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Abstract

We examine the impact of the National Ambient Air Quality Stan-
dards, as defined by the Clean Air Act, on agricultural land values
within the corn and soybean regions of the United States. To achieve
this objective, agricultural census data on farmland values are com-
bined with pollution exposure metrics as defined by the Environmen-
tal Protection Agency. Using a difference-in-differences approach and
conducting various robustness checks, we find that compliance with air
quality standards has a statistically significant negative effect on agri-
cultural land values at the county level. Moreover, evidence from quan-
tile regression analysis suggests that counties in the lower quantiles fail
to translate the economic and environmental benefits of pollution re-
duction into increased farmland values, unlike their counterparts with
the highest-valued lands.

Keywords: Air Quality Standards; Agricultural Land Values; Difference-
in-Differences; Quantile Regression
JEL Classification: C21; Q15; Q53
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1. Introduction

In the United States (US), one of the most significant regulations to reduce
air pollutant emissions is the Clean Air Act originally passed in 1963 and
amended in 1970. The amended Act authorizes the Environmental Protec-
tion Agency (EPA) to enforce the National Ambient Air Quality Standards
(NAAQS) for total suspended particulates (TSPs). The NAAQS represent a
cornerstone of air quality management in the US, aimed at protecting public
health and the environment from the adverse effects of air pollution.

Beyond urban and natural ecosystems, this regulatory framework is also
expected to benefit agricultural areas. Indeed, conventional wisdom holds
that pollution’s continuous exposure significantly undermines agricultural
outcomes. This is in part because poor air quality tends to reduce crop
yields by damaging plants, altering the nutrient balance in soil, and making
water sources unsuitable for irrigation (Lobell and Burney, 2021). Indirectly,
pollution can also affect agricultural productivity by harming the health of
farm workers, leading to decreased labor efficiency (Zivin and Neidell, 2012).
On the other hand, there is also some evidence that, for certain farmers, es-
pecially those operating on a small scale or with limited resources, the costs
associated with complying with pollution regulations can present significant
economic hurdles, potentially affecting their livelihoods (Jouzi et al., 2017).
This opposite interplay between air quality benefits and regulatory compli-
ance costs raises questions about the overall impact of these regulations on
economic returns from agricultural production and ultimately on farmland
values. However, despite the significant role of farm real estate in the US as
a component of farm sector assets and in the structure of agriculture (Burns
et al., 2018), there has been no study that has empirically examined whether
the benefits of air pollution reduction are capitalized into farmland values.

This study addresses the gap by examining the effects of the NAAQS, en-
forced under the Clean Air Act, on agricultural land values within major
corn and soybean-producing counties in the United States. Corn and soy-
beans are among the most valuable and widely cultivated crops in the US,
playing a critical role in the agricultural economy. Moreover, counties that
are major producers of these crops are likely to be more sensitive to envi-
ronmental regulations due to the intensive nature of agricultural practices
required for high-yield production (Behrer and Lobell, 2022). We focus on
significant updates to the NAAQS for particulate matter and ozone in the
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mid and late 2000s and use the EPAs categorization of counties into “at-
tainment” or “nonattainment” statuses, based on their alignment with the
NAAQS for these key air pollutants. We combine these pollution exposure
metrics with agricultural land value data at the county level, sourced from
the Census of Agriculture conducted by the US Department of Agriculture’s
National Agricultural Statistics Service (USDA-NASS) for the years 1997,
2002, 2007, 2012, 2017, and 2022.

To infer a causal relationship between air quality regulations and their eco-
nomic impacts, we use a difference-in-differences (DID) approach with panel
data fixed-effects regressions. A potential concern, when using this approach,
is the non-random adoption of pollution standards, which could skew our
findings. To account for this potential bias, we estimate DID models using
an inverse probability weighted difference-in-differences (IPW-DID) estima-
tor (Abadie, 2005; SantAnna and Zhao, 2020). Additionally, given the vari-
ability in achieving NAAQS compliance across the counties over time, we
apply a staggered DID analysis, which accounts for varying implementation
timelines across different groups (Callaway and SantAnna, 2021). Given the
inherent distributional impact of any regulatory policy, we finally examine
the effect of the Clean Air Act on the distribution of farmland values across
counties, by relying on unconditional quantile regressions (Callaway and Li,
2019).

Our study makes several contributions to the existing literature. First, while
a literature examines the effects of the Clean Air Act on property values
(Chay and Greenstone, 2005; Grainger, 2012; Bento et al., 2015) and the
impact of agricultural policy (Shaik et al., 2005) and farm practices (Chen
et al., 2023) on farmland values, to the best of our knowledge, there has
been no study that examined the impact of environmental policies and the
Clean Air Act more specifically on county-level agricultural land values. Sec-
ond, the use of recently developed DID models allows us to address bias not
accounted for by traditional models. Specifically, the inclusion of accurate
covariates and variation in treatment timing gives us the opportunity to
provide a relevant counterfactual and in turn more accurately estimate the
impact of NAAQS on farmland values. values. Third, by utilizing a stag-
gered framework, we account for the regulatory effects on multiple pollutants.
Considering multiple pollutants enables us to broaden the existing literature,
which typically focuses on a single pollutant, and to consider the inherent in-
teractions among pollutants and air quality regulations. Finally, this paper
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explores the distributional effects of environmental policies and the Clean
Air Act more specifically, moving beyond the existing body of research that
primarily assesses its average effects. We are therefore able to investigate
whether compliance with NAAQS has shaped the distribution of farmland
values, and identify which quantiles have shown the largest effects.

Our findings indicate that, on average, agricultural farmland values in coun-
ties newly subjected to regulation have experienced a decline of approxi-
mately 10%, in contrast to counties that meet the standards. Furthermore,
the implementation of the NAAQS has led to a widening gap in the value of
farmland among counties specializing in corn and soybean production. This
trend is largely attributed to a marked decrease in farmland values at the
lower end of the distribution range.

The remainder of the paper proceeds as follows. Section 2 delineates the
study area. Section 3 details the empirical methodology. In section 4, we
discuss our main results. Section 5 concludes the paper.

2. Assessing air quality regulations and county

designations

This section discusses the sources and relevant features of the air quality
regulations and the characteristics of counties used in our analysis.

2.1. Selection criteria for air quality regulations

In the US, monitoring of air pollution has historically relied on the EPA
network of sampling sites. The EPA collects and distributes data from
state, local, and tribal agencies through a combination of regulatory and
non-regulatory measurements at over 1000 stations, providing near-real-time
hourly pollution observations. These monitoring locations are used to assess
local and regional “attainment” of the NAAQS, to analyze air pollution im-
pacts on public health, and to validate satellite measurements and air quality
models

Stationary source regulations focus primarily on areas that are out of com-
pliance with the NAAQS. Each year, the EPA determines the set of counties
that are in violation or “nonattainment” of a particular NAAQS standard
based on air pollution monitor measurements.
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In 1997, the EPA tightened the NAAQS pertaining to ozone and particles fur-
ther, regulating fine particles less than 2.5 micrometers in diameter (PM2.5)
for the first time. The new standards were extremely controversial and were
challenged in the courts for years, but ultimately the EPA prevailed, and
the new standards were implemented in April 2005. The EPA revised the
PM2.5 (24 hour) standard again in 2006, and the revision went into effect
in 2009. However, since all counties that were in “nonattainment” for the
annual PM2.5 standard in 2009 also failed to meet the 24-hour standard,
the 2009 designations did not result in any new areas becoming subject to
NAAQS “nonattainment” regulations.

The effects of the 2006 revision on reducing PM2.5 concentrations were sig-
nificant. Only 20 counties failed to comply with the 2012 annual standard
revision, a substantial decrease from the 208 counties designated as “nonat-
tainment” under the 1997 PM2.5 NAAQS by late 2005, which were already
categorized as such in 2006.

Regarding the other pollutant, the NAAQS introduced a standard of 0.08
ppm 1h ozone in 1997 that was revoked in 2008 to 0.075 ppm 8 h ozone.
As for PM2.5, law enforcement for the 1997 revision started lately, in end of
2004. By 2008, counties in the eastern part of the US that did not meet the
ozone standard set by the 2008 NAAQS revision were already as moderate
to serious “nonattainment” areas in 2004.

2.2. County designations and anticipation of regulatory
changes

This particular timeline highlights a crucial aspect of the regulatory process
for NAAQS designations. The timeline from the issuance of a new or revised
NAAQS to the official announcement of “nonattainment” designations can
indeed span several years. This delay is due to the need for states to mon-
itor air quality, compile data, and for the EPA to review this information
before making formal “nonattainment” designations. This situation high-
lights a common challenge in policy analysis where the timing of regulatory
announcements, formal designations, and the onset of enforcement can lead
to ambiguity in defining the treatment period. Ambiguity arises particularly
with anticipatory effects, where counties or entities might begin compliance
efforts prior to formal enforcement, due to expectations of forthcoming reg-
ulatory actions. Some counties may have started to implement air quality
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improvements in anticipation of being designated as “nonattainment” based
on the 2006 revision, even before final designations in 2009.

In our study, we consider this anticipatory effect as part of the treatment’s
impact, as it is a direct consequence of the regulatory change. We classify
counties as “nonattainment” based on their non-compliance at the time of
the regulatory change, rather than at the time of their final designation.
“Nonattainment” counties under NAAQS for each criterion air pollutant are
retrieved by year from the NAYRO data set.1

Another important aspect of the regulatory process is the fact that the
“nonattainment” designations typically apply to air regions or groups of
counties in the same local market, rather than to a single county (Crop-
per et al., 2023). Indeed, whenever a county exceeds the air quality standard
based on a local monitoring station, the regulator decides whether nearby
or adjacent counties could also have contributed to this violation. Catego-
rizing “nonattainment” status at the county level for a single county might
therefore not mimic the regulator’s decision and increase the risk of misclassi-
fication calling into question any causal interpretation of the results. We then
approximate these “nonattainment” designations using county-aggregates in
the form of commuting zones (Currie et al., 2023).

Figure 1 provides the geographical localization of counties designated as
“nonattainment” for NAAQS standards, grouped by commuting zones for
each pollutant. The timeline for NAAQS by pollutant types are detailed in
Tables A.1 and A.2 in Appendix A.

1https://www.epa.gov/green-book/green-bookdata-download
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Fig. 1 Counties designated “nonattainment” for Clean Air Act’s National Ambient
Air Quality Standards (NAAQS)

Source: NAYRO data set, EPA Green Book.

2.3. Study area

In our analysis, we focus on counties that are major producers of corn for
grain and soybeans. To identify these counties, we utilize data from the
USDA National Agricultural Statistics Service (NASS) Census of Agricul-
ture, specifically examining the extent of agricultural reliance on corn and
soybean cultivation. We calculate the share of harvested acres dedicated to
corn for grain and soybeans as a percentage of total cropland harvested acres
for each Census year from 1997 to 2022. Our inclusion criteria involve se-
lecting counties where the proportion of either corn or soybean cultivation
exceeds 5% of the total cropland over the 1997-2022 period average. This
threshold is chosen to ensure that the sample is sufficiently diverse in terms of
geography, given that air pollution emissions are spatially concentrated. Ap-
plying this criterion, our sample comprises 1,927 counties. This delineation
is illustrated in Figure 2.

Farm real estate values were retrieved for the years 1997 to 2002 from the
census data. The NASS Census of Agriculture defines farm real estate value
as the value at which all land and building used for agricultural production,
including homes, could be sold under current market conditions.
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Fig. 2 Counties included in the sample

Note: Maps A and B depict the average harvested acres of corn and soybeans, respectively,
from 1997 to 2022, expressed as a proportion of total cropland harvested acres in the
Contiguous United States (CONUS). The map below depicts our delineation of counties
within the CONUS that are major producers of corn and soybeans. It encompasses every
county where the proportion of land dedicated to corn and soybean cultivation exceeds a
threshold of 5%. This delineation includes a total of 1,927 counties.
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Figure 3 illustrates the well-known rise in farmland values across the eastern
US, especially in the heartland region, over the last few decades. The median
values in the boxplots suggest that “nonattainment” areas have witnessed a
relatively steeper growth trajectory compared to their “attainment” coun-
terparts. However, the distribution tails reveal higher end of the land value
spectrum with a substantial elongation over time in “attainment” areas. This
elongation suggests that while the median land value growth in “attainment”
areas may be more modest, the upper segment of the land value distribu-
tion has expanded significantly, potentially reflecting a diversification in land
value appreciation.

Fig. 3 Trends in average land value: A comparative analysis of “attainment” vs.
“nonattainment” counties (1997-2022)

Note: the boxplots compare the average land value (expressed in US$ per acre) from 1997
to 2022 between the two groups of counties: those in “attainment” (gray) and those in
“nonattainment” (red). They show the median land value (the horizontal line within each
box), the interquartile range (the height of each box), and the range excluding outliers
(the lines or ”whiskers” extending from the boxes).

3. Empirical methodology

To what extend compliance with NAAQS affect farmland values? To address
this question, we draw on recent work in Difference-in-Differences (DID) anal-
ysis to accurately account for the implementation mechanisms of air pollution
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regulation and to provide consistent estimates of the Average Treatment ef-
fect on the Treated (ATT).

3.1. Identification strategy

Our framework involves two groups of counties (“nonattainment” and “at-
tainment”) observed over multiple time periods (T > 2) where all treated
counties start receiving treatment at time s,

Yit = αi + φt +
G∑

g=g0

T∑
s=g

θ(g, s)× 1(G = g, t = s) + εit (1)

where
∑G

g=g0

∑T
s=g θ(g, s)×1(G = g, t = s) represents the sum over groups g

from a starting group g0 to the last group G, and the sum over time s from
the treatment start year for group g to the end of the study period T . θ(g, s)
captures the treatment effect for group g in year s, and 1(G = g, t = s) is an
indicator function that equals 1 if unit i belongs to group g and is observed
at time s, and 0 otherwise. Equation (1) also controls for county fixed effects,
αi and year fixed effects φt. The coefficients of interest, θ(g, s), compare the
counties that become newly regulated under the NAAQS to those that are in
compliance with these standards according to the specific NAAQS revision.

Given the nature of our economic data (quinquennial data from the USDA
Census of agriculture) and the timeline of the regulatory process for NAAQS
designations, we first consider all counties in the treatment group receive
treatment at time s = 2007 and remain treated thereafter as all NAAQS
revisions considered in this study occurred before 2012. Counties in the
control group, however, do not receive any treatment throughout the entire
sample period. Consequently, before the treatment period (t < 2007), no
counties are treated. This scenario assumes strong anticipation from the
counties in the treatment group by setting the treatment period. In this first
scenario, the model expressed by Equation (1) falls back to the standard
event study design with simultaneous treatment.

We further extend the model in Equation (1)considering the staggered imple-
mentation of the NAAQS across the counties in our sample. This extension
allows us to account for variations in timing for the designation of “attain-
ment” areas across counties. We consider two treatment groups (g = 2).
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One comprising counties that were in “nonattainment” to the 2006 NAAQS
revision for PM2.5 in 2007 and another consisting of counties that failed to
comply with the ozone (2008) and lead (2010) NAAQS designation in 2012.
This staggered framework is mainly motivated by the timelines of the NAAQS
revisions for ozone in 2008 and for lead (Pb) in 2010 that were implemented
in 2012.

Our primary challenge in identification arises from the foundational assump-
tion of DID, the parallel-trend assumption (PTA) which is crucial for estimat-
ing an unbiased Average Treatment for the Treated (ATT). This assumption
posits that, in the absence of treatment, the average outcome for the treated
group would have followed a similar trend to the average outcome for the
untreated group. It implies that the effects of any confounding factors on
the average outcome would have remained constant over time. However, the
presence of time-varying confounding factors can cause the violation of the
parallel trends assumption. The effect of complying with NAAQS identified
by the standard DID could be biased in such a case.

One way to increase the credibility of the parallel trends assumption is to
require that it holds only conditional on covariates (SantAnna and Zhao,
2020). We consider the generalization of the ATT proposed by Callaway and
SantAnna (2021) that is suitable to setups with multiple treatment groups
and multiple time periods:

ATT(g; t) = E [Yt(g)− Yt(0) | Gg = 1] (2)

and must satisfy the Limited Treatment Anticipation (LTA) assumption,
which states that the treatment effect for a given group in a given year is not
affected by the anticipation of future treatments and the Conditional Parallel
Trends (CPTA) based on the ”Never-Treated” counties (C = 1),

E [Yt(0)− Yt−1(0) | X;Gg = 1] = E [Yt(0)− Yt−1(0) | X;C = 1] (3)

Conditioning on a set of covariates X seeks to account for and mitigate the
influence of observable factors that could potentially skew the estimates. The
underlying assumption is that, once the observable covariates are accounted
for, any remaining unobservable factors affecting the outcomes would have
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a consistent effect over time. Therefore, these time-invariant unobservable
factors would not introduce bias in our estimates of the treatment effect.

We employ semi-/non-parametric methods that enable consistent estimation
of the ATT under the assumption of conditional parallel trends, with less
restrictive homogeneity assumptions. The basic idea is to estimate what the
entire distribution of counties in “nonattainment” would look like if these
counties had the same observable characteristics as counties in “attainment”
Abadie (2005). In practice, this amounts to implementing a reweighed strat-
egy to estimate the expected change in the outcome for treated units and
subsequently estimate the ATT. This is achieved by adjusting the distribu-
tion of characteristics among control units to better resemble those of treated
units. We then calculate a weighted average of the change in outcome (∆Yit)
among control units to approximate the expected change in outcome for
treated units (Abadie, 2005).

This weighting function boils down to estimating a conditional probability of
being a county in “attainment” based on observable characteristics (covari-
ates) via a probit regression. This conditional probability is then used, along
with the unconditional probabilities of being in “attainment”/“nonattaintment”
in our sample to reweight the treated group in a given year.

We use the Inverse Probability Weighting (IPW) estimator for estimating
the ATT, following the methodology introduced by Abadie (2005). Nonethe-
less, the estimator’s performance can be compromised by instability when
propensity scores are near the limits of the unit interval. This is particu-
larly problematic when scores approach one, leading to exaggerated weights
that can disproportionately affect the estimator, amplifying variance and
potentially diminishing the reliability of causal inferences. To mitigate such
issues, we use stabilized weights, where the typical IPW weights are adjusted
to dampen the influence of extreme propensity score values (Imbens, 2000).
We also use the Doubly Robust (DR) estimator proposed by SantAnna and
Zhao (2020) which combines the IPW with outcome regression. This DR es-
timator provides a safeguard against misspecification. It remains consistent
if either the propensity score model is correctly specified, offering protec-
tion against extreme weights, or if the outcome model is accurate, but not
necessarily both. Hence, this approach not only addresses the instability as-
sociated with IPW but also enhances the reliability of the estimated ATT by
allowing for two chances at correct model specification.
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3.2. Covariates

We include two types of covariates: (i) covariates correlated with the treat-
ment assignment to address the issue of non-random treatment allocation,
and (ii) covariates correlated with the outcome to ensure that the model
accounts for potential confounding variables that could affect the outcome
independently of the treatment. This point is essential because omitting such
variables could lead to biased estimates of the treatment effect, as changes
in the outcome might be attributed incorrectly to the treatment rather than
these confounders.

We first use covariates reflecting weather and atmospheric conditions as they
can simultaneously influence both the outcome of interest (farmland value)
and the treatment variable (pollution levels). Specifically, we use the fol-
lowing weather variables: number of growing degree days (8–29◦C) and the
Palmer Drought Severity Index (PDSI) (Palmer, 1965) to account for drought
conditions. These weather variables are key variables because they can be
both a driver of expected economic returns from agricultural production and
a factor that exacerbates or mitigates pollution levels by affecting atmo-
spheric stability and dispersion. Additionally, we include measurements of
thermal inversions. Thermal inversions, which trap pollutants close to the
ground, directly influence PM2.5 concentrations and can also impact farm-
land values by affecting local environmental conditions and agricultural pro-
ductivity. The methodologies used to calculate these various weather and
atmospheric covariates are detailed in Appendix B.

We include additional covariates that reflect the various types of returns
farmland can generate, which may impact both the outcome and the treat-
ment. In certain areas, the value of farmland may be primarily based on
its ability to support agricultural production. Factors specific to each par-
cel, such as soil quality, proximity to market terminals, and government
subsidies, play a significant role in determining land values in these cases.
However, farmland located near urban areas may also yield returns from
non-agricultural sources, such as the potential for residential, commercial, or
industrial development. Factors influencing development potential include
proximity to population centers and accessibility to transportation networks
(Kuethe et al., 2011). Both agricultural and non-agricultural factors con-
tribute to variations in farmland prices and pollutant exposure. To account
for these spatially specific factors, we include the poverty level among county
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populations, the concentration of farms, off-farm revenue, and agricultural
practices such as fertilizer and chemical usage, as well as irrigation. A com-
prehensive description of all selected covariates is provided in Table A.3 in
Appendix A.

3.3. Unconditional quantile regressions

We finally extend our analysis by examining how compliance with the NAAQS
affects the observed disparities in farmland values. To explore this distribu-
tional effect, we utilize recent advancements in quantile regression, focusing
on unconditional quantile regression (UQR) models. Specifically, we employ
recentered influence functions (RIF) developed by Firpo et al. (2009).

While conditional quantile regression methods offer insights into treatment
effects for individuals at various points in the outcome distribution, UQR
models are more aligned with our research question as they analyze the con-
sequences of the treatment on the entire outcome distribution. Specifically,
in the context of our study, an UQR model allows us to examine how shifts
in the proportion of counties in “attainment” affect the quantile values of the
overall distribution of farmland values across counties. Using such estimates,
we can infer whether changes in farmland values resulting from compliance
with NAAQS contribute to disparities in farmland values among counties
and identify the quantiles that are most affected.

We rely on Firpo et al. (2009) that have introduced the UQR model as a so-
lution to estimate influences on unconditional distributions. They propose a
two-step approach consisting in (1) re-centering the influence function (RIF)
and (2) regressing the RIF on the independent variables in an OLS model.
The RIF is defined as:

RIF (y;Qτ ) = Qτ +
τ − 1 (y ≤ Qτ )

fYQτ

(4)

were 1 describes the indicator function, fYQτ refers to the density of the
outcome at quantile τ , and Qτ is the sample quantile value of τ . The RIF
has only two values, one for units with an outcome value below or equal to
the quantile value Qτ and one for units with an outcome value larger than
Qτ .
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From a technical point of view, the UQR approach compares two counter-
factual distributions: one where all units are treated and one where none
are treated. Thus, the UQR coefficient refers to changes from 0% of counties
being classified in “nonattainment” to 100% being classified in that category.
However, the main weakness of RIF regressions is that coefficients provide
only local approximations of the effect of changes in the distribution of the
independent variables and should not be used to make inferences about the
coefficients of categorical variables as changes from 0 to 1 (Essama-Nssah
and Lambert, 2012).

Recent studies, including Rothe (2010), Donald and Hsu (2014), Firpo and
Pinto (2016), and Firpo et al. (2018), have proposed methodologies relying on
reweighting schemes to address this weakness. These methodologies rely on
parametric or nonparametric strategies to obtain inverse probability weights
that can be used to identify counterfactual distributions and identify the
treatment effects on distributional statistics. As in the DID framework, we
use the IPW estimator on the same covariates to estimate the UQR model.
We also employ the Doubly Robust estimator to check the robustness of our
findings.

4. Results

4.1. Average effects

We begin with the analysis of the average effects of compliance with the
NAAQS for the treated counties, relative to the control counties. The results
are presented in Table 1.

The treatment coefficient is negative and statistically significant at the 1
percent level. This finding indicates that air quality regulations adversely af-
fect farmland values in newly regulated counties, relative to those already in
“attainment”. The economic impact of this effect is considerable. With the
dependent variable measured as a logarithm, farmland values, expressed in
dollars per acre, decrease by 10% in counties meeting NAAQS requirements
compared to counties already in “attainment”. Importantly, this effect re-
mains consistent across the two estimators used in the analysis and is robust
to the implementation of the treatment. Indeed, our results suggest that the
staggered treatment has a statistically significant negative effect on farmland
values in the post-treatment period, particularly for the Group (2007).
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Tab. 1 DID results

Inverse Probability Weight Doubly Robust Estimator

Coeff. se
95% CI

Coeff. se
95% CI

lower upper lower upper

Simultaneous treatment (2007)

ATT (pre) 0.0054 0.0156 -0.0253 0.0359 0.0024 0.0154 -0.0278 0.0326
ATT (post) -0.0915∗∗∗ 0.0169 -0.1246 -0.0584 -0.0953∗∗∗ 0.0151 -0.1248 -0.0657

pre-trend 0.1175 0.0243
p-value 0.7318 0.8761
N 9019 9019

Staggered treatment

ATT (pre) -0.0092 0.0121 -0.0329 0.0145 -0.0102 0.0121 -0.0338 0.0135
ATT (post) -0.0957∗∗∗ 0.0153 -0.1257 -0.0657 -0.1021∗∗∗ 0.0149 -0.1314 -0.0729
Group mean -0.0893∗∗∗ 0.0147 -0.1182 -0.0605 -0.0942∗∗∗ 0.0139 -0.1216 -0.0669
Group (2007) -0.1148∗∗∗ 0.018 -0.1502 -0.0795 -0.1263∗∗∗ 0.0183 -0.1621 -0.0905
Group (2012) -0.0452 0.0246 -0.0935 0.0031 -0.0387 0.0209 -0.0796 0.0022

pre-trend 1.4520 2.0495
p-value 0.6934 0.5622
N 9390 9390

Note: The dependent variable is the logarithm of farmland values. All regressions include
county fixed effects and year fixed effects and control for parallel trends for the treated
and control groups in the pretreatment period. The t-statistics are based on bootstrapped
standard errors clustered at the county level with 10,000 repetitions. ∗, ∗∗, and ∗∗∗ indicate
significance at the 10%, 5% and 1% levels, respectively.
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Figure 4 presents the estimated event-study coefficients from Equation (1).

Fig. 4 Dynamic treatment effects

Note: The left plot displays the event-time coefficient estimates derived from Equation (1),
where the dependent variable is farmland values. The regression analysis adjusts for fixed
effects at both the county and year level. The right plot is based on relative time rather
than calendar years, centered around the implementation of the treatment (time 0). The
dashed lines in blue and red represent the estimates obtained using the Inverse Probability
Weighting (IPW) estimator and the Doubly Robust estimator, respectively. The shaded
areas around these lines indicate the bootstrapped (10,000 reps) 95% confidence intervals
associated with each set of point estimates.

There are two main findings. First, in the years leading up to the implemen-
tation of the regulation, the trends in farmland values between the newly
regulated counties and the unregulated counties are not statistically differ-
ent from zero. Five years following the policy’s implementation, farmland
values per acre in counties subject to new regulations experience a decline of
approximately 10%, compared to those in unregulated counties. This reduc-
tion persists until the end of our observation period. The patterns observed
in the staggered treatment appear even more pronounced, compared to the
simultaneous treatment. Consistent with the estimate results in Table 1, the
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findings suggest that the compliance with NAAQS, whether applied simul-
taneously or in a staggered fashion, has exerted a negative effect on newly
regulated counties over the considered period.

4.2. Balance and positivity diagnostics

The validity of our previous results relies on the assumption that there are
no differential trends for the treated and control groups in the pretreat-
ment period. To address any initial imbalances between the two groups, we
have employed reweighting procedures, as previously stated. The primary
objective of these reweighting methods is to enhance balance between the
treatment and control groups in observational studies, where randomization
is not possible, by aligning the covariate distributions of the two groups
more closely, based on pretreatment periods. When executed correctly, this
process significantly reduces model dependence, diminishes the potential for
bias, decreases variance, and consequently, lowers the mean squared error.
Thus, validating these procedures is crucial to ensuring they effectively yield
unbiased and accurate estimates of treatment effects (Wei et al., 2023).

In practice, two important diagnostic evaluations are conducted when using
Inverse Probability Weighting (IPW). The first is evaluating the covariate
balance (before and after weighting) and ensuring that weighting leads to
comparable treatment groups, with respect to the measured covariates. The
second involves assessing the positivity assumption by looking at the overlap
of the propensity score distributions between the treatment groups and their
common support. While the common support assumption is not required for
estimators based on IPW, parametric models are only approximations of the
true model, and one may suspect that their out-of-support predictions might
be particularly unreliable. A lack of sufficient overlap may be indicative of
a violation of the positivity assumption, which can result in extremely large
IPW weights.

Table 2 displays the unadjusted and adjusted standardized mean differences
(SMD) and variance ratios (VR) for the selected covariates. These metrics are
used to evaluate whether the covariates are balanced between the treatment
and control groups both before and after reweighed adjustments. We observe
that adjusting for the selected covariates leads to a significant reduction in
the standardized mean difference and variance ratio between the treatment
and control groups. This adjustment has, therefore, improved the precision
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of our treatment effect estimations.

Tab. 2 Balance table

Unadjusted Adjusted

SMD VR SMD VR

Drought 0.223 1.188 0.019 1.242
Inversion 0.409 3.296 0.068 1.863
GDD 0.276 1.371 0.089 1.106
Poverty 0.987 1.858 0.081 1.307
Offfarm 0.064 1.135 0.012 1.272

Chemical 0.433 1.263 0.012 1.092
Fertilizer 0.547 1.285 0.008 1.042
Irrigation 0.549 1.917 0.044 1.160
Concentration 0.610 1.480 0.021 1.245

Note: Unadjusted (Ajusted) Standardized Mean Difference (SMD) measures the difference
in means between the treatment and control groups for each covariate, standardized by the
pooled standard deviation. It provides an indication of the covariate imbalance (balance)
between the groups before any adjustments (after adjusting for potential confounders).
Unadjusted (Ajusted) Variance Ratio (VR) compares the variances of the covariates be-
tween the treatment and control groups. It helps assess whether the variances are similar
between the groups before any adjustments (after adjusting for potential confounders).

We conduct an additional, in-depth diagnostic assessment to evaluate the
quality of the matching between the treatment and control groups. Pre-
cisely, we compare the propensity scores calculated for each county based
on pre-treatment conditions, before and after applying weighting, to assess
the effectiveness of the IPW method in reducing imbalances between groups.
Figure 5 illustrates the propensity score distribution before and after the
adjustment method.

In the unadjusted sample, the distribution of propensity scores for the treated
and control groups are not well-aligned. The control group (in darker shade)
shows a different distribution pattern compared to the treated group (in
lighter shade). There is some overlap in the middle range of propensity scores,
but the peaks of the distributions are offset from each other. Figure 5 suggests
that, before adjustment, there is a selection bias in the treatment allocation,
with the treated group having overall higher or lower propensity scores. In
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Fig. 5 Propensity score distribution before and after the adjustment method

Note: The two histograms compare the distribution of propensity scores for the treated
group (in lighter shade) and the control group (in darker shade) in both the unadjusted
sample and the adjusted sample.

the adjusted sample, the overlap between the treated and control groups is
much more substantial. The distributions are more similar, indicating that
the weighting scheme has improved the balance between the two groups.

Therefore, Figure 5 indicates that our adjustment method has effectively
balanced the propensity score distributions between the treated and con-
trol groups. This balance is crucial for making causal inferences about the
treatment’s effect. Specifically, the absence of significant pre-trends further
strengthens our previous results by confirming that the effects of compliance
with NAAQS can be attributed to the treatment rather than to pre-existing
conditions or trends. This adjustment is also crucial for inferring unbiased
estimates of how compliance with the NAAQS affects various points in the
distribution of farmland values.

4.3. Distributional effects

While the estimates from Table 1 and Figure 4 tell us about the average
effects in the treated counties, relative to the controls, they tell us little
about other parts of the farmland value distribution that might otherwise
be affected by the air quality regulations. To examine this distributional
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impact, we now turn to unconditional quantile regression estimates.

Table 3 presents the results from the estimation of the Recentered Influence
Function (RIF) over several time intervals.

Tab. 3 RIF-OLS results

τ = 0.1 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.90

ATT (2002 - 2007) -0.321∗∗∗ -0.156∗∗ -0.0447 0.0157 0.0869
(0.0703) (0.0558) (0.0463) (0.0533) (0.0699)

ATT (2002 - 2012) -0.341∗∗∗ -0.264∗∗∗ -0.116∗ -0.0374 0.140
(0.0753) (0.0589) (0.0590) (0.0616) (0.0769)

ATT (2002 - 2017) -0.343∗∗∗ -0.205∗∗ -0.134 0.0865 0.132
(0.0792) (0.0678) (0.0696) (0.0731) (0.0890)

ATT (2002 - 2022) -0.370∗∗∗ -0.298∗∗∗ -0.203∗∗ 0.0967 0.180∗∗

(0.0853) (0.0803) (0.0775) (0.0714) (0.0684)

Note: The Table presents results from the RIF regression at different quantiles of the
farmland value distribution. The ATT is measured over several time intervals: 2002 to
2007, 2002 to 2012, 2002 to 2017, and 2002 to 2022. The quantiles (τ) range from the
10th percentile (0.1) to the 90th percentile (0.90) of the farmland value distribution. ∗,
∗∗, and ∗∗∗ indicate significance at the 10%, 5% and 1% levels, respectively.

The estimates indicate that the ATT is consistently negative and statistically
significant at the lower quantiles (0.1 and 0.25) across all time periods. This
suggests that the implementation of NAAQS has had a negative effect on
the value of farmland, particularly at the lower end of the value distribution.
This effect diminishes and loses statistical significance as we move towards
the median (0.50) and is not significant at higher quantiles (0.75 and 0.90)
except for the 90th percentile in the 2002 to 2022 interval where it becomes
positive and significant. For the earliest period (2002 - 2007), the impact of
NAAQS on farmland values is highly significant at the lower quantile (0.1)
but becomes insignificant as we reach the median and upper quantiles. Over
time, the treatment effect remains significantly negative at the lower quan-
tiles (e.g., 2002 - 2022), indicating a persistent adverse impact of NAAQS on
farmland values at these levels. Comparing ATT across years for each quan-
tile, it appears that the negative impact of NAAQS on lower-value farmland
(0.1 and 0.25 quantiles) has either remained stable or slightly increased over
time, indicating that the regulatory standards imposed by NAAQS have been
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more burdensome on lower-valued farmland.

Figure 6 illustrates the evolution over time of the estimated coefficients from
the RIF estimation. The results show that the estimated impact of NAAQS
on farmland values has generally been negative across all quantiles over the
years, with the magnitude of the effect varying by quantile and time period.
For the earliest period (2002-2007), the impact is negative across all quantiles
and is less negative as the quantile increases, suggesting that higher-valued
farmland experienced a lower negative effect from NAAQS during this time.
As we move to later periods, the magnitude of the negative effect seems to
increase at the lower quantiles (indicating a greater negative impact on lower-
valued farmland), while the effect at the higher quantiles appears to be less
negative and even positive by 2022. The increasing negative impact at lower
quantiles in later years suggests that NAAQS have progressively placed a
heavier burden on less valuable farmland or that the standards have become
stricter over time. On the contrary, the lesser negative impact and the shift
towards a positive effect at higher quantiles in later years indicate that more
valuable farmland has been able to adapt or benefit from the regulations
implied by NAAQS over time, possibly due to having more resources to
comply with or benefit from air quality improvements.

Fig. 6 RIF-OLS results

Note: The plot illustrates the relationship between the treatment effect (coefficients) and
the quantiles (τ) of the farmland value distribution for different time periods from 2002
to 2022.
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5. Conclusion

In this paper, we use a panel of 1,927 corn and soybean producing counties
within the United States to examine the impact of air quality regulations on
disparities in farmland values from 1997 to 2022.

Our results firstly suggest that the implementation of NAAQS has adversely
affected farmland values, particularly evident after the policy was put in
place. We find that the impact of NAAQS has been more pronounced in the
immediate aftermath (2007) and appears to have persisted but was not be
as strong in later years (2012). The negative effects are consistent across a
simultaneous treatment and a staggered one, suggesting that the treatment
effects are robust to different difference-in-differences frameworks. Moreover,
the use of two different but converging estimation methods strengthens the
validity of the results.

Secondly, we provide evidence that the benefits of the NAAQS measured
through the capitalization of air quality improvements in farmland values
were regressive. Indeed, a consistent pattern of significant negative effects at
lower quantiles across all time frames indicates that the NAAQS have had a
sustained adverse effect on the value of less valuable farmland. This outcome
may be attributed to the compliance costs or changes in land use prompted
by the regulations, which seem to have disproportionately affected counties
with lower farmland values.

Therefore, our findings offer essential insights into the environmental policy
aspects of agricultural production. Given that the NAAQS aim to safeguard
public health through air quality regulation, a detrimental effect on farmland
values suggests that policymakers should strive to balance environmental
goals with the economic repercussions for landowners. Specifically, our results
highlight the importance of implementing economic support or compensation
for landowners negatively impacted by NAAQS, particularly those at the
lower spectrum of the farmland value distribution.
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Appendix

Appendix A - NAAQS timeline and covariates descrip-
tion

Tab. A.1 PM2.5 NAAQS timeline

Publication Type Norm Level Form

1997 / Jul 18, 1997 Primary &
Secondary

24 hour 65 g/m3 98th percentile,
averaged over 3
years

1997 / Jul 18, 1997 Primary &
Secondary

Annual 15.0 g/m3 Annual
arithmetic
mean, averaged
over 3 years

2006 / Oct 17, 2006 Primary &
Secondary

24 hour 35 g/m3 98th percentile,
averaged over 3
years

2006 / Oct 17, 2006 Primary &
Secondary

Annual 15.0 g/m3 Annual
arithmetic
mean, averaged
over 3 years

2012 / Jan 15, 2013 Primary Annual 12.0 g/m3 Annual
arithmetic
mean, averaged
over 3 years

2012 / Jan 15, 2013 Secondary Annual 15.0 g/m3 Annual
arithmetic
mean, averaged
over 3 years

2012 / Jan 15, 2013 Primary &
Secondary

24 hour 35 g/m3 98th percentile,
averaged over 3
years

2020 / Dec 18, 2020 No revision.
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Tab. A.2 O3 NAAQS timeline

Publication Norm Level Form

1997, Jul 18, 1997 8 hours 0.080
ppm

Annual fourth-highest daily
maximum 8-hr concentration,
averaged over 3 years

2008, Mar 27, 2008 8 hours 0.075
ppm

Annual fourth-highest daily
maximum 8-hr concentration,
averaged over 3 years

2015, Oct 26, 2015 8 hours 0.070
ppm

Annual fourth-highest daily
maximum 8 hour average
concentration, averaged over 3
years

2020, Dec 31, 2020 No revision.
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Tab. A.3 Covariates description and data sources

Variables Description Source

Drought Log of yearly cumulative counts of
moderate to extreme dry conditions
based on the Palmer Drought Severity
Index

Authors calculation
based on the
TerraClimate

Inversion Log of yearly sum of days with surface
thermal inversion

Authors calculation
based on ERA5 -
ECMWF

GDD Log of cumulative sum of Growing
Degree Days (GDD)

Authors calculation
based on Gridmet

Poverty All ages in Poverty, Rate Estimate Census Bureau, Small
Area Income and
Poverty Estimates
(SAIPE)

Off farm Log of off-farm income per operation USDA - Census of
Agriculture

Chemical Log of expenses for insecticides,
herbicides, fungicides, and other
pesticides excluding commercial
fertilizer purchased (per operation)

USDA - Census of
Agriculture

Fertilizer Log of expenses for fertilizer, lime, rock
phosphate, and gypsum and the costs
of custom application (per operation)

USDA - Census of
Agriculture

Irrigation Log of irrigated culivated lands (per
operation)

USDA - Census of
Agriculture

Concentration Log of number of operation per crop
acres harvested

USDA - Census of
Agriculture
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Appendix B - Climate and atmospheric covariates

Growing degree days

The calculation of degree days, often referred to as “growing degree days”
(GDD), is tailored to the specific thermal requirements of a crop. The method
involves using a base temperature (the minimum temperature required for
crop growth) and an upper threshold (the temperature beyond which addi-
tional warmth does not accelerate growth).

We follow Butler et al. (2018) to calculate GDDs using daily maximum and
daily minimum 2 m temperature data from ERA5-Land. ERA5-Land is a
reanalysis dataset that offers gridded data at a resolution of 0.1°× 0.1° over
the global land surface (Muñoz-Sabater et al., 2021). For any grid point g
at any given day d, we compute daily heat unit, GDDg,d, as:

GDDg,d =
T ∗
min,g,d + T ∗

max,g,d

2
− Tlow (B.1)

where,

T ∗
max,g,d =


Tmax,g,d if Tlow < Tmax,g,d < Thigh,

Tlow if Tmax,g,d ≤ Tlow,

Thigh if Tmax,g,d ≥ Thigh

T ∗
min,g,d is defined by using the same low and high bounds of Tlow = 8°C and
Thigh = 29°C.

We then sum GDDg,d over each annual corn and soybeans growing season
(from April 1st to September 30th) from 1997 to 2022.

To ensure that we incorporate only regions where corn cultivation is prevalent
before computing average EDD values at the county level, we utilize the
USDA NASS Crop Frequency Layer (CFL) for corn and soybeans. This layer
provides information on the number of years, spanning from 2008 to 2022,
during which corn and soybeans have been cultivated at a particular 30-meter
grid point. We calculate the average values from the EDD grid points to
obtain EDD values at the county level. These values correspond specifically
to areas where frequent corn and soybeans cultivation is substantial. Finally,
wecalculate the annual total of “growing degree days” for each county..
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Drought conditions

We use the Palmer Drought Severity Index (PDSI) developed by Palmer
(1965), which is a widely used measure for assessing drought severity based
on meteorological data. Since we are interested in the effects of drought on
agricultural outcomes, we compute county-level PDSI that reflect drought
severity in corn and soybeans areas. To do this, we match each PDSI grid
cell value to agriculture production areas using the USDAs Cropland Data
Layer (CDL) hosted on CropScape. We then spatially aggregate monthly
PDSI grid cell values at the county level. We use a weighted spatial mean
that considers the fraction of the cell covered by each county’s borders, to
obtain agricultural county-specific measures of relevant climate conditions.
Finally, we cumulate over each year the number of times each county was
affected by moderate to extreme dry conditions drought conditions.

Thermal inversions

Several studies have shown that the use of high-altitude weather conditions,
especially thermal inversions, allows for the isolation of the causal effect
of pollutants on economic activity (Avila Uribe, 2023; Dechezleprtre et al.,
2019). During a thermal inversion, the atmosphere is stable and air circula-
tion is very limited, the inversion layer then acts as a “lid” blocking pollutants
along the layer and thus promoting the occurrence of pollution peaks.

Data on thermal inversions comes from the ERA5 reanalysis. We obtain
mean air temperature measures over the North American domain at a spatial
resolution of 0.1° from January 1, 1995 00:00:00 UTM to December 31, 2020
18:00:00 UTM (every 6 hours). Temperature (tmp) are retrieved at multiple
pressure levels from 1000 hPa (approximately 111m above the surface) to 1
hPa (top of atmosphere) divided into j = 1, ..., 37 categories where j = 1
denotes the lowest atmospheric level above surface (higher pressure level).
Since, surface pressure may be lower than atmospheric pressure at higher
pressure levels due to land surface elevation or low pressure system, j is
defined dynamically in each grid cell and for each time unit so that the index
j = 1 always corresponds to the lowest pressure level above surface.

Following Dechezleprtre et al. (2019) and Chen et al. (2018), we define the
presence of thermal inversions τ if temperature inversions occur between the
lowest level and the second lowest level above the local surface for any gridcell
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and any time level unit:

Invs =
tempj=2 − tempj=1

zj=2 − zj=1

× 1{IJ > γ} (B.2)

where 1{IJ > γ} = 1 if IJ > γ and 0 otherwise. temp is the air temperature
and z is the altitude. tempj=2 − tempj=1 is the strength of the temperature
inversion in Kelvin, and zj=2− zj=1 is the depth of the inversion measured in
hPa. The parameter γ (0 ≤ γ ≤ 0.5) measures the critical adiabatic thermal
gradient in K · hPa−1, characterizing the magnitude of the inversion.

Our final index is calculated as the sum of days with at least one thermal
inversion during a year. Our benchmark index is calculated using γ = 0. We
conducted tests on various threshold levels for the parameter γ to identify
days with the most significant thermal inversions, which yielded comparable
results in our econometric analyses.
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