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• Elemental asymmetry factor a very relevant feature.
• Manufacturing route influences both hardness and elongation.
• Scale invariant composition optimization incorporated in AlloyManufacturingNet.
• Sintering maximizes hardness in Crx Wy(ZrHfNb)1−x−y and Crx Wy(VNbTa)1−x−y alloys.
• CoCrNiNbx alloy with x>0.25 exhibits hardness-ductility synergy.
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ABSTRACT
Located around the center of multicomponent phase space, multi-principal element alloys
(MPEAs) are often characterizedwith a unique blend of contrasting physico-chemical properties,
and have a good prospective of presenting hardness-ductility synergy. A datasets of MPEAs
fabricated by casting, wrought, sintering, annealing procedures, was collected and the mean
values for hardness and elongation was determined as 495.3 HV and 22.16 % respectively.
After screening and processing the datasets with the help of feature selection by tools such as
Pearson’s correlation coefficient, multicollinearity analysis and principal component analysis,
artificial neural networks (ANNs) were subsequently trained in this study. An ensemble of these
networks known as AlloyManufacturingNet was then purposed as the prediction toolkit for the
inverse alloy design in applications including metamorphic manufacturing. During the in-silico
design of external elements doped ZrHfNb and VNbTa alloys for maximum hardness,the model
has estimated that Cr0.4W0.5(ZrHfNb)0.1 and Cr0.5W0.3(VNbTa)0.2, both fabricated by sinteringmethod, show hardness values of 684.49 and 733.42 HV respectively. While Ti0.7(ZrHfNb)0.3prepared via annealing procedure shows the largest elongation of 43.52 % in the category
of ZrHfNb-derived alloys, Mo0.1Ti0.8(VNbTa)0.1 processed through the wrought process is
estimated to have a maximum elongation of 34.36 % in the group of VNbTa-derived alloys.
For establishment of the hardness-ductility synergy as required in structural applications, the
composition spaces for givenmanufacturing routes have been searchedwith themachine learning
model. In general, theMPEAs derived from baseVNbTa alloy tend to perform better in context of
possessing composition values having both the hardness and ductility above the aforementioned
mean values. The machine learning based estimation was done in another MPEA, namely,
CoCrNiNbx alloy to quantify the change in hardness with the change in Nb content, and the
mechanistic insights were obtained via molecular dynamics simulations.

1. Introduction
The high entropy alloys (HEAs) ubiquitously also known as multi-principal element alloys (MPEAs) in literature

are alloys that consist of five or more principal (or base) elements having an equal or near-equal proportion ranging
from 5% to 35% of base elements in them [1, 2, 3, 4]. The Medium Entropy Alloys (MEAs) are the MPEAs consisting
of three or four base elements [5]. The concept of HEAs was first introduced to the scientific community in 2004 by
Yeh et al. [6]. Since their inception, HEAs have received attention in material design because of the possibility to
obtain products with enhanced mechanical properties [7, 8, 9, 10], high hardness [11], greater wear resistance [12],
outstanding high-temperature resistance [13, 14], fracture resistance [15], lower temperature ductility [16] among
others. Thereby making multi component alloys an excellent choice for material design. The design of MPEAs is not
a straightforward task as there can be an infinitely large combination of constituent elements and their proportions that
can impart given set up features and propeties in the resulting alloys [17]. In addition to that, experiments on different
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element compositions by trial and error consume both time and resources without any certainty of better outcomes.
However, various techniques have been developed for the design of MPEAs from simple empirical rules [18, 19] to
computational complexmodels like calculation of phase diagram (CALPHAD) [20], Density Functional Theory (DFT)
[21], ab-inito calculations [22], and Molecular Dynamics (MD) [23, 24]. Recently, machine learning (ML) techniques
have gained popularity in MPEA design because of their efficient computational time and cost in contrast to the first
principal methods and CALPHAD [25, 26]. Artificial neural networks (ANN) are quite successful in phase prediction
of compositionally complex alloys [27, 28].

Hardness is one of the crucial mechanical properties that have to be considered in material design because of
its tendency to resist localized plastic deformation, indentation, and scratching. The dispersion in hardness values
provides valuable physical and mechanical insights into material properties, reflecting inherent variability and aiding
scientific understanding [29]. Wen et. al. presented an ML-based technique to obtain new MPEAs with high hardness
values in Al-Co-Cr-Cu-Fe-Ni alloys taking 91 observations [30]. Although more datasets are available in the literature,
this work studies the hardness of only specific MPEA systems. Chang et. al. used neural network model on 155 HEA
samples [31] which considered an alloy system consisting of 8 elements only. Bhandari et. al. predicted the hardness of
refractory HEAwith 128 as-cast data observations [32]. All of these works show decent prediction accuracy. However,
they are trained with at most 155 datasets and with a limited elemental framework of 6, 8 and a maximum of 17 by
Bhandari et. al. This excludes considerable alloys, including refractory MPEA. Bakr et al predicted hardness onMPEA
by taking 427 datasets consisting of 18 elements and manufactured by casting and powder metallurgy [33]. Beniwal
et al presented an ensemble artificial neural network trained with 218 MPEAs consisting of 22 elements fabricated by
casting, tested with separate 58 MPEAs (manufactured by casting and sintering method only) and features selected
from 22 pool of alloys and elemental descriptors [34]. The study is successful in capturing the non-linear relationship
between input features and hardness. However, the model was trained only for prediction of hardness feature, and
does not include the estimation of elongation. It is therefore necessary to build an inclusive model that can express
on the ducitility of MPEAs along with the information on the hardness. The ductility of material can be explained by
yield strength, ultimate tensile strength, and elongation. Hard materials are unlikely to have large elongations. Liu et.
al studied the empirical relation for the prediction of elongation on as-cast Al-Co-Cr-Fe-Ni MPEA by analyzing the
volume fraction of different microstructures and the application of CALPHAD. Both root mean squared error and mean
absolute error for the elongation obtained is 20.1 %. Among various properties predicted using the empirical method,
the prediction of elongation has very low accuracy [20]. There has been no data-driven approach for the prediction of
elongation in combination with hardness assessments for the MPEA.

The information on hardness is important as an alloy with high hardness usually has lower ductility which limits
its design scope [37]. The high-temperature plastic deformation impacts the hardening kinetics, revealing differences
in intensity tied to dislocation microstructure changes [38]. Also, the abrasion resistance of the material is dependent
on the ductility in addition to the hardness. The hard and ductile alloy is found to have better wear resistance properties
than the alloy with only a high hardness value [39]. Therefore, it is essential to study both hardness and elongation
together in order to expand the design scope of the alloy. The percentage elongation is the ductility property of a
material. Singh et al. [40] have recently introduced local-lattice distortion (LLD) metric as an estimator of the ductility
for refractory multi-principal element alloys. The establishment of this quantum mechanical dimensionless metric for
ductiliy opens the door to benchmark percentage elongation values of different sets of alloy compositions. Pugh’s
ratio, positive Cauchy Pressure and Valence Electron Concentration (VEC) are among the widely accepted indicators
of material ductility [40, 41, 42, 43, 44, 45, 46]. A data-driven model constructed from the data encompassing these
indicators can be a promising tool for the accurate foretelling of the percentage alloy of a new MPEA. The knowledge
of both hardness and elongation is crucial so as to get desired applicability of the alloy. Most of the studies hitherto
associated with hardness and elongation prediction uses small datasets, consisting of few elemental compositions, and
fails to generalize the model for MPEAs manufactured by different techniques. Moreover, no study has been done to
capture both the hardness and ductility of the MPEAs. There can be design limitations to come up with the desired
combination of hardness and elongation in conventional alloys. That restriction can be avoided with the research in
MPEA. Hence, a data-driven study on both hardness and elongation can provide an accelerated search for optimized
MPEA.

Apart from the initial phases of digital manufacturing, computer numerical control (CNC) and additive manufac-
turing, a novel approach called metamorphic manufacturing, envisioned by researchers [47], has emerged. This method
employs digitally controlled incremental forming [47, 48], including thermal manipulation, to create engineering
components with site-specific properties governed by local microstructures [49]. HEA or MPEA are ideal for
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Figure 1: Common manufacturing routes for fabricating MPEAs. a) casting (CAT-A), b) Wrought and remaining all
(CAT-B), c) powder metallurgy (CAT-C), and d) annealing (CAT-D). The image in a) is adopted from Paganotti et al
[35] and in d) is adopted from Lee et al [36].

metamorphic manufacturing due to their capacity to modify structural and functional properties within a single alloy
composition using diverse manufacturing methods or processing strategies [49]. Yet, the challenge lies in the limited
availability of property databases for MPEAs at specific compositions and processing routes. Developing design charts
encompassing material properties for a given MPEA at a particular composition across various manufacturing routes
is crucial for advancing the metamorphic manufacturing sector rapidly.

In this study, alloy datasets were categorized into four main manufacturing routes: casting (CAT-A), wrought and
miscellaneous (CAT-B), powder metallurgy (CAT-C), and annealing (CAT-D). Casting involves repeated cycles of
melting and solidification using an MPEA crucible (Fig. 1 (a)) [35]. Wrought and miscellaneous processes encompass
smelting, mixing, and forming billets or slabs (Fig. 1 (b)). Powder metallurgy includes sintering to create a sintered
MPEA with pores between grains (Fig. 1 (c)), while annealing involves a series of processes like VAR, hydrogen
annealing, milling, sieving, and vacuum annealing to form MPEA spheres from powder form using thermal plasma
(Fig. 1 (d)) [36]. These categories correspond to different thermomechanical processing routes.

The machine learning toolkit AlloyManufacturingNet was developed to predict MPEA’s contrasting mechanical
properties: hardness and elongation. In our study, we emphasize the dataset’s complexity’s role in model accuracy.
Simplifying complex datasets can enhance deep learning model accuracy, akin to "Kolmogorov complexity." Notable
papers show reduced complexity boosts accuracy by curating and preprocessing data, striking a balance between
advanced methods and data quality for better predictions [50, 51]. Extensive training data, including alloy and
elemental descriptors, were obtained from published sources. Feature selection and hyperparameter tuningwere used to
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Figure 2: Schematic workflow for distilling the high entropy alloys dataset includes the processes such as auto
featurization, feature reduction, learning the characteristics of data and designing property contours. a) The raw datasets
obtained from the published literature is converted into numerical fingerprints, and the featurization is automated using
Matminer and Pymatgen libraries. Property features are also obtained at this stage. b) The pool of property features
is analyzed statistically using feature selection techniques such as PCC Heatmaps and principal component analysis
(PCA). The datasets with reduced features are classified into different categories in accordance with the corresponding
manufacturing technique. c) To account for the effects of categorical inputs, ensemble learning is implemented while
training the neural network with hardness or elongation as an output feature. d) The prediction models are then utilized
in the hardness and elongation design of a generic refractory MPEAs.

optimize the model. This trained model was applied to design alloys for hardness-ductility synergy, considering various
constituent element compositions and manufacturing routes. Additionally, it assessed the impact of manufacturing
routes on the properties of ZrHfNb and VNbTa alloys with different dopant elements and compositions. Molecular
dynamics simulations were conducted for nanoindentation tests on CoCrNiNbx alloys produced by the casting processto elucidate predicted hardness properties.

2. Quantitative Profiling and Ensemble Machine Learning
The general workflow for data-driven design of hardness and elongation of multi-principal element alloys is

presented in Fig. 2. As revealed in Fig. 2(a), it is first necessary to collect raw dataset of MPEAs from published
literature. After performing numerical fingerprinting for the data, the designated features was screened for sorting out
the important features as depicted in Fig. 2(b). This will help in the construction of a robust and physically intuitive
machine learningmodel. In order to cope with the diversity in the origin ofdataset sources, ensemble models (Fig. 2(c))
can be trained with the data. The prediction models will then act as the source for generic design of MPEA materials.
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2.1. Featurization and numerical fingerprinting
The first task in data-driven modeling is to collect the data from sources, and in this work, the data related to

hardness and elongation were obtained from published works [6, 32, 34, 52, 53, 54, 55, 56, 57]. Only the experimentally
validated and published data are considered in this work. The collected datasets are automatically featurized so as to
obtain constituents element and their corresponding compositions. The pymatgen and matminer python libraries are
used for the automatic featurization [58]. A pragmatic approach is taken by considering the nominal composition
when the true composition of the material is unavailable or not well-documented. Additionally, for model training
and testing, data specifically selected from tests conducted at room temperature is employed. The collected datasets in
Fig. 3 encompass various alloy compositions, mechanical properties (hardness and elongation), fabrication methods,
and phases. Four manufacturing route categories (CAT-A, CAT-B, CAT-C, and CAT-D) are depicted in bar charts for
hardness (Fig. 3(a)) and elongation (Fig. 3(c)) data. Regarding the hardness data forMPEAs, initially, 706 observations
were gathered, excluding binary alloys. To focus on high entropy alloys with 3 to 7 components, a filtering code was
applied, resulting in 683 remaining observations, categorized by manufacturing type (Fig. 3(a)) and component count
(Fig. 3(e)). The final hardness dataset included 22 elements (Fig. 3(b)). For the elongation datasets, comprising
353 observations with 26 elements (Fig. 3(c)), each MPEA had 3 ≤ N ≤ 9 components shown in Fig. 3(g). Box plots
visually conveyed phase structure information for hardness (Fig. 3(f)) and elongation (Fig. 3(h)) datasets, showing both
single- and multi-phase MPEAs. Hardness values ranged from 109 to 1084 HV (Fig. 3(f)), while elongation values
in Fig. 3(h) spanned from 0 to 96.2%. The experimental specimens reported in the abovementioned sources of the
elongation test datasets of MPEAs all have the length / thickness within the range of few millimetres, strain rate in the
range of 1.0 × 10−4-10× 10−4 s−1 and total loading time of 15-20 s. The specimens for compression based deformation
were generally of cylindrical geometry whereas those for tensile ductility tests were found to be mostly of rectangular
geometry. In order to accomodate the differential effects of tension and compression tests in the percentage elongation
values, the data are categorized into compression test only, tensile test specimens only and mixed (compression +
tensile tests)

To ensure the robustness of a data-driven approach for MPEA material design, it’s essential that the selected
features carry physically meaningful information. This task becomes particularly crucial given the high-dimensional
materials design space, especially in the case of HEAs [58]. The feature pool, outlined in Table 1, encompasses diverse
categories. The first category includes terms derived from Hume-Rothery rules, such as atomic size difference (�),
electronegativity (Δ�), and Valence Electron Concentration (VEC). Features like � andΔ� are relevant as they capture
relative atomic sizes and chemical compatibility among constituent elements inMPEAs, respectively. Another category
incorporates concepts frommaterials and alloy thermodynamics, encompassing Enthalpy of Mixing (ΔHmix), EntropyofMixing (ΔSmix), AverageMolar Heat Capacity (�Cp), Geometrical Parameter (�), and Dimensionless Parameter (Ω).
Notably, Ω stands out as a feature because it amalgamates ΔHmix, ΔSmix, and the average melting temperature Tm(K)of an MPEA, providing an alternative solution for the numerical fingerprinting of HEAs’ Gibbs energy of mixing
complexities. Additionally, the feature pool includes the average melting temperature Tm(K) of an MPEA and its
asymmetry ΔTm as independent features, further enhancing the robustness and relevance of data-driven methods for
MPEA material design.

A comprehensive pool of 15 input features was constructed, as detailed in Table 1. These features encompass a range
of elemental and alloying descriptors, including Mean Atomic Radius difference (�), Electronegativity asymmetry
(Δ�), Average Melting Temperature (Tm(K)), Melting Temperature asymmetry (ΔTm), Valence Electron Concentra-
tion (VEC), Average Atomic Number (AN), Thermal Conductivity (K), Average Bulk Modulus (B), Average Shear
Modulus (G), Shear Modulus Asymmetry (ΔG), Average Molar Heat Capacity (�Cp), Entropy of Mixing asymmetry
(ΔSmix), Enthalpy of Mixing asymmetry (ΔHmix), Geometrical Parameter (�), and Dimensionless parameter (Ω).
The mathematical expressions used for numerical fingerprinting of these features are detailed in Supplementary
Materials Table S1. Notably, these features can be categorized into two groups: elemental descriptors, indicating
alloy properties as an extension of the elements in the composition (S.N. 1-11), and alloying descriptors, highlighting
property changes resulting from element interactions in alloy formation (S.N. 12-15). The entropy of mixing was
evaluated using the WenAlloys class from the matminer library [30], while the enthalpy of mixing was derived from
Miedema’s model. Importantly, the feature pool intentionally excludes the feature corresponding to the manufacturing
route or fabrication procedure (MR), signifying its exclusion in correlation analysis and principal component analysis,
with selective utilization in the ensemble machine learning algorithm.
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Figure 3: Understanding the data through visualization is a prelude to featurization. Number of MPEA for different
fabrication routes for a) Hardness c) elongation. Number of occurrence of elements in b) hardness d) elongation. Number
of elements in an alloy system for e) hardness g) elongation. Statistical distribution for seven phase systems with mean,
median, and quartiles (25% and 75%) for f) hardness h) elongation

2.2. Data Preprocessing and Feature Engineering
The collected datasets were divided into training and testing sets to prevent data leakage during preprocessing and

model training. This split ensures that the test data can provide an accurate representation of the model’s performance
on new MPEAs. The random split was conducted with a 90:10 ratio for training and testing data. The distribution of
hardness and elongation values in the training and testing datasets is visualized in Figure 4 (a). Figure 4 (a) i) displays
the distribution of 614 training hardness data points, with a mean of 500 HV, a median of 506 HV, and 10th and 90th
percentiles at 207 HV and 782 HV, respectively. In Figure 4 (a) ii), the distribution of 69 test hardness data points
closely resembles the diversity seen in the training data, with percentiles ranging from 218 HV to 715 HV and a mean
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Table 1
The table’s first column lists the initial 15 input features considered for the feature pool, applicable to both the hardness
and elongation datasets. In the hardness dataset, the output feature of interest is hardness (HV), while in the elongation
dataset, it is elongation (EL). To assess multicollinearity within the feature pool, variance inflation factor (VIF) analysis is
conducted. It’s worth noting that PCC stands for Pearson’s correlation coefficient, and a comprehensive examination of
PCC will be provided in Section 2.2.

Name of Features Hardness VIF Elongation VIF
Before PCC After PCC Before PCC After PCC

Mean Atomic Radius difference (�) 8.3 6.43 5.02 2.2
Electronegativity asymmetry (Δ�) 3.98 1.66 3.37 Dropped
Average Melting Temperature (Tm(K)) 63.1 Dropped 60.48 Dropped
Melting Temperature asymmetry (ΔTm) 4.16 3.19 2.97 2.0
Valence Electron Concentration (VEC) 21.48 2.35 11.1 3.0
Average Atomic Number (AN) 18.55 Dropped 14.46 Dropped
Thermal Conductivity (K) 5.55 Dropped 7.40 Dropped
Average Bulk Modulus (B) 16.55 Dropped 31.21 Dropped
Bulk Modulus Asymmetry (ΔB) 7.5 2.88 6.35 3.32
Average Shear Modulus (G) 3.32 Dropped 7.47 Dropped
Shear Modulus Asymmetry (ΔG) 3.9 1.8 3.25 1.26
Entropy of Mixing asymmetry (ΔSmix) 1.22 Dropped 1.65 1.32
Enthalpy of Mixing asymmetry (ΔHmix) 4.8 3.07 2.99 1.57
Geometrical Parameter (�) 2.2 1.99 2.08 Dropped
Dimensionless parameter (Ω) 1.17 Dropped 1.17 Dropped

of 458 HV. Similarly, Figure 4 (a) iv) represents the distribution of 36 test elongation observations, capturing the
variation observed in the training data shown in Figure 4 (a) iii). The mean elongation values for the training and test
sets are 22% and 25%, respectively.

Following the split, the training set is standardized using Sci-Kit Learn’s StandardScalar() library to achieve a
mean of zero and a standard deviation of one, a common practice in machine learning to mitigate the impact of
feature magnitude variations. The test data is also standardized using the statistics from the training set. However,
it’s worth noting that the four features corresponding to fabrication routes (CAT-A, CAT-B, CAT-C, and CAT-D)
are not standardized. These categorical inputs are one-hot encoded into columns of zeros and ones, representing the
presence or absence of each route for a given MPEA. For example, if an MPEA is manufactured via the casting process
(CAT-A), its corresponding column would have a value of 1, while the other columns (CAT-B, CAT-C, CAT-D) would
have 0 values, resulting in a clear representation of the fabrication route (MR) for that MPEA.

In the course of machine learning model construction, feature selection is defined as a technique of identifying the
subset from a given set of initial features, which can eventually help in realizing the simplification of the future model
and solve problem such as the curse of dimensionality. In other words, feature selection is an important task to perform
for the identification and elimination of redundant input features. The regression type model which gives a numerical
target as output needs a numerical feature selection technique. Two of the most commonly used approaches for the
numerical feature selection for regression models are Correlation metrics and Principal component analysis (PCA).
2.2.1. Variable reduction with PCC heatmaps and multicollinearity analysis

Pearson’s correlation coefficient (PCC) assesses linear relationships among variables, vital for classification or
regression tasks [59, 60]. PCC heatmaps in Supplementary Figure S1 and S2 show correlations between 15 input
variables and target hardness (HV) and elongation (EL). The coefficients range from -1 to 1, with higher absolute PCC
values indicating stronger correlations. Features with PCC above 0.9 are reduced to one, and those below 0.2 with the
target variable are excluded, ensuring relevant input features for model development. Eight features (�,Δ� ,ΔTm, VEC,
ΔB, ΔG, �, ΔHmix) were selected alongside the target HV feature for ML model development. And, In the case of
elongation seven input features (�, ΔTm, VEC, ΔB, ΔG, ΔSmix, ΔHmix) emerged as finalists, following similar PCC
criteria. The PCC heatmap in Fig. 4 (b) reveals that each of these input features has a PCC score of absolute magnitude
larger than 0.2 with target , i.e., HV or EL, and less than 0.9 with other input features. This refined dataset, named
DB1-HV-PCC, comprises these eight features and HV. The corresponding refined dataset for elongation elongation
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Figure 4: Data preprocessing and analysis. a) Distribution of Train-Test split. hardness has 614 train and 69 test data
while elongation has 317 train and 36 test datasets. The plot shows test and train distribution follows similar distribution)
b) Heatmap after feature selection by PCC correspondings to the features of the refined hardness database DB1-HV-PCC
and the elongation database DB1-EL-PCC. The inclusion of ΔB (denominator in Pugh’s ratio), ΔG (numerator in Pugh’s
ratio) and VEC in the feature pool verifies that the information associated with relevant indicators of hardness and ductility
is well preserved within the training datasets. c) Cumulative Explained Variances (EVs) for PCA. This figure illustrates the
feature sets’ ability to capture 90% of the explained variance. DB3-HV-PCA achieves this with 7 out of 15 components,
DB3-EL-PCA with 8 out of 15 components, DB4-HV-PCA with 8 out of 19 features, and DB4-EL-PCA with 9 out of the
same 19 features, as determined by PCA. Additional details are available in Supplementary Material S1 and Figure S3

is labeled DB1-EL-PCC. To account for the influence of manufacturing routes on mechanical properties, the MR
feature was manually added to the DB1-HV-PCC and DB1-EL-PCC datasets, forming DB2-HV-PCC (for hardness)
and DB2-EL-PCC (for elongation). These databases are detailed in Table 2.

The assessment of input feature relevance in our analysis is complemented by the Variance Inflation Factor (VIF),
a metric used to detect multicollinearity. VIF quantifies the correlation strength between independent features by
regressing one feature against all others. Mathematically, for the itℎ predictor feature, VIFi is calculated as

VIFi = 1
1 − R2i

(1)

Where R2i represents the R2 value obtained by regressing the itℎ predictor feature with the remaining predictors
in the dataset. VIF typically ranges from 1 to infinity, with values exceeding 4.00 warranting attention and values
surpassing 10.00 indicating severe multicollinearity, suggesting that a feature is redundant and can be expressed as
a linear combination of others [61]. In our analysis, this criterion was applied to both the hardness and elongation
datasets before and after PCC analysis, as shown in Table 1. Among the 15 hardness data attributes, the average
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melting temperature (Tm(K)) exhibited the highest VIF of 63.1, signifying strong correlation with other variables.
Given its PCC score of 0.00 with HV, Tm(K) was excluded as a less relevant and highly redundant feature. Similarly,
AN (VIF = 18.55, PCC score = -0.11 with HV) and B (VIF = 16.55, PCC score = -0.11 with the output attribute)
were removed from the feature pool. Conversely, despite multicollinearity (VIF = 21.48), VEC was retained due to its
strong negative correlation (PCC score = -0.38) with HV. Features � (VIF = 8.3) and ΔHmix (VIF = 4.8) exceeded
the VIF threshold of 4.0, but their high correlations with HV (PCC scores of 0.57 and -0.60, respectively) justified
their inclusion. � displayed a PCC score of -0.34 with HV and a VIF of 2.2, meeting the criteria for inclusion based on
minimum redundancy andmaximum relevance. However,ΔSmix (VIF = 1.22) andΩ (VIF = 1.17) were dropped due to
weak correlations with the output attribute. After removing seven input features, multicollinearity analysis yielded VIF
values well below 10.00. VEC, originally problematic with a VIF of 21.48, now had an updated VIF of 2.35, resolving
the multicollinearity issue. In the final list of eight selected features, only � (VIF = 6.43) exceeded the warning limit
of 4.00, but its high correlation with the HV feature (PCC score = 0.57) underscored its relevance and utility in the
model.

The combined use of Pearson’s correlation coefficient (PCC) and Variance Inflation Factor (VIF) scores guided
feature selection for the elongation dataset. Features like Tm(K), AN, and B, which displayed poor correlations with
elongation (EL) and significant multicollinearity issues with other input features (PCC scores of -0.08, -0.04, and 0.00
with EL, and VIF values of 60.48, 14.46, and 31.21, respectively), were removed from the feature pool. FeaturesΩ (VIF
= 1.17) and � (VIF = 2.08), despite lacking multicollinearity issues, were also eliminated due to their weak correlations
with EL. This led to the exclusion of 8 features (Δ� , Tm(K), AN, K, B, �, and Ω) from the elongation dataset. The
remaining 7 features, each exhibiting an absolute PCC score with EL equal to or greater than 0.2, were subjected to
multicollinearity analysis, resulting in VIFs below 4.0 for all selected features (Table 1). Importantly, these analyses
underscored the limited relevance of average values of physical quantities in multi-principal element alloys (MPEAs),
with most averaged quantities, initially included in the feature pool, being eliminated. Instead, the asymmetry factor in
the magnitudes of physical properties of constituent elements within MPEAs emerged as a significant determinant of
the output features (HV or EL). Asymmetry features related to melting temperature, bulk modulus, shear modulus, and
enthalpy of mixing, along with the Mean Atomic Size Difference, were included in both the hardness and elongation
datasets, highlighting their role in data-driven alloy property design (Fig. 4(b)).

It is noteworthy to mention that the reduced pool of selected features from the PCC correlation methodmust include
the attributes considered as the significant indicators of hardness and ductility metrics from the viewpoint of physics.
Pugh’s ratio [41], defined as the ratio of shear modulus and bulk modulus, is known to be a de-facto indicator of
hardness [46, 62] and ductility [40, 42, 46] for several classes of materials. Besides, Pugh’s ratio; Cauchy pressure is
also regarded a significant indicator for the elongation and hardness properties. In other words, Pugh’s criterion [41]
and Pettifor criterion [43, 44] are the two classical criteria to estimate whether a material is ductile or brittle [63]. By
establishing the relationship between Pugh’s ratio and Cauchy pressure, Senkov andMiracle [63] have revealed that the
two criteria are identical for cubic phase materials and alloys. It can be thus inferred that using either Pugh’s criterion
or Pettifor criterion would be sufficient in the study of hardness and ductility of materials. Moreover, microhardness
values and percentage elongation for the FCC and BCC multi-principal element alloys are influenced by their VECs
[40, 64, 65, 66]. Owing to the presence of hard elements at VEC range 5-7, BCC-phase MPEAs with VECs in the
range 4-5.5 are known to exhibit the increment of hardness with increase in VEC [67]. Balasubramanian et al. [46]
have describedVEC as a unified indicator for several mechanical properties including hardness and ductility. Presenting
for rock-salt structure binary and ternary metal carbides, nitrides and carbonitrides; they have reported that the ductility
in general increases with VECwheareas hardness first increasdes with increase in VEC but later on decreases at VEC=
9.5 and beyond. Since these relationship is established in materials defined with rock-salt structure using first principles
calculations, it would be important to associate hardness and ductility with VEC for MPEAs. In Fig. 4(b), the features
ΔB and ΔG are associated with Pugh’s ratio, and the list also includes VEC. Hence, the training data for machine
learning will include the features that are considered as the significant indicators of ductility and hardness.
2.2.2. PCA for feature selection in the datasets

Principal component analysis (PCA) is a valuable statistical technique used to condense extensive feature sets,
facilitating data visualization and analysis [68]. It accomplishes dimensionality reduction by breaking down a data
matrix into two components: direction and magnitude, yielding multiple data directions. These directions are used
to transform the original data, aligning it with possible directions. By identifying essential directions significant for
regression analysis, less crucial components can be removed.
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In this study, two sets of hardness and elongation data were considered, one excludingmanufacturing route features,
and the other including them. Each dataset, denoted as Di (DH for hardness and DE for elongation), is a k × N matrix,
where k is the dimension of the dataset (15 for datasets without manufacturing route features, and 19 for those including
route features), and N is the number of observations. PCA aims to project these k-dimensional datasets into a lower-
dimensional p-dimensional subspace (where p < k) to enhance computational efficiency while preserving over 90PCA
involves eigendecomposition of the covariance matrix (Ai) to extract meaningful insights from the dataset Di. Thisprocess yields eigenvectors [[�1], [�2], ...,[�k]] and their corresponding eigenvalues [ 1,  2, ...,  k]. Each eigenvectordefines a direction in the new feature space, with associated eigenvalues indicating their importance. Explained variance
(EV) quantifies the variance explained by each principal component, reflecting its relative significance within the
feature space. EV is calculated as the ratio of eigenvalue  j to the sum of all k eigenvalues for the jtℎ principal
component [�j]. The orthogonal nature of the eigenvectors ensures uncorrelated principal components. Details on
eigendecomposition and PCA procedures, including manufacturing route information, are provided in Supplementary
Materials Section S1.3 for the hardness dataset, with similar methods applied to other datasets.

EV =
 j

∑k
i=1  i

(2)

From Eq. 2, it becomes evident that eigenvalues serve as indicators of the variances within the dataset along the
new feature axes generated by PCA. To establish a feature subspace consisting of p principal components (PCs), a
cumulative explained variance (cumulative EV) greater than 90% (0.9 in fractional value) is the chosen criterion for
information retention. This criterion determines the reduced number of principal components that will exclusively
represent the post-PCA dataset in the new feature space. The cumulative explained variances (EVs) for the datasets are
visually presented in Figure 4 c). For DB3-HV-PCA, it is observed that 7 out of the initial 15 components are capable of
capturing 90% of the explained variance. Similarly, in the case of DB3-EL-PCA, 8 out of the original 15 components
demonstrate the ability to account for 90% of the explained variance. Conversely, for DB4-HV-PCA, 8 out of the
expanded set of 19 features exhibit the capability to capture this 90% explained variance, and in the context of DB4-
EL-PCA, 9 out of the same 19 features achieve this 90% explained variance through Pearson’s correlation coefficient
analysis. The inverse transformation matrices of these selected principal components along with their corresponding
output feature ( in original feature space) are arranged in databases, and the names of the databases are also listed in
Table 2.
2.3. AlloyManufacturingNet - trained to learn the hardness and elongation dataset

After completing data preprocessing and feature selection, the machine learning model training phase commences.
Specifically, regression machine learning models are employed for predicting the hardness and elongation of MPEAs.
Regression analysis, a form of supervised learning, establishes relationships between input features and target variables.
In contrast to classification analysis, which yields discrete or categorical outputs, regression produces continuous
functions or numerical target values [69]. Artificial Neural Networks (ANNs) are used in this study for regression
analysis, as they can capture complex and non-linear relationships between inputs and targets through the application
of non-linear activation functions in each layer. These ANNs, trained with datasets containing information about the
manufacturing routes of MPEAs, are denoted as AlloyManufacturingNet.

Table 2 presents four distinct sets of models for hardness data (DB1-HV-PCC, DB2-HV-PCC, DB3-HV-PCA,
and DB4-HV-PCA) and four different models/databases for elongation data (DB1-EL-PCC, DB2-EL-PCC, DB3-EL-
PCA, and DB4-EL-PCA). For instance, DB2-HV-PCC incorporates additional information about the manufacturing
process’s influence on hardness, while DB1-HV-PCC lacks this information but comprises fewer input features. This
reduced feature set in DB1-HV-PCC helps mitigate the curse of dimensionality compared to DB2-HV-PCC. It allows
for a more pronounced measurement of the effect of changes in electronegativity difference on hardness, as it is less
influenced by other input features. On the other hand, the selected input features from PCA analysis in DB3-HV-PCA
and DB4-HV-PCA are uncorrelated with each other, enhancing the prediction potential of machine learning models.
Similarly, the diversity among the four databases for elongation data follows a similar pattern. The key question now
is how to ensure that the unique informational and functional advantages offered by each database are proportionately
integrated into the machine learning model(s). The answer lies in constructing ensemble neural network models.
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Table 2
AlloyManufacturingNet as an ensemble of neural networks, will be built upon the different database types as outlined here.
In context of feature selection using PCC, the input and output variables are in the same feature space of the data matrix.
However, for the databases associated with PCA, the output feature ( hardness or elongation) will be in a different feature
space than those of the selected principal components. So, the inverse transformation of the principal component feature
space to the original feature space will be performed to map input features with the output variable.

Databases/Models ID Characteristics/Descriptions

DB1-HV-PCC 8 input features + hardness feature (HV) as exactly
selected from PCC

DB2-HV-PCC Features of DB1-HV-PCC + manufacturing route (MR)
input features

DB3-HV-PCA 7 Principal Components of Hardness data w/o MR
based features + HV feature

DB4-HV-PCA 8 Principal Components of Hardness data including
MR based features + HV feature

DB1-EL-PCC 7 input features + elongation (EL) feature as
selected via PCC

DB2-EL-PCC Features of DB1-EL-PCC + MR features

DB3-EL-PCA 8 Principal Components of Elongation data w/o MR
based features + EL feature

DB4-EL-PCA 9 Principal Components of Elongation data including
MR based features + EL feature

In machine learning, an ensemble model combines multiple sets of models to improve overall predictive accuracy
[70]. An ensemble neural network (NN) model is a committee of distinct models, where each model contributes to
the final prediction. For mechanical property data, such as hardness, four unique databases are created after feature
selection (see Table 2). The ensemble NNmodels built on these datasets combine the predictions of individual models
through weighted averaging to maximize R2. The weighted-average prediction represents the ensemble model’s final
output. Similarly, for elongation data, the ensemble learning is based on four distinct databases listed in Table 2.

For the design of the ensemble neural network of a given mechanical property (hardness/elongation), first of all the
individual models (model no. 1-4) of Table 3 are trained. For a given model number, the selected features are supplied
at th input and the model is trained with the most suitable hyper-parameters. 10% of the training data is used as a
validation dataset. Tensorflow 2.7 software with keras frontend is used for compiling and running the neural network
model. The result of the machine learning was visualized with the help of matplotlib library. It is desirable that the
individual/ensemble neural networks can perform well beyond the training data and metrics such as mae, rmse have
been employed in this study to quantitatively ensure the cross-validation tasks.

Hyperparameters, like epochs, batch size, layer dimensions, optimization functions, activation functions, and more,
exert significant control over the model’s learning process. Weight initialization and constraints also influence initial
weight values. Regularization and dropout rates are introduced to prevent overfitting during training. Hyperparameter
tuning aims to find the optimal combination of these parameters to maximize scoring metrics, such as R2. Random-
SearchCV from the SK-learn library was employed for hyperparameter tuning, randomly selecting 300 configurations
from a grid detailed in Supplementary Materials, Table S2. These configurations were evaluated using 10-fold cross-
validation, resulting in a total of 3,000 model tests. The ensemble model’s configuration was determined based on the
highest average R2 value from cross-validation. Additional evaluation metrics, including RMSE, MAE, and MSE (see
Table 3), were considered to ensure performance consistency and generalization. These metrics bolster the model’s
robustness and validate the weighting methodology, aligning with the core objectives of ensemble modeling. Detailed
hyperparameter values are provided in Supplementary Materials, Tables S2 and S3.

The test dataset undergoes standardization to align with the training data standardization, preventing data leakage
and ensuring realistic test results. During model training, Callbacks are employed to track validation RMSE, helping
identify the model with the best validation RMSE. This optimal model is then used as a component in the ensemble of
four models, as shown in Table 2, for both hardness and elongation. Given that individual models’ predictions differ,
a simple average might not yield the best ensemble outcomes. To optimize model significance, the best-weighted
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Figure 5: Parity plot for test datasets. Parity plots along with the Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), and coefficient of determinant (R2) for a) hardness (614 alloys from training data and 69 from test data
alloys) b) elongation (317 alloys from training data and 36 from test data). The dataset of elongation shown in the b)
corresponds to the mixture set of tensile and compression test specimens. The shaded region represents an 80 % accuracy
region with a number at the top right edge indicating the fraction of test predictions having > 80 % accuracy.

fractions are determined. By employing the entire dataset used to build the model (combining both train and test data),
weighted averages of predictions from individual models within the ensemble are computed to obtain the final model
predictions. Results for each individual model and the ensemble models are detailed in Table 3. Further elaboration on
cross-validation results will be provided in Sec. 3.1.

3. Results and Discussions
3.1. Cross-validation results for ANN models and ensemble model design optimization

Moving forward, we focus on developing deterministic neural network prediction models. These ensemble neural
network models, as discussed in Sec. 2.3, combine the strengths of four deterministic models to ensure balanced
information integration. Consequently, these ensemble models will serve as our prediction models for mechanical
properties.

Before adopting the ensemble neural network as the prediction model, thorough validation on an independent test
dataset is essential. The results for the ensemble models on the test dataset are concisely summarized in parity plots in
Fig. 5, accompanied by key performance metrics. For hardness analysis (refer Fig. 5a)) , the ensemble model boasts
an MAE of 50.2 HV, RMSE of 63.1 HV, and an impressive R2 of 0.877. Notably, 81% of the test data falls within
the 80% accuracy region. In the case of elongation analysis presented in Fig. 5b) for training datasets consisting of
mixture set of both compression and tensile test specimens, the ensemble model exhibits MAE = 8.7% , RMSE=
12.1% RMSE, and R2 = 0.67, with 33% of the test data residing within the 80% accuracy region.

The optimization criterion for determining weighted fractions of predictions from individual member neural
network models is the maximum R2 value. In the hardness ensemble model, models 1-4 (Table 3) are assigned
weighted fractions of 0.3, 0.3, 0.1, and 0.3, respectively, yielding the highestR2. This same order of weighted fractions
is applied in designing the ensemble models. Notably, the influence of DB2-HV-PCC (weighted fraction = 0.3)
and DB4-EL-PCA (weighted fraction = 0.3), which include variables related to the fabrication route, is substantial,
underscoring the manufacturing route’s significant role in shaping the hardness feature.

For elongation analysis, models corresponding to databases DB1-EL-PCC, DB2-EL-PCC, DB3-EL-PCA, and
DB4-EL-PCA receive respective weight fractions of 0.3, 0.3, 0.2, and 0.3. Once again, the model derived from
DB3-EL-PCA carries less weight compared to the other three models, highlighting the importance of including
the manufacturing route in elongation prediction. This optimization procedure also confirms that PCC-based feature
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Table 3
Metrics and weight factors of the individual models for hardness and elongation analyses are presented in the first four rows.
The final row provides the metrics associated with the Ensemble NN. For the column of feature selection, the technique or
method remarked with an asterisk (PCC* or PCA*) means that the final databases include the features corresponding to
fabrication routes. Those rows with PCC and PCA not marked with asterisk imply that the databases exclude the features
associated with the manufacturing route.

Model Feature Hardness Models Elongation Models
numbering Selection

Database = DB1-HV-PCC Database = DB1-EL-PCC
MAE = 58.6 MAE = 7.9

1 PCC RMSE = 75.9 RMSE = 12
R2 = 0.822 R2 = 0.67
ideal weights = 0.3 ideal weights = 0.3
Database = DB2-HV-PCC Database = DB2-EL-PCC
MAE = 51.9 MAE = 8.33

2 PCC* RMSE = 71.7 RMSE = 12.34
R2 = 0.841 R2 = 0.65
ideal weights = 0.3 ideal weights = 0.3
Database = DB3-HV-PCA Database = DB3-EL-PCA
MAE = 57.7 MAE = 11.8

3 PCA RMSE = 75.5 RMSE = 15.55
R2 = 0.824 R2 = 0.45
ideal weights = 0.1 ideal weights = 0.2
Database = DB4-HV-PCA Database = DB4-EL-PCA
MAE = 54.8 MAE = 12.26

4 PCA* RMSE = 70 RMSE = 16.27
R2 = 0.848 R2 = 0.4
ideal weights = 0.3 ideal weights = 0.3
MAE = 50.2 MAE = 9.7

Ensemble model RMSE = 63.1 RMSE = 12.1
R2 = 0.877 R2 = 0.67

selection holds greater weight than PCA-based feature selection. In the hardness ensemble machine learning model, the
two PCC-based models each receive a weight fraction of 0.3, while the two PCA-based models receive corresponding
weight fractions of 0.1 and 0.3. Similarly, in the elongation ensemble neural network, the two PCC-based models are
assigned identical weight fractions of 0.3, while the two PCA-based models receive weight fractions of 0.2 and 0.3,
respectively.
3.2. AlloyManufacturingNet as prediction model in hardness-ductility synergy design

The successful completion of cross-validation and ensemblemodel optimization now paves the way for the practical
application of these neural network models in predicting mechanical properties for new multi-principal element alloys.
To put our models to the test, we predicted the properties of an alloy, Al0.5Nb0.5TiV2Zr0.5, which was absent from the
training and test datasets of the individual models. The results are summarized in Table 4. Notably, the experimental
hardness value for this alloy is 577.7 HV [57], and our ensemble model predicts it with exceptional accuracy, yielding
a prediction error of just 1.63%. This underscores the model’s intelligence and its ability to provide reliable predictions
for previously unencountered alloys. Moreover, the model effectively captures the broader trend that alloys with a
higher proportion of Nb and Zr tend to exhibit higher hardness values, as evident in the prediction for Al0.5NbTiV2Zr,aligning closely with its experimental hardness of 614.1 HV [57]. Table 4 also presents a comparison between the
experimental and predicted elongation values for the Al0.5Nb0.5TiV2Zr0.5 alloy. The experimental elongation stands at
12.72% [57], while the model predicts it to be 14.1% with an error of less than 10%. This indicates the model’s ability
to provide reasonably accurate predictions for elongation properties, further emphasizing its utility and reliability in
predicting mechanical properties for a wide array of alloys, including those not covered in the training dataset.

In the era of artificial intelligence, the integration of machine learning into materials science has ushered in the era
of inverse alloy design [71]. Simultaneously, it has advanced the accelerated design and discovery of new materials
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Table 4
Evaluation of trained ensemble models by predicting hardness and elongation for Al0.5Nb0.5TiV2Zr0.5 alloy previously
unknown to the model. The values for the experimental hardness and elongation of this MPEA are obtained from Jiang et
al. [57].

Hardness (HV) Elongation (EL)
Predicted HV 587.16 Predicted EL (%) 12.72
Experimental HV 577.7 Experimental EL (%) 14.1
% Error 1.63 % Error 9.8
MAE 9.46 MAE 1.38

[72], which exhibit a diverse range of mechanical properties. In practical terms, the prediction model developed
through the training and validation procedures serves as a versatile virtual tool for materials design and discovery.
In this study, the prediction models encompassing hardness and elongation ensemble neural networks act as crucial
tools for forecasting the properties of various multi-principal element alloy (MPEA) compositions. Given that neural
networks can approximate a wide range of functions, they are also capable of aiding in the reverse engineering of
compositions that meet specific hardness and/or elongation criteria. Notably, these data-driven techniques can be
employed to optimize MPEA compositions while adhering to the constraints defined by the hardness-ductility synergy
criterion.

We employ ensemble neural networks, denoted as AlloyManufacturingNet, to facilitate the prediction-driven
inverse design of two multi-principal element alloys (MPEAs). Our focus centers on two medium entropy alloys
(MEAs), specifically ZrHfNb and VNbTa, as our foundational materials. Our objective revolves around gauging the
impact of introducing two refractory elements simultaneously as dopants on their hardness and elongation properties.
Furthermore, we delve into evaluating the significance of different manufacturing routes in the context of these doped
MEAs. To provide context, it’s worth noting that the reference hardness values for ZrHfNb and VNbTa stand at 365.9
HV and 403.82 HV, respectively, while their corresponding elongation values are 31.37% for ZrHfNb and 20.96%
for VNbTa. In our approach, we introduce two dopant elements, D1 and D2, drawn from the list [Cr, W, Mo, Ta,
and Ti], into ZrHfNb for a given fabrication route. These dopants are incorporated in varying proportions, enabling
our prediction model to estimate the hardness and elongation characteristics of D1xD2y(ZrHfNb)1−x−y at diverse
composition proportions represented by x and y. Similarly, for different variants of manufacturing routes, we select
a pair of dopant elements (D1, D2) from the list [Zr, W, Hf, Mo, Ti, and Cr] to introduce into the base VNbTa MEA.
Our ensemble neural networks then predict the properties of D1xD2y(VNbTa)1−x−yMPEAs. This data-driven approach
primarily focuses on the design of quinary MPEAs, offering a cost-effective and time-efficient alternative to traditional
alloy design processes.

In contrast to conventional experimental methodologies that necessitate numerous trials to fabricate and test alloys
with varying dopant levels, our machine learning models adeptly manage the complexity of simultaneously introducing
two dopants without incurring substantial additional cost and time. Capitalizing on this advantage, our study explores
the effects of different manufacturing routes when including two dopants in base MEAs simultaneously. We also
ascertain the compositions of dopants that yield maximum hardness and elongation values under a givenmanufacturing
method. Furthermore, we predict the specific compositions that achieve optimal hardness-elongation values, filtering
out alloys with extreme values for one property but not the other. From this pool of candidates, including several
others, we discern the best candidate through the formulation of an optimization problem. If (HV )x,y and (EL)x,y arethe predicted values of the hardness feature and elongation feature resulted in a given fabrication procedure for the
composition proportion x and y of dopants D1 and D2 respectively.

Hardness and elongation, vital material properties measured in different units, pose a challenge due to their
disparate measurement scales rooted in distinct physics and theoretical concepts. To align these properties, a statistical
approach is employed. Both hardness and elongation undergo standardization based on mean and standard deviation, a
process rendering them dimensionless. This standardization facilitates composition optimization by enabling the direct
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comparison of these scale-invariant properties. This method results in the definition of the following objective function
defined as:

F (x, y) =
(HV )x,y −HV

�HV
+
(EL)x,y − EL

�EL
(3)

The objective function F (x, y) in Eq. 3 is maximized after subjected to the constraints: x ≥ 0 , y ≥ 0, 782HV ≥
(HV )x,y ≥ 207HV and 60% ≥ (EL)x,y ≥ 5%.HV = 495.3 HV and �HV = 196.75 HV are the respective mean and
standard deviation values of the originally collected hardness feature. Similarly, EL = 22.16 % and �EL = 19 % are
respectively the mean and standard deviation of the elongation variable. While the sample hardness and elongation
features are specified for a given manufacturing route, it’s worth noting that the statistical mean and standard deviation
values, as defined previously, remain unaffected by changes in the fabrication procedure. With the hardness feature
ranging from 207 HV to 782 HV and elongation falling between 5% and 60% (as shown in Figure 3), it becomes evident
that the combined non-standardized values of HV and EL are predominantly influenced by the HV feature due to its
larger range. To mitigate the bias introduced by variables with differing scales during mathematical calculations and
to prevent errors, we employ a standardization procedure in this optimization task. By utilizing standardized features
in the objective function, the inherent differences in scale between the hardness and elongation variables cease to
impact the mathematical determination of the optimal alloy composition. This ensures scale-invariant composition
optimization when dealing with two predicted unique variables of dissimilar ranges or scales.

It’s important to emphasize that the standardized objective function in Equation (3) can yield positive, negative, or
zero values. If a predicted hardness variable falls below the mean value, the numerator of the first term in the right-hand
side of Equation (3) is negative, resulting in a standardized hardness feature below zero. Conversely, when the estimated
value exceeds the mean hardness, the standardized hardness takes on a positive value. Similarly, depending on the
magnitude of the predicted elongation feature, the standardized elongation feature (the second term on the right-hand
side of the equation) can be either greater or less than zero. From an optimization perspective, a more positive function
value indicates the suitability of the multi-principal element alloy (MPEA) for structural and materials applications.
Specifically, an MPEA designed with both standardized variables (hardness and elongation) represented as positive
real numbers is considered favorable in materials design. Conversely, an MPEA with either one or both standardized
features as negative real numbers is deemed unsuitable for structural material applications. Therefore, the necessary
and sufficient condition for a multi-principal element alloy to be deemed appropriate for technological applications
is that it must exhibit positive values for standardized hardness and standardized elongation while maximizing the
positive real number value of the standardized objective function.

The relationship between the composition of the first generic D1xD2y(ZrHfNb)1−x−y, manufacturing routes, and
the specified hardness features at room temperature is visually depicted in the ternary plots of Figure 4. Corresponding
information regarding elongation for these alloy systems is provided in Figure 5. Additionally, presentations detailing
hardness and elongation for the second generic D1xD2y(VNbTa)1−x−y are presented in Figures 6 and 7, respectively.
These ternary plots serve as the cornerstone of inverse alloy design. The significant coordinate points (x, y) representing
dopant composition proportions in the ternary plots, along with the specific manufacturing route associated with the
maximum hardness value (independently established from the hardness plots) and the maximum elongation value
(solely derived from the elongation plots), are listed in Table Supplementary Table S4 for the first generic alloy
system and Table S5 for the second generic MPEA system. The manufacturing route corresponding to the assigned
property value is also presented.
3.2.1. Predictive design of maximum hardness and maximum elongations for undiscovered MPEA

In the context of alloy systems D1xD2y(ZrHfNb)1 − x − y and D1xD2y(VNbTa)1 − x − y, we present graphicalrepresentations of alloy compositions and the corresponding hardness and/or elongation properties at room temperature
for different manufacturing routes in ternary plots (Supplementary Figure S10, S11, S12, S13). These ternary plots
play a pivotal role in inverse alloy design.

For the CrxWy(ZrHfNb)1−x−y system, doping ZrHfNb with Cr and W elements leads to significantly elevated
hardness values across all four manufacturing routes. Notably, the [W, Ta] dopant pair, followed by [Mo, Ta], imparts
intermediate hardness to the base ZrHfNb system, while the [Ti, Ta] dopant pair results in lower hardness values.
Analysis of ternary plots for dopants pair yielding maximum hardness and maximum elongation as represented in 6
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a) i) infers Powder metallurgy produces the highest hardness of 684.49 HV for x = 0.4 and y = 0.5, making it the
recommended MPEA system for applications prioritizing hardness. Regarding elongation, predictions made by our
machine learning model for elongation values in the D1xD2y(ZrHfNb)1−x−y system are as follows: Each ternary plot
corresponds to a specific dopant pair [D1,D2] and a particular manufacturing route. As detailed and demonstrated
in Fig. 6 c), the alloy system TixTay(ZrHfNb)1−x−y, when manufactured through annealing, exhibits regions with
significantly greater elongation values. The maximum elongation, reaching 43.52%, occurs at x = 0.7 and y = 0. This
suggests that Ti0.7(ZrHfNb)0.3, when produced via annealing, possesses the highest ductility. This observation extendsto another alloy system where Ti also proves to be a favorable dopant.

In the case of the D1xD2y(VNbTa)1−x−y system, the dopant pairs [Cr, W] and the powder metallurgy-based
manufacturing route favor increased hardness. The alloy Cr0.5W0.3(VNbTa)0.2, manufactured via sintering, exhibits
the maximum hardness of 733.42 HV. This value represents the highest hardness among all alloy systems considered.
Powder metallurgy emerges as the preferred method for preparing alloys with the highest hardness across all dopant
pairs in D1xD2y(VNbTa)1−x−y. Similarly, for predicted elongation distribution in the D1xD2y(VNbTa)1−x−y MPEA
system. Analysis of the ternary diagrams indicates that when [Mo,Ti] dopants are added to the base VNbTa system, they
provide the highest attainable ductility in the resulting MPEA. The maximum elongation value, 34.36%, is achieved
by the Mo0.1Ti0.8(VNbTa)0.1 MPEA when using wrought or miscellaneous fabrication procedures as represented in
triangular contour in Fig. 6 a) ii).

Comparing the bar charts for elongation values of the D1xD2y(ZrHfNb)1−x−y and D1xD2y(VNbTa)1−x−y MPEA
systems in Figure 6 c), it becomes evident that alloys compositionally designed with ZrHfNb generally exhibit
superior ductility compared to those designed with VNbTa systems. Unlike the maximum hardness property (where
powder metallurgy emerges as the most favorable fabrication route), there is no single preferred fabrication procedure
associated with enhanced ductility for all dopant pairs and composition variants.
3.2.2. Optimal composition and fabrication route corresponding to hardness-ductility synergy

Advanced structural materials require an optimal balance between hardness and ductility. AlloyManufacturingNet
enables the prediction of suitable fabrication routes and alloy compositions that exhibit favorable hardness-elongation
synergy. By combining independent hardness and elongation (Sec. 3.2.1) models with the mathematical model
represented by Eq. 3, an ensemble of neural networks can forecast specific MPEA (Multi-Principal Element Alloy)
compositions and the corresponding manufacturing routes that yield optimal hardness and elongation values.

For ZrHfNb-based alloys, as shown in Fig. 6 c), Cr0.8W0.1(ZrHfNb)0.1 produced through wrought processing
exhibits excellent hardness at 511.81 HV and moderate elongation at 17.14%, making it suitable for applications where
achieving high hardness is essential. Conversely, Ti0.3Ta0.4(ZrHfNb)0.3, also manufactured via wrought processing,
offers an excellent elongation of 37.95% with lower hardness (374.56 HV), making it a suitable choice for applications
emphasizing high ductility. Supplementary Table S4 reveals that the base ZrHfNb alloy, when cast, possesses
hardness and elongation values of 426.91 HV and 32.99%, respectively. Meanwhile, using powdered metallurgy,
the same alloy exhibits hardness and elongation of 383.54 HV and 31.68%. Hence, the first of the two alloys
(Cr0.8W0.1(ZrHfNb)0.1 and Ti0.3Ta0.4(ZrHfNb)0.3) prepared via the wrought process suits applications requiring
elevated hardness, whereas the second is more appropriate for applications requiring higher ductility. It can be inferred
that wrought processing is recommended for fabricatingMPEAs from the base ZrHfNb alloy to enhance either hardness
or elongation. However, it is worth noting that a trade-off between hardness and elongation often exists in ZrHfNb
alloys, making it challenging to achieve hardness-elongation synergy with the given dopants and variousmanufacturing
processes.

Similarly, alloy combinations derived from VNbTa MEA, both CrxWy(VNbTa)1−x−y and MoxTiy(VNbTa)1−x−ysystems fabricated using wrought processing appear to exhibit regions with favorable hardness-elongation synergy, as
depicted in Fig. 6 c). For instance, Cr0.7(VNbTa)0.3 manufactured via the wrought process is predicted to possess ex-
cellent hardness (575.87 HV) andmoderately good elongation (23.73%). Consequently, the alloy CrxWy(VNbTa)1−x−ywith x=0.7 and y=0, manufactured by wrought method (Supplementary Table S5), is suitable for structural appli-
cations that require high hardness. Similarly, when wrought processed, MoxTiy(VNbTa)1−x−y alloys show hardness
and elongation values of 566.43 HV and 27.79% at x=0.3 and y=0, respectively. Thus, Mo0.3(VNbTa)0.7 MPEA offers
nearly equal hardness to Cr0.7(VNbTa)0.3 but with improved ductility. Mo0.3(VNbTa)0.7 alloy manufactured through
wrought processing is estimated to possess excellent hardness-ductility synergy, especially favoring hardness. On the
other hand, Zr0.4(VNbTa)0.6 MPEA produced via powder metallurgy is predicted to exhibit a hardness of 542.60
HV and elongation of 30.22%. This alloy also demonstrates a perfect combination of hardness-ductility synergy, albeit
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Figure 6: a) Maximum Hardness and Maximum Elongation Powder metallurgy results in the highest hardness (684.49
HV) when Cr = 0.4 and W = 0.5 in ZrHfNb. In the case of elongation, [Ti=0.7, Ta=0] with annealing yields 43.52%. For
VNbTa, powder metallurgy with Cr = 0.5 and W = 0.3 achieves a hardness of 733.42 HV, while an elongation of 34.36%
is obtained with Mo = 0.1 and Ti = 0.8 in the Wrought + Misc route. b) Optimized hardness-elongation pairs For,
Mo0.6(ZrHfNb)0.4 with obtained from prediction model of AlloyManufacturingNet. c) The manufacturing route associated
with the predictions is also provided as labels in the bar diagrams. It is to be noted that the single alloy composition and
a single manufacturing route are associated with a specific optimal hardness-elongation pair. It is to be noted that the
letters A, B, C and D drawn inside the colorful circles of a) and b) denote the manufacturing methods labeled in c) The
detailed version of the specially highlighted results presented in this figure is provided in Supplementary section S4

favoring ductility. Notably, theseMPEAswith improved hardness-elongation synergy typically comprise four elements,
with a relatively higher proportion of the base alloy VNbTa. In terms of elements doped into the VNbTa system,
wrought manufacturing and powder metallurgy are considered preferable methods for achieving a balance between
elongation and hardness properties.
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In contrast to alloys derived from the ZrHfNb system,MPEAs obtained from the base VNbTa system exhibit robust
hardness-ductility synergy, quantitatively expressed through standardized and summed values of optimal hardness
and optimal elongation features (refer to Eq. 3). For instance, in the case of Cr0.8W0.1(ZrHfNb)0.1 (fabrication route
= wrought + misc), the standardized hardness is +0.084, while the corresponding elongation is -0.264, resulting
in an objective function value of -0.1802. This alloy falls into the category of less preferable candidates due to its
negative standardized objective function value, despite having an overall positive objective function value. In contrast,
Ti0.3Ta0.4(ZrHfNb)0.3 MPEA (manufacturing route = wrought + misc) exhibits a highly favorable standardized
elongation value (+0.83) but an undesirable standardized hardness value (-0.61), yielding an objective function value
of +0.217. Although the objective function is positive, the negative hardness value renders this MPEA unsuitable
for technological applications. The maximum attainable positive value of the overall objective function for ZrHfNb-
derived MPEAs is +0.2229, found in the case of Mo0.6(ZrHfNb)0.4 alloy fabricated using the casting process. The
standardized values of hardness and elongation for this alloy are -0.34 and +0.57, respectively. The lower value of the
overall objective function in ZrHfNb-derivedMPEAs can also be observed in ternary plots (Supplementary Figs. S10
and S11). For example, triangular diagrams corresponding to CrxWy(ZrHfNb)1−x−y alloys prepared by the wrought
procedure are positioned second from the top left corner in both figures. The region near the top corner of the triangle,
highlighted by a rectangular box, consists of a large proportion of ZrHfNb (i.e., 1-x-y≥ 0.8) and is characterized by high
elongation and low hardness. Observing the 32 ternary plots in these figures, it can be inferred that, most of the time, a
given composition of a D1xD2y(ZrHfNb)1−x−y alloy prepared by a specific manufacturing route corresponds to above-
average hardness when elongation is below average, and vice versa. This observation implies that doping the ZrHfNb
alloy systemwith these dopant pairs is unsuitable when aiming to achieve hardness-ductility synergy. However,MPEAs
derived from the VNbTa base alloy system offer solutions to mitigate the trade-off between hardness and ductility.
Mo0.3(VNbTa)0.7 (MR = wrought + misc) and Zr0.4(VNbTa)0.6 (MR = sintering) represent composition values and
manufacturing routes that result in positive values for all three standardized quantities: the objective function, hardness,
and elongation. These alloys are recommended for applications requiring a combination of enhanced hardness and
greater ductility. Mo0.3(VNbTa)0.7 alloy exhibits standardized hardness and elongation values of +0.36 and +0.296,
respectively, with a combined sum of +0.656 according to Eq. 3. Similarly, Zr0.4(VNbTa)0.6 alloy has standardized
hardness and elongation values of +0.24 and +0.42, respectively, resulting in a sum of +0.6648 (the maximum
value predicted thus far). Interestingly, it has been discovered that ZrxWy(VNbTa)1−x−y alloys offer composition
values for each of the four manufacturing routes that exhibit positive standardized values for all three quantities
(hardness, elongation, and the objective function). In Supplementary Figs. S12 and S13, triangular diagrams for
ZrxWy(VNbTa)1−x−y for the four manufacturing routes are positioned on the top row. The region near the mid-length
of the left side of these triangles, highlighted by a rectangular box, exhibits both excellent hardness and excellent
ductility. Notably, this region is present in the alloy for all four manufacturing routes, making ZrxWy(VNbTa)1−x−yan optimal candidate for applications requiring excellent hardness-ductility synergy. The hardness-ductility favoring
regions also exist in MoxTiy(VNbTa)1−x−y alloys for three manufacturing routes, except for the casting process. In
the context of CrxWy(VNbTa)1−x−y MPEA, casting, wrought, and annealing processes offer composition proportions
favoring hardness-ductility synergy, characterized by regions with high hardness and elongation. However, powder
metallurgy does not favor this synergy. When using the dopant pairs Hf and W, the behavior of the VNbTa system
is similar to that of the ZrHfNb alloy doped with [Cr,W], [Mo,Ta], [W,Ta], and [Ti,Ta] in most cases. This means
that a given composition coordinate in the triangular diagrams of HfxWy(VNbTa)1−x−y MPEA for wrought, sintering,
and annealing procedures represents low hardness when elongation is high, and vice versa. In the case of casting,
the situation is even worse, with overall hardness and elongation values for HfxWy(VNbTa)1−x−y consistently below
average throughout the composition points, indicating an absence of hardness-ductility synergy.

It is noteworthy to mention that the Figs. 6 a) and b) have a big prospect for being utilized in the design of
digital manufacturing (metamorphic manufacturing) methods. The given composition of an MPEA can be checked
in the ternary diagrams for hardness or elongation at different manufacturing methods. Importantly, the triangular
diagrams have values of hardness and elongation for all sets of composition, so each and every composition value can
be inspected. The information about any two different manufacturing routes imparting different hardness for a single
alloy composition, then this information can be utilized to design a digitally controlled incremental forming system.

An online software tool can enable the performance of test, design, and discovery tasks for MPEAs, expediting the
pursuit of hardness-ductility synergy in these class of materials. The prediction model of AlloyManufacturingNet
has been launched online as a software app [73]. In the web interface, the user can perform two distinct operations
- (i) ALLOY DESIGN, and (ii) HARDNESS-DUCTILITY OPTIMIZATION. The ALLOY DESIGN operation
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is associated with the task of obtaining the hardness and elongation values independently for a given new alloy
composition manufactured by a given process. When input information about the multi-principal element alloy’s
composition and fabrication type is provided by the user, the estimated hardness (in HV) and percentage elongation
values are presented on the screen. Besides the target values, the input features (including VEC) and Pugh’s ratio are
also automatically shown by the software. The user can select between default category (which includes the mixture
set of tension and compression datasets), compression tests only, and tensile tests only to find the corresponding values
of estimated elongation percentage. It is important to note that the software predicts well for ductile and highly ductile
MPEAs and it is not recommended for use in materials with ductility less than 5 %. The software performs well for
all range of hardness values. In context of the HARDNESS-DUCTILITY SYNERGY OPTIMIZATION task, besides
providing the information about base alloy composition, manufacturing route, and test type; the user also has to supply
the names of two dopant elements. The software then outputs two ternary diagrams one for hardness distribution
and another for ductility distribution in the doped MPEAs. In addition to this, AlloyManufacturingNet also maps the
composition data in the Hardness-Elongation chart. Such scatter data can inform the user in knowing the compositions
(for a given manufacturing process) that possess good hardness+good ductility; excellent hardness only and excellent
ductility only.
3.3. Coupling nanoscale simulation with prediction result at macroscale for Nb-doped CoCrNi

MPEA to analyze the hardness
The medium entropy alloy CoCrNi has piqued the interest of materials scientists and engineers for various reasons.

It has been demonstrated that this ternary equiatomic MEA possesses greater toughness and strength than the quinary
equiatomic CrCoFeMnNi high entropy alloy [74]. This notable strength-ductility synergy in CoCrNi MEA has been
attributed to its low stacking fault energy [75]. Numerous efforts have been made to improve the mechanical properties
of CoCrNi MEA by introducing dopants in varying proportions [76]. In our pursuit of enhancing hardness, we
present our study on doping CoCrNi with Nb atoms. Figure 7(a) displays the hardness values estimated by the
AlloyManufacturingNet for Nb-doped CoCrNi alloys fabricated via the casting procedure. It can be observed that
hardness increases with an increasing amount of Nb in the CoCrNiNbx MPEA. To optimize the material properties,
we employ the ensemble model to predict the elongation feature of CoCrNiNbx alloy (manufactured using the casting
route), and the results are presented in Figure 7(b). The data reveals that the elongation of the CoCrNi alloy initially
decreases with the addition of Nb, reaching its lowest point at x = 0.25. In other words, Nb has a negative impact
on ductility in CoCrNiNbx for values of x ≤ 0.25. While the CoCrNi alloy exhibits the highest ductility, with an
elongation of nearly 30%, the CoCrNiNb0.25 alloy has the lowest ductility, with an elongation slightly below 20%.
However, for x > 0.25, ductility is observed to increase again with the rise in Nb content.

From the perspective of hardness-ductility synergy, it is recommended to design materials and devices with
CoCrNiNbx compositions where the Nb proportion (x) exceeds 0.25, particularly when employing the casting
manufacturing procedure. At x = 0.6, the CoCrNiNbx MPEA exhibits a hardness of approximately 600 HV and an
elongation well above 20%. Although the exact property values (hardness and elongation) may vary, and the specific
value of x associated with minimum elongation may change with different manufacturing routes, it has been confirmed
that the trends in hardness and elongation curves are consistent across all four manufacturing categories. Therefore, we
will focus on the MPEA produced via the casting procedure in this section to understand the mechanism of hardness
enhancement with Nb content. It is to be noted that the training datasets for hardness in the ensemble learning models
correspond to millimeters (continuum scale) sized samples. For accurate understanding of the materials science of the
MPEAs, it is always important to relate the macroscale behavior with structure-property relationship studied at atomic
scale or nanoscale.

In the context of predicting the hardness of CoCrNiNbx MPEA, understanding the structure-property relationship
is crucial. While CoCrNi typically has a face-centered cubic (FCC) crystal structure, CoCrNiNbx with a higher Nb
proportion can exhibit a different crystal structure. Our previous work [27] highlighted that CoCrNiNb0.5MPEA exists
as an IMC phase, while Lu et al. [77] reported that the Nb-rich phase in CoCrNiNbxMPEA corresponds to a hexagonal
close-packed (HCP) Laves phase. These different crystal structures can influence the mechanical behavior of Nb-rich
and Nb-deficient CoCrNiNbx MPEA / CoCrNi MEA. A nanoscale computational analysis can provide insights into
the behavior of these alloys.

In this study, we selected MEA CoCrNi (with atoms arranged in an FCC structure) and CoCrNiNb0.6 MPEA (with
a unit cell of HCP structure) for nanoscale indentation tests. We conducted atomistic simulations for nanoindentation
using Molecular Dynamics (MD) methods with LAMMPS software [78]. The supercells of CoCrNi and CoCrNiNb0.6
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Figure 7: Predicting the variation of (a) hardness and (b) elongation with the change of Nb dopant proportion (x) in the
CoCrNiNbx MPEA at macroscale (specimen samples in the dimension of mm) using the ensemble neural networks. The
manufacturing route for the predicted alloys is casting process. The two alloy variants CoCrNi (absence of Nb element)
and CoCrNiNb0.6 are chosen as the candidates for the virtual nanoindentation test using molecular dynamics (MD). The
results for the plots of indentation force against indentation depth during the MD simulations are presented in (c). The
color of atoms of a given element in the slabs of these two alloys are expressed by the font color of the element in the alloy
name (below the image of the nano slab). In the CoCrNi and CoCrNiNb0.6 nano slab, Co, Cr, and Ni atoms are represented
by spheres of sky blue, dark blue and yellow colors respectively. Nb atoms, present in CoCrNiNb0.6 nanoslab but absent in
CoCrNi nano slab, are represented by red color. The atomic arrangement in the slabs cores. The nanoscale simulation being
in line with the macroscale prediction of hardness, reveals that the macroscale response of a MPEA regarding hardness is
contributed by mechanisms occuring at nanoscale or atomic scale.

MPEAs were constructed using Atomsk software [79]. The CoCrNi nanoslab consisted of 600,000 atoms, while the
CoCrNiNb0.6 nanostructure consisted of 602,688 atoms. We visualized the nanoslabs and analyzed the MD simulation
results using OVITO software [80]. We used a non-atomic spherical indenter (radius = 5 nm, specific force constant
= 1000 eV/Å3). The indenter initially touched the top of the nano slabs and then moved vertically downward at a rate
of 0.5 Å/ps. The results of the MD simulation, showing the variation of indentation force (in �N) with the indentation
depth (in nm), are presented in Fig.7(c).

The black curves in the figure represent the indentation force exerted on the spherical indenter by the constituent
atoms (Co, Cr, and Ni) of the FCC CoCrNi alloy. The force shows a peak-valley profile, starting from near-zero and
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reaching a peak value of 0.2 �N, then decreasing before rising again with larger peaks. In contrast, the red curve
represents the indentation force for HCP CoCrNiNb0.6. It remains negligible until the indenter reaches a depth of 1
nm. Beyond this depth, the force increases continuously as the indenter penetrates the material, without a peak-valley
profile. When the indenter reaches a depth of 2.5 nm, the indentation force for CoCrNi MPEA is around 0.3 �N,
while that for CoCrNiNb0.6 is approaching 1.0 �N. These different indentation profiles provide mechanistic insight
into the role of Nb-doping in promoting the hardness of the alloy. The presence of Nb in larger amounts alters the
interaction mechanism among the constituent atoms, strengthening their cohesion and resistance to the indenter. The
initial arrangement of Co, Cr, Ni, and Nb in an HCP unit cell allows for enhanced flexibility in atom rearrangement
through dislocation motions and twinning, leading to a robust nanostructure that provides greater resistance force. The
MD simulation results (performed at nanoscale) confirm the predictions from the ensemble model (built on the data
obtained from continuum scale experiments), validating the latter as a physically explainable machine learning model.

4. Conclusion
In this study, we developed a data-driven machine learning ensemble neural network model to predict the hardness

and elongation ofmulti-principal element alloys (MPEAs).We trained themodel using selected features and fabrication
routes, optimizing hyper-parameters through hyper-parameter tuning. The trainedmodel allowed us tomake predictions
for both hardness and elongation of the MPEA system. Additionally, we visualized how hardness and elongation vary
with changes in the composition of certain elemental components using ternary plots. An online software application
has been developed to estimate hardness-elongation values. The software currently provides accurate predictions across
a wide range of hardness levels but is particularly effective for ductile and highly ductile MPEAs.

Here are the key conclusions from our work:
• We constructed a weighted ensemble of four neural networks based on feature sets derived from feature selection

engineering techniques, including PCC heatmap, VIF, and PCA for predicting hardness and elongation.
• Alloy designwas performed for both ZrHfNb- andVNbTa-derivedMPEAs based onmaximum hardness criteria.

The optimal combinations were [Cr, W] dopant pairs and sintering (powder metallurgy) manufacturing routes,
resulting in hardness values of 684.49 HV for Cr0.4W0.5(ZrHfNb)0.1 and 733.42 HV for Cr0.5W0.3(VNbTa)0.2.

• Elongation-based alloy design revealed Ti0.7(ZrHfNb)0.3 prepared via annealing as the alloy with the highest
elongation of 43.52% among all candidates. For VNbTa-derived MPEAs, Mo0.1Ti0.8(VNbTa)0.1 processed
through the wrought manufacturing route exhibited an elongation of 34.36%. Ti was identified as a favorable
dopant for improving elongation properties in both alloy categories.

• To achieve a hardness-ductility synergy-based composition design of MPEAs, we introduced a scale-invariant
optimization technique for maximizing the objective function of both mechanical properties. The results
indicated that VNbTa-derived MPEAs were more suitable for achieving an optimal combination of hardness
and elongation.

• We also investigated the hardness enhancement in Nb-doped CoCrNi alloys manufactured by casting. The
study revealed that as the Nb content (x) increased in CoCrNiNbx MPEAs, hardness increased proportionally.
Elongation decreased for x ≤ 0.25 and increased for x > 0.25, indicating that a higher proportion of Nb is
preferable for hardness-elongation synergy.

• Finally, we used a numerical approach, specifically the MD method, to perform nanoindentation tests on FCC
CoCrNi and HCP CoCrNiNb0.6 alloys. This allowed us to gain mechanistic insights into how the dopant
influences the mechanical behavior of MPEAs.
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Supplementary Information:
AlloyManufacturingNet for discovery and design of hardness-elongation synergy in multi-

principal element alloys

S1. Feature Engineering
In order to start a machine learning model, the initial task is to roughly establish a set of features that are deemed

useful in relation to modeling the prescribed mechanical behavior in the multi-principal element alloys (MPEAs).
As illustrated in Table S1, this study initially considers 15 variables in the original feature pool. The mathematical
expressions needed to perform the numerical fingerprinting of these features are also provided in the table.

In the mathematical expression, the subscript i and j associated with a term corresponds respectively to element i
and element j in the MPEA. For an example, Ci is the mole fraction, zi is atomic number, and ri is the atomic radius
of the itℎ element in the MPEA. The overline associated with a property denotes the composition weighted sum ofthe
properties of the individual elements in the alloy. R = 8.314 Jmol−1K−1 is gas constant, and ΔHAB is the binary
entropy of mixing at equal composition.

Table S1: Each input feature in the feature pool is provided with a corresponding mathematical expression.

SN Name of Features Mathematical expression Ref.

1 Mean Atomic Radius difference (�) � =
√

∑n
i=1 Ci

(

1 − ri
r

)2
Yang & Zhang (2012)

2 Electronegativity asymmetry (Δ�) Δ� =
√

∑n
i=1 Ci

(

�i − �̄
)2 Fang et al. (2003)

3 Average Melting Temperature (Tm) Tm =
∑n
i=1 Ci

(

Ti
)

Senkov et al. (2010)

4 Average Melting Temperature

asymmetry (ΔTm) ΔTm =
√

∑n
i=1 Ci

(

Ti − T̄
)2

5 Valence Electron Concentration (VEC) V EC =
∑n
i=1 Ci (V EC)i Guo et al. (2011)

6 Average Atomic Number (AN) AN =
∑n
i=1 Ci

(

zi
)

7 Thermal Conductivity (K) K =
∑n
i=1 Ci

(

Ki
)

8 Average Bulk Modulus (B) B =
∑n
i=1 Ci

(

Bi
)

9 Bulk Modulus asymmetry (ΔB) ΔB =
√

∑n
i=1 Ci

(

1 − Bi
B

)2

10 Average Shear Modulus (G) G =
∑n
i=1 Ci

(

Gi
)

11 Shear Modulus asymmetry (ΔG) ΔG =
√

∑n
i=1 Ci

(

1 − Gi
G

)2

12 Entropy of Mixing asymmetry (ΔSmix) ΔSmix = −R
∑n
i=1

(

CilnCi
)

Takeuchi & Inoue (2005)

13 Enthalpy of Mixing asymmetry (ΔHmix) ΔHmix =
∑n
i=1,i≠j

(

ΔHABCiCj
)

Guo et al. (2011)

14 Geometrical Parameter (�) � = ΔSmix
�2 Singh et al. (2014)

15 Dimensionless parameter (Ω) Ω = Tm ΔSmix
|ΔHmix|

Yang & Zhang (2012)
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S1.1. Principal Component Analysis (PCC)
In this study, feature selection plays a pivotal role in determining which input attributes will contribute to the

machine learning model’s development. To be considered for inclusion, an input feature must exhibit a meaningful
relationship with the target attribute. The Pearson’s correlation coefficient (PCC) serves as a critical metric for assessing
these relationships. For instance, when examining the correlation between Tm(K) andHV (Fig. S1), a PCC score of 0.00
indicates an absence of correlation, rendering Tm(K) irrelevant for the hardness (HV) prediction model. Furthermore,
to mitigate multicollinearity and redundancy, it’s imperative to select input features that not only correlate strongly
with the target variable but also exhibit weaker or no correlations with fellow input features.

In line with these principles, a selection criterion has been established in this study: only input features with an
absolute PCC score of 0.2 or higher with the target feature are considered for inclusion in the final machine learning
model. In the case of Tm(K), its PCC score of 0.00 leads to its exclusion from the model for hardness prediction.
Similarly, AN’s absolute PCC score of less than 0.2, despite being nonzero, deems it ineligible for the model. This
stringent selection process ensures that only features with strong linear correlations with the target attribute are retained.

Figure S1: The simultaneous view of the correlationship among the 15 input features and with the HV feature in a hardness
dataset can be enabled through the usage of a PCC heatmap. For the stronger correlationship between an input feature
and HV feature, the value represented by a darker color ( green or red) in the color scale shows the tendency of good
relevance. In context of any two input features, inclusion of both of them in the aftermath of feature selection can be
recommended only if they are weakly correlated with each other ( represented by the light color in the color scale) and
each of them are strongly correlated with the hardness feature.

S1.2. In-Depth Principal Component Analysis (PCA)
In the context of the hardness dataset (Fig. S3(c)), we examined the eigenvalues corresponding to its 19 principal

components. These eigenvalues, ordered by magnitude, ranged from 4.29 (for  1) to 0.00 (for  19), with a total sum
of

∑19
i=1  i = 15.29. The first principal component (PC 1) captured 28.06% of the total dataset information, while

PC 2 contributed 26.42%, resulting in a cumulative explained variance (EV) of 54.48% for PC 1 and PC 2 together.
PC 3, with an EV of 13.6%, pushed the cumulative EV to 68.08% for PC 1, PC 2, and PC 3. Impressively, the first
three principal components retained over two-thirds of the dataset’s information. Furthermore, the cumulative EV of
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Figure S2: Pearson’s correlation coefficient heatmap provides the simultaneous overview of the corelationship between the
15 input features of the original feature pool and with the elongation (EL) output feature. Any two input features are
deemed maximally relevant and minimally redundant for the context of further use in the model if there exists a weaker
correlationship between each other ( represented by lighter green/red color in the color scale) whereas each of them has a
stronger correlationship with the EL feature ( represented by darker green/red color in the color scale).

the first eight principal components reached 92.27%, demonstrating their suitability for machine learning models. The
remaining 11 less informative components, with a cumulative EV of 7.73%, were omitted.

The graphical representations of cumulative explained variances (EVs) for the datasets are presented in Fig. S3.
In Fig. S3(a) and Fig. S3(b), corresponding to the hardness and elongation datasets without manufacturing route
attributes, 15 principal components were considered. However, for simplicity, the horizontal axes are labeled up to
14 only. In Fig. S3(c), representing the hardness dataset with manufacturing route features, 19 eigenvalues were
obtained. These eigenvalues, listed in descending order of magnitude, ranged from 4.29 to 0.0. The cumulative EV of
the first three principal components was 68.08%, indicating their significance in retaining dataset information. Notably,
the cumulative explained variance of the first eight principal components was 92.27%, validating their selection for
machine learning. Consequently, these eight components were chosen, while the remaining 11 less informative features
were discarded.

In the cases of the hardness dataset without manufacturing route features (Fig. S3(a)), elongation dataset without
manufacturing route features (Fig. S3(b)), and elongation dataset with manufacturing route features (Fig. S3(d)), 7,
8, and 9 principal components were respectively required to capture over 90% of the explained variance. This strategic
selection ensured substantial dimensionality reduction while preserving the dataset’s critical information. The choice
of the number of principal components was influenced by the magnitude of their eigenvalues, with larger eigenvalues
signifying more significant features. For instance, in the hardness dataset with manufacturing route features (Fig.
S3(c)), the cumulative EV for the first two principal components was 54.48%, while in the elongation dataset with
manufacturing route features (Fig. S3(d)), it was 47.26%. This distinction justified the selection of 8 features for the
hardness data and 9 features for the elongation data, ensuring the retention of over 90% of the information in each
scenario.
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Figure S3: In the PCA carried out in the first step (PCA-1), the cumulative explained variance (EV) curves are obtained for
(a) hardness and (b) elongation datasets excluding the manufacturing route (MR) features. Another PCA (a.k.a. PCA-2)
is carried out again to obtain cumulative EV curves for (c) hardness and (d) elongation datasets including the MR features.
The dotted lines are constructed in the images to highlight the minimum number of principal components that contribute
to the cumulative EV larger than 90 % ( > 0.9). Illustrated through the use of dotted straight lines (green color), it is
obvious from the criteria of information retention of above 0.9 that p takes the integer values of (a) 7, (b) 8, (c) 8, and
(d) 9 in the four different datasets.

S1.3. Mathematical modeling of hardness and elongation datasets with PCA
For an input feature (Xk) of hardness/elongation database (D), there are N observations. The variance of the data

for this input feature is defined as:

var(x) = 1
N − 1

N
∑

i=1
(xi − x̄)2 (1)

where, xi is the element of a feature Xk. The quantity variance is used to understand the variation of dataset within a
single feature e.g. variation of the mean atomic radius difference in the hardness dataset.

For the initial feature pool without fabrication route (MR) feature, there are 15 input features and with including
MR feature, the list or pool consists of 19 features. In this section, the illustration of the methodology of PCA is done
with the help of the hardness database ( with 19 input features, i.e. 15 input features from the original feature pool of
Table S1 + 4 MR feature). It must be noted that the same methodology has been applied for performing PCA in all
the remaining three datasets ( 1 hardness dataset and 2 elongation datasets).
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Having so many features in the hardness dataset,arises the topic of covariance, which is defined for any two features
X1 and X2 by the following formula:

cov(x1, x2) =
1

N − 1

N
∑

i=1
(x1,i − x̄1)(x2,i − x̄2) (2)

In Eq. 2, x1,i is the observation of the variable X1 and x2,i is the observation of the feature X2. For an example, if mean
atomic radius difference � feature is chosen as the dimension X1 and electronegativity asymmetry (Δ�i) as variable
X2, then relationship between the variation in � of the hardness dataset to that of the change in Δ�i is measured by
cov(x1, x2). And, if average melting temperature (Tm) is selected as the dimension X3 , then the covariance between �
and Tm is denoted as cov(x1, x3). It should be noted that cov(x1, x2) = cov(x2, x1), and cov(x1, x3) = cov(x3, x1). The
covariance between two variables (attributes) can be positive, negative, or zero. A positive covariance indicates that
the two features have a positive relationship whereas negative covariance shows that they have a negative relationship.
If two attributes do not vary altogether with respect to each other, then they will display a zero covariance. A k-
dimensional data has k!

(k−2)!×2 covariance values. In the initial feature pool consisting of 15 features and excluding the

fabrication route (MR) feature, the number of covariance values = 15!
(15−2)!×2 = 105. When MR feature is included, the

total dimension is 19 , and the total number of covariance values is 19!
(19−2)!×2 = 171. The number of variance values for

list consisting of 15 features (excluding MR feature) is 15, and the feature pool consisting of 19 features ( including
MR feature) is 169

A variance-covariance matrix or simple, a covariance matrix, is a square matrix where the diagonal elements
contain the variance and the non-diagonal elements contain the covariance. Since, cov(x, y) = cov(y, x), it should be
understood that the variance-covariance matrix is symmetrical about the main diagonal. The number of features in the
hardness or elongation dataset determines the dimension of a variance-covariance matrix. The variance-covariance
matrix (A) for a k-dimensional data is represented below:

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

var(x1) cov(x1, x2) ... ... ... cov(x1, xk−1) cov(x1, xk)
cov(x1, x2) var(x2) ... ... ... cov(x2, xk−1) cov(x2, xk)

... ... ... ...

... ... ... ...

... ... ... ...
cov(x1, xk−1) cov(x2, xk−1) ... ... ... var(xk−1) cov(xk−1, xk)
cov(x1, xk) cov(x2, xk) ... ... ... cov(xk, xk−1) var(xk)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3)

For a dataset consisting of several features, a feature characterized with a larger variance will have more weightage
in the model as compared to the feature with smaller variance. In order to ensure that all of the variables get a say
over the outcome of the model, the features need to be standardized. In this study, the k features are standardized using
StandardScalar. After the standardization procedure the mean of the data of each feature equals 0 whereas its variance
is 1. Standardization automatically ensures the centering of the data as required by the PCA. The standardized hardness
data matrix consisting of 19 features is denoted as DH matrix. The size of the DH matrix is s× k, where s = 614 (for
training hardness dataset) is the number of observations, and k = 19 is number of input features. It is noteworthy to
mention that the all of the elements of the main diagonal of the variance-covariance matrix of Eq. 3 equal to a unity
value except for the 4 MR features as it was not standardized (no standardization to encoded categorical features).
The structure of the covariance matrix (AH ) for the hardness dataset consisting of 19 input features is provided in the
equation below:

In order to perform the PCA of the datasets of the MPEAs consisting of k features in the feature pool , it is first
necessary to perform the Eigen decomposition of the variance-covariance matrix AH . Defining the identity matrix I
of size equal to that of AH , it can be now possible to calculate the eigenvalues ( ) of the square matrix AH by the
following formula:

det|AH −  I| = 0 (4)

With the eigenvalues ([ 1, 2, ...,  k ]) computed using Eq. 4, the corresponding eigenvectors ([[�1],[�2], ..., [�k ]]) of
AH are then computed. Mathematically, the eigenvectors are defined as the family of non-zero vectors that satisfy the
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Figure S4: Structure of the covariance matrix (AH) for the hardness dataset consisting of 19 input features

condition AH� =  �. The computed values of eigenvalues (arranged in descending order) and their corresponding
eigenvectors for AH are listed below:
eigenvalues=[4.29, 4.04, 2.08, 1.07, 0.88, 0.79, 0.55, 0.41, 0.33, 0.23, 0.16, 0.15, 0.10, 0.07, 0.06, 0.05, 0.02, 0.01, 0.0
] ( the larger eigenvalue indicates more variance)

After the computation of eigenvalues and eigenvectors of the covariance matrix, the next step is to proceed towards
finding the principal components and principal components scores. An eigenvector matrix (E) of size k× k is formed
from the computed values of eigenvectors. The eigenvector corresponding to the largest eigenvalue is put as the first
column, and the one corresponding to the lowest eigenvalue is put as the last column of the E matrix. Then the
standardized data matrix ( DH ) and the eigenvector matrix (E) are subjected to matrix multiplication. The resulting
matrix P obtained from the matrix multiplication DHE provides an insight about the principal components of the
dataset, and corresponding principal component scores. The variable corresponding to the first column of the P matrix
is termed as the first principal component (PC 1), feature corresponding to the second column as PC 2, and the attribute
corresponding to the last column is understood as PC 15. Any two principal components are uncorrelated to each other,
which means they are orthonormal features.(PLEASE DRAW THE FIGURE OF PC 1 and PC 2 for the hardness
data, and then show that their vectors are orthonormal, write in caption that the remaining PCs are not shown in the
diagram.) The values or elements inside the transformed P matrix are called principal component scores. These PC
scores represent the standardized features in the principal components space, ensuring that the PC 1 has the highest
variance, followed by PC 2, and then by PC 3, and so on in the descending order.
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Figure S5: Structure of the eigenvector matrix for the hardness dataset consisting of 19 input features

S2. Scatterplot of the variables of databases DB1-HV-PCC and DB1-EL-PCC
In the aftermath of the feature selection using PCC, it will be insightful if the visualization of the datasets of the

databases DB1-HV-PCC and DB1-EL-PCC are performed. Seaborn library Waskom (2021) was utilized for the data
visualization of the different features in the databases. The pairplots for the different features of the hardness database
(8 input features + 1 hardness feature) were constructed using the seaborn library, and the pairplots are presented in Fig.
S6. On the basis of maximum relevance and minimum redundancy criteria, the 8 input features �,Δ� ,ΔTm, VEC,ΔB,
ΔG, �, ΔHmix have been selected using PCC from the initial pool of collected features, and stored in DB1-HV-PCC
along with the HV feature. The value corresponding to number of components (N) has been chosen to select the hue
of the pairplots. So, all of the points corresponding to medium entropy alloys (MEA) withN < 4 are represented with
blue colored dots in a pairplot. Similarly, the feature points corresponding to high entropy alloy (HEA) with N > 4
are represented by dots of light brown colors. From the pairplots it is very clear to understand that the dataset consists
of more number of HEA as compared to MEA.

In context of elongation datasets (DB1-EL-PCC database), the pairplots of Fig. S7 show the 7 features, namely,
�, ΔTm, VEC, ΔB, ΔG, ΔSmix, ΔHmix and 1 EL feature. The seven input features have been screened with the help
of PCC. Similar to the case of the pairplots of hardness data, the pairplots for elongation datasets also consists of
more number of HEA than MEA. Comparing the two Figs. S6 and S6, it can be noted that the 6 input features
�, ΔTm, VEC, ΔB, ΔG, ΔHmix are common in the two databases DB1-HV-PCC and DB1-EL-PCC. The database
DB1-HV-PCC consists of two additional input features Δ� , and �, unique to it and not consisted by DB1-EL-PCC.
However, DB1-EL-PCC consists of ΔSmix that is absent in DB1-HV-PCC.
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Figure S6: The distribution of the datasets of the features (8 input features and 1 HV feature ) corresponding to the
database DB1-HV-PCC is illustrated with the pairplots.

Figure S7: The pairplots reveal the distribution of the datasets of the features (7 input features and 1 EL feature )
corresponding to the database DB1-EL-PCC.
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S3. Hyper-parameter Tuning and Learning Curves of the Neural Networks
S3.1. Hyper-parameter Tuning

Hyper-parameter tuning is essential for obtaining the best configuration of the neural network models. The list
consisting of the collective set of hyper-parameters tested for the set of ANN models is provided in able S2. These
hyper-parameters are then specified individually for the individual NNs of the ensemble machine learning models
as listed in Table S3 below. From the table, it can be inferred that same sets of hyperparameters have been utilized
for the ANNs corresponding to a feature selection methodology and a given output feature. For an example, ANNs
corresponding to DB1-HV-PCC and DB2-HV-PCC are constructed from features selected using Pearson’s correlation
coefficient method, and the output feature for both of these databases is hardness (HV). While the database DB1-HV-
PCC does not include the features related to manufacturing route, the DB2-HV-PCC includes thes features in addition
to those features recommended by PCC. Owing to the fact of the usage of a same feature selection technique, i.e. PCC
and having the same output feature, i.e. hardness (HV); the two databases DB1-HV-PCC and DB2-HV-PCC have been
assigned a same set of hyper-parameters.

Table S2: Hyper-Paramater value used to tune for best combination of hyper-parameters.

SN Hyper parameters

1 Epochs = [100, 150, 200]

2 batch size = [2,4,6]

3 layers = [4,6,8]

4 neuron size = [32,48,64]

5 optimizer = [RMSprop, Adam, Nadam]

6 activation = [ReLU, selu, PReLU]

7 loss function = [mse, msle, huber with alpha=1.5]

8 drops = [0.05,0.075,0.1,0.2]

9 learning rate = [0.0001,0.00025,0.000375,0.0004,0.0005,

0.00075,0.001,0.005,0.01]

10 Regulirazation : [L1_L2 & L2]

For weight initialization

11 weight constraint = [1,2,3]

12 init weights = [uniform, normal, he_uniform]

S3.2. Learning Curves
The matrix mean absolute error was plotted for each epoch for the train and validation data. The Fig. S8 represent

the train and validation mean absolute error for four different hardness models while the Fig. S9 is for four elongation
models.

The plot presented in Fig. S8 clearly indicates that the MAE for the train and validation dataset for hardness model
is in the range of 50-60. Similarly, Fig. S9 shows it is in the range 7-15 in the elongation model. The curve also points
decline in MAE drastically for both the train and the validation datasets for epochs upto 50. As the epoch crosses 50,
the decline is gradual and there seems to be a halt in decline once the epoch reaches over 120. So the choice of 150
epoch seems quite appropriate for this case.

The learning curve for the hardness model indicates that the model was trained quite well in comparison to the
elongation model. There seems overfitting of the training model in the elongation. But that will hamper less in the
model development as callback was used to save the model having minimum validation RMSE. As an advantage of
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Table S3: The table provides a comprehensive overview of the hyper-parameters utilized within Artificial Neural Networks (ANNs)
across various databases. It is crucial to highlight that ANNs sharing the same feature selection technique and output feature will
exhibit identical sets of hyper-parameters. This standardized approach ensures a consistent and fair comparison between different
ANN models, enhancing the reliability and interpretability of the results. These hyper-parameters play a pivotal role in shaping the
performance and behavior of the ANNs, making them a critical aspect of the research methodology.

Feature Selection Output Feature = Hardness (HV) Output Feature = Elongation (EL)

Epochs = [150] Epochs = [150]

Batch size = [4] Batch size = [6]

Layers =[8] Layers =[8]

Neuron size = [48] Neuron size = [48]

Optimizer = [ ’Adam’] Optimizer = [ ’RMSprop’]

PCC Activation = [ ’selu’] Activation = [ ’selu’]

Loss function =[mse] Loss function =[mse]

Drops = [0.05] Drops = [0.05]

Learning rate = [0.00075] Learning rate = [0.001]

Regulirazation =[L1_L2] Regulirazation =[L1_L2]

Weight constraint = [2] Weight constraint = [2]

Init weights = [’he_uniform’] Init weights = [’he_uniform’]

Epochs = [150] Epochs = [150]

Batch size = [4] Batch size = [6]

Layers =[8] Layers =[8]

Neuron size = [48] Neuron size = [64]

Optimizer = [ ’Adam’] Optimizer = [ ’Nadam’]

PCA Activation = [ ’selu’] Activation = [ ’selu’]

Loss function =[mse] Loss function =[mse]

Drops = [0.05] Drops = [0.25]

Learning rate = [0.00075] Learning rate = [0.0005]

Regulirazation =[L1_L2] Regulirazation =[L1_L2]

Weight constraint = [2] Weight constraint = [2]

Init weights = [’he_uniform’] Init weights = [’he_uniform’]

this technique, the PCC-1 elongation model seems to have higher overfitting in Fig. S9 (a). But if we see result of
individual elongation model, this model is the best performing model in elongation with R2 = 0.67 and RMSE = 12.
So, the effect of overfitting was avoided by taking the model at the epoch where validation RMSE is minimum.
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Figure S8: Mean absolute errors for individual ANN models of hardness corresponding to a) DB1-HV-PCC. b) DB2-HV-
PCC. c) DB3-HV-PCA. d) DB4-HV-PCA.

Figure S9: Mean absolute errors for individual ANN models of elongation corresponding to a) DB1-EL-PCC. b) DB2-EL-
PCC. c) DB3-EL-PCA. d) DB4-EL-PCA.
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S4. Results for MPEA: Optimized Hardness-Elongation synergy
For the D1xD2y(ZrHfNb)1 − x − y alloy system, we have considered various dopant pairs and manufacturing

routes to determine their influence on properties. The table summarizes the composition, manufacturing route, and
resulting hardness (HV) and elongation (EL) properties for different alloy compositions. Notably, the [Cr,W] dopant
pair, when fabricated through powder metallurgy, yields the highest hardness of 684.49 HV. The optimal alloy
compositions and manufacturing routes for achieving maximum hardness and elongation values are detailed in Table
S4.

In the case of the D1xD2y(VNbTa)1 − x − y alloy system, we explore the effects of different dopant pairs and
manufacturing routes on alloy properties. The table presents the composition, manufacturing route, and resulting
hardness (HV) and elongation (EL) properties for various alloy compositions. It is observed that the [Cr,W] dopant
pair, manufactured through powder metallurgy, exhibits the highest hardness value of 733.42 HV. The optimal alloy
compositions and manufacturing routes for achieving maximum hardness and elongation values are highlighted in
Table S4.

Table S4: Predicted composition proportions ( x and y) of two dopant elements D1 and D2 in D1xD2y(ZrHfNb)1−x−y MPEAs
for maximum hardness, maximum elongation, and optimum hardness-elongation pair, are presented in the table. The
manufacturing routes (MR) corresponding to the property(-pair) and composition are also provided, and it should be noted
that A, B, C and D respectively represent casting, wrought+misc, powdermetallurgy and annealing. The composition design
through the machine learning model is a very important application of the concept of inverse alloy design. The hardness is
expressed in terms of HV and elongation is quantified as %.

Composition proportion x and y of dopants for
Alloy systems Maximum Maximum Optimum

hardness elongation hardness and elongation
CrxWy(ZrHfNb)1−x−y HV = 684.49 EL = 32.64 % HV = 511.81

Cr = 0.4 Cr = 0 EL = 17.14 %
W = 0.5 W = 0 Cr = 0.8

W = 0.1
MR = C MR = D MR = B

MoxTay(ZrHfNb)1−x−y HV = 457.86 EL = 34.09 % HV = 426.91
Mo = 0.5 Mo = 0.1 EL = 32.99 %
Ta = 0.2 Ta = 0 Mo = 0

Ta = 0
MR = C MR = D MR = A

WxTay(ZrHfNb)1−x−y HV = 502.41 EL = 32.64 % HV = 383.54
W = 0.8 W = 0 EL = 31.68 %
Ta = 0 Ta = 0 W = 0

Ta = 0
MR = C MR = D MR = C

TixTay(ZrHfNb)1−x−y HV = 415.75 EL = 43.52 % HV = 374.56
Ti = 0.1 Ti = 0.7 EL = 37.95 %
Ta = 0.4 Ta = 0 Ti = 0.3

Ta = 0.4
MR = C MR = D MR = B

For the alloy system based on ZrHfNb, Figure 6 c) (from main article) highlights that Cr0.8W0.1(ZrHfNb)0.1, when
produced via the wrought procedure, exhibits excellent hardness at 511.81 HV andmoderate elongation at 17.14%. This
is significant for applications where achieving high hardness is paramount. Conversely, in technological applications
that prioritize high ductility, the alloy Ti0.3Ta0.4(ZrHfNb)0.3, manufactured using the same wrought process, offers an
excellent elongation value of 37.95% with a lower hardness of 374.56 HV.

Table S4 presents data for the base ZrHfNb alloy, revealing hardness and elongation values of 426.91 HV and
32.99%, respectively, when fabricated through the casting procedure. When the same ZrHfNb alloy is manufactured
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Table S5: Ensemble neural networks are deployed as a prediction model to determine the composition proportions (x and y)
of two dopant elements D1 andD2 in D1xD2y(VNbTa)1−x−y corresponding to the constraints - maximumhardness, maximum
elongation, and optimum hardness-elongation pair. The corresponding manufacturing (routes), namely A = casting, B =
wrought +misc, C = sintering/powder metallurgy and D= annealing, are also presented along with the property/properties
and compositions.

Composition proportions x and y of dopants for
Alloy systems Maximum Maximum Optimum

hardness (HV) elongation (%) hardness-elongation
MoxTiy(VNbTa)1−x−y HV = 623.21 EL = 34.36 % HV = 566.43

Mo = 0.5 Mo = 0.1 EL = 27.79 %
Ti = 0 Ti = 0.8 Mo = 0.3

Ti = 0
MR = B MR = B MR = B

HfxWy(VNbTa)1−x−y HV = 590.31 EL = 31.70 % HV = 454.77
Hf = 0 Hf = 0.3 EL = 29.87 %
W = 0.7 W = 0 Hf = 0.3

W = 0
MR = C MR =D MR = B

ZrxWy(VNbTa)1−x−y HV = 590.31 EL = 31.45 % HV = 542.60
Zr = 0 Zr = 0.4 EL = 30.22 %
W = 0.7 W = 0 Zr = 0.4

W = 0
MR = C MR =D MR = C

CrxWy(VNbTa)1−x−y HV = 733.42 EL = 26.45 % HV = 575.87
Cr = 0.5 Cr = 0.7 EL = 23.73 %
W = 0.3 W = 0 Cr = 0.7

W = 0
MR = C MR =A MR = B

using powder metallurgy, it exhibits hardness and elongation of 383.54 HV and 31.68%, respectively. Consequently, the
first of the two alloys (Cr0.8W0.1(ZrHfNb)0.1 and Ti0.3Ta0.4(ZrHfNb)0.3) prepared via the wrought process is suitable
for applications requiring high hardness, while the second one is better suited for applications requiring enhanced
ductility.

It can be concluded that the wrought process is the recommended fabrication procedure for enhancing either
hardness or elongation when producing MPEAs from the base ZrHfNb alloy. However, with ZrHfNb, there seems to
be a trade-off between hardness and elongation, indicating that achieving optimal hardness-elongation synergy in this
alloy, dopedwith the given set of elements andmanufactured through the four different processes, is not straightforward.

When considering alloy combinations derived from the VNbTa MEA, specifically the CrxWy(VNbTa)1−x−y and
MoxTiy(VNbTa)1−x−y systems fabricated using the wrought process, regions with a favorable blend of hardness-
elongation synergy become apparent. This observation is clearly demonstrated in Fig. 6(c) of the main text by the
heights of the bars representing both hardness and elongation. For instance, Cr0.7(VNbTa)0.3, produced via the wrought
process, is predicted to possess excellent hardness at 575.87 HV along with moderately good elongation at 23.73%.
Consequently, the alloy CrxWy(VNbTa)1−x−y with x=0.7 and y=0, manufactured using the wrought method (Table
S5), is well-suited for structural applications where high hardness is preferred.

In the case of MoxTiy(VNbTa)1−x−y fabricated via the wrought process, the same table reveals that at x=0.3 and
y=0, it exhibits hardness and elongation values of 566.43 HV and 27.79%, respectively. Thus, the Mo0.3(VNbTa)0.7
MPEA demonstrates a hardness nearly equal to that of Cr0.7(VNbTa)0.3 but with improved ductility. It is estimated to
possess an excellent hardness-ductility synergy, particularly favoring hardness. Zr0.4(VNbTa)0.6 MPEA, manufactured
using powder metallurgy, is predicted to exhibit a hardness of 542.60 HV and elongation of 30.22%. This alloy also
represents a perfect combination of hardness-ductility synergy, albeit leaning more toward ductility. Notably, these
MPEAs with superior hardness-elongation synergy generally consist of four elements, with the proportion of the base
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alloy VNbTa being relatively larger. In terms of the elements doped into the VNbTa system, wrought manufacturing,
followed by powdermetallurgy, are considered the two preferable methods for achieving a harmonious balance between
elongation and hardness properties.

In contrast to alloys derived from the ZrHfNb system, MPEAs originating from the VNbTa base exhibit a more
favorable hardness-ductility synergy, quantified by the standardized and summed values of optimal hardness and
elongation features (refer to Eq. 3 in the main text). For the case of Cr0.8W0.1(ZrHfNb)0.1 (manufactured using the
wrought + misc route) has a standardized hardness of +0.084 but an elongation of -0.264, resulting in a negative
objective function value of -0.1802. This places Cr0.8W0.1(ZrHfNb)0.1 in the unfavorable category. On the other hand,
Ti0.3Ta0.4(ZrHfNb)0.3 (manufactured with the same wrought + misc process) exhibits a highly favorable standardized
elongation (+0.83) but an undesirable standardized hardness (-0.61), yielding an objective function value of +0.217.
While this objective function is positive, the negative hardness value makes this MPEA unsuitable for technological
applications.

The maximum achievable positive value for the overall objective function in ZrHfNb-derived MPEAs is +0.2229,
found in the case of Mo0.6(ZrHfNb)0.4 alloy fabricated using the casting process. In this system, standardized hardness
and elongation values are -0.34 and +0.57, respectively. Lower values of the overall objective function in ZrHfNb-
derived MPEAs can also be interpreted using the ternary plots of Figs. S10 and S12. For instance, the triangular
diagrams corresponding to CrxWy(ZrHfNb)1−x−y, prepared via the wrought process, are positioned second from the
top left corner in both figures. The region near the top corner of the triangle, highlighted by a rectangular box, represents
maximum elongation and minimum hardness. Across the 32 ternary plots in these figures, it is generally observed that
a given composition value of a D1xD2y(ZrHfNb)1−x−y alloy for a specific manufacturing route corresponds to above-
average hardness when elongation is below average and vice versa. This observation suggests that doping the ZrHfNb
alloy system with these dopant pairs is unsuitable when seeking hardness-ductility synergy.

In contrast, MPEAs derived from the VNbTa base alloy system offer solutions to mitigate the trade-off between
hardness and ductility. Mo0.3(VNbTa)0.7 (MR = wrought + misc) and Zr0.4(VNbTa)0.6 (MR = sintering) represent
composition values and manufacturing routes that result in positive standardized values for all three quantities: the
objective function, hardness, and elongation. These alloys are recommended for applications requiring enhanced
hardness and greater ductility. Mo0.3(VNbTa)0.7 alloy, for instance, has standardized hardness and elongation values
of +0.36 and +0.296, respectively, resulting in a sum of +0.656. Similarly, the standardized values for hardness
and elongation in Zr0.4(VNbTa)0.6 alloy are +0.24 and +0.42, leading to a sum of +0.6648 (the maximum sum
observed so far). Interestingly, ZrxWy(VNbTa)1−x−y alloys exhibit positive standardized values for all three quanti-
ties—hardness, elongation, and the objective function—across various manufacturing routes. The triangular diagrams
for ZrxWy(VNbTa)1−x−y for the four manufacturing routes are positioned in the top row in Figs. S11 and S13. The
region near the mid-length of the left side of these triangles, highlighted with a rectangular box, consistently displays
excellent hardness and ductility. This makes ZrxWy(VNbTa)1−x−y an optimal candidate for applications requiring
outstanding hardness-ductility synergy.

In MoxTiy(VNbTa)1−x−y alloys, three of the manufacturing routes, except casting, favor regions with a blend of
high hardness and elongation. On the other hand, for CrxWy(VNbTa)1−x−y MPEAs, casting, wrought, and annealing
processes offer composition proportions that promote hardness-ductility synergy, exhibiting both high hardness and
elongation. However, powder metallurgy does not favor this synergy. Notably, when using dopant pairs like Hf
and W, the behavior of the VNbTa system is similar to that of the ZrHfNb alloy doped with [Cr,W], [Mo,Ta],
[W,Ta], and [Ti,Ta] in most cases. This means that specific composition coordinates in the ternary diagrams of
HfxWy(VNbTa)1−x−y MPEA for wrought, sintering, and annealing procedures result in low hardness when elongation
is high, and vice versa. For casting, overall hardness and elongation values for HfxWy(VNbTa)1−x−y consistently
remain below average throughout the composition points.

S5. Simulation setup for nanoindentation test of Multi-principal element Alloys
The nanostructures of CoCrNi and CoCrNiNb0.6 MPEAs are modeled as nanoslabs of dimensions Lx × Ly × Lz

as shown in Fig. S14. A unit cell of face centered cubic (FCC) structure consisting of equiatomic proportions of Co,
Cr and Ni is replicated in X, Y and Z directions to construct a supercell of dimensions Lx = Ly = 178.55 Å, and Lz
= 214.26 Å. For the construction of the nanoslab of CoCrNiNb0.6 MPEA, a unit cell of hexagonal closed pack (HCP)
crystal structure consisting of the correct proportions of the constituent elements Co, Cr, Ni and Nb, is defined first.
Replication in three directions is then performed upon this unit cell to form a supercell. During the replication task, an
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Figure S14: In the schematic sketch for nanoindentation test using a spherical indenter of radius (R) = 5 nm, the
composition proportion x = 0 for CoCrNi medium entropy alloy, and x = 0.6 for CoCrNiNb0.6 MPEA. In context of the
CoCrNi supercell (constructed from FCC unit cell) , Lx = Ly = 178.55 Å, and Lz = 214.26 Å. For CoCrNiNb0.6 supercell
(built in an orthogonal mode for HCP unit cell) are Lx = 203.816 Å, Ly = 207.943 Å, and Lz = 228.624 Å. The atoms
within the vertical distance of lf,z = 60 Å from the base of the both nanostructures, are rigidly fixed in the entire duration
of the simulation run.

operation is conducted to build it as an orthogonal supercell of Lx = 203.816 Å, Ly = 207.943 Å, and Lz = 228.624
Å. While the CoCrNi nanoslab consists of a total of 600000 atoms, the nanoslab of CoCrNiNb0.6 MPEA includes
602688 atoms. It is assumed that the X, Y and Z axes are along crystallographic directions [1 0 0], [0 1 0] and [0 0
1] respectively. It is to be noted that the computational domain of Fig. S14 consists of two regions: top (active region
which is being indented) and the bottom (fixed region). The atoms in the bottom region are maintained static during
the entire simulation duration in order to ensure the rigid support and stability. This static region spans a length lf,z =
60 Å upward from the base. The active region has then a length = Lz - lf,z. The non-atomic rigid and repulsive sphere
having radius (R) = 50 Å, is initially about to touch the top surface of the slab in such a way that the gap between them
is a fraction of 1 Å. Upon touching the atoms of the MPEAs present in the nanostructures, the indenter will exert the
following repulsive force P(r):

P (r) =

{

−K(r − R)2; r < R
0; r ≥ R

(5)

where, K is termed as the specified force constant and has a value of 1000 eV
Ȧ3 , and r is the variable distance from a

random atom to the center point of the indenter. Upon the start of the simulation run, the indenter traverses vertically
downward with a velocity of 0.5 Å/ps.

The nanoslabs of CoCrNi MEA and CoCrNiNb0.6 MPEA constructed for the purpose of the simulations are
presented in Fig. S15. The atomic interactions among the Co, Cr andNi atoms in the CoCrNi and CoCrNiNb0.6MPEAs
nanoslabs is described with the help of Embedded Atom Method (EAM) potential. The interaction of the pairs Nb-Nb
and Nb-Ni in context of CoCrNiNb0.6 MPEAs nanoslab, is also expressed with the help of EAM potential. Finally, the
interaction Nb-Co and Nb-Cr in the CoCrNiNb0.6 nanostructure is described with the usage of Morse potentials.
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Figure S15: The nanoslabs of (a) CoCrNi and (b) CoCrNiNb0.6 MPEAs are shown in the image. The atoms in the nanoslabs
are identified through the colors of the fonts used in the symbol for the constituent element of the alloy. That is the atoms
of Co, Cr, Ni and Nb are represented respectively by spheres of light blue, dark blue, yellow and red colors.
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