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Abstract

We study a class of high-frequency path functionals of diffusions with a singular
threshold, including the case of sticky-reflection. The functionals are built upon a
test function and a normalizing sequence. We prove convergence to the local time,
advancing existing results on sticky, oscillating (regime-switching), and skew or
reflecting diffusions. Notably, we consider any normalizing sequence that diverges
slower than the observation frequency. Additionally, we allow for jointly sticky-
oscillating-skew thresholds. Combining these findings with an approximation of
the occupation time, we propose consistent estimators for skewness and stickiness
parameters.
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1 Introduction

It is known that the local time at the point ζ of an Itô diffusion with smooth coefficients
X can be effectively approximated, up to a multiplicative constant, using high-frequency
statistics of the form

un
n

[nt]∑
i=1

g(un(X i−1
n

− ζ)), (1)

where g is an integrable bounded function, (un)n is a sequence that diverges slower than
n, and (Xi/n)i are observations of the diffusion.

These approximations are used to estimate quantities of interest of a diffusion. For
instance, in [5], they are employed for localized estimates of the diffusion coefficient.
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Statistics like (1) are also used to estimate stickiness, skewness and oscillation jump of a
diffusion [1, 13, 14, 15, 16, 18, 20]. It is possible that a diffusion spends positive amount
of time at a threshold upon contact. We call such threshold sticky and the amount of
time the diffusion spends at the threshold is governed by a parameter called stickiness.
Also, it is possible that the excursions of a diffusion exhibit total or partial reflection
at a threshold. We call such threshold skew and the reflection rate is governed by a
parameter called skewness. The oscillation jump of a diffusion is the jump-discontinuity
of the diffusion coefficient. This defines a regime-switching behavior as the dynamics on
each side of the oscillating threshold are different. The simplest cases of diffusion that
exhibit these features are the sticky Brownian motion [4], the skew Brownian motion [8],
and the oscillating Brownian motion [12]. It is possible to define an elementary process
that combines all these features, the sticky-oscillating-skew Brownian motion (SOS-BM).
This process, defined in Sections 2.2, plays a central role in this work.

In [13, 15, 18], local time approximations are employed to estimate the skewness parameter
of a skew Brownian motion. In [16], the diffusion coefficient of the oscillating Brownian
motion is estimated using approximations of the occupation time for each half-line. For
some Lévy processes, local time approximations are employed to estimate the volatility
jump [20]. Convergence rates for the oscillating-skew Brownian motion are obtained in [18]
for the case un =

√
n. In [1], the consistency of an approximation of the local time at

a sticky threshold is demonstrated for normalizing sequences un diverging slower than√
n, i.e., (un)n diverges and (u2n/n)n vanishes as n diverges. This approximation is then

leveraged to propose an estimator for the stickiness parameter.

In this paper we aim to achieve the following objectives.

1. Prove that the local time approximation holds at a sticky threshold for any sequence
(un)n that diverge at a rate slower than n. This question was left open in [1], where
the author exclusively considers sequences diverging slower than n1/2 in the case of
sticky Brownian motion.

2. Prove that the local time approximation holds at a skew and oscillating threshold
for any sequence (un)n that diverges slower than n. In existing literature, this has
been demonstrated only for un =

√
n [15, 18].

3. Establish consistency of the approximation at a threshold that exhibits possibly
simultaneous oscillation, stickiness, and skew.

4. Devise consistent estimators of stickiness and skewness parameters at an SOS
threshold or a sticky-reflecting threshold. When possible, devise also consistent
estimators of the diffusion coefficient. The latter extends to SOS-BM the main result
of [16].

For simplicity, we consider a reflecting threshold to be an SOS threshold with skewness
β ∈ {−1, 1}. Therefore, the term SOS includes the cases of reflection and sticky-reflection.

The main challenge, especially in estimation, is that the limit is intricately dependent on
the process behavior in the vicinity of the threshold of interest, thereby encompassing
stickiness, skewness, and the volatility coefficient. For simplicity, we suppose there is a
unique SOS threshold, located at 0.
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Another challenge is that the proofs rely on the time-scaling of the SOS-BM which,
at high frequencies, results in an exploding stickiness. This is handled by forcing the
test function g to vanish at the sticky threshold. We then prove that the action of the
exploding stickiness on the absolutely continuous part of the transition law is bounded.
Last, extending the findings from the SOS-BM to a diffusion with an SOS-threshold
necessitates singular versions of stochastic calculus results, specifically Itô-Tanaka and
Girsanov. We prove explicit versions of these results in Appendix A.

Outline: In Section 2 we state the main results of the paper. In Section 3, we prove the
local time approximation holds for the SOS-BM and SOS-diffusions by first assuming a
similar result holds for the sticky-skew Brownian motion that is proved in Section 6. In
Sections 4 and 5, we provide estimates on the SOS-BM semigroup and a preliminary local
time approximation. These are used to prove the main results of the paper. In Section 7,
we prove that the occupation times can be approximated by Riemann sums and then use
this to prove the estimation results in Section 8.

Regarding auxiliary results, in Appendix A, we prove, in presence of an SOS-threshold,
explicit versions of Itô-Tanaka and Girsanov. We also prove the interplay between
oscillation and stickiness for the SOS-BM. In Appendix B, we establish the time-scaling
of the sticky-skew Brownian motion. In appendix C we provide the proofs for Section 4.

2 Main results

We now state the main results of the paper. We first set notations and define notions of
convergence in which these results are expressed.

2.1 Preliminaries: some notations and notions of convergence

The local time approximation results are expressed in the following type of convergence.

Definition 2.1. Let (An)n≥0 be a sequence of processes defined on the probability
space (Ω,F ,P). We say that (An)n≥1 converges locally uniformly in time, in probability
or u.c.p. to A0 if

∀t ≥ 0 : sup
s≤t

∣∣An
s − As

∣∣ P−−−−→
n−→∞

0.

We denote this convergence with

An P- u.c.p.−−−−→
n−→∞

A0.

The following result gives a sufficient condition for u.c.p. convergence to occur.

Lemma 2.2 (see [11], §2.2.3). If An and A have increasing paths and A is continuous,
then

An
t

P−→ At, ∀t ∈ D, with D dense in R+ =⇒ An P- u.c.p.−−−−→
n−→∞

A.
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For the estimation results, we consider the notion of conditional convergence in probability.
The reason is that these estimators are consistent conditionally on the event that the
threshold of interest (that we consider to be 0) is reached. For an event L, let PL(·) :=
P(·| L) be the conditional probability on L.

Definition 2.3. Let (An)n≥0 be a sequence of processes defined on the probability
space (Ω,F ,P). We say that (An)n≥1 converges to A0 in probability, conditionally on L,
if An −→ A0 in PL-probability. We denote this convergence with

An PL
−−−→
n→∞

A0.

Let X be a continuous real semi-martingale. We denote by (ℓy(X))y∈R the right local
time field of X defined in [19, Theorem VI.1.2] via the Tanaka formula. We denote by
(Ly(X))y∈R the symmetric local time field of the process X, defined for all t ≥ 0 and
y ∈ R by

Ly
t (X) =

ℓy+t (X) + ℓy−t (X)

2
,

where
ℓy+t (X) = lim

h→0
ℓy+h
t (X), ℓy−t (X) = lim

h→0
ℓy−h
t (X).

It is not always the case that the right and symmetric local time fields are equal. An
example is the skew Brownian motion, see e.g. [2, Theorem 2.1]. Typically, path-wise
characterizations of diffusions are expressed in terms of the symmetric local time, see
e.g. [22]. Most results, like the occupation times formula [19, Corollary VI.1.6] and the
representation of martingale diffusions [21, Theorem V.47.1] as a time-changed Brownian
motion are expressed in terms of the right local time.

2.2 Local time approximation for SOS-BM

The SOS-BM is the diffusion with state space I ⊆ R defined through (s,m), where s,m
are defined for all x ∈ R by

s(x) =
2x

1 + sgn(x)β
1I(x), m(dx) =

1 + sgn(x)β

σ2
0(x)

dx+ ρδ0(dx), (2)

with ρ > 0, β ∈ [−1, 1] and

σ0(x) := 1(−∞,0)(x)σ− + 1(0,+∞)(x)σ+ > 0.

We note that we use the convention sgn(0) = 0.

If β ∈ (−1, 1), then I = R. The cases β = −1 and β = +1 correspond to negative and
positive reflection. In these case I = (−∞, 0] and I = [0,∞) respectively. For simplicity,
we avoid specifying I, and we write R. The information on the state-space is included in
the pair (s,m).
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If X is an SOS-BM defined on a probability space (Ω, (Ft)t≥0,P), then, from [22], (X,B)
solves the system

Xt = X0 +

∫ t

0

σ0(Xs)1{Xs ̸=0} dBs + βL0
t (X),∫ t

0

1{Xs ̸=0} ds =
ρ

2
L0
t (X),

(3)

for a standard Brownian motion B, where L0
t (X) is the symmetric local time X at 0. To

make explicit the dependence on the parameters, we refer to the SOS-BM defined in (3)
as the (ρ, β, σ0)-SOS-BM. Also, we denote by m(ρ,β,σ0) the measure defined in (2).

We are now ready to provide our first result.

Theorem 2.4. Let X be an SOS-BM solution to (3) on the probability space (Ω, (F t)t≥0,Px)
such that X0 = x, Px-almost surely. Let also (un)n be a sequence that diverges slower that
n, i.e.

lim
n−→∞

un = ∞, lim
n−→∞

un/n = 0, (4)

and let g be an integrable bounded function with g(0) = 0. Then,

un
n

[nt]∑
i=1

g(unX i−1
n
)

Px- u.c.p.−−−−−→
n−→∞

(∫
R
g dm

)
L0
t (X). (5)

Remark 2.5. We observe that the limits in Theorem 2.4 do not depend on ρ. Indeed,
since g(0) = 0, ∫

R
g dm =

∫
R \{0}

g dm

which does not depend on ρ.

Theorem 2.4 is a straightforward consequence of a more general result, Theorem 2.6
(taking T the identity function). Passing through an intermediate function T is the key
for extending Theorem 2.4 to more general diffusions with SOS-threshold. This is done in
the next section.

Theorem 2.6. We consider the assumptions of Theorem 2.4 and let T be a twice
differentiable function such that for some ε > 0 and all x ∈ R,

T (0) = 0, T ′(0) = 1, ε ≤ T ′(x) ≤ 1/ε,
∣∣T ′′(x)

∣∣ ≤ 1/ε. (6)

and gn[T ] be the sequence of functions defined for all n, x by

gn[T ](x) = g(unT (x/un)).

Then,

un
n

[nt]∑
i=1

gn[T ](unX i−1
n
)

Px- u.c.p.−−−−−→
n−→∞

(∫
R
g dm

)
L0
t (X).
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2.3 For an SOS-diffusion

We consider the following system
Xt = X0 +

∫ t

0

b(Xs)1{Xs ̸=0} ds+

∫ t

0

σ(Xs)1{Xs ̸=0} dBs + βL0
t (X),∫ t

0

1{Xs=0} ds =
ρ

2
L0
t (X),

(7)

where B is a standard Brownian motion, ρ ≥ 0, β ∈ [−1, 1] and b, σ : R 7→ R.

We suppose the following condition on (b, σ) and the state space of the diffusion I ⊆ R
that guarantees existence and uniqueness in law (see [22]) and allows the usage of Girsanov
theorem in Section 3.

Condition 2.7. I = R, or one of the half lines: [0,∞) if β = 1 or (−∞, 0] if β = −1.
The coefficients (b, σ) are taken such that

1. weak existence and uniqueness in law holds for (7). This is equivalent to the process
that solves the SDE dYt = b(Yt) dt+σ(Yt) dBt having weak existence and uniqueness
in law,

2. σ ∈ C1(I \{0}),

3. if X solves (7), Px(X0 = x) = 1 and θ = (σ′(Xt) − b(Xt)
σ(Xt)

)t≥0, where σ′ is the

right-derivative of σ. Then, for all x ∈ I and t ≥ 0: Ex (E(θ)t) = 1, where E(θ) is
the process defined for all t ≥ 0 by

E(θ)t = exp
(∫ t

0

θs dBs −
1

2

∫ t

0

θ2s ds
)
.

Note that Condition 2.7, Item 3 is equivalent to: E(θ) is a Px-martingale. Also, when
I = R, the function σ : R → (0,+∞) may have a finite jump at 0. We define σ0 to be the
function defined, for all x ∈ R by

σ0(x) := 1(−∞,0](x) lim
ε→0−

σ(ε) + 1(0,+∞)(x) lim
ε→0+

σ(ε). (8)

The solution to the system above has an SOS threshold at 0.

Theorem 2.8. Let X be a process defined on the probability space (Ω, (F t)t≥0,Px) such
that X0 = x, Px-almost surely. We assume that X is the SOS-diffusion such that (X,B)
solves (7) for some Brownian B and (b, σ) that satisfy Condition 2.7. Then, Theorem 2.4
holds for X on (Ω, (F t)t≥0,Px), where m is the speed measure, defined in (2), of the
(ρ, β, σ0)-SOS-BM and σ0 is given by (8).

Clearly, Theorem 2.4 is a special case of Theorem 2.8. Regarding Theorem 2.8, we observe
the following. First, the approximation (5) is extremely localized. Indeed, for large n,
only the values of the process in the vicinity of the threshold, 0, matter. Second, the
approximated quantity is an additive functional of the process. Hence, it may be possible
to obtain a localized version of the results. This is the object of further research.
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2.4 Occupation times approximation

For any borelian set U we denote by OU(X) the occupation time of U by X, defined for
all t ≥ 0 by

OU
t (X) =

∫ t

0

1Xs∈U ds.

We have already noticed that constants in the limit of the previous results do not depend
on the stickiness ρ. But, if one considers the occupation time of the threshold of the
SOS-diffusions we considered, then we have

∫ t

0
1Xs=0 ds =

ρ
2
LX
t (0). Hence, to estimate ρ,

we consider statistics which converge to the occupation times.

The following result states that the occupation time can be effectively approximated
by Riemann sums. It generalizes, and corrects [1, Lemma 5.1] which concerned sticky-
diffusions and U = {0}.

Lemma 2.9 (Occupation times approximation). Let one of the following assumptions,

(i) X is an SOS-BM motion and U be an interval of R.

(ii) X is an SOS-diffusion solving (7) under Condition 2.7 and U ∈ {(0,∞), (−∞, 0), {0}}.

Then,

1

n

[nt]∑
i=1

1X i−1
n

∈U
Px - u.c.p.−−−−−→
n−→∞

OU
t (X).

An important consequence of this result is the following:

1

n

[nt]∑
i=1

1X i−1
n

=0
Px−−−−→

n−→∞

ρ

2
LX
t (0). (9)

2.5 Estimation

Let us first assume σ0, defined in (8), is known. The result of the previous sections imply
that the parameters (ρ, β) can be estimated as follows.

For any non-trivial function g, let g>0 := 1(0,∞)g and g<0 := 1(−∞,0)g. Also, for a process
X, let Sg+

n (X) and Sg−
n (X) be statistics defined, for all n, by

Sg+
n (X) :=

un
n

σ2
0(1)∫

I g>0(x) dx

[nt]∑
i=1

g>0(unX i−1
n
), Sg−

n (X) :=
un
n

σ2
0(−1)∫

I g<0(x) dx

[nt]∑
i=1

g<0(unX i−1
n
).

Proposition 2.10. We consider X, g and (un)n as in Theorem 2.8. If τX0 is the hitting
time of 0 by X and L = {τX0 < t}, then, the following convergences hold

ρ̂n(X) :=
2

n

∑[nt]
i=1 1{X i−1

n

=0}

Sg+
n (X) + Sg−

n (X)

PL
x−−−−→

n−→∞
ρ, β̂n(X) :=

Sg+
n (X)− Sg−

n (X)

Sg+
n (X) + Sg−

n (X)

PL
x−−−−→

n−→∞
β.

This yields consistent estimators of stickiness and skewness parameters.
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In the proof of Proposition 2.10, in Section 8.1, we see that the estimators can only
be consistent on L. Indeed, on Lc, O0

t (X) = 0, L0
t (X) = 0, hence ρ̂n(X), β̂n(X) are

asymptotically 0/0 divisions. This confirms the following intuition: On Lc we observe
nothing in the vicinity of the threshold of interest. Thus, it is not possible to assess
properties on the behavior of the process on the threshold with no relevant observations.

Let us now consider the case that σ0 is unknown. Note that in Theorem 2.8 there are 5
unknown factors in the right-hand-side of (5), namely (ρ, β, σ(0+), σ(0−), L0

t (X)) and 3
asymptotic results (9) and

Sg+
n (X)

Px−−−−→
n−→∞

(1 + β)LX
t (0), Sg−

n (X)
Px−−−−→

n−→∞
(1− β)LX

t (0). (10)

In order to perform algebraic operations with these equations, one needs L0
t (X) > 0. Thus,

on the event L = {L0
t (X) > 0} we need to know at least 2 of the unknowns to infer all of

them, of whom L0
t (X) is always unknown.

In the particular case of the SOS-BM, it is possible to bypass this uncertainty principle and
estimate all parameters (ρ, β, σ−, σ+) by combining local time statistics with occupation
time statistics. Indeed, (σ−, σ+) can be estimated as follows.

Proposition 2.11. Let X be an SOS-BM defined on the probability space (Ω, (F t)t≥0,Px)
such that Px(X0 = x) = 1. Also, let

τ+ = inf{t ≥ 0 : Xt > 0}, τ− = inf{t ≥ 0 : Xt < 0},

L+
t = {τ+ < t} and L−

t = {τ− < t}. Then, for all t > 0, in P0-probability,√√√√√∑[nt]
i=1(X

+
i
n

−X+
i−1
n

)2

1
n

∑[nt]
i=1 1X i−1

n

>0

P
L+
t

x−−−−→
n−→∞

σ+,

√√√√√∑[nt]
i=1(X

−
i
n

−X−
i−1
n

)2

1
n

∑[nt]
i=1 1X i−1

n

<0

P
L−
t

x−−−−→
n−→∞

σ−

where X+ = max{0, X} and X+ = max{0,−X}.

We not that the case (ρ, β) = (0, 0) is shown in [16] and the case ρ = 0 in [18].

3 Proofs: Local time approximation for SOS-diffusions

In this section, we prove Theorem 2.6 and Theorem 2.8. The necessary theoretical
foundations, the sticky versions of the Itô-Tanaka formula and Girsanov theorem, are
proved in Appendix A.

We demonstrate that the problem in Theorem 2.8, stated for SOS-diffusions, can be
reduced to the “simplest” similar process: SOS-BM. Indeed, the SOS-diffusion defined
by (7), like the SOS-BM, exhibits an SOS threshold at 0. Similarly, in the seminal
work of Jacod [10], the approximation of the local time of a smooth diffusion using the
functional (1) is initially established by reduction to the standard Brownian motion.
Using the Itô formula and Girsanov theorem, the result is then extended to stochastic
differential equations (SDEs) with smooth coefficients. The tools used to reduce the
problem (Itô formula, Girsanov theorem) cannot remove the SOS feature of the threshold
(see Section A).
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3.1 Proof of Theorem 2.6

We further reduce the problem: using the Itô-Tanaka formula, we can turn the oscillation
to skewness and vice versa (see Appendix A.1). Hence, we can prove Theorem 2.6,
assuming that we proved it in a special case: sticky-skew Brownian motion, the SOS-BM
with σ0 ≡ 1. We denote this process by (ρ, β, ·)-SOS-BM or (ρ, β)-SOS-BM. We formulate
Theorem 2.6 for the sticky-skew Brownian motion in Theorem 6.1 and prove it in Section 6.

Proof of Theorem 2.6. We consider the process X(ρ′,β′,·) := X(ρ,β,σ0)/σ(X(ρ,β,σ0)).
By Proposition A.3, it is a (ρ′, β′, ·)-SOS-BM, where

(ρ′, β′) =
(
ρ

2σ−σ+

σ−(1 + β) + σ+(1− β)
,
σ−(1 + β)− σ+(1− β)

σ−(1 + β) + σ+(1− β)

)
.

Also, let S be the function defined for all x ∈ R by

S(x) :=
T (σ0(x)x)

σ0(x)

which, like T , preserves the sign, is C1(R), C2 on each half-plane and satisfies (6).

We observe that

un
n

[nt]∑
i=1

gn[T ](unX
(ρ,β,σ0)
i−1
n

) =
un
n

[nt]∑
i=1

gn[T ]
(
unσ0(X

(ρ,β,σ0)
i−1
n

)
X

(ρ,β,σ0)
i−1
n

σ0(X
(ρ,β,σ0)
i−1
n

)

)
.

Moreover, by the definition of X ′, we have that σ0(Xt) = σ0(X
′
t), hence the latter quantity

is equal to

un
n

[nt]∑
i=1

(g<0 ◦ ϕσ−)n[S]
(
unX

(ρ′,β′,·)
i−1
n

)
+
un
n

[nt]∑
i=1

(g>0 ◦ ϕσ+)n[S]
(
unX

(ρ′,β′,·)
i−1
n

)
,

where for all c > 0, ϕc is the function defined for all x ∈ R by ϕc(x) = cx. Thus, from
Theorem 6.1,

un
n

[nt]∑
i=1

gn[T ](unX
(ρ,β,σ0)
i−1
n

)
Px- u.c.p.−−−−−→
n−→∞

(1− β′

2

∫
g<0 ◦ ϕσ−(x) dx

+
1 + β′

2

∫
g>0 ◦ ϕσ+(x) dx

)
L0
t (X

(ρ,β′,·)).

By Lemma A.1 (or Proposition A.3), we have

un
n

[nt]∑
i=1

gn[T ](unX
(ρ,β,σ0)
i−1
n

)
Px- u.c.p.−−−−−→
n−→∞

(σ+
σ−

(1− β)

2σ+σ−

∫
R
g<0(x) dx

+
σ−
σ+

(1 + β)

2σ+σ−

∫
R
g>0(x) dx

)
L0
t (X

(ρ,β,σ0)).

This completes the proof.
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3.2 Proof of Theorem 2.8

Using Theorem 2.6, the Itô-Tanaka formula and Girsanov theorem in Appendix A, we
prove the result for the process of interest with non-trivial drift and diffusion coefficients.

Proof of Theorem 2.8. Let us first assume that the diffusion coefficient and its
derivative are bounded. More precisely, we suppose there exists a real constant δ > 0 such
that

δ ≤ σ(x) ≤ 1/δ,
∣∣σ′(x)

∣∣ ≤ 1/δ, (11)

for every x ∈ I. There exists a Brownian motion B such that (X,B) jointly solve (7) [22].

We then remove the drift. Let Qx be the probability measure such that dQx = Et(θ) dPx

where E(θ), θ are processes defined for all t ≥ 0 by

Et(θ) = exp
(∫ t

0

θs dBs −
1

2

∫ t

0

θ2s ds
)
, θt = σ′(Xt)−

b(Xt)

σ(Xt)
.

From Lemma A.2, under the new measure the process (X, B̃) jointly solves
dXt =

1

2
σ(Xt)σ

′(Xt)1{Xt ̸=0} dt+ σ(Xt)1{Xt ̸=0} dB̃t + β dL0
t (X),

1Xt=0 dt =
ρ

2
dL0

t (X),

where B̃ =
(
Bt −

∫ t

0
θs ds

)
t≥0

is a Qx-Brownian motion. Let S be the function defined for
every x ∈ I by

S(x) =

∫ x

0

σ0(y)

σ(y)
dy, (12)

where σ0 is given by (8). The function S is strictly increasing, S(0) = 0, S ∈ C2(I \{0}),
and for all x ∈ I \{0} it holds

S ′(x) =
σ0(x)

σ(x)
, S ′′(x) = −σ0(x)

σ′(x)

σ2(x)
.

Also, from (11), it satisfies (6). Thus, from Lemma A.1, the process (X ′ = (S(Xt))t≥0, B̃t)
solves under Qx

dX ′
t =

σ0(Xt)

σ(Xt)
dXt −

1

2
σ0(Xt)

σ′(Xt)

σ2(Xt)
d⟨X⟩t + β dL0

t (X)

= 1{X′
t ̸=0}σ0(X

′
t) dB̃t + β dL0

t (X
′),

1X′
t=0 dt =

ρ

2
dL0

t (X
′),

and hence is an (ρ, β, σ0)-SOS-BM.

From Theorem 2.6,

un
n

[nt]∑
i=1

gn[S]
(
unX

′
i−1
n

) Qx- u.c.p.−−−−−→
n−→∞

m(ρ,β,σ0)(g)L
0
t (X

′).

10



From the definition of gn[S] and X
′, the fact that L0

t (X) is a version of L0
t (X

′) (see Lemma
A.1), and as Px ∼ Qx,

un
n

[nt]∑
i=1

g(unX i−1
n
)

Px- u.c.p.−−−−−→
n−→∞

m(ρ,β,σ0)(g)L
0
t (X

′).

This proves Theorem 2.8 in the case of bounded σ, 1/σ, σ′. Using the localization argument
of [10, Section 2.5], the proof is extended to any locally bounded σ ∈ C1(I \{0}).

4 Bounds on the law of the SOS-BM

Throughout the paper, let

1. (P
(ρ,β,σ0)
t )t≥0 be the semigroup,

2. m(ρ,β,σ0) the speed measure,

3. p(ρ,β,σ0) the probability transition kernel with respect to m(ρ,β,σ0)

of the (ρ, β, σ0)-SOS-BM. Also, let X(ρ,β,σ0) be the (ρ, β, σ0)-SOS-BM defined on a proba-
bility space (Ω, (F t)t≥0,Px) such that X0 = x ∈ I, Px-almost surely. For all t ≥ 0, x ∈ I
and any measurable functions h such that h(X

(ρ,β,σ0)
t ) ∈ L1(Ω,F ,Px), we have

P
(ρ,β,σ0)
t h(x) := Ex

(
h(X

(ρ,β,σ0)
t )

)
=

∫
R
h(y)p(ρ,β,σ0)(t, x, y)m(ρ,β,σ0)(dy). (13)

Let γn be the aggregate action of the semigroup, defined for all measurable h as above,
t ≥ 0, x ∈ I and n ∈ N by

γ(ρ,β,σ0)
n [h](t, x) =

[nt]∑
i=2

Ex

(
h(
√
nX

(ρ,β,σ0)
i−1
n

)
)
, (14)

Also, for a measure m and γ > 0 and a measurable function h such that
∫
|h| dm <∞, let

m(h) :=

∫
R
h(x)m(dx), m(γ)(h) :=

∫
R
|x|γ|h(x)|m(dx).

The Lebesgue measure is denoted by λ.

In this section, we consider only the sticky-skew Brownian motion or (ρ, β, ·)-SOS-BM.
The results of this section are easily extended to the SOS-BM. We can remove or re-
introduce the oscillation effect via a space transformation and the Itô-Tanaka formula, see
Appendix A.1: if X is the (ρ, β, σ0)-SOS-BM, then X/σ0(X) is a sticky-skew Brownian

motion. We denote with (P
(ρ,β,·)
t )t≥0, m(ρ,β,·), p(ρ,β,·) the semi-group, speed measure and

probability transition kernel of the (ρ, β, ·)-SOS-BM. Similarly, we denote (P
(·,β,·)
t )t≥0,

m(·,β,·), p(·,β,·) the same quantities for the skew Brownian motion or (·, β, ·)-SOS-BM and

with (P
(·,·,·)
t )t≥0, m(·,·,·), p(·,·,·) for the standard Brownian motion or (·, ·, ·)-SOS-BM.

In this section we only state the results. The proofs are given in Appendix C.
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4.1 Transition density bound

The probability transition kernel p(ρ,β,·) of the (ρ, β, ·)-SOS-BM with respect to m(ρ,β,·),
computed in [23, Theorem 2.4], is given for all t > 0 and x, y ∈ R by

p(ρ,β,·)(t, x, y) =
1

a(y)

(
u1(t, x, y)− u2(t, x, y)

)
+ vρ(t, x, y), (15)

where a is the function defined for all x ∈ R by

a(x) =
1 + sgn(x)β

2

and u1, u2, vρ are defined for all t > 0, x, y ∈ R by
u1(t, x, y) =

1
2
√
2πt
e−(x−y)2/2t,

u2(t, x, y) =
1

2
√
2πt
e−(|x|+|y|)2/2t,

vρ(t, x, y) =
1
ρ
e4(|x|+|y|)/ρ+8t/ρ2 erfc

(
|x|+|y|√

2t
+ 2

√
2t

ρ

)
, ∀ρ > 0,

v0(t, x, y) = u2(t, x, y).

(16)

Remark 4.1. If ρ > 0 and xy ≤ 0, then p(ρ,β,·)(t, x, y) = vρ(t, x, y).

Remark 4.2. The term vρ(t, x, y) does not appear in the probability transition kernel
of the standard BM and skew BM. The probability transition kernel of the skew Brownian
motion for β ̸= 0 and of the standard Brownian motion with respect to their speed
measure are respectively

p(·,β,·)(t, x, y) =
1

a(y)

(
u1(t, x, y)− u2(t, x, y)

)
+ u2(t, x, y), p(·,·,·) = u1(t, x, y).

Lemma 4.3. There exists a constant K > 0 such that for all t > 0 and x, y ∈ R,

p(ρ,β,·)(t, x, y) ≤ Ku1(t, x, y)

and K does not depend on ρ. In particular there exists a constant K > 0 (not depending
on ρ) such that for all t > 0, ρ ≥ 0 and x, y ∈ R,

vρ(t, x, y) ≤ Ku1(t, x, y).

4.2 Semigroup bounds

Lemma 4.4. There exists a constant K > 0 such that, for all h ∈ L1(R), t > 0 and
x ∈ R,

|P (ρ,β,·)
t h(x)| ≤ K

ρ
√
2t

ρ|x|/2 + 2t
|h(0)|+ K√

t
m(·,β,·)(|h|) ≤

K√
t
m(ρ,β,·)(|h|).

12



Lemma 4.5. For all γ ≥ 0, there exists a constant Kγ > 0, that does not depend on
(ρ, β), such that, for all h ∈ L1(R), t > 0 and x ∈ R,

∣∣P (ρ,β,·)
t h(x)−m(ρ,β,·)(h)p(ρ,β,·)(t, x, 0)

∣∣ ≤ Kγ
1

t

(
m

(1)
(·,β,·)(h) +

m
(1)
(·,β,·)(h)

1 + |x/
√
t|γ

+
m

(γ)
(·,β,·)(h)

1 + |x|γ
)
,

for all x ∈ R and t ≥ 0.

Lemma 4.6. Let γ
(ρ,β,·)
n [h](x, t) be the functional defined in (14).

1. There exists a positive constant K such that

|γ(ρ,β,·)n [h](x, t)| ≤ Km(ρ
√
n,β,·)(|h|)

√
nt.

2. If m(
√
nρ,β,·)(h) = 0 then there exists a positive constant K

γ(ρ,β,·)n [h](x, t) ≤ Km(·,β,·)(h)(1 + max(0, log(nt))).

5 A preliminary approximation of the local time

In this section we establish a preliminary local time approximation result based on the
Tanaka formula. We prove also a property of this approximation.

The statistic used for our first approximation of the local time is the rescaled mean
absolute displacement. It is defined as follows.

Let ρ ≥ 0 and β ∈ [−1, 1]. Let us consider the sequence of functions (ĝn)n defined, for all
n ∈ N and x ∈ I, by

ĝn(x) = Ex

(
|X(ρ

√
n,β,·)

1 | − |x|
)
. (17)

Proposition 5.1 (local time approximation). The following convergence holds:

1√
n

[nt]∑
i=1

ĝn(
√
nX

(ρ,β,·)
i−1
n

)
P- u.c.p.−−−−→
n−→∞

L0
t (X

(ρ,β,·)).

Proof. Since the process (X
(ρ,β,·)
t )t≥0 is a semi-martingale, the Tanaka formula (see

e.g. Itô-Tanaka formula in Lemma A.1) ensures that

|X(ρ,β,·)
t | − |x| =

∫ t

0

sgn(X(ρ,β,·)
s )1{Xs ̸=0} dBs + L0

t (X
(ρ,β,·)).

Since
∫ t

0
sgn(X

(ρ,β,·)
s )1{Xs ̸=0} dBs is a martingale,

Ex

(
|X(ρ,β,·)

t | − |X(ρ,β,·)
s |

)
= Ex

[
L0
t (X

(ρ,β,·))− L0
s(X

(ρ,β,·))
]
.

Also, from the scaling property (Corollary B.3),

1√
n
ĝn(

√
nX

(ρ,β,·)
i−1
n

) = Ex

[
|X(ρ,β,·)

i
n

| − |X(ρ,β,·)
i−1
n

|
∣∣F i−1

n

]
.
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Thus, from [9, Lemma 2.14],

1√
n

[nt]∑
i=1

ĝn(
√
nX

(ρ,β,·)
i−1
n

) =

[nt]∑
i=1

Ex

[
L0

i
n
(X(ρ,β,·))− L0

i−1
n
(X(ρ,β,·))

∣∣F i−1
n

] Px−−−→
n→∞

L0
t (X

(ρ,β,·))

and, from Lemma 2.2, the convergence is locally uniform in time, in probability (u.c.p.).

We now provide a property of (ĝn)n, that is useful in the next section.

Proposition 5.2. Let (ĝn)n be the sequence of functions defined in (17). Then,

m(ρ
√
n,β,·)(ĝn) −→

n→∞
1.

Proof. For simplicity, let mn := m(ρ
√
n,β,·). We observe that∫

R+

∫
R+

(
y − x

)e−(y−x)2/2

√
2π

dy dx =
1

2
,

∫
R+

∫
R+

x
e−(y+x)2/2

√
2π

dy dx =
1

4
. (18)

We first consider the case ρ = 0. Then,

m(ρ
√
n,β,·) = m(·,β,·), ĝn = ĝ : x 7→ Ex

(
|X(·,β,·)

1 | − |x|
)
.

Thus, from (15)-(16),

mn(ĝn) =

∫
R
ĝ(x)m(·,β,·)(dx) =

∫
R

∫
R

(
|y| − |x|

)
p(·,β,·)(1, x, y)m(·,β,·)(dy)m(·,β,·)(dx)

=

∫
R

∫
R

(
|y| − |x|

)
u1(1, x, y)4a(x) dy dx−

∫
R

∫
R

(
|y| − |x|

)
u2(1, x, y)4a(x) dy dx

+

∫
R

∫
R

(
|y| − |x|

)
u2(1, x, y)4a(x)a(y) dy dx.

From (18) and since for all t > 0 and x, y ∈ R, u2(t, x, y) = u2(t, y, x),∫
R

∫
R

(
|y| − |x|

)
u1(1, x, y)4a(x) dy dx = 1,∫

R

∫
R

(
|y| − |x|

)
u2(1, x, y)4a(x) dy dx = 0,∫

R

∫
R

(
|y| − |x|

)
u2(1, x, y)4a(x)a(y) dy dx = 0.

(19)

Thus, mn(ĝn) = 1.

We now suppose that ρ > 0. Then,

mn(ĝn) =

∫
R
ĝn(x)mn(dx) =

∫
R

∫
R

(
|y| − |x|

)
p(√nρ,β,·)(1, x, y)mn(dy)mn(dx).

14



Since mn is defined for all n ∈ N and x ∈ R by mn(dx) = 2a(x)dx+ ρ
√
nδ0(dx),

mn(ĝn) =

∫
R

∫
R

(
|y| − |x|

)
p(√nρ,β,·)(1, x, y)4a(x)a(y) dy dx

+
√
nρ

(∫
R
|y|p(√nρ,β,·)(1, 0, y)2a(y) dy −

∫
R
|x|p(√nρ,β,·)(1, x, 0)2a(x) dx

)
. (20)

We now show that the last additive term of the right-hand-side of (20) vanishes. Indeed,
we observe that

∫
R |y|p(√nρ,β,·)(t, 0, y)a(y) dy < ∞ and that for all t > 0 and x, y ∈ R,

p(√nρ,β,·)(t, x, y) = p(√nρ,β,·)(t, y, x). Thus,∫
R
|y|p(√nρ,β,·)(t, 0, y)a(y) dy =

∫
R
|y|p(√nρ,β,·)

(
t, y, 0

)
a(y) dy

and

√
nρ

(∫
R
|y|p(√nρ,β,·)(1, 0, y)2a(y) dy −

∫
R
|y|p(√nρ,β,·)(1, y, 0)2a(y) dy

)
= 0.

For the first additive term of the right-hand-side of (20), from (15),∫
R

∫
R

(
|y| − |x|

)
p(√nρ,β,·)(1, x, y)4a(x)a(y) dy dx

=

∫
R

∫
R

(
|y| − |x|

)(
u1(1, x, y)− u2(1, x, y)

)
4a(x) dy dx

+

∫
R

∫
R

(
|y| − |x|

)
v√nρ(1, x, y)4a(x)a(y) dy dx.

We observe that v√nρ(t, x, y) vanishes as n→ ∞. Also, from Lemma 4.3,(
|y| − |x|

)
v√nρ(t, x, y)a(x)a(y) ≤ K

(
|y|+ |x|

)
u1(t, x, y)

which is an integrable function with respect to (x, y) ∈ R2. Thus, from Lebesgue’s
convergence theorem,

lim
n−→∞

∫
R

∫
R

(
|y| − |x|

)
v√nρ(1, x, y)a(x)a(y) dy dx = 0.

Therefore,

lim
n−→∞

mn(ĝn) =

∫
R

∫
R

(
|y| − |x|

)(
u1(1, x, y)− u2(1, x, y)

)
4a(x) dy dx

which is 1 by (19). This proves the result.

6 Proof of Theorem 2.6 for (ρ, β, ·)-SOS-BM

In this section we prove Theorem 2.6 in the special case of sticky-skew Brownian motion,
stated in Theorem 6.1. Throughout this section, X(ρ,β,·) is a (ρ, β)-SOS-BM with ρ ≥ 0

and β ∈ [−1, 1] defined on the probability space (Ω, (F t)t≥0,Px) such that X
(ρ,β,·)
0 = x ∈ I

(recall I = R if |β| ≠ 1), Px-almost surely.
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Theorem 6.1 (Local time approximation for sticky-skew Brownian motion).

un
n

[nt]∑
i=1

gn[T ](unX
(ρ,β,·)
i−1
n

)
Px- u.c.p.−−−−−→
n−→∞

(∫
R
g dm(ρ,β,·)

)
L0
t (X

(ρ,β,·)),

where m(ρ,β,·) is the speed measure of X(ρ,β,·) given by (2) with σ0 ≡ 1.

We prove Theorem 6.1 considering separately normalizing sequences with different modes
of convergence.

1. The mode (un)n : n1/2. In this case we prove a more general result, Proposition 6.2.
The proof relies on linearization of the statistic with respect to the approximation
in Lemma 5.1.

2. The mode (un)n : log n/un −→ 0, un −→ ∞. We prove Proposition 6.7 via rescaling
to the mode n1/2. This case includes the case un = nα with α ∈ (0, 1) (and so, also
α = 1/2) but excludes logarithmic cases.

3. The mode (un)n : u2n/n −→ 0, un −→ ∞. We prove Proposition 6.9 using properties
of the local time of the process, namely its continuity on each half-plane and its
time-scaling (Lemma B.2).

6.1 The case: un = n1/2

Proposition 6.2. Let (gn)n be a sequence of function such that for all x ∈ I

lim
n−→∞

(g2n(√nx)
n

+
m(ρ

√
n,β,·)(g

2
n)√

n

+
m

(1)
(·,β,·)(gn)

(
1 + log(n)

)
gn(

√
nx)

n
+

(
1 + log(n)

)
m(ρ

√
n,β,·)(|gn|)√

n

)
= 0 (21)

and limn→∞m(
√
nρ,β,·)(gn) =M . Then, for all t ≥ 0,

1√
n

[nt]∑
i=1

gn(
√
nX

(ρ,β,·)
i−1
n

) −→ML0
t (X

(ρ,β,·)) (22)

in Px-probability. Also, if supn

(
m(

√
nρ,β,·)(|gn|)

)
<∞ then the above convergence is localy

uniform in time, in Px-probability.

Remark 6.3. We observe that if two sequences of functions (fn)n, (gn)n satisfy (21),
then the sequence (fn + gn)n also satisfies (21).

Before proving Proposition 6.2, we need to provide some other results which are relevant
on their own.

Lemma 6.4. Let (gn)n be a sequence of function such that for all x ∈ R, as n −→ ∞,
m(

√
nρ,β,·)(|gn|) + gn(

√
nx)/

√
n −→ 0. Then,

1√
n

[nt]∑
i=1

gn(
√
nX

(ρ,β,·)
i−1
n

) −→ 0
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locally uniformly in time, in L1(Px).

Proof. We observe that

Ex

(
sup
s∈[0,t]

∣∣∣ [ns]∑
i=1

gn(
√
nX

(ρ,β,·)
i−1
n

)
∣∣∣) ≤ |gn(x

√
n)|+ γn[|gn|](x, t).

Thus, from Item (1) in Lemma 4.6,

Ex

(
sup
s∈[0,t]

∣∣∣ 1√
n

[ns]∑
i=1

gn(
√
nX

(ρ,β,·)
i−1
n

)
∣∣∣) ≤ |gn(x

√
n)|√

n
+Km(

√
nρ,β,·)(|gn|)

√
t

which completes the proof.

The next result is an adaptation to this context of [10, Lemma 4.2].

Lemma 6.5. Let (gn)n be a sequence of functions that such that (21) holds and for all
n ∈ N, x ∈ R: m(

√
nρ,β,·)(gn) = 0. Then,

lim
n−→∞

Ex

(∣∣∣ 1√
n

[nt]∑
i=1

gn(
√
nX

(ρ,β,·)
i−1
n

)
∣∣∣2) = 0.

Proof. It holds that

Ex

(∣∣∣ [nt]∑
i=1

gn(
√
nX

(ρ,β,·)
i−1
n

)
∣∣∣2) ≤ g2n(

√
nx) + γn[g

2
n](t, x)

+ 2 sup
y∈R;s≤t

{
|γn[gn](s, y)|

}(
gn(

√
nx) + γn[gn](t− 1/n, x)

)
.

From Lemma 4.6, for some Kt > 0,

sup
y∈R;s≤t

{
|γn[gn](s, y)|

}
≤ Ktm

(1)
(·,β,·)(gn)

(
1 + log(n)

)
,

γn[gn](t, x) ≤ Ktm(
√
nρ,β,·)(|gn|)

√
n,

γn[g
2
n](t, x) ≤ Ktm(

√
nρ,β,·)(g

2
n)
√
n.

Thus,

Ex

(∣∣∣ 1√
n

[nt]∑
i=1

gn(
√
nX

(ρ,β,·)
i−1
n

)
∣∣∣2) ≤ Kt

(
g2n(

√
nx)

n
+
m(ρ

√
n,β,·)(g

2
n)√

n

+
m

(1)
(·,β,·)(gn)

(
1 + log(n)

)
gn(

√
nx)

n
+

(
1 + log(n)

)
m(ρ

√
n,β,·)(|gn|)√

n

)
,

which converges to 0 as n −→ ∞.
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Lemma 6.6. The sequence of functions (ĝn)n in (17)satisfies (21). Moreover,

lim
n→∞

ĝn(0) = 0.

Proof. We observe that s(X(ρ,β,·)) is a martingale and x 7→ |s−1(x)| is convex. Thus,
|X(ρ,β,·)| = |s−1 ◦ s(X(ρ,β,·))| is a supermartingale. From [21, p.277] or [23], for all n, there
exists a skew Brownian motion X(·,β,·) and a time change γn defined via its right-inverse
by

γ−1
n (t) = t+

ρ
√
n

2
L0
t (X

(·,β,·)).

We observe that γ−1
n (0) = 0, γ−1

n is strictly increasing and that for all t > 0, t ≤ γ−1
n (t).

Hence, for all t > 0, 0 < γn(t) ≤ t and

0 ≤ ĝn(x) = Ex

(
|X(ρ

√
n,β,·)

1 | − |x|
)
= Ex

(
|X(·,β,·)

γn(1)
| − |x|

)
≤ Ex

(
|X(·,β,·)

1 | − |x|
)
=: Gβ(x) ≤ K Ex

(
|B1| − |x|

)
=: Kĝ(x).

Since, from [10] ĝ satisfies (21), to show that ĝn does too it remains to show that if
n −→ ∞

ĝ2n(0) −→ 0, (1 + log n)ĝn(0) −→ 0. (23)

Indeed, since 0 < a(y) ≤ 1,

ĝn(0) = E0

(
|X(ρ

√
n,β,·)

1 |
)
=

∫
I
|y|p(ρ√n,β,·)(1, 0, y)m(ρ

√
n,β,·)(dy)

≤ 2

∫
R
|y|vρ√n(1, 0, y) dy =

2

ρ
√
n

∫
R
|y|e4|y|/ρ

√
n+8/ρ2n erfc

( |y|√
2
+

2
√
2

ρ
√
n

)
, dy

hence
(
(1 + log n)ĝn(0)

)
−→ 0 as n −→ ∞. Similarly,

(ĝn(0))
2 ≤ E0

(
|X(ρ

√
n,β,·)

1 |2
)
≤ 2

∫
R
|y|2vρ√n(1, 0, y) dy

=
2

ρ
√
n

∫
R
|y|2e4|y|/ρ

√
n+8/ρ2n erfc

( |y|√
2
+

2
√
2

ρ
√
n

)
dy,

hence ĝ2n(0) −→ 0 as n −→ ∞. Thus, (23) is satisfied. This finishes the proof.

Proof of Proposition 6.2. Let (ĝn)n∈N, (hn)n∈N be the sequences of functions de-
fined for all x ∈ R, n ∈ N by

hn(x) = gn(x)−
m(

√
nρ,β,·)(gn)

m(
√
nρ,β,·)(ĝn)

ĝn(x), ĝn(x) = Ex

(
|X(ρ

√
n,β,·)

1 | − |x|
)
.

Note that ĝn was already defined in (17).
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From Proposition 5.2, Remark 6.3 and Lemma 6.6, (hn)n satisfies (21). Also, for all n ∈ N,
m(

√
nρ,β,·)(hn) = 0. Thus, from Lemma 6.5,

Ex

(∣∣∣ 1√
n

[nt]∑
i=1

hn(
√
nX

(ρ,β,·)
i−1
n

)
∣∣∣2) −−−→

n→∞
0

which proves (22).

It remains to prove that the convergence is locally uniform in time, in Px-probability.
If (gn)n are all positive, the processes 1√

n

∑[nt]
i=1 gn(

√
nX

(ρ,·,σ0)
i−1
n

) are non-decreasing with

Px-almost surely, a continuous limit. Thus, from Lemma 2.2, the convergence is locally
uniform in time, in probability (u.c.p.). More precisely, for an arbitrary (gn)n satisfying
the conditions of Proposition 6.2, let gn = g+n − g−n , where g

+
n (x) = max{gn(x), 0} and

g−n (x) = max{−gn(x), 0}. Since (g+n )n and (g−n )n are both sequences of positive functions,
if limn→∞m(

√
nρ,β,·)(g

+
n ) =:M+ and limn→∞m(

√
nρ,β,·)(g

−
n ) =:M−, then

1√
n

[nt]∑
i=1

g+n (n
αX

(ρ,β,·)
i−1
n

)
Px - u.c.p.−−−−−→
n→∞

M+L
0
t (X),

1√
n

[nt]∑
i=1

g−n (n
αX

(ρ,β,·)
i−1
n

)
Px - u.c.p.−−−−−→
n→∞

M−L
0
t (X).

From the triangle inequality for the absolute value and the L∞(0, t)-norm, the local
uniform convergence in time, in Px-probability of (22) is proven.

6.2 A case including un = nα, α ∈ (0, 1)

Proposition 6.7. Theorem 6.1 holds under the additional assumption that

log n/un −−−→
n→∞

0.

The proof relies on the following result.

Proposition 6.8. Let (gn)n, (un)n be respectively a sequence of functions and a sequence
of real numbers such that

1. if as n −→ ∞: log n/un −→ 0, un −→ ∞ and un/n −→ 0,

2. (gn)n a sequence of functions such that

supλ(|gn|) <∞, sup
n,x

|gn(x)| <∞,

lim
n−→∞

m(·,β,·)(gn) =:M, lim
q

lim sup
n

∫
|x|>q

|gn(x)| dx = 0.

Then,

un
n

[nt]∑
i=1

gn(unX
(ρ,β,·)
i−1
n

)
Px- u.c.p.−−−−−→
n−→∞

ML0
t (X

(ρ,β,·)).
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Proof. Let (kn)n be the sequence of functions defined for all x ∈ R by kn(x) =
un√
n
gn
(
un√
n
x
)
. Let supn λ

(1)(gn) <∞. Then, for some K > 0,

|kn(x)| ≤ K
un√
n
, m(·,β,·)(|kn|) = m(·,β,·)(|gn|) ≤ K,

m
(1)
(·,β,·)(kn) =

√
n

un
m

(1)
(·,β,·)(gn) ≤

√
n

un
K, λ(k2n) =

un√
n
λ(g2n) ≤

un√
n
K.

We observe that from the hypothesis we made on (un)n, (kn)n satisfies (21). Thus, from
Proposition 6.2,

1√
n

[nt]∑
i=1

kn(
√
nX

(ρ,β,·)
i−1
n

)
Px- u.c.p.−−−−−→
n−→∞

ML0
t (X

(ρ,β,·)). (24)

In the case supn λ
(1)(gn) = ∞, for all r ≥ 1 consider hn,r := gn1(−r,r). Then, m

(1)
(·,β,·)(hn,r) ≤

rm(·,β,·)(|gn|) <∞. Moreover, for all r, m(·,β,·)(hn,r) −→ αr as n→ ∞ (up to considering
a subsequence) for αr such that αr −→M as r → ∞. Hence, from (24),

un
n

[nt]∑
i=1

hn,r(unX
(ρ,β,·)
i−1
n

)
Px- u.c.p.−−−−−→
n−→∞

αrL
0
t (X

(ρ,β,·)).

Since αr −→M as r → ∞, it remains to show that

lim
r−→∞

lim sup
n→∞

Ex

(
sup
s∈[0,t]

∣∣∣un
n

[nt]∑
i=1

gn(unX
(ρ,β,·)
i−1
n

)− un
n

[nt]∑
i=1

hn,r(unX
(ρ,β,·)
i−1
n

)
∣∣∣) = 0. (25)

If hn,r(x) = gn(x)− hn,r(x) = gn(x)1|x|>r, then the expectation in (25) is bounded by

un
n

[nt]∑
i=1

Ex

(∣∣hn,r(unX(ρ,β,·)
i−1
n

)
∣∣) ≤ un

n
hn,r(unx) +

1√
n
γn[h̃n,r](x, t),

where h̃n,r =
un√
n
hn,r(

un√
n
x) = |kn|1|x|>r

√
n/un

and γn[h̃n,r](x, t) defined in (14). Since |kn| is
bounded by Kun/

√
n,

lim
n−→∞

un
n
hn,r(unx) = 0.

It remains to check that for all x ∈ R

lim sup
r→∞

lim sup
n→∞

1√
n
γn[h̃n,r](x, t) = 0.

Indeed, since h̃n,r(0) = 0, Lemma 4.6 yields

1√
n
γn[h̃n,r](x, t) ≤ Km(·,β,·)(|h̃n,r|)

√
t,

which converges to 0 as r → ∞.
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Proof of Proposition 6.7. We observe

sup
n,x

gn[T ](x) ≤ ∥g∥∞, λ(gn[T ]) ≤ λ(g)∥1/T∥∞ ≤ λ(g)/ε,

lim
n−→∞

m(·,β,·)(gn[T ]) = m(·,β,·)(g).

Also, ∫
|x|>q

|gn[T ](x)| dx =

∫
|x|> q

un

g
(
unT (x)

)
un dx

≤ 1

ε

∫
un|x|>q

g
(
unx

)
un dx ≤ 1

ε

∫
|x|>q

g
(
x
)
dx,

which converges to 0 as q −→ ∞. Since g(0) = 0 and m(·,β,·) is equal to λ up to a
multiplicative bounded weight, the conditions of Proposition 6.8 are satisfied for (gn)n =
(gn[T ])n. The proof is thus completed.

6.3 A case including un = log n

Sections 6.1-6.2 are an improvement with respect to [1, Theorem 1.2] because they allow
to consider nα for α ∈ [1/2, 1) for sticky-BM. They are also an improvement with respect
to the results for skew BM in [15] and oscillating-skew BM in [18] where only un =

√
n

was considered. But, the results of Sections 6.1-6.2 do not consider (un)n with log n-like
asymptotic behaviors.

In this section we prove that the result holds for (u2n)n that satisfy (4), i.e.

u2n/n −−−→
n→∞

0, u2n −−−→
n→∞

0. (26)

Proposition 6.9. Theorem 6.1 holds under the additional assumption that (un)n
satisfies (26).

For this, we use the following preliminary results.

Lemma 6.10. If (un)n is a diverging sequence and T a function that satisfies (6), then
the following convergence holds∫

R
gn[T ](x)ℓ

(x/un)
[nt]/n (X(ρ,β,·)) dx

Px−−−→
n→∞

m(ρ,β,·)(g)L
0
t (X

(ρ,β,·)).

Proof. Note that there exists a skew Brownian motion X(·,β,·) defined on an extension
of the probability space such that X(ρ,β,·) = (X

(·,β,·)
γ(t) )t≥0, where γ is the time-change defined

by its right-inverse γ−1(t) = t+ ρ
2
ℓ0+t (X(·,β,·)) (cf. [23]).

The skew Brownian motion X(·,β,·) is the unique strong solution to the following equation

X(·,β,·) = B′
t + βL0

t (X
(·,β,·)),
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where B′ is a standard Brownian motion (see [8]) and

ℓ0+t (X(·,β,·)) = (1 + β)L0
t (X

(·,β,·)), ℓ0−t (X(·,β,·)) = (1− β)L0
t (X

(·,β,·)).

We observe that d⟨X(·,β,·)⟩t = dt. From [19, Theorem VI.1.6], the right local time field the
symmetric local time [(t, y) → ℓyt (X

(·,β,·))] is (t, y)-jointly continuous on each half-plane
(R+×(−∞, 0)), (R+×[0,∞)). From [19, Exercice VI.1.27], ℓ0t (X

(ρ,β,·)) = ℓ0γ(t)(X
(·,β,·)).

Thus, since γ−1 is almost surely continuous, t 7→ ℓyt (X
(ρ,β,·)) is also (t, y)-jointly continuous

on each half-plane and

ℓ0+t (X(ρ,β,·)) = (1 + β)L0
t (X

(ρ,β,·)), ℓ0−t (X(ρ,β,·)) = (1− β)L0
t (X

(ρ,β,·)). (27)

From the a.s. piece-wise continuity of (t, y) → ℓyt (X
(ρ,β,·)), for all t ≥ 0 and x > 0,

|ℓ(x/un)
[nt]/n (X(ρ,β,·))− ℓ0+t (X(ρ,β,·))| a.s.−−−→

n→∞
0, |ℓ−(x/un)

[nt]/n (X(ρ,β,·))− ℓ0−t (X(ρ,β,·))| a.s.−−−→
n→∞

0.

(28)

We observe that almost surely

−∞ < inf
s≤t

Xs < sup
s≤t

Xs <∞. (29)

Thus, from the Hölder continuity of [t → ℓx−t (X(ρ,β,·))], [x → ℓx+t (X(ρ,β,·))] on [0,∞) ×
(−∞, 0) and [0,∞) × [0,∞), there exists positive finite random variables U−, U+ such
that, almost surely, for all x ̸= 0 and n ∈ N,

|ℓ−(x/un)
[nt]/n (X(ρ,β,·))− ℓ0−t (X(ρ,β,·))| ≤ U−, |ℓ(x/un)

[nt]/n (X(ρ,β,·))− ℓ0+t (X(ρ,β,·))| ≤ U+.

Let us fix an event Ω0 of full probability such that the above convergences (28) hold and
such that the process X is finite, i.e. (29) holds for all ω ∈ Ω0.

We now prove that, on Ω0,∫ ∞

0

gn[T ](x)ℓ
x/un

[nt]/n(X
(ρ,β,·)) dx −−−→

n→∞
ℓ0+t (X(ρ,β,·))

∫ ∞

0

g(x) dx

and ∫ 0

−∞
gn[T ](x)ℓ

x/un

[nt]/n(X
(ρ,β,·)) dx −−−→

n→∞
ℓ0−t (X(ρ,β,·))

∫ 0

−∞
g(x) dx.

We focus on the first convergence. The second convergence can be proven with similar
arguments.

From dominated convergence, since |T ′| is bounded and g integrable, we can easily show
that

∫∞
0
gn[T ](x) dx converges towards

∫∞
0
g(x) dx. Hence, it remains to prove that on Ω0∫ ∞

0

(gn[T ](x)− g(x))
(
ℓ
x/un

[nt]/n(X
(ρ,β,·))− ℓ0+t (X(ρ,β,·))

)
dx −−−→

n→∞
0

and ∫ ∞

0

g(x)
(
ℓ
x/un

[nt]/n(X
(ρ,β,·))− ℓ0+t (X(ρ,β,·))

)
dx −−−→

n→∞
0.
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This holds by dominated converge. Indeed, as g is bounded for all q > 0, it holds on Ω0∣∣∣ ∫ ∞

0

(gn[T ](x)− g(x))
(
ℓ
x/un

[nt]/n(X
(ρ,β,·))− ℓ0+t (X(ρ,β,·))

)
dx

∣∣∣
≤ 2∥g∥∞

∫
0<x≤q

∣∣ℓx/un

[nt]/n(X
(ρ,β,·))− ℓ0+t (X(ρ,β,·))

∣∣ dx+ U+

∫
x>q

|gn[T ](x)− g(x)| dx

≤ 2∥g∥∞U+q + 2U+ sup
x∈R

|T ′(x)|−1

∫ ∞

q

|g(x)| dx <∞.

Thus, from dominated convergence yields∫ ∞

0

gn[T ](x)ℓ
(x/un)
[nt]/n (X(ρ,β,·)) dx

a.s.−−−→
n→∞

(∫ ∞

0

g(x) dx
)
ℓ0+t (X(ρ,β,·)).

With similar arguments on (−∞, 0), we have∫
R
gn[T ](x)ℓ

(x/un)
[nt]/n (X(ρ,β,·)) dx

a.s.−−−→
n→∞

(∫ 0

−∞
g(x) dx

)
ℓ0−t (X(ρ,β,·)) +

(∫ ∞

0

g(x) dx
)
ℓ0+t (X(ρ,β,·)).

This and (27) completes the proof.

Lemma 6.11. Let k be a bounded Lipschitz function with compact support that vanishes
on an open interval around 0, (un)n be a sequence that satisfies (26), T a function that
satisfies (6) and (kn[T ])n, (Fn[k])n be the sequences of functions defined for all x ∈ R,
n ∈ N by

kn[T ](x) = k
(
unT (x/un)

)
, Fn[k](x) =

∫ 1

0

(
P

(unρ,β)

su2
n/n

kn[T ](x)− kn[T ](x)
)
ds.

Then,
m(unρ,β,·)

(
Fn[k]

)
−−−→
n→∞

0.

Proof. For all δ > 0, let Uδ = {x ∈ R : |x| ∈ (δ, 1/δ)}. We choose δ > 0 such that
for all x ̸∈ Uδ, k(x) = 0. We observe that there exists some n0 such that, for all n ≥ n0

and |x| ̸∈ Uδ/2, kn[T ](x) = 0.

In what follows, we study separately the absolutely continuous and singular parts of
m(unρ,β,·). By Fubini’s theorem,

∣∣m(·,β,·)
(
Fn[k]

)∣∣ = ∣∣∣∣∫
R

(∫ 1

0

(
P

(unρ,β)

su2
n/n

kn[T ](x)− kn[T ](x)
)(
ds

))
m(·,β,·)(dx)

∣∣∣∣
≤

∫ 1

0

(∫
R

∣∣P (unρ,β)

su2
n/n

kn[T ](x)− kn[T ](x)
∣∣m(·,β,·)(dx)

)
ds.

Also,

|Fn[k](0)| ≤
∫ 1

0

∣∣P (unρ,β)

su2
n/n

kn[T ](0)− kn[T ](0)
∣∣ ds.
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Lemma 4.3 yields∣∣P (unρ,β)

su2
n/n

kn[T ](x)− kn[T ](x)
∣∣

≤
∫
R

∣∣kn[T ](y)− kn[T ](x)
∣∣p(unρ,β,·)(su

2
n/n, x, y)m(unρ,β,·)dy

≤ K

∫
R

∣∣kn[T ](y)− kn[T ](x)
∣∣u1(su2n/n, x, y)(dy) +K

∣∣kn[T ](x)∣∣u1(su2n/n, x, 0). (30)

Regarding the second additive term at the right-hand-side of (30),

• for all x ∈ R,
lim
n→∞

K
∣∣kn[T ](x)∣∣u1(su2n/n, x, 0) = 0,

• from the convergence on u2n/n to 0, there exists some n1 ≥ n0 such that for all
n ≥ n1,

K|kn[T ](x)|u1(su2n/n, x, 0) ≤ K∥k∥∞u1(su2n/n, 0, x)1Uδ/2

≤ K∥k∥∞ sup
|x|>δ/2;n≥n1

{
u1(su

2
n/n, 0, x)

}
1Uδ/2

≤ K∥k∥∞u1(u2n1
/n1, 0, δ/2)1Uδ/2

which is L1(R).

Thus, from dominated convergence,

lim
n→∞

∫
R
K|kn[T ](x)|u1(su2n/n, 0, x)m(ρ,β,·)(dx) = 0.

Regarding the second additive term, if Z is a Gaussian N (0, 1) random variable, then for
every n ≥ n0 and s ∈ [0, 1],∫

R

∫
R

∣∣kn[T ](y)− kn[T ](x)
∣∣u1(su2n/n, x, y)(dy)m(·,β,·)(dx)

= E

(∫
R

∣∣∣∣kn[T ](x+ un
√
s√
n
Z)− kn[T ](x)

∣∣∣∣m(·,β,·)(dx)

)
≤ E

(∫
R
1{|x+un

√
s√

n
Z|<2/δ}∪{|x|<2/δ}

∣∣∣∣kn[T ](x+ un
√
s√
n
Z)− kn[T ](x)

∣∣∣∣m(·,β,·)(dx)

)
≤ ∥k∥Lip∥T∥Lip

un√
n
E

(
|Z|

∫
R
1{|x|<2/δ+ un√

n
|Z|}m(·,β,·)(dx)

)
≤ 4∥k∥Lip∥T∥Lip

un√
n
E

(
|Z|

(2
δ
+

un√
n
|Z|

))
which, since E(|Z|), E(Z2) <∞, converges to 0 as n −→ ∞.

Since the bounds do not depend on s, from Lebesgue’s dominated convergence theorem
on L1([0, 1]),

m(·,β,·)
(
Fn[k]

)
−−−→
n→∞

0.
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Regarding the singular part of the measures, from (15),

ρun
∣∣P (unρ,β)

su2
n/n

kn[T ](0)− kn[T ](0)
∣∣ ≤ ρunK

∫
R

∣∣kn[T ](y)− kn[T ](0)
∣∣vunρ(su

2
n/n, 0, y)( dy)

= ρunK

∫
Uδ/2

∣∣kn[T ](y)∣∣vunρ(su
2
n/n, 0, y)( dy).

Thus,

ρun

∫
Uδ/2

∣∣kn[T ](y)∣∣vunρ(su
2
n/n, 0, y) dy

≤ ∥k∥∞
∫ 2/δ

δ/2

e4(|y|)/unρ+8u2
ns/nu

2
nρ

2

erfc
( |y|√

2su2n/n
+

2
√

2su2n/n

unρ

)
dy

≤ ∥k∥∞KMills

∫ 2/δ

δ/2

unρ

unρ|y|+ 4t
e−y2n/2su2

n dy ≤ ∥k∥∞KMills

∫ 2/δ

δ/2

2

δ
e−y2n/2su2

n dy

which converges to 0 as n −→ ∞.

Again, since the bounds do not depend on s, from Lebesgue’s dominated convergence
theorem on L1([0, 1]),

lim
n→∞

(
ρun

)
Fn[k](0) = 0.

This finishes the proof.

Lemma 6.12. Let X(ρ,β,·) be the (ρ, β)-sticky-skew Brownian motion and g an integrable
function. Then,

Ex

(
sup
s≤t

[ns]∑
i=1

g(unX
(ρ,β,·)
i−1
n

)
)
≤ |g(unx)|+

(
ρ|g(0)|+ 1

un
m(·,β,·)(|g|)

)
n
√
2t.

Proof. We observe that∫
R
|g(unx)|m(ρ,β,·)(dx) = ρ|g(0)|+ 1

un

∫
R
|g(x)|m(·,β,·)(dx).

From Lemma 4.4 and the fact that
∑[nt]

i=1 i
−1/2 ≤ 2

√
nt, we have

Ex

(
sup
s≤t

[ns]∑
i=1

g(unX
(ρ,β,·)
i−1
n

)
)
≤

[nt]∑
i=1

Ex

(∣∣g(unX(ρ,β,·)
i−1
n

)
∣∣)

≤ |g(unx)|+
(
ρ|g(0)|+ 1

un
m(·,β,·)(|g|)

) [nt]∑
i=2

√
n√
i

≤ |g(unx)|+
(
ρ|g(0)|+ 1

un
m(·,β,·)(|g|)

)
n
√
2t.

This finishes the proof.
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Proof of Proposition 6.9. We observe that X(ρ,β,·) is a semi-martingale with
quadratic variation d⟨X(ρ,β,·)⟩t = 1

X
(ρ,β,·)
t ̸=0

dt. Thus, from the diffusion version of the

occupation times formula [19, p.224],∫ t

0

f(X(ρ,β,·)
s )1

X
(ρ,β,·)
s ̸=0

ds =

∫
R
f(y)1y ̸=0ℓ

y
t (X

(ρ,β,·)) dy

and if f(0) = 0, ∫ t

0

f(X(ρ,β,·)
s ) ds =

∫
R
f(y)ℓyt (X

(ρ,β,·)) dy. (31)

Applying consecutive change of variables and (31) yields

un
n

∫ [nt]

0

gn[T ](unX
(ρ,β,·)
s/n ) ds = un

∫ [nt]/n

0

gn[T ](unX
(ρ,β,·)
s ) ds

= un

∫
R
gn[T ](unx)ℓ

x
[nt]/n(X

(ρ,β,·)) dx =

∫
R
gn[T ](x)ℓ

x/un

[nt]/n(X
(ρ,β,·)) dx.

And, from Lemma 6.10, we have∫
R
gn[T ](x)ℓ

x/un

[nt]/n(X
(ρ,β,·)) dx

Px- u.c.p.−−−−−→
n−→∞

m(ρ,β,·)(g)L
0
t (X

(ρ,β,·)).

Therefore, by the two latter relations, to complete the proof, it suffices to prove that

un
n

[nt]∑
i=1

gn[T ](unX
(ρ,β,·)
i−1
n

)− un
n

∫ [nt]

0

gn[T ](unX
(ρ,β,·)
s/n ) ds

Px- u.c.p.−−−−−→
n−→∞

0.

First, let us note that

un
n

[nt]∑
i=1

gn[T ](unX
(ρ,β,·)
i−1
n

)− un
n

∫ [nt]

0

gn[T ](unX
(ρ,β,·)
s/n ) ds

=
un
n

[nt]∑
i=1

∫ 1

0

(
gn[T ](X

(ρ,β,·)
i−1
n

)− gn[T ](X
(ρ,β,·)
i−1
n

+ s
n

)
)
ds

+
un
n

∫ nt−[nt]

0

(
gn[T ](X

(ρ,β,·)
[nt]
n

)− gn[T ](X
(ρ,β,·)
[nt]
n

+ s
n

)
)
ds. (32)

Next, observe that the second additive term of the right-hand-side of (32) is bounded by
2∥g∥∞un/n, hence

un
n

∫ nt−[nt]

0

(
gn[T ](X

(ρ,β,·)
[nt]
n

)− gn[T ](X
(ρ,β,·)
[nt]
n

+ s
n

)
)
ds

a.s.−−−→
n→∞

0.

To show that the first additive term of the right-hand-side of (32) converges to 0 in
probability, since g is bounded, from [6, Lemma 9] it suffices to prove that

B
(n)
t (g) :=

un
n

[nt]∑
i=1

∫ 1

0

Ex

(
gn[T ](X

(ρ,β,·)
i−1
n

)− gn[T ](X
(ρ,β,·)
i−1
n

+ s
n

)
∣∣∣F i−1

n

)
ds

Px−−−→
n→∞

0.
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Using the notation of Lemma 6.11, Bn
t rewrites

B
(n)
t (g) =

un
n

[nt]∑
i=1

Fn[g](X
(ρ,β,·)
i−1
n

).

From Lemma 6.12,

Ex

(
|B(n)

t |
)
≤ un

n
|Fn[g](unx)|+

un
n

(
ρ|Fn[g](0)|+

1

un
m(·,β,·)(|Fn[g]|)

)
n
√
2t.

We observe that |Fn[g](unx)| ≤ 2∥g∥∞. We observe that, if g is Lipschitz continuous, with
compact support and vanishes on an open interval around 0, then, from Lemma 6.11, the
upper bound of the above inequality vanishes as n→ ∞. Thus, in this case,

B
(n)
t (g)

L1(Px)−−−−→
n−→∞

0.

Since the limit is finite, convergence in probability also holds.

We now approximate g by functions which satisfy the assumptions of Lemma 6.11. Since g
is bounded and integrable, for every p > 0, there exists a Lipschitz-continuous function with
compact support k(p) that vanishes in the vicinity of 0 such that m(ρ,β,·)(|g − k(p)|) < 1/p
(see the proof of [10, Lemma 4.5]). By combining this, Fubini’s theorem and the fact that∫ +∞

−∞
p(ρ√n,β,σ0)(t, x, y)m(ρ,β,σ0)(dx) ≤

∫ +∞

−∞
p(ρ√n,β,σ0)(t, x, y)m(ρ

√
n,β,σ0)(dx) = 1,

we show that m(ρ,β,·)(|P (
√
nρ,β,·)

t g−P (
√
nρ,β,·)

t k(p)|) < 1/p. Similarly, from (6) and a suitable
change of variables we obtain for all t > 0

m(ρ,β,·)(|gn[T ]− k(p)n [T ]|) < 1/pε,

m(ρ,β,·)(|P (
√
nρ,β,·)

t gn[T ]− P
(
√
nρ,β,·)

t k(p)n [T ]|) < 1/pε.

Thus, Fubini’s theorem ensures

m(ρ,β,·)(|Fn[g]− Fn[k
(p)]|) ≤

∫ 1

0

m(ρ,β,·)(|P (unρ,β,·)
su2

n/n
gn[T ]− P

(unρ,β,·)
su2

n/n
k(p)n [T ]|) ds

+

∫ 1

0

m(ρ,β,·)(|gn[T ]− k(p)n [T ]|) ds ≤ 2/pε.

Also, from (15)-(16),

(ρun)p(unρ,β,·)(tu
2
n/n, 0, y) = (ρun)vunρ(tu

2
n/n, 0, y)

= 2e4|y|/unρ+8t/nρ2 erfc
( |y|

√
n√

2tun
+

2
√
2t√
nρ

)
−−−−→
n−→∞

C > 0.
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Hence, by dominated convergence

lim sup
n−→∞

un|Fn[g](0)− Fn[k
(p)](0)| (33)

≤ lim sup
n−→∞

∫ 1

0

un
∣∣P (unρ,β,·)

su2
n/n

gn[T ](0)− P
(unρ,β,·)
su2

n/n
k(p)n [T ](0)

∣∣ ds
≤ lim sup

n−→∞

∫ 1

0

∫
R

∣∣gn[T ](y)− k(p)n [T ](y)
∣∣unpunρ(su

2
n/n, 0, y)m(unρ,β,·)(dy) ds

≤ (C/ρ)m(ρ,β,·)(|g[T ]− k(p)[T ]|).

From Lemma 6.12 and (33),

Ex

(
|B(n)

t |
)
≤ un

n
|Fn[g](unx)|+

√
2t
(
unρ|Fn[k

(p)](0)|+m(·,β,·)(|Fn[k
(p)]|) + C

pε
+

2

pε

)
.

Thus, from Lemma 6.11,

∀p > 0 : lim sup
n−→∞

Ex

(
|B(n)

t |
)
≤ 2/p =⇒ lim

n−→∞
Ex

(
|B(n)

t |
)
= 0

which is what we wanted to prove to conclude that

un
n

[nt]∑
i=1

gn[T ](unX
(ρ,β,·)
i−1
n

)
Px−−−−→

n−→∞
m(ρ,β,·)(g)L

0
t (X

(ρ,β,·)).

With the same arguments, based on Lemma 2.2, as in the closure of the proof of Propo-
sition 6.2, the locally uniform in time convergence, in Px-probability (Px-u.c.p.) is
proven.

7 Proof of Lemma 2.9 on occupation time approxi-

mation

Proof of Item (i). Step 1: Let us first consider a closed interval U . Let us fix t > 0.
For all ε > 0, let Uε = {y ∈ R : dist(y, U) < ε}. For all ε > 0,

∣∣ 1
n

[nt]∑
i=1

1X i−1
n

∈U −OU
t (X)

∣∣ ≤ ∣∣∣∣ 1n
[nt]∑
i=1

1X i−1
n

∈Uε −OU
t (X)

∣∣∣∣+ 1

n

[nt]∑
i=1

1X i−1
n

∈Uε\U . (34)

Proposition 6.2 with gn(x) := 1Uε\U(x/
√
n)/

√
n ensures that

1

n

[nt]∑
i=1

1X i−1
n

∈Uε\U
Px−−−−→

n−→∞
CεL

0
t (X

(ρ,β,σ0))

where Cε = limn→0m(
√
nρ,β,·)(gn) ≤ Kε+ ρ1Uε\U (0) for some constant K ∈ (0,∞) depend-

ing on β and σ0. Note that ε can be chosen small enough so that 0 does not belong to
Uε \ U , hence Cε vanishes as ε goes to 0.

28



We now deal with the other term on the right hand side of (34). For all ε > 0, let ϕε, ψε

be the continuous functions defined by

ϕε(x) = 1Uε(x) + max
{
1− 1

ε
dist(x, Uε), 0

}
1R \Uε(x),

ψε(x) = 1Uε(x)−max
{
1− 1

ε
dist(x, Uε), 0

}
1Uε\U(x).

For all ε > 0, we observe that

1U ≤ ψε(x) ≤ 1Uε ≤ ϕε(x) ≤ 1U2ε ≤ 1.

We observe that

1

n

[nt]∑
i=1

ψε(X i−1
n
)−OU

t (X) ≤ 1

n

[nt]∑
i=1

1X i−1
n

∈Uε −OU
t (X) ≤ 1

n

[nt]∑
i=1

ϕε(X i−1
n
)−OU

t (X).

Hence∣∣∣∣ 1n
[nt]∑
i=1

1X i−1
n

∈Uε −OU
t (X)

∣∣∣∣ ≤ ∣∣∣∣ 1n
[nt]∑
i=1

ϕε(X i−1
n
)−OU

t (X)

∣∣∣∣+ ∣∣∣∣ 1n
[nt]∑
i=1

ψε(X i−1
n
)−OU

t (X)

∣∣∣∣
Also, the composed function ϕε(Xs) and ψε(Xs) are both a.s. continuous functions of s,
hence a.s. Riemann integrable. Thus, almost surely

1

n

[nt]∑
i=1

ϕε(X i−1
n
) −−−→

n→∞

∫ t

0

ϕε(Xs) ds,
1

n

[nt]∑
i=1

ψε(X i−1
n
) −−−→

n→∞

∫ t

0

ψε(Xs) ds. (35)

From (35),

lim
n→∞

∣∣∣∣ 1n
[nt]∑
i=1

ψε(X i−1
n
)−OU

t (X)

∣∣∣∣ = ∣∣∣ ∫ t

0

ψε(Xs) ds−OU
t (X)

∣∣∣ ≤ ∫ t

0

1Uε\U(Xs) ds

Similarly for ϕε,

lim
n→∞

∣∣∣∣ 1n
[nt]∑
i=1

ϕε(X i−1
n
)−OU

t (X)

∣∣∣∣ = ∣∣∣ ∫ t

0

ϕε(Xs) ds−OU
t (X)

∣∣∣ ≤ ∫ t

0

1U2ε\Uε(Xs) ds.

Hence

lim sup
n→∞

∣∣∣∣ 1n
[nt]∑
i=1

1X i−1
n

∈Uε −OU
t (X)

∣∣∣∣ ≤ ∫ t

0

1Uε\U(Xs) ds+

∫ t

0

1U2ε\Uε(Xs) ds.

Lemma 4.4 and the fact that we can suppose that 0 /∈ U2ε \ U , ensure that

Ex

(∫ t

0

1Uε\U(Xs) + 1U2ε\Uε(Xs) ds
)
≤

∫ t

0

Ex

(
1U2ε\U(Xs)

)
ds

≤ Kλ(U2ε \ U)
∫ t

0

s−1/2 ds ≤ 4Kε
√
t

29



for some constant K ∈ (0,∞) depending on ρ, β, σ0. The right hand side of the latter
inequality, vanishes as ε → 0 which implies convergence probability. Let us consider a
subsequence (εk)k∈N converging Px-almost surely.

Combining this with (34), we obtain that for all εk > 0

lim sup
n→∞

∣∣ 1
n

[nt]∑
i=1

1X i−1
n

∈U −OU
t (X)

∣∣ ≤ lim
n→∞

1

n

[nt]∑
i=1

1X i−1
n

∈Uεk
\U

+ lim sup
n→∞

∣∣∣∣ 1n
[nt]∑
i=1

1X i−1
n

∈Uεk
−OU

t (X)

∣∣∣∣ ≤ CεkL
0
t (X

(ρ,β,σ0)) +

∫ t

0

1U2εk
\U(Xs) ds.

Taking the limit as k → ∞ we obtain that Px-a.s.

lim sup
n→∞

∣∣ 1
n

[nt]∑
i=1

1X i−1
n

∈U −OU
t (X)

∣∣ ≤ lim
k→∞

CεkL
0
t (X

(ρ,β,σ0))+

∫ t

0

lim
k→∞

1U2εk
\U(Xs) ds = 0.

This ensures that
∣∣ 1
n

∑[nt]
i=1 1X i−1

n

∈U −OU
t (X)

∣∣ converges a.s. to 0 as n goes to infinity.

Step 2: Extension to non-closed intervals. Let U half-open and a ∈ U \ U . From the
previous case, since U is closed, we get

1

n

[nt]∑
i=1

1X i−1
n

∈U =
1

n

[nt]∑
i=1

1X i−1
n

∈U − 1

n

[nt]∑
i=1

1X i−1
n

=a
Px−−−−→

n−→∞
OU

t (X)−O{a}
t (X) = OU

t (X)

With a similar argument the convergence also holds for an open interval U .

Step 3: u.c.p. convergence. We observe that ( 1
n

∑[nt]
i=1 1X i−1

n

∈U)t≥0,n∈N is a sequence of

increasing processes with a limit in probability (OU
t (X))t≥0 that is also increasing. Thus,

from Lemma 2.2, the convergence is locally uniform in time, in Px-probability. This
completes the proof in the case of SOS-BM.

Proof of Item (ii). Proceeding as in the proof of Theorem 2.8 (Section 3.2), letting
S be the function defined in (12), then under an equivalent measure Qx ∼ Px, the process
X ′ = S(X) is an (ρ, β, σ0)-SOS-BM.

From Item (i),

1

n

[nt]∑
i=1

1S(X i−1
n

)∈U
Qx−−−−→

n−→∞

∫ t

0

1S(Xs)∈U ds,

or equivalently,

1

n

[nt]∑
i=1

1X i−1
n

∈S−1(U)
Qx−−−−→

n−→∞

∫ t

0

1Xs∈S−1(U) ds.

Since Qx ∼ Px,

1

n

[nt]∑
i=1

1X i−1
n

∈S−1(U)
Px−−−−→

n−→∞

∫ t

0

1Xs∈S−1(U) ds.

Since S is strictly increasing and preserves the sign, S−1(U) = U . The proof is thus
completed.
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8 Parameter estimation

In this section we prove the results regarding parameter estimation. We combine the
results on occupation time and local time approximations to find consistent estimators of
stickiness and skewness parameters.

In [18, 20], it is proven that one can infer the values σ(0+) − σ(0−) of an oscillating
diffusion using local time approximations if β is known. Indeed σ(0+) − σ(0−) and β
aggregate. We first assume that σ is known. Similarly to [18] (where ρ = 0), we estimate
separately σ for SOS-BM in Section 8.2.

8.1 Proof of Propositions 2.10

We consider the following statistics

V (0)
n :=

1

n

[nt]∑
i=1

1X i−1
n

=0, V (+)
n :=

un
n

[nt]∑
i=1

g>0(unX i−1
n
), V (−)

n :=
un
n

[nt]∑
i=1

g<0(unX i−1
n
),

and

W (+)
n :=

Sg+
n (X) + Sg−

n (X)

2
, W (−)

n :=
Sg+
n (X)− Sg−

n (X)

2
.

Let us recall (9), which follows from (7) and Lemma 2.9:

V (0)
n

Px−−−−→
n−→∞

(ρ/2)LX
t (0).

From Theorem 2.8,

un
n

[nt]∑
i=1

g>0(unX i−1
n
)

Px−−−−→
n−→∞

1 + β

σ2
0(0+)

(∫ ∞

0

g(x) dx
)
L0
t (X),

un
n

[nt]∑
i=1

g<0(unX i−1
n
)

Px−−−−→
n−→∞

1− β

σ2
0(0−)

(∫ 0

−∞
g(x) dx

)
L0
t (X).

Thus, (10) holds, and so

W (+)
n

Px−−−−→
n−→∞

L0
t (X), W (−)

n
Px−−−−→

n−→∞
βL0

t (X). (36)

We consider the event L = {τ0 < t}. We observe that on (L)c all the aforementioned
statistics converge to 0. On L = {τ0 < t} they converge to non-zero random quantities.
Thus, from (36),

βn(X) = W (−)
n

/
W (+)

n
Px−−−−→

n−→∞
β.

Also, from (9), (36),

ρn(X) = 2V (0)
n

/
W (+)

n
Px−−−−→

n−→∞
ρ.

This finishes the proof.
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8.2 Proof of Proposition 2.11

Let X be the SOS-BM such that (X,B) solves the system (3) for a standard Brownian
motion B. We denote here σ0 by simply σ. From the Itô-Tanaka formula, X+ = max{X, 0}
solves {

dX+
t = σ(Xt)1Xt>0 dBt +

β+1
2

dL0
t (X),

1Xt=0 dt =
(
ρ/2

)
dL0

t (X).

It is thus a semi-martingale with explicit Doob-Meyer decomposition and quadratic
variation given by

d⟨X+⟩t = σ2(Xt)1Xt>0 dt, ⟨X+⟩t =
∫ t

0

σ2(Xs)1Xs>0 ds = σ2
+

∫ t

0

1Xs>0 ds.

From [19, Definition I.2.3] and Lemma 2.2,

[nt]∑
i=1

(X+
i
n

−X+
i−1
n

)2
P- u.c.p.−−−−→
n−→∞

⟨X+⟩t = σ2
+

∫ t

0

1Xs>0 ds.

With similar arguments,

[nt]∑
i=1

(X−
i
n

−X−
i−1
n

)2
P- u.c.p.−−−−→
n−→∞

⟨X−⟩t = σ2
−

∫ t

0

1Xs>0 ds.

This, combined with Lemma 2.9 implies the results.

A Singular Itô calculus

In this section we prove stochastic calculus results regarding a process X that solves the
system 

Xt = X0 +

∫ t

0

b(Xs)1{Xs ̸=0} ds+

∫ t

0

σ(Xs)1{Xs ̸=0} dBs + βL0
t (X)∫ t

0

1{Xs=0} ds =
ρ

2
L0
t (X),

(37)

where B is a standard Brownian motion and L0
t (X) is the symmetric local time of X at 0.

Lemma A.1 (Singular Itô-Tanaka formula). Let (X,B) be a weak solution to (37). If
f be a difference of convex functions, such that f ′ ∈ C1(R \{0}), then f(X) = (f(X)t)t≥0

satisfies 

f(Xt) = f(X0) +

∫ t

0

(
f ′(Xs)b(Xs) +

1

2
f ′′(Xs)σ(Xs)

2

)
1{Xs ̸=0} ds

+

∫ t

0

f ′(Xs)σ(Xs)1{Xs ̸=0} dBs +
Σf ′(0)β +∆f ′(0)

2
L0
t (X),∫ t

0

1{Xs=0} ds =
ρ

2
L0
t (X),
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where ∆f ′(0) = f ′(0+)− f ′(0−) and Σf ′(0) = f ′(0+) + f ′(0−).

If in addition, f is invertible and such that f(0) = 0, ∆f ′(0)β +Σf ′(0) ̸= 0, the process
Y = (f(Xt))t≥0 is an Itô diffusion, singular at 0, that is solution to

Yt = Y0 +

∫ t

0

(
f ′(f−1(Ys))b(f

−1(Ys)) +
1

2
f ′′(f−1(Ys))σ(f

−1(Ys))
2

)
1{Ys ̸=0} ds

+

∫ t

0

f ′(f−1(Ys))σ(f
−1(Ys))1{Ys ̸=0} dBs +

Σf ′(0)β +∆f ′(0)

∆f ′(0)β + Σf ′(0)
L0
t (Y ),∫ t

0

1{Ys=0} ds =
ρ

∆f ′(0)β + Σf ′(0)
L0
t (Y );

in particular it holds that

L0
t (Y ) =

∆f ′(0)β + Σf ′(0)

2
L0
t (X).

Proof. The process X is a semi-martingale as,

Xt = X0 +

∫ t

0

b(Xs)1Xs ̸=0 ds+

∫ t

0

σ(Xs)1Xs ̸=0 dBs + βL0
t (X),

where

1.
( ∫ t

0
b(Xs)1Xs ̸=0 ds+ βL0

t (X)
)
t≥0

is a process of bounded variation,

2.
( ∫ t

0
σ(Xs)1Xs ̸=0 dBs

)
t≥0

is a local martingale.

Thus, from [19, Theorem VI.1.5],

f(Xt) = f(X0) +

∫ t

0

f ′(Xs+) + f ′(Xs−)

2
dXs +

1

2

∫
R
Ly
t (X)f ′′( dy) (38)

where f ′′( dx) is the measure defined such that for every g ∈ C1
c ,∫

R
f ′g dx = −

∫
R
gf ′′( dx).

Since f ∈ C1(R \{0}), f ′′(dx) = f ′′(x)1R \{0}(x) dx+∆f ′(0)δ0(dx) and from the occupation
times formula

1

2

∫
R
Ly
t (X)f ′′( dy) =

∆f ′(0)

2
L0
t (X) +

1

2

∫ t

0

f ′′(Xs)1{Xs ̸=0}σ(Xs)
2 ds. (39)

From (38) and (39),

f(Xt) = f(X0) +

∫ t

0

(
f ′(Xs)b(Xs) +

1

2
f ′′(Xs)σ(Xs)

2

)
1{Xs ̸=0} ds

+

∫ t

0

f ′(Xs)σ(Xs)1{Xs ̸=0} dBs +
Σf ′(0)β +∆f ′(0)

2
L0
t (X). (40)
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This proves the first statement.

Assume now f is invertible and f(0) = 0. To complete the proof, it suffices to verify the
relationship between the local times. Applying (40) to the function |f | yields

|f(Xt)| = |f(X0)|+
∫ t

0

sgn(f(Xs))

(
f ′(Xs)b(Xs) +

1

2
f ′′(Xs)σ(Xs)

2

)
1{Xs ̸=0} ds

+

∫ t

0

sgn(f(Xs))f
′(Xs)σ(Xs)1{Xs ̸=0} dBs +

∆f ′(0)β + Σf ′(0)

2
L0
t (X). (41)

The Itô-Tanaka formula also yields

|f(Xt)| = |f(X0)|+
∫ t

0

sgn(f(Xs)) df(Xs) + L0
t (f(X)).

Thus, since sgn(f(0)) = sgn(0) = 0,

|f(Xt)| = |f(X0)|+
∫ t

0

sgn(f(Xs))

(
f ′(Xs)b(Xs) +

1

2
f ′′(Xs)σ(Xs)

2

)
1{Xs ̸=0} ds

+

∫ t

0

sgn(f(Xs))f
′(Xs)σ(Xs)1{Xs ̸=0} dBs + L0

t (f(X)). (42)

From (41) and (42),

L0
t (f(X)) =

∆f ′(0)β + Σf ′(0)

2
L0
t (X).

The proof is thus completed.

Lemma A.2 (Singular Girsanov theorem). Let (Ω, (F)t≥0,P) be a probability space and
X the process that solves (37) with B a P-Brownian motion. Let θ be a processes such

that P(
∫ T

0
θs ds <∞) = 1, E(θ) the process such that

Et(θ) = exp
(∫ t

0

θs dBs −
1

2

∫ t

0

θ2s ds
)
,

for every t ≥ 0 and Q the probability measure such that dQ = Et(θ) dP. Then, if EP is
the expectation under P and EP

(
E t(θ)

)
= 1, the process X solves dX̃t =

(
b(X̃t) + θtσ(X̃t)

)
1X̃t ̸=0 dt+ σ(X̃t)1X̃t ̸=0 dB̃t + β dL0

t (X̃),

1X̃t=0 dt =
ρ

2
dL0

t (X̃),
(43)

where B̃ =
(
Bt −

∫ t

0
θs ds

)
t≥0

is a standard Brownian motion under Q.

Proof. Let γ be the time-change γ = [t→
∫ t

0
1Xs ̸=0 ds], A the right-inverse of γ and

Y = (XA(t))t≥0. Let B̃ be the process defined by B̃t = Bt −
∫ t

0
θs ds for every t ≥ 0. Then,

from [17, Theorem 6.3], B̃ is a standard Brownian motion under Q and the probability
measures P and Q are equivalent. By substitution,

dXt =
(
b(Xt) + θtσ(Xt)

)
1Xt ̸=0 dt+ σ(Xt)1Xt ̸=0 dB̃t + β dL0

t (X).
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Moreover, since P ∼ Q and L0
t (X), ⟨X⟩t are defined as limits in probability,

⟨X⟩t =
∫ t

0

1Xs ̸=0 ds = t−
∫ t

0

1Xs=0 ds.

Thus, under Q, X solves (43).

A.1 Interplay between skew and oscillation

Proposition A.3. If X ∼ (ρ, β, σ0)-SOS-BM, then

1. X/σ0(X) ∼
(
ρ 2σ−σ+
σ−(1+β)+σ+(1−β)

, σ−(1+β)−σ+(1−β)
σ−(1+β)+σ+(1−β)

, ·
)
-SOS-BM, that is a sticky-skew

BM,

2. X/2a(X) ∼
(
ρ, ·,

(
σ−
1−β

, σ+

1+β

))
-SOS-BM, that is an oscillating sticky BM.

Proof. The function f = [x→ x/σ0(x)] is difference of two convex function, invertible,
and xf(x) > 0 for all x ̸= 0. Thus, from Lemma A.1, the process Y = (Xt/σ0(Xt))t≥0

solves 
Yt = Y0 +

∫ t

0

1{Ys ̸=0} dWs +
(σ− + σ+)β + (σ− − σ+)

(σ− − σ+)β + (σ− + σ+)
L0
t (Y )∫ t

0

1{Ys=0} ds =
ρσ−σ+

(σ− − σ+)β + (σ− + σ+)
L0
t (Y ),

which proves Item (1).

The function f = [x −→ x/2a(x)] = [x −→ x/(1 + sgn(x)β)] is difference of two convex
function, invertible, and xf(x) > 0 for all x ̸= 0. Thus, from Lemma A.1, the process
Y = (Xt/2a(Xt))t≥0 solves

Yt = Y0 +

∫ t

0

σ0(Ys)

2a(Ys)
1{Ys ̸=0} dWs∫ t

0

1{Ys=0} ds =
ρ

2
L0
t (Y ),

which proves Item (2).

Remark A.4. For ρ = 0, we recover the interplay between skew and oscillating BM
(without stickiness), see [8, 18].

B Time-scaling of the sticky-skew Brownian motion

Let O+
t (X) be the occupation time of [0,∞) by the process X, defined for all t ≥ 0 by

O+
t (X) =

∫ t

0

1Xs≥0 ds.

Then, the following results hold.
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Lemma B.1. The joint law of the (ρ, β, ·)-SOS-BM is

Px(Xt ∈ dy, L0
t (X) ∈ dℓ,O+

t (X) ∈ do)

= g(t, x− y)δ0(dℓ)
(
δt(do)1x,y>0 + δ0(do)1x,y<0

)
dy

+ h
(
o− ρℓ, aℓ+ x+ + y+

)
h
(
t− o, (1− a)ℓ− x− − y−

)
1ℓρ/2<o<tm(dy) dl do,

where

g(t, x) =
1√
2πt

e−
x2

2t , h(t, x) =
|x|√
2πt3

e−
x2

2t .

Proof. See [23] and the corrections [3].

Lemma B.2 (Scaling property). For any ρ > 0, β ∈ (0, 1) and x ∈ R let

P(ρ,β,·)
x = (Ω,F , (F t)t≥0,P

(ρ,β,·)
x )

be a family of filtered probability spaces and X(ρ,β,·) a process defined on P(ρ,β,·)
x such that

under P(ρ,β,·)
x , X(ρ,β,·) is the (ρ, β, ·)-SOS-BM and that P(ρ,β,·)

x (X
(ρ,β,·)
0 = x) = 1. Then,

Law
P
(ρ,β,·)
x

(
X

(ρ,β,·)
ct , L0

ct(X
(ρ,β,·)),O+

ct(X
(ρ,β,·)); t ≥ 0

)
= Law

P
(ρ/

√
c,β,·)

x

(√
cX

(ρ/
√
c,β,·)

t ,
√
cL0

t (X
(ρ/

√
c,β,·)), cO+

t (X
(ρ/

√
c,β,·)); t ≥ 0

)
,

where P(ρ,β,·)
x (X

(ρ/
√
c,β,·)

0 =
√
cx) = 1 and

(L0(X(ρ,β,·)),O+(X(ρ,β,·))), (L0(X(ρ/
√
c,β,·)),O+(X(ρ/

√
c,β,·)))

are the local times at 0, occupation time of R+ pairs of X(ρ,β,·) and X(ρ/
√
c,β,·) respectively.

Proof. We observe that

Px(X
(ρ,β,·)
ct ∈ dy, L0

ct(X
(ρ,β,·)) ∈ dℓ,O+

ct(X
(ρ,β,·)) ∈ do)

= g(ct, x− y)δ0(dℓ)
(
δct(do)1x,y>0 + δ0(do)1x,y<0

)
dy

+ h
(
o− ρℓ, aℓ+ x+ + y+

)
h
(
ct− o, (1− a)ℓ− x− − y−

)
1ℓρ/2<o<tm(dy) dl do.

In particular,

g(ct, x− y)δ0(dℓ)
(
δct(do)1x,y>0 + δ0(do)1x,y<0

)
dy

= g
(
t,
x√
c
− y√

c

)
δ0

( dℓ√
c

)(
δt

(do
c

)
1x,y>0 + δ0

(do
c

)
1x,y<0

) dy√
c

and since for all c > 0, t > 0 and x ∈ R, h(ct, x) = c−1h(t, x/
√
c), a(cx) = a(x),

(cx)+ = cx+, (cx)− = cx−

h
(
o− ρℓ, aℓ+ x+ + y+

)
h
(
ct− o, (1− a)ℓ− x− − y−

)
1 ℓρ

2
<o<ct2a(y) dy dl do

= h
(
c
(o
c
− ρ√

c

ℓ√
c

)
, aℓ+x++ y+

)
h
(
c
(
t− o

c

)
, (1− a)ℓ−x−− y−

)
1 ℓρ

2c
< o

c
<t2a(y) dy dl do

= h
(o
c
− ρ√

c

ℓ√
c
, a

ℓ√
c
+
( x√

c

)
+
+
( y√

c

)
+

)
h
(
t− o

c
, (1− a)

ℓ√
c
−

( x√
c

)
−
−
( y√

c

)
−

)
1 ℓρ

2c
< o

c
<t2a(y/

√
c)
( dy√

c

)( dl√
c

)( do

c

)
.
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Thus,

Px(X
(ρ,β,·)
ct ∈ dy, L0

ct(X
(ρ,β,·)) ∈ dℓ,O+

ct(X
(ρ,β,·)) ∈ do)

= Px/
√
c

(
X

(ρ/
√
c,β,·)

t ∈ dy√
c
, L0

t (X
(ρ/

√
c,β,·)) ∈ dℓ√

c
,O+

t (X
(ρ/

√
c,β,·)) ∈ do

c

)
which is the desired result.

Corollary B.3 (Density scaling). Let p(ρ,β,·) be the probability transition kernel of
the (ρ, β, ·)-SOS-BM with respect to its speed measure m(ρ,β,·). Then, for any measurable
h : R2 −→ R,∫

R
h(x, y)p(ρ,β,·)(ct, x, y)m(ρ,β,·)(dy) =

∫
R
h(x,

√
cy)p(ρ/√c,β,·)

(
t,
x√
c
, y
)
m(ρ/

√
c,β,·)(dy).

Proof. From the proof of Proposition B.2,∫
R
h(x, y)p(ρ,β,·)(ct, x, y)m(ρ,β,·)(dy)

=

∫
R

∫
R+

∫
R+

h(x, y) Px(X
(ρ,β,·)
ct ∈ dy, L0

ct(X
(ρ,β,·)) ∈ dℓ,O+

ct(X
(ρ,β,·)) ∈ do)

=

∫
R

∫∫
R2
+

h(x, y) P x√
c

(
X

( ρ√
c
,β,·)

t ∈ dy√
c
, L0

t (X
( ρ√

c
,β,·)

) ∈ dℓ√
c
,O+

t (X
( ρ√

c
,β,·)

) ∈ do

c

)
=

∫
R
h(x, y)p( ρ√

c
,β,·)

(
t,
x√
c
,
y√
c

)
d
( y√

c

)
=

∫
R
h(x,

√
cy)p( ρ√

c
,β,·)

(
t,
x√
c
, y
)
dy,

which completes the proof.

Corollary B.4 (Semigroup scaling). Let X be the (ρ, β, ·)-SOS-BM and (P
(ρ,β,·)
t )t≥0

the associated semigroup. Then,

P
(ρ
√
n,β,·)

t h(x
√
n) = Ex

(
h(
√
nX

(ρ,β,·)
t
n

)
)
.

Proof. It is a special case of Corollary B.3.

C Proofs of the results in Section 4

Proof of Lemma 4.3. Let u1, u2, vρ be the functions defined in (15)-(16). We first
observe that

1

a(y)

(
u1(t, x, y)− u2(t, x, y)

)
≤ 1

a(y)
u1(t, x, y)1I(y) ≤ Ku1(t, x, y) (44)

for some positive constant K, since a(y) ≥ (1− |β|)/2 if β ∈ (−1, 1), otherwise a(y) ≡ 1.
From the Mill’s ratio (see [7, p.98]), erfc(x) ∼ e−x2

/x and thus there is a constant
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KMills > 0 such that erfc(x) ≤ KMillse
−x2

/x. Thus, if ρ > 0,

vρ(t, x, y) =
2

ρ
e4(|x|+|y|)/ρ+8t/ρ2 erfc

( |x|+ |y|√
2t

+
2
√
2t

ρ

)
≤ KMills

2

ρ

ρ
√
2t

ρ(|x|+ |y|) + 4t
e−(|x|+|y|)2/2t ≤ KMills

√
2t

ρ|x|/2 + 2t
e−(|x|+|y|)2/2t

≤ KMills√
2t

e−(|x|+|y|)2/2t ≤ 2
√
πKMillsu1(t, x, y). (45)

If ρ = 0, from (16),
v0(t, x, y) = u2(t, x, y) ≤ u1(t, x, y). (46)

Combining (44),(45) and (46), completes the proof.

Proof of Lemma 4.4. From (13),

P
(ρ,β,·)
t h(x) =

∫
R
h(y)p(ρ,β,·)(t, x, y)m(ρ,β,·)(dy).

This, with Lemma 4.3 and since p(ρ,β,·)(t, x, 0) = vρ(t, x, 0), yields

|P (ρ,β,·)
t h(x)| ≤

∫
R
|h(y)|p(ρ,β,·)(t, x, y)m(ρ,β,·)(dy)

= ρ|h(0)|p(ρ,β,·)(t, x, 0) +
∫
R
|h(y)|p(ρ,β,·)(t, x, y)m(·,β,·)(dy)

≤ KMills
ρ
√
2t

ρ|x|/2 + 2t
|h(0)|+ K√

t
m(·,β,·)(|h|) ≤

K√
t

(
|h(0)|+m(·,β,·)(|h|)

)
,

which proves the results.

Proof of Lemma 4.5. We observe that∣∣P (ρ,β,·)h(x)−m(ρ,β,·)(h)p(ρ,β,·)(t, x, 0)
∣∣ (47)

=
∣∣∣ ∫

R
h(y)

(
p(ρ,β,·)(t, x, y)− p(ρ,β,·)(t, x, 0)

)
m(·,β,·)(dy)

∣∣∣
≤

∣∣∣ ∫
R
h(y)

(
u1(t, x, y)− u1(t, x, 0)

)
(2 dy)

∣∣∣+ ∣∣∣ ∫
R
h(y)

(
u2(t, x, y)− u2(t, x, 0)

)
(2 dy)

∣∣∣
+
∣∣∣ ∫

R
h(y)

(
vρ(t, x, y)− vρ(t, x, 0)

)
m(·,β,·)(dy)

∣∣∣.
For every γ ≥ 0, there exists a constant K ′′

γ > 0 such that for every x ∈ R,

e−x2/t ≤ e−x2/2t ≤ K ′′
γ

1

1 + |x/t|γ
. (48)

From [10, Lemma 3.1], for every γ ≥ 0, there exists a K ′
γ > 0 such that∣∣∣ ∫

R
h(y)

[
u1(t, x, y)− u1(t, x, 0)

]
dy

∣∣∣ ≤ K ′
γ

t

(
λ(1)(h) +

λ(1)(h)

1 + |x/
√
t|γ

+
λ(γ)(h)

1 + |x|γ
)
. (49)
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For the second additive term at the right-hand-side of (47),∫
R
h(y)

[
u2(t, x, y)− u2(t, x, 0)

]
dy =

∫ 1

0

∫
R
h(ζ)ζ

∂

∂ζ
u2(t, x, θζ) dζ dθ.

There exists a constant c > 0 such that for every x ∈ R: xe−x2 ≤ c. Thus,∣∣∣ ∂
∂ζ
u2(t, x, y)

∣∣∣ = sgn(y)

2
√
2π

1

t
√
t
e−(|x|+|y|)2/2t ≤ c/2

√
2π

t

and for c′ = c/2
√
2π,∣∣∣ ∫

R
h(y)

[
u2(t, x, y)− u2(t, x, 0)

]
dy

∣∣∣ ≤ ∫ 1

0

∫
R

∣∣∣h(ζ)ζ ∂
∂ζ
u2(t, x, θζ)

∣∣∣ dζ dθ ≤ c′
λ(1)(h)

t
.

(50)
We now bound the third additive term at the right-hand-side of (47) and first consider the
case ρ = 0, where for all (t, x, y) ∈ (0,∞)× R2, v0(t, x, t) = u2(t, x, y). We observe that∫

R+

h(y)
[
u2(t, x, y)− u2(t, x, 0)

]
dy =

∫ 1

0

∫
R+

h(ζ)ζ
∂

∂ζ
u2(t, x, θζ) dζ dθ,∫

R−

h(y)
[
u2(t, x, y)− u2(t, x, 0)

]
dy =

∫ 1

0

∫
R−

h(ζ)ζ
∂

∂ζ
u2(t, x, θζ) dζ dθ.

Thus, with the same arguments as for the second additive term,∣∣∣ ∫
R
h(y)

(
v0(t, x, y)− v0(t, x, 0)

)
m(·,β,·)(dy)

∣∣∣ ≤ c′
m

(1)
(·,β,·)(h)

t
. (51)

For the case ρ > 0, let M be the function defined for all t ≥ 0 and x, y ∈ R by

M(t, x, y) :=
vρ(t, x, y)

u2(t, x, y)
=

√
π√
2t

4t

ρ
f

(
|x|+ |y|+ 4t/ρ√

2t

)
where f(z) := ez

2
erfc(z). Then,

vρ(t, x, y) = u2(t, x, y)M(t, x, y) = u2(t, x, y)
(
M(t, x, y)−M(t, x, 0) +M(t, x, 0)

)
and

vρ(t, x, y)− vρ(t, x, 0) (52)

= u2(t, x, y)
(
M(t, x, y)−M(t, x, 0)

)
+
(
u2(t, x, y)− u2(t, x, 0)

)
M(t, x, 0).

We observe that for all t, z ≥ 0 and x, y ∈ R,

0 ≤M(t, x, y) ≤M(t, x, 0) ≤
√
π√
2t

4t

ρ
f

(
4t/ρ√
2t

)
.

Since 0 ≤ zf(z) < 1/
√
π, then and 0 < M(t, x, y) ≤M(t, x, 0) ≤ 1. Thus, from (51),

∣∣∣ ∫
R
h(y)

[
u2(t, x, y)− u2(t, x, 0)

]
|M(t, x, y)|m(·,β,·)(dy)

∣∣∣ ≤ c′
m

(1)
(·,β,·)(h)

t
. (53)
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Moreover

M(t, x, 0)−M(t, x, y) =

√
π√
2t

4t

ρ

∫ |y|/
√
2t

0

∣∣∣∣f ′
(
|x|+ 4t/ρ√

2t
+ ζ

)∣∣∣∣ dζ.
Since |f ′(ζ)| = 2√

π
(1−

√
πζf(ζ)) is decreasing,

M(t, x, 0)−M(t, x, y) ≤ |y|2
√
π

ρ

∣∣∣∣f ′
(

4t

ρ
√
2t

)∣∣∣∣ = |y|4
ρ

(
1−

√
π

4t

ρ
√
2t
f

(
4t

ρ
√
2t

))
.

Note that [0,∞) ∋ x 7→ x(1−
√
πxex

2
erfc(x)) ∈ R takes values in of [0, 1/4). Hence, we

have∣∣∣ ∫
R
h(y)

[
u2(t, x, y)

][
M(t, x, y)−M(t, x, 0)

]
m(·,β,·)(dy)

∣∣∣
≤ 1

2
√
2t

∫
R
|y||h(y)||u2(t, x, y)|m(·,β,·)(dy)

≤ 1

4t
√
π
m

(1)
(·,β,·)(h)e

−x2

2t ≤ 1

t

K ′′
γ

4
√
π
m

(1)
(·,β,·)(h)

1

1 + |x/t|γ
, (54)

where the last inequality comes from (48). From (52),(53),(54),∣∣∣ ∫
R
h(y)

(
vρ(t, x, y)− vρ(t, x, 0)

)
m(·,β,·)(dy)

∣∣∣ ≤ 1

t

(
c′ +

K ′′
γ

4
√
π

)(
m

(1)
(·,β,·)(h) +

m
(1)
(·,β,·)(h)

1 + |x/t|γ
)
.

(55)
From (47),(49),(50),(51),(55) and since that for all γ ≥ 0,

(1− |β|)λ(γ)(h) ≤ m
(γ)
(·,β,·)(h) ≤ (1 + |β|)λ(γ)(h),

if I = R (equivalently β ∈ (−1, 1)), otherwise m
(γ)
(·,β,·)(h) = 2λ(γ)(h), the desired bound

holds for

Kγ =
2

1− |β|
(
K ′

γ + c′
)
+
(
c′ +

K ′′
γ

4
√
π

)
if |β| ≠ 1, otherwise take β = 0 in the formula above. This completes the proof of
Lemma 4.5.

Proof of Lemma 4.6. From Corollary B.4, which is a consequence of the scaling
property,

γ(ρ,β,·)n [h](x, t) =

[nt]∑
i=2

Ex

[
h(
√
nX

(ρ,β,·)
i−1
n

)
]
=

[nt]∑
i=2

P
(
√
nρ,β,·)

i−1 h(
√
nx).

Thus, from Lemma 4.4 and since
∑[nt]−1

i=1 i−
1
2 ≤ 2

√
nt,

∣∣γ(ρ,β,·)n [h](x, t)
∣∣ ≤ [nt]∑

i=2

∣∣P (
√
nρ,β,·)

i−1 h(
√
nx)

∣∣
≤ K

[nt]−1∑
i=1

1√
i
m(ρ

√
n,β,·)(|h|) ≤ 2Km(ρ

√
n,β,·)(|h|)

√
nt,
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which completes the proof of the first statement.

When m(
√
nρ,β,·)(h) = 0, from Lemma (4.5) (with γ = 1) and the fact that

∑[nt]−1
i=1 i−1 ≤

1 + log(nt) we obtain

|γ(ρ,β,·)n [h](x, t)| ≤
[nt]∑
i=2

∣∣P (ρ,β,·)
i−1 h(

√
nx)

∣∣
≤ Km

(1)
(·,β,·)(h)

[nt]∑
i=2

1

i
≤ Km

(1)
(·,β,·)(h)(1 + max(0, log(nt)))

which proves the second and last statement. The proof is thus completed.
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