N
N

N

HAL

open science

Enhancing Network Data Into Cyber-Physical Data For
Better Attack Detection Performances

Come Frappé-Vialatoux, Pierre Parrend

» To cite this version:

Come Frappé-Vialatoux, Pierre Parrend. Enhancing Network Data Into Cyber-Physical Data For
Better Attack Detection Performances. Rendez-vous de la Recherche et de 1'Enseignement de la
Sécurité des Systeémes d’Information, Eppe-sauvage, France, mai 2024, May 2024, Strasbourg, France.

hal-04503847

HAL Id: hal-04503847
https://hal.science/hal-04503847
Submitted on 13 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-04503847
https://hal.archives-ouvertes.fr

Enhancing Network Data Into Cyber-Physical Data
For Better Attack Detection Performances

1%t Come Frappé - - Vialatoux *T, 2 Pierre Parrend*!
*ICube, UMR 7357, Université de Strasbourg, CNRS, 67000 Strasbourg, France
fLaboratoire de Recherche de L'EPITA (LRE), 94270 Le Kremlin-Bicétre, France
come.frappe-vialatoux @etu.unistra.fr, pierre.parrend @epita.fr

Abstract—Critical systems are an essential component of to-
day’s society, ensuring needs such as water distribution or power
supply. The modernization effort of these infrastructures through
a general increase in connectedness allows for better efficiency,
monitoring, and safety, but also comes with an increased vulnera-
bility to cyber-attacks. Detecting such cyber-attacks as early and
accurately as possible is a hard task for which machine learning
(ML) algorithms show promising results, leveraging the huge
amount of data that network traffic traces constitute. However,
cyber-attack also have measurable impacts on physical systems,
but the use of data from such systems is lacking due to a scarcity
of available datasets and analysis tools. The recent release of
cyber-physical datasets, which captured data from both network
communication and physical systems, fills this gap, allowing a
joint usage of these two data sources. This paper provides a
multi-layer methodology for detection in cyber-physical systems,
by combining physical and network data and evaluates its gain
in detection performances on multiple ML models.

Index Terms—cyber-security, machine learning, cyber-physical
systems

I. INTRODUCTION

As the attacks conducted on critical systems evolve from
on-site physical attacks to cyber-attacks [1], the need to
develop robust solutions to detect and deter such attacks has
become a major research field. ML algorithms have proved
to be especially efficient at this task, leveraging the huge
amount of data that network traffic traces can generate [2].
However, despite network communications being the primary
vector of cyber-attacks, network traffic traces alone cannot
reflect cyber-attacks effects on physical processes. This paper
demonstrates that the conjunct use of traces from physical and
cyber communication systems greatly enhances the detection
capability thus increasing the reactivity of security operators
by reducing the time to detection for ongoing attacks against
cyber-physical systems, as in the example of water distribution
network. This paper is organized as follows: first, we show
how physical data can capture the effects of cyber-attacks,
then we describe our methodology of combining physical and
network data. It is followed by a presentation of the effects of
this methodology on ML performances and a conclusion.

II. EFFECTS OF CYBER ATTACKS ON PHYSICAL SYSTEMS

Cyber-attacks conducted on critical infrastructures often aim
at disrupting their normal operation. Depending on the type of
attack, this disruption can be very well captured by the phys-
ical data, for instance in the case of Denial of Service (DoS)

or False data injection through Man-in-the-middle (MITM),
but other attacks such as reconnaissance techniques like scans
have no effects at all on physical processes. Amongst critical
systems, the water distribution sector has an inherent need
to monitor its physical processes because of health stakes
[3]. This sector has thus been proficient at releasing open
datasets [4] [6] that capture the effects of cyber-attacks on
physical processes, as well as cyber-physical datasets [5] [7]
that contain both network traces and physical data. As an
example, Figure 1 shows the effect of a DoS attack on a tank
water level reading from the Hardware In the Loop (HITL)
dataset [5]. In this graphic we can observe that the DoS effects
are both delayed and lingering, reflecting respectively the time
until the sensor is incapacitated after the attack started and the
time for it to return to a normal state after the attack ended.
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Effect of a DoS attack on a tank water level reading from HITL

IIT. MULTI-LAYER APPROACH

As shown in the previous section, physical data contains
information that can complement that from network traffic
traces. For ML algorithms to leverage these two layers of
information, a combination methodology is needed.

A. Methodology

The methodology is as follows: we duplicate each physical
data row as many times as there are network communications
between this physical data and the consecutive one, thus
equalizing the number of data points. Then for each network
data row, we add the columns of one of the physical data with
the closest inferior time value.



This methodology uses network traces as a base because
the time scale of physical processes is much greater than that
of network communications, with differences ranging from
tenfold to thousandfold in the number of data. By using
the data with the finest time granularity as a base for the
combined data, we eliminate the need for aggregation and
the information loss of such operation. As both network
communication and data from physical processes require time
information for them to be exploited, using this information
for the joint ensures the viability of this methodology.

B. Side effects

In the case of labelled data, this methodology can create two
types of inconsistencies in the labels between the physical and
network data. The first type is a misalignment of the labels.
It happens for attacks with a duration greater than the time
granularity of the physical data, because the finer-grained data
will start being labelled before the higher-grained data will be
updated, and reciprocally for the end of the attack, resulting
in the labels in the higher-grained data being updated later at
the start and at the end. The second type of inconsistency
is the occultation of labels. It happens for attacks with a
duration inferior to the grain of the physical data, only if the
entirety of the attack span is contained within a single timestep
of higher-grained data. Thus, no update will occur on these
data during the whole attack duration, resulting in the label
appearing only in the finer-grained network data. However,
these inconsistencies being characterized and detectable, they
can easily be taken into account to avoid biases in the
detection.

C. Results

The methodology described in the previous section has
been applied to the HITL dataset to combine the physical
data and the network traces. Four ML models were trained,
namely Decision-tree (CART), Random Forest, XGBoost and
Multi-Layer-Perceptron, on the 3 datasets independently: only
physical data (around 11k rows), only network data (around
30M rows), and the combined datasets, using the labels from
the network dataset. The results shown in Table I demonstrate
the benefit of combining the two datasets, with an increase
in balanced accuracy of +22.34% and +47.96% compared
respectively to only physical data and only network data. Fur-
thermore, Figure 2 shows the evolution of performance from
XGBoost on 8 different metrics, where it can be observed that
the combined dataset allows for minor to major improvement
in each of these metrics.

IV. CONCLUSION

Cyber-attacks have measurable impacts on both network
traces and physical processes. Considering data from both
to train ML models greatly benefits detection performances
compared to using only one of them. The combination method-
ology proposed in this article allows to take advantage of this
duality, enabling the training of ML models on both data at
the same time. The improvement in detection performance

TABLE I
CLASSIFIER PERFORMANCE METRICS ON SEPARATED AND JOINED
DATASETS
Dataset Classifier Accuracy | Balanced | MCC Fit Pred
Accuracy Time Time
DecisionTree 0.9994 0.9836 0.9987 2m 1l1s Om Os
Combined RandomForest 0.8600 0.3195 0.6971 11m 41s | Om 30s
XGB 0.9993 0.9503 0.9985 Im 52s Om 5s
MLP 0.9406 0.6259 0.8747 48m 0Os Om 31s
DecisionTree 0.9621 0.7515 0.8868 Om 00s Om 00s
Physical RandomForest 0.8410 0.2805 0.3833 Om 00s Om 00s
XGB 0.9780 0.7602 0.9327 Om 00s Om 00s
MLP 0.9160 0.6336 0.7383 Om Ols Om 00s
DecisionTree 0.8703 0.5043 0.7198 | Om 27s s | Om 00s
Network RandomForest 0.8630 0.3222 0.7045 | 6m 52s s | Om 30s
XGB 0.8717 0.4978 0.7251 | Im 02ss | Om 4s
MLP 0.8545 0.3147 0.6838 | 24m 07s | Om 16s
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Fig. 2. Effect of joining datasets on multiple metrics

has been assessed on the HITL cyber-physical dataset, with
a balanced accuracy 22.34% higher than when using physical
data only and 47.96% higher than when using network traces
only. Further work on applying this methodology to other
cyber-physical datasets and evaluating its effects will allow
for greater insights into its benefits.
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