further enhances its usability. The main value of DeepAlienorNet lies 
in its ability to assist in precise severity scoring for further adapted AMD man-
agement, all while preserving interpretability.
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artificial intelligence, deep learning, fundus photography, image interpretation, computer-
assisted, macular degeneration
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substantial, accounting for $343 billion and constituting 
12% of the total global cost of visual impairment. This 
percentage can be even higher in developed regions, 
reaching up to 30% (AMD Alliance International, 2010). 
Deep learning (DL) models offer a promising solution to 
support physicians and eye care systems in managing ad-
vanced AMD. By leveraging DL technology, healthcare 
professionals can enhance their ability to diagnose and 
manage AMD, ultimately improving patient outcomes 
and alleviating the burden on healthcare systems.

Early signs of AMD typically involve the presence 
of macular drusen and/or pigmentary epithelium alter-
ations, often detected during routine fundus imaging.

The two advanced stages of AMD responsible for most 
of the visual loss are exudative AMD and atrophic AMD 
(geographic atrophy). In exudative AMD, fluid and blood 
leak within the neural retina through choroidal neovas-
cularization, leading to fibrous scarring. Geographic at-
rophy, on the other hand, is characterized by progressive 
atrophy of the retinal pigment epithelium, choriocapil-
laris, and facing photoreceptors. These advanced forms 
of the disease are responsible for most of the visual im-
pairment associated with AMD (Lim et al., 2012).

In routine ophthalmologic practice, colour fundus 
photography (CFP) is the most accessible and best-
validated imaging tool for early AMD classification and 
prediction of progression towards the advanced stages 
(Ferris et al., 2005). However, the extraction of clinical 
signs of AMD from CFP is a time-consuming process. 
Its automation could bring several benefits, such as 
supporting precise severity scoring for further adapted 
AMD management, all while preserving interpretability.

Image recognition and classification are complex 
tasks for computers. It requires not only analysing 
groups of pixels and searching for specific patterns but 
also overcoming variations in images (scale, viewpoint, 
illumination, or partial occlusion with objects). Recently, 
a new subset of machine learning and artificial intelli-
gence called ‘deep learning’ has revolutionized state-of-
the-art automated medical image recognition. The term 
‘deep’ implies that the model uses multiple layers of arti-
ficial neurons, allowing models to learn representations 
of data with various levels of abstraction.

DL has demonstrated its efficacy in various ophthal-
mology domains, including the detection of conditions 
like diabetic retinopathy (Gargeya & Leng, 2017; Gulshan 
et al., 2016; Jiang et al., 2020; Ting et al., 2017), retinop-
athy of prematurity (Brown et al., 2018), glaucoma-like 
disk (Li et  al.,  2018), and AMD (Burlina et  al.,  2017; 
Grassmann et al., 2018; Peng et al., 2019).

However, existing DL models in the field of AMD have 
primarily focused on diagnosing the disease (Burlina 
et  al.,  2017; Li et  al.,  2019; Luo et  al.,  2021) or predict-
ing its progression to advanced stages. (Grassmann 
et al., 2018; Peng et al., 2019, 2020). Unfortunately, these 
models lack interpretability because of the elusive nature 
of their inner processes, often referred to as the ‘black 
box effect’. This term describes a scenario in which the 
underlying mechanisms of a system are unclear or chal-
lenging to comprehend, leading to difficulties in under-
standing how it generates its results. In the medical field, 
it can raise ethical concerns when treatment choices for 

a patient derive from a DL model without insight into 
its operational logic. Interestingly, no prior models have 
specifically targeted the automated extraction of clinical 
features of AMD from CFP using DL.

In light of these voids, our study aims to develop 
‘DeepAlienorNet’, a DL model capable of automatically 
extracting AMD clinical signs from CFP. The model is 
designed with a user-friendly interface, further enhanc-
ing its practicality and usability in clinical settings.

2  |   M ETHODS

2.1  |  Study participants

Participants in the ALIENOR (Antioxydants, Lipides 
Essentiels, Nutrition et Maladies Oculaires) Study are a 
cohort of French individuals 77 years of age or older re-
cruited from an ongoing population-based study (Three-
City [3C] Study) on the vascular risk factors of dementia 
(3C Study Group, 2003). The ALIENOR Study consists 
of periodic eye examinations performed on all partici-
pants of the 3C Study cohort in Bordeaux, France, since 
2006 (Delcourt et al., 2010).

In the present study, we only used the first visit of the 
ALIENOR (baseline, Alienor 0, from October 2, 2006 to 
May 23, 2008). We did so to avoid redundancy in images 
of the same patients throughout successive follow-ups that 
could lead to overfitting. To be included, eye fundus images 
needed to have all the following labels correctly assessed 
as ‘present’ or ‘absent’: large soft drusen (>125 μm), inter-
mediate soft (63–125 μm), large area of soft drusen (total 
area >500 μm), presence of central soft drusen (large or in-
termediate), hyperpigmentation, hypopigmentation, and 
advanced AMD (defined as exudative or atrophic AMD).

To represent day-to-day practice, we included all 
gradable photographs and did not exclude low-quality 
images (with poor contrast, sharpness, or bad reflection).

Data management and statistical analyses were per-
formed between June 6, 2021 and September 19, 2022.

This research followed the tenets of the Declaration 
of Helsinki. Participants provided written informed con-
sent. The design of the ALIENOR Study was approved 
by the Ethical Committee of Bordeaux, France, in May 
2006 (Approval ID 2006/10).

2.2  |  Eye examination

All eye examinations were performed in the Department 
of Ophthalmology of Bordeaux University Hospital by 
experienced technicians. Assessments included the re-
cording of ophthalmic history, slit lamp examination, 
and 45° retinal photographs using a nonmydriatic fun-
dus camera (TRC-NW6S; Topcon) (Chan et  al.,  2016; 
Saunier et al., 2018).

Retinal photographs were interpreted in duplicate 
by two specially trained technicians. Inconsistencies 
between the two interpretations were adjudicated by a 
senior grader (J.-F.K., M.-B.R., C. D, or M.-N.D.). All 
cases of advanced AMD and other retinal diseases were 
reviewed and confirmed by retina specialists (J.-F.K., 
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M.-B.R., or M.-N.D.). This interpretation of retinal pho-
tographs was used as the ground truth in the develop-
ment and evaluation of our prediction model.

2.3  |  Data splitting

Our study used 5-fold cross-validation to split our initial 
dataset into five subsets. For each model, training was 
done with a different set of 4 folds, and validation was 
done on the remaining fold (‘Cross-validation’, n.d.). The 
global model performance was estimated by microaver-
aging the five models (Figure 1). Microaveraging means 
that we summed individual classes' true positives (TPs), 
true negatives (TNs), false positives (FPs), and false neg-
atives (FNs) across the five models. This allowed us to 
estimate metrics and draw the receiver operating curve 
(ROC) over the entirety of our dataset.

2.4  |  Development of the DL model

DeepAlienorNet was developed with Python 3.8 using 
Tensorflow and Keras (‘Keras: the Python deep learning 
API’, n.d.).

A precise description of the methodology we used to 
develop our model is explained in Appendix S1. We per-
formed statistical analyses using Scikit-learn.

All experiments were conducted on a server with 
2 Intel® Xeon® Gold SKL-6130 @ 2.1 GHz, using a 
NVidia® P100 GPU for training and testing, with 192 
Gb available in RAM memory.

We also followed the minimum information about 
clinical artificial intelligence modelling (MI-CLAIM) 
checklist to provide transparent reporting of our DL 
model (Figure S1) (Norgeot et al., 2020).

2.5  |  Threshold calculation

Our algorithm provides predictions for the presence 
of each clinical sign by assigning a probability value. 

However, to interpret these probabilities, they need to 
be converted into discrete class labels using a threshold. 
The commonly used default threshold of 50% may not 
perform well in cases where there is a significant class im-
balance. To address this issue, we employed a simple ap-
proach of fine-tuning the threshold (Lipton et al., 2014). 
Given the highly imbalanced nature of our dataset, with 
more normal eye fundus images than pathological ones, 
we determined the optimal threshold for each clinical 
sign using the ROC analysis (Figure 2a). By calculating 
the Youden index (sensitivity + specificity − 1) for differ-
ent threshold values between 0 and 1, we identified the 
threshold that yielded the highest Youden index value 
(Figure 2b). This approach allows us to optimize the per-
formance of our algorithm by classifying each clinical 
sign accurately.

2.6  |  Grad-CAM

Gradient-weighted class activation mapping (Grad-
CAM) finds which parts of the image led a convolutional 
neural network to its final decision. This method pro-
duces thermal maps representing the activation classes 
on the images received as input. It is a crucial step to im-
plement in DL models to reduce the black box effect and 
to understand which part of the images drives the pre-
dictions (Buhrmester et al., 2021; Selvaraju et al., 2020). 
We used Keras official documentation to get the code 
and implement Grad-CAM in our model (Chollet, n.d.).

Figure S3 shows various examples of original images 
associated with corresponding Grad-CAM images.

2.7  |  User interface

We designed DeepAlienorNet to be easily usable for 
any ophthalmologist with minimum skills in computer 
sciences. As a result, we developed a user-friendly in-
terface using Pygubu, an application tool used for the 
development of user interfaces for Python's Tkinter 
module.

F I G U R E  1   Flow chart and cross-validation. 1566 images were available at baseline, and 1178 images were included. We then do 5-k cross-
validation: the dataset is split into five smaller sets named ‘fold’. Then, five models are trained independently.
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2.8  |  Metrics

To evaluate our model, we used various metrics to be as 
comparable as possible with previous and future models. 
We chose well-known metrics in medical fields such as 
sensitivity, specificity, and AUROC. We also calculated 

Cohen's kappa coefficient, which has been reported in 
previous DL publications.

These metrics are computed for each clinical sign, 
and ‘overall metrics’ are calculated by macroaverag-
ing. The macro-averaged score is calculated by taking 
the arithmetic mean of all the per-clinical-sign scores 

F I G U R E  2   ROC curve and Youden index as a function of threshold. AMD, age-related macular disease; AUC, area under the curve; ROC, 
receiver operating curve.
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(Leung, 2022). We made this choice because, from our 
point of view, even if the dataset is imbalanced, each 
clinical sign should be equally considered when esti-
mating the overall performance. The 95% confidence 
intervals were computed using stratified bootstrapping 
(Carpenter & Bithell, 2000).

3  |   RESU LTS

3.1  |  Sample selection

Of the 963 participants in the 3C Study cohort in 
Bordeaux who participated in the baseline eye exami-
nation, 1926 eye fundus images were available and 1556 
were gradable. A total of 1178 images met the inclusion 
criteria, with all labels graded. Table 1 shows the charac-
teristics of the included eye fundi.

3.2  |  Threshold finding

Based on the Youden index, the following thresholds were 
estimated (Figure 2): 20.8% for large drusen (>125 μm), 
51.3% for intermediate drusen (65–125 μm), 12.7% for 
large areas of soft drusen, 17.5% for central soft drusen, 
20.3% for hyperpigmentation, 18.9% for hypopigmenta-
tion and 15.6% for advanced AMD.

3.3  |  Predicting AMD clinical signs

Using the 5-fold cross-validation, we estimated the 
global performances of DeepAlienorNet on our entire 
dataset (n = 1178) (Table 2).

The overall sensitivity, specificity and AUROC of our 
model across the seven clinical signs were 0.77 (95% con-
fidence interval [CI]: 0.72–0.82), 0.83 (95% CI: 0.81–0.85) 
and 0.87 (95% CI: 0.85–0.89), respectively. Figure  2a 
shows the ROC for each clinical sign. The average Cohen's 
kappa was 0.48 (95% CI: 0.44–0.53).

The prediction performances were particularly high 
for advanced AMD (AUROC = 0.97, sensitivity = 0.86, 
specificity = 0.94, Cohen's κ = 0.57) and large areas of 
soft drusen (AUROC = 0.93, sensitivity = 0.86, specific-
ity = 0.86, Cohen's κ = 0.56) and somewhat lower for other 
clinical signs (AUROC ranging from 0.81 to 0.83).

The confusion matrix for each clinical sign with 
corresponding TPs, TNs, FPs, and FNs is shown in 
Figure S2.

3.4  |  Sensitivity analysis

Figure  S4 shows some examples of  well-classified and 
misclassified images. Figure S1a,b exposes cases where a 
central shadow could mislead the model in the diagno-
sis. Interestingly, in Figure S4a, the model still finds the 
relevant zone of  interest for the classification, whereas 
in Figure  S4b, this recognition could not be achieved. 
Figure S4c is an example of  a poor-quality picture that 
can be seen in general practice. Even if  the model fails 
its prediction, it, however, here recognizes a relevant 
zone of  interest in the image. Figure S4d,e shows well-
classified images. A high degree of  confidence in predic-
tions is associated with great contrast, colours and the 
absence of  reflection or shadow in the background. It 
has to be noted that, in Figure S4d, the heatmap does 
not show any zone of  interest as the image is strictly 
normal.

Overall, we see that images on which the model 
makes more than 2 or 3 mistakes are more likely to be 
those with poor contrast and sharpness or reflection. 
Conversely, images with a higher degree of confidence 
are more likely to be of great quality.

TA B L E  1   Characteristics of images in the ALIENOR dataset.

Clinical sign No. of participants
% 
Total

Normal images 515 44

Large drusen 184 16

Intermediate drusen 552 47

Large area of drusena 170 14

Central drusen 214 18

Hypopigmentation 212 18

Hyperpigmentation 194 16

Advanced AMD 62 5

Total included images 1178 100

Abbreviation: AMD, age-related macular degeneration.
aTotal area >500 μm.

TA B L E  2   Performances of clinical signs prediction in the ALIENOR dataset.

Clinical sign Sensitivity (95% CI) Specificity (95% CI) AUROC (95% CI)
Cohen's kappa 
(95% CI)

Large drusen 0.72 (0.66–0.77) 0.87 (0.85–0.89) 0.87 (0.85–0.89) 0.49 (0.44–0.54)

Intermediate drusen 0.69 (0.66–0.73) 0.80 (0.77–0.83) 0.82 (0.80–0.84) 0.50 (0.46–0.55)

Central soft drusen 0.81 (0.77–0.86) 0.81 (0.78–0.82) 0.86 (0.83–0.89) 0.48 (0.44–0.52)

Large area of soft drusen 0.86 (0.81–0.91) 0.86 (0.85–0.88) 0.93 (0.91–0.95) 0.56 (0.52–0.60)

Hyperpigmentation 0.72 (0.66–0.78) 0.81 (0.78–0.83) 0.83 (0.80–0.86) 0.42 (0.36–0.47)

Hypopigmentation 0.73 (0.69–0.78) 0.75 (0.72–0.77) 0.81 (0.78–0.83) 0.36 (0.31–0.41)

Advanced AMD 0.86 (0.77–0.94) 0.94 (0.93–0.96) 0.97 (0.95–0.98) 0.57 (0.51–0.62)

Overall 0.77 (0.72–0.82) 0.83 (0.81–0.85) 0.87 (0.85–0.89) 0.48 (0.44–0.53)

Abbreviations: AMD, age-related macular degeneration; AUPRC, area under the precision–recall curve; AUROC, area under the receiver operating curve.
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3.5  |  User interface

Figure 3 exposes the user interface of DeepAlienorNet. A 
full-sized original image is present to help ophthalmolo-
gists control the results (Figure 3a). On the right part of 
the window, a horizontal bar graph shows the presence 
probability for each clinical sign (Figure 3b). Thresholds 
for each clinical sign are shown with vertical interrupted 
lines. The algorithm concludes that a sign is present if its 
probability is higher than its associated threshold. In the 
lower-left part of the window, we can find Grad-CAM 
(Figure  3c). This heatmap helps to understand which 
part of the image the algorithm used to predict labels.

4  |   DISCUSSION

Among the 1178 included images, DeepAlienorNet 
achieved an overall sensitivity, specificity, and AUROC 
of 0.77, 0.83, and 0.87, respectively. The model demon-
strated particularly strong performance in predicting 
advanced AMD and large areas of soft drusen.

Existing DL models in the field of AMD have pre-
dominantly focused on diagnosing the disease (Burlina 
et al., 2017; Li et al., 2019; Luo et al., 2021) or predicting 
its progression to advanced stages (Burlina et al., 2017; 
Grassmann et  al.,  2018; Peng et  al.,  2019). However, a 
significant limitation of these models is their lack of in-
terpretability, often attributed to the black box effect. 
Notably, there is a gap in the literature concerning DL 

models that specifically target the automated extraction 
of clinical features from CFP for AMD.

Prioritizing the extraction of clinical features, 
rather than solely focusing on diagnoses or risk pre-
dictions, holds the potential to enhance interpretabil-
ity and address ethical concerns associated with DL 
models. Furthermore, integrating such DL models 
with well-established and validated AMD progres-
sion scores, such as the AREDS Severity Scale (Ferris 
et al., 2005) or Macutest (Ajana et al., 2021), can enable 
seamless automation of the assessment process. For in-
stance, we can imagine a system where, instead of just 
requesting a DL model to predict the AREDS score 
directly, we input images of both eyes of a patient. 
DeepAlienorNet then extracts the clinical signs pres-
ent in each eye and merges the outcomes to calculate 
the AREDS score. This approach harmonizes the ro-
bustness of the AREDS score with the interpretability 
of DeepAlienorNet, all within an automated pipeline 
designed for ophthalmologists.

In addition to extracting clinical signs, 
DeepAlienorNet goes a step further by generating 
heatmaps that indicate the specific regions of the 
image used to predict these signs. This innovative ap-
proach offers two significant advantages. First, it helps 
mitigate the black box effect, providing clinicians with 
interpretability and insight into the model's decision-
making process. This enables a better understanding 
of how the model arrives at its predictions (Buhrmester 
et  al.,  2021; Selvaraju et  al.,  2020). Second, studies in 

F I G U R E  3   DeepAlienorNet Interface. The original image is displayed in full size to better interpret the clinical signs (a). The prediction 
results are shown as horizontal graph bars to represent the probabilities of clinical sign presence. Vertical interrupted lines represent the 
threshold for each clinical sign (b). A heatmap is displayed in the lower part of the window to provide better interpretability (c).
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diabetic retinopathy have shown that the automatic ex-
traction of clinical signs from CFP, combined with clin-
ical feature heatmaps, can enhance the confidence and 
accuracy of diagnosis in a supervised reading environ-
ment (Sayres et al., 2019). By incorporating heatmaps, 
DeepAlienorNet empowers clinicians by providing vi-
sual cues that highlight the regions of interest and con-
tribute to more reliable and precise assessments.

Another noteworthy advantage of DeepAlienorNet 
is its user-friendly interface. Unlike many deep learn-
ing models that require expertise in Python coding 
to be applied in clinical practice, we specifically de-
signed DeepAlienorNet with this limitation in mind. 
Our objective was to create an interface that simpli-
fies the utilization of the model, particularly in day-
to-day clinical practice. By addressing the inherent 
complexity of deep learning models, we hope to make 
DeepAlienorNet more accessible to healthcare profes-
sionals who may not possess extensive programming 
knowledge.

Despite the promising results obtained, our model has 
several limitations that need to be considered. First, it 
currently relies solely on CFP, while Optical Coherence 
Tomography (OCT) has become a crucial tool in the di-
agnosis and follow-up of AMD. This limitation arises 
from the lack of extensive databases containing well-
labelled CFP and OCT images required to train a model 
that incorporates both inputs. However, it is worth 
noting that most of the currently validated progression 
scores, such as the AREDS score, have been developed 
solely based on CFP. These scores depend on identifying 
anomalies like hyper- or hypopigmentation, which can-
not be distinguished using OCT. Nevertheless, future en-
hancements to our model will prioritize addressing this 
limitation, aiming to closely emulate the thought process 
of ophthalmologists in real-life scenarios by leveraging 
both CFP and OCT.

Another limitation to consider regarding our model is 
the relatively small dataset size. Although we were able 
to develop a DL model using 1178 images, this number 
pales in comparison to non-medical DL architectures 
like ImageNet, which comprises 14 million labelled im-
ages. This limitation is not exclusive to ophthalmology 
but is applicable to other specialized medical fields as 
well. To advance DL in AMD and ophthalmology in 
general, it is crucial to establish larger and more compre-
hensive datasets (Alzubaidi et al., 2020, 2021).

Last, our model's performance may be constrained by 
the use of a single device (TRC-NW6S; Topcon, Japan) 
for capturing the 45° CFP images used during the train-
ing process. Consequently, the generalizability of our 
model to other CFP images obtained from different de-
vices, particularly those with wider fields of view, may be 
limited, potentially leading to decreased performance.

However, one of the strengths of our study lies in 
the population-based nature of our sample and the 
inclusion of all gradable images, regardless of their 
quality. This approach minimizes selection bias, as da-
tabases created in clinical settings may overrepresent 
high-quality images and typical cases, and thus over-
estimate the classification performances in real life. 
Additionally, we used a rigorous grading scheme to 

ensure that the model was developed and tested based 
on valid CFP classifications, further bolstering the ro-
bustness of our study.

A last important consideration is that 
DeepAlienorNet's DL nature inherently raises ethical 
concerns. First, while its purpose is to aid clinicians, 
ethical dilemmas may arise if its suggestions override or 
unduly influence ophthalmologists' judgement. There 
should be a balance between the use of AI as a support-
ive tool and preserving the autonomy and expertise of 
healthcare providers. Second, employing AI models like 
DeepAlienorNet in healthcare requires informed con-
sent from patients regarding the use of their medical 
data. Ensuring patient data privacy and security against 
potential breaches or misuse is crucial. Finally, DL mod-
els need continual monitoring and updates to adapt to 
new data, technologies, or emerging biases. Neglecting 
regular model evaluations and updates might result in 
outdated or inaccurate predictions, impacting patient 
care.

5  |   CONCLUSION

DeepAlienorNet demonstrates promising performance 
in automatically identifying clinical signs of AMD 
from CFP, offering several notable advantages. High-
interpretability of our model mitigates the black box ef-
fect and alleviates ethical concerns, as the use of black 
box models in AMD diagnosis can result in decreased 
transparency, potentially leading to inaccuracies in 
patient care. Additionally, the model can be easily in-
tegrated to automate well-established and validated 
AMD progression scores, and the user-friendly inter-
face further enhances its usability. The main value of 
DeepAlienorNet lies in its ability to assist in precise se-
verity scoring for further adapted AMD management, 
all while preserving interpretability.
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