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Improving the resolution of fluorescence microscopy beyond the diffraction limit can be achieved
by acquiring and processing multiple images of the sample under different illumination patterns
(periodic grids, focused beams, or more generally speckles). When the illuminations are known,
the super-resolved reconstruction is generally formed from a linear combination of the multiple
diffraction-limited images, and the resolution gain is easily determined. On the other hand, when
the illuminations are unknown, the resolution gain is seldom well-defined. In this work, we consider
the recent Random Illumination Microscopy (RIM) technique where the illuminations are unknown
speckles and the reconstructions are formed from the variance of the images. We show that an
unambiguous two-fold resolution gain can be obtained only when the speckle correlation length
coincides with the width of the observation point spread function. Last, we analyze the difference
between the variance-based techniques using random speckled illuminations (as in RIM) and those
obtained using random fluorophore activation (as in Super-resolution Optical Fluctuation Imaging,
SOFI).

The light intensity recorded by the camera of a flu-
orescence microscope cannot exhibit spatial frequencies
above 2/λ where λ is the wavelength of the emitted light.
This low-pass filtering, due to the loss of the evanescent
waves at the detector plane, cannot be circumvented.
Therefore the challenge of super-resolution imaging is to
recover spatial frequencies of the sample fluorescence den-
sity beyond 2/λ from data that are frequency-limited to
2/λ. A widespread solution consists in processing mul-
tiple images obtained by changing the illumination, like
translating focused spots [1–4] or rotating and translat-
ing periodic light patterns [5, 6]. The data processing of
most techniques using structured illuminations requires
the knowledge of the illumination patterns, either explic-
itly as in Structured Illumination Microscopy [5, 6] or
implicitly as in confocal or Image Scanning microscopy
[1]. In this context, Random Illumination Microscopy [7]
stands out as an exception as it does not require knowl-
edge of the illumination patterns: the super-resolved im-
age is formed from the variance of multiple diffraction-
limited images recorded under different random speckled
illuminations. While attractive because of its simplic-
ity and significant image improvement [7], RIM variance-
based processing lacks a rigorous analysis of its resolution
potential, the non-linearity of the variance being a sig-
nificant obstacle to its derivation. In this work, we study
the sample information that can be extracted from the
variance of speckled images as a function of the statistical
properties of the random illumination and we derive the
condition under which the variance can provide a resolu-
tion gain.

I. DEFINING THE RESOLUTION IN THE
SPATIAL FREQUENCY SPACE

To model the data provided by a fluorescence micro-
scope under an inhomogeneous illumination, we intro-
duce the point spread function of the microscope h and
the illumination intensity function E. Importantly, these
two functions are defined at a macroscopic scale inside
the sample, through the averaging over regions large
enough to contain thousands of atoms (typically of the
order of a thousand nm3), to wash out the microscopic
fluctuations. In this context, we define the macroscopic
fluorescence density ρ such that V ρ(r)E(r) is the energy
(detected by the camera) of the fluorescent light emitted
by a macroscopic volume V centered about r. Hereafter
we neglect the Poisson noise. The fluorescence density
depends on the fluorophore concentration and the molec-
ular brightness.

With these definitions, the microscope image can be
written as,

I(r) =

∫
ρ(r′)E(r′)h(r− r′)dr′ (1)

where r indicates a position in the image domain that is
conjugated to a point in the object domain. This model
can be applied to two- or three-dimensional imaging
configurations. In the spatial frequency-space (Fourier
space), Eq. (1) reads,

Ĩ(ν) = h̃(ν)

∫
ρ̃(ν − ν′)Ẽ(ν′)dν′ (2)
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where f̃(ν) =
∫
f(r)e−i2πν·rdr stands for the Fourier

transform of f .
If E is a constant, as in a standard fluorescence micro-

scope, the recorded image depends only on the sample
spatial frequencies belonging to the support of the Op-
tical Transfer Function (OTF) h̃, noted Wh, which is at
best a disk of radius 2/λ (in the 2D case) or exhibits a
torus-like shape in the 3D case [8].

We now consider cases where the illumination E is in-
homogeneous. In periodic Structured Illumination Mi-
croscopy (SIM), the illumination is a periodic light grid
generally formed from the interference of two or three
collimated laser beams that is translated and rotated [6].
In point-scanning microscopy, the illumination is a fo-
cused beam that is scanned across the sample [4]. In
Random Illumination Microscopy, the illumination is a
random speckle obtained, for example, by passing a laser
beam through a diffuser. Noting WE the support of Ẽ,
the recorded image depends on the sample spatial fre-
quencies in the domain

WhE = {ν − µ |ν ∈ Wh,µ ∈ WE}, (3)

which is no longer limited by 2/λ and corresponds to the
frequency support of hE.
Yet, sensitivity to spatial frequencies of the sample

outside Wh is a necessary but not a sufficient condition
for being able to form a super-resolved image. One also
needs a technique for extracting the high spatial frequen-
cies of the sample from the diffraction-limited images In
obtained for various illumination intensities En. Here-
after, the gain of resolution of a super-resolved technique
will be measured through the ability to recover ρ̃ beyond
Wh.

II. RESOLUTION OF TECHNIQUES USING
KNOWN INHOMOGENEOUS ILLUMINATIONS

When the illumination function is well known, as in
periodic SIM or point-scanning microscopy, the super-
resolved image is obtained through a linear combination
of the recorded data, and the super-resolution capacity
of the technique is easily determined.

In periodic SIM, the sample is illuminated successively
by N different light grids En=1...N . The resolution of a
system of linear equations permits the recovery of the

object spatial frequencies in
⋃N

n=1 WhEn
[6].

In point-scanning microscopy, one records images for
different positions of a focused illumination. We note
E(r) the illumination intensity at r when the beam is
focused at the origin. The image that is recorded when
the illumination is focused at ro reads,

I(r, ro) =

∫
ρ(r′)E(r′ − ro)h(r− r′)dr′. (4)

Taking the Fourier transform of I(r, ro) with respect to

(r, ro) yields,

Ĩ(ν,νo) = h̃(ν)ρ̃(ν − νo)Ẽ(νo). (5)

In theory, it is possible to recover the sample frequen-
cies ρ̃(µ) for any µ ∈ WhE whatever the shape of the
translated illumination. Yet, in practice, this recon-
struction scheme is never used. In confocal microscopy,
for example, the super-resolved image is obtained with-
out numerical processing, by simply recording the sig-
nal at the (conjugated) position of the focused beam,
ISR(r) = I(r, r) =

∫
ρ(r′)E(r′ − r)h(r− r′)dr′. The fre-

quency support of the function E(−u)h(u) being WhE ,
the confocal approach directly recovers the sample fre-
quencies over the whole accessible super-resolved domain.
Yet, this ideal resolution requires the use of an infinitely
small pinhole which is impossible in practice.

We now turn to microscopy configurations where the
inhomogeneous illuminations are unknown. These ap-
proaches ease the experimental implementation, as the
control of the illuminations becomes minimal, but require
more complex reconstruction schemes.

III. RESOLUTION OF TECHNIQUES USING
RANDOM ILLUMINATIONS (RIM)

In the last fifteen years, it was observed that super-
resolved images of the sample could be built from multi-
ple low-resolution images acquired with random speckled
illuminations. The first reconstruction techniques [9–12]
estimated both the sample and the illuminations using
advanced regularization techniques, such as sparsity or
binarity. The complexity of the reconstruction proce-
dures and the influence of the regularization in the fi-
nal result, prevented any rigorous determination of the
super-resolution capacity of these approaches.
Recently [13], it was proposed to reconstruct the sample
from the second-order statistics of the speckled images.
The major interest of this statistical approach (known
as RIM for Random Illumination Microscopy) is that it
does not require the knowledge (nor the estimation) of
the illuminations. It only requires the knowledge of the
speckle statistics (namely the mean and auto-covariance)
which are theoretically well-defined and very robust to
misalignements or aberrations [14]. More precisely, RIM
consists in recording multiple images of a sample under
different fully developed speckled illuminations En. The
speckled patterns can be considered different realizations
of a second-order stationary random process E, with con-
stant mean ⟨E⟩ (where ⟨·⟩ indicates the ensemble aver-
age) and auto-covariance, C(r−r′) = ⟨E(r)E(r′)⟩−⟨E⟩2.
The frequency support of C is the same as the fre-
quency support of each speckled illumination and is noted
WE [14, 15]. It is demonstrated mathematically in [13]
that, if WE = Wh, the sample frequencies in the enlarged
domain Wh2 can be recovered from the square root of the
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covariance matrix of the speckled images defined as,

Cov(r, r′) = ⟨I(r)I(r′)⟩ − ⟨I(r)⟩⟨I(r′)⟩. (6)

Yet, forming the covariance matrix, let alone its square
root, is numerically untractable. In practice, RIM recon-
struction method, named algoRIM, processes only the
variance Vρ(r) = Cov(r, r) of the speckled images. The
sample is estimated iteratively so as to minimize a dis-
tance between the experimental variance image V exp and
the simulated variance image for a given ρ, Vρ [7, 16].
The minimization procedure is not a simple task as the
variance image is quadratically linked to the sample ρ
through [7, 17]

Vρ(r) =

∫
dr1dr2 (7)

h(r− r1)ρ(r1)C(r1 − r2)ρ(r2)h(r− r2).

On many calibrated and biological samples, RIM exhib-
ited a resolution twice better than that of a classical fluo-
rescence microscope, which indicated that the sample es-
timated by algoRIM presented spatial frequencies in the
enlarged domain Wh2 [7, 17]. Now, to be fully confident
in RIM results, it is necessary to show that the solution
of the variance-matching procedure (which ideally pro-
vides the same variance image as the experimental one,
Vρ = V exp) has the same spectrum ρ̃ as the actual sample
in a domain about Wh2 . The question is: if two samples
yield the same variance image, do they have the same
spectrum in a domain larger than Wh? If yes, the size of
this domain will define RIM super-resolution capacity.

We recall that the variance is formed from the square of
raw images that are frequency-limited to Wh but depend
on the sample spectrum inWhE . The variance is sensitive
to the spatial frequencies of the sample in WhE (we show
on a specific example in appendix B that this is indeed
the case), but its frequency support is Wh2 . In other
terms, the number of unknowns (the sample frequencies
in WhE) is, in general, different from the number of data
(the variance frequencies in Wh2). Thus, it is likely that
the answer to the question raised above will be different
when WhE is the same as, included in, or bigger than,
Wh2 .
In the classical RIM configuration, the illumination is

performed through the same objective as the observation.
If the Stokes shift can be neglected [7, 14] the frequency
support of the speckled illumination WE is the same as
that of the point spread function, Wh. Hence, the fre-
quency support of the variance Wh2 matches the support
of the sample spectrum it depends on, WhE . In this case,
we demonstrate in Appendix A that if two samples have
the same variance image, they have necessarily the same
sample spectrum within Wh2 . This result ensures the
unicity of the variance-matching solution and determines
the super-resolution capacity of RIM: RIM achieves the
same resolution as an ideal confocal microscope in which
the focused beam and the point spread function share
the same frequency support.

We now consider the case where the speckle correla-
tion length is larger than the width of the point spread
function, i.e. WE ⊂ Wh. In this case, it is always pos-
sible to filter the raw images to transform h into C and
the variance of the modified images gives access to the
sample spatial frequencies in WE2 at least. Yet, this re-
sult is not totally satisfactory. Indeed, in this case, the
frequency support of the variance Wh2 is larger than the
frequency support of the sample spectrum it depends on,
WhE . In other terms, we have more data than unknowns.
It is likely that, with some approximations, the resolu-
tion can be improved further (maybe up to WhE), but
this remains to be demonstrated.
Last, we study the configurations where the speckle

correlation length is smaller than the width of the point
spread function, Wh ⊂ WE . In this case, we have fewer
data than unknowns (Wh2 ⊂ WhE), and we foresee major
difficulties. Indeed, we show in appendix B, that there
is a loss of information in the variance image that pre-
vents the reconstruction of the sample spectrum in WhE

and even in Wh2 . In particular, two samples with differ-
ent spectra in Wh2 can provide the same variance image.
These issues can be reduced with a priori information on
the sample and regularization techniques, but the resolu-
tion gain, if any, will not be universal. The ambiguity of
the variance image when Wh ⊂ WE applies in particular
to configurations where the speckles are assumed to be
spatially uncorrelated. This assumption amounts to con-
sidering that the observation point spread function and
the fluorescence density vary slowly over the speckle grain
size. This is the case when near-field speckles are used
together with far-field detection [18] or optical speckles
with acoustic detection [19]. In these techniques, here-
after called speckle-SOFI, the expression of the variance
simplifies to,

Vspeckle−SOFI(r) ≈ C0

∫
h2(r− r′)ρ2(r′)dr′. (8)

where C0 =
∫
C(r)dr. We observe that the variance is

now linearly linked to the square of the sought param-
eter (optical absorption or fluorescence density) that is
filtered over Wh2 . Now, knowing the Fourier transform
of ρ2 in Wh2 does not mean that ρ̃ can be retrieved over
Wh2 (except if ρ is binary). We show in appendix B that,
when the speckled illumination is spatially uncorrelated,
it is possible to find samples with different fluorescence
density spectra in Wh2 that have the same variance im-
age.

IV. RESOLUTION OF TECHNIQUES USING
RANDOM ACTIVATION OF THE

FLUOROPHORES (SOFI)

In this last section, we differentiate fluctuation imag-
ing using quasi-uncorrelated speckled illuminations from
Super-resolution Optical Fluctuation Imaging (SOFI). In
SOFI, the intensity fluctuations observed in the recorded
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images come from the random activation of the fluo-
rophores and not from the illumination (which is kept
homogeneous and equal to E0 during the whole exper-
iment). To account for this phenomenon, one needs
to explicit further the characteristics of the fluorescence
density ρ which is related to the fluorophore concentra-
tion and the molecular brightness. We define the fluo-
rophore concentration g at the macroscopic scale such
that, V g(r) is the number of fluorophores contained in
a macroscopic volume V centered about r. Next, we
introduce the mean molecular brightness b which ac-
counts for the fluorophores’ quantum yield and for the
environment-dependent ability of the incident/emitted
photons to reach the fluorophore/detector. If all the flu-
orophores are activated in V , the mean brightness b is
defined such that V g(r)b(r)E0 is the energy measured
by the camera of the photons emitted from V . In other
terms, if all the fluorophores are activated, the fluores-
cence density is the product of the fluorophore concen-
tration times the mean brightness, ρ = g × b.

In SOFI, only a few fluorophores of V are activated
during the image recording and they change at each novel
image. Let us assume that they follow a Poisson point
process of intensity proportional to the total number of
fluorophores in V . Then, the number of activated flu-
orophores in V observed when recording one image be-
comes a Poisson variable of parameter V g(r)p(r) where
p is the mean percentage of activation. Under this as-
sumption, we show in appendix D that the variance of
SOFI images reads,

VSOFI(r) = E2
0

∫
h2(r− r′)b2(r′)g(r′)p(r′)dr′. (9)

While RIM is able to recover the fluorescence density
ρ = g × b over Wh2 , SOFI has a similar super-resolution
capacity, but the latter applies to a distinct density g ×
b2 × p = ρ× b× p.
It is worth noting that if the mean brightness b is ho-

mogeneous, RIM and SOFI are able to restore the flu-
orophore concentration g over Wh2 , (provided the mean
activation percentage p in SOFI is also homogeneous).
On the contrary, even if b is homogeneous, fluctuation
imaging using quasi-uncorrelated speckled illuminations
(speckle-SOFI) can only restore the square of the fluo-
rophore concentration, g2, over Wh2 . Thus, SOFI and
speckle-SOFI yield a priori different results and their
umbrella denomination as ‘fluctuation imaging’ can be
misleading.

V. CONCLUSION

There exist three main super-resolved microscopy tech-
niques that form the super-resolved images from the vari-
ance of multiple diffraction-limited images. RIM uses
speckled illuminations that are correlated over a distance
comparable to the width of the observation point spread
function, speckle-SOFI uses ’quasi uncorrelated’ speckled

illuminations and SOFI takes advantage of the random
activation of fluorophores. In this work, we have shown
that while these three techniques can offer a doubling of
resolution, this is not applied to the same sample param-
eters. SOFI recovers the fluorophore concentration times
the square of the brightness while Speckle-SOFI recov-
ers the square of the fluorophore concentration times the
square of the brightness. For its part, RIM recovers the
fluorescence density, i.e. the fluorophore concentration
times the brightness, in the same way as an ideal confocal
microscope. Our demonstration provides a solid theoret-
ical ground for the two-fold resolution gain, the optical
sectioning, and the linearity to fluorescence observed in
the last RIM experiments [7, 17].

Appendix A: Super-resolution capacity of RIM
when WE = Wh

In this appendix, we consider the classical RIM config-
uration where the speckle auto-covariance C is similar to
the observation point spread function h. Experimentally,
this condition is fulfilled in epi-fluorescence microscopy
when the speckled illumination fills the pupil of the col-
lection objective and the Stokes shift is negligible. In
this case, we show that if two samples ρ1 and ρ2 have
the same variance image, they have the same spectrum
in Wh2 .

a. Demonstration of the bijection between the variance
image and the sample spectrum in Wh2

First of all, we recall that the variance is formed from
the square of images acquired under random illumina-
tions whose frequency support WE is equal to Wh. From
Eq. (3) we deduce that the variance is only sensitive to
the sample spectrum in WhE = Wh2 . Thus, two samples
with the same spectrum in Wh2 will provide the same
variance image. The reciprocal is significantly more dif-
ficult to demonstrate due to the quadratic link between
the variance and the sample. It requires the introduction
of a bilinear symmetric operator BU,V acting on real in-
tegral functions (U, V ),

BU,V (r) =

∫
dr1dr2 (A1)

h(r− r1)U(r1)C(r1 − r2)V (r2)h(r− r2).

such that the variance Vρ is equal to Bρ,ρ.
The bilinear operator BU,V can be cast as the product
of linear operators acting on U and V . To this aim,

we define hE such that h̃E =
√

C̃ (we recall that C̃ is
always positive as C is an autocovariance function) which
satisfies∫

hE(r1 − x)hE(r2 − x)dx = C(r1 − r2). (A2)
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Introducing hE in Eq. (A1) , we obtain,

BU,V (r) =

∫
MU (r,x)MV (r,x)dx (A3)

with

MV (r,x) =

∫
h(r− r1)V (r1)hE(r1 − x)dr1. (A4)

At this point, we note that the Fourier transform of MV

with respect to (r,x),

M̃V (ν,µ) = h̃(ν)Ṽ (µ+ ν)h̃E(µ), (A5)

is bounded, so MV is an analytic function. In addition, if
h = C, we demonstrate (at the end of this section) that,∫

BU,V (r)V (r)dr =

∫
|MV (r,x)|2 U(r)drdx. (A6)

We now consider two fluorescence densities, ρ1(r) ≥
0 and ρ2(r) ≥ 0 that have the same RIM variance,
Bρ1,ρ1

(r) = Bρ2,ρ2
(r). Using the bilinearity and sym-

metry of BU,V , we can show that Bρ1,ρ1
− Bρ2,ρ2

=
Bρ1+ρ2,ρ1−ρ2

= 0. This last property implies, in par-
ticular, that,∫

Bρ1+ρ2,ρ1−ρ2
(r)[ρ1(r)− ρ2(r)]dr = 0. (A7)

which, using Eq. (A6), can be cast as,∫
|Mρ1−ρ2

(r,x)|2 [ρ1(r) + ρ2(r)]drdx = 0. (A8)

We now assume that ρ1 + ρ2 stays strictly positive in a
non-empty open set Ω. In this case, Eq. (A8) is satisfied
if and only if Mρ1−ρ2

(r,x) = 0 for r ∈ Ω and for all x.
Since Mρ1−ρ2

is analytic, Mρ1−ρ2
(r,x) = 0 for all x and

for r ∈ Ω implies that Mρ1−ρ2
(r,x) = 0 for all x and all

r, thus M̃ρ1−ρ2
(ν,µ) = 0 for all ν and µ. From Eq. (A5),

the nullity of M̃ρ1−ρ2 is obtained only if ρ̃1(η)−ρ̃2(η) = 0
for η ∈ Wh2 . Hence, if ρ1 and ρ2 have the same RIM
variance, they have the same spatial frequencies in Wh2 .
We have thus demonstrated that there is a one-to-one

correspondence between the spatial frequencies of the
variance of diffraction-limited speckled images and the
spatial frequencies of the sample fluorescence density in
the enlarged frequency domain Wh2 provided C = h.

b. Proof of Equation (A6)

The demonstration of Equation (A6) requires that h =
C. In this case, Eq. (A1) can be rewritten as,

BU,V (r) =

∫
dr1dr2

h(r− r1)U(r1)h(r− r2)V (r2)h(r1 − r2).

Using h(r− r2) =
∫
hE(r− x)hE(r2 − x)dx, one obtains∫

BU,V (r)V (r)dr =

∫
drdr1dr2dx

h(r− r1)V (r)hE(r− x)h(r1 − r2)V (r2)hE(r2 − x)U(r1).

Recalling the expression of MV in Eq. (A4) and the sym-
metry of h and hE , we get∫

BU,V (r)V (r)dr =

∫
|MV (r1,x)|2 U(r1)dxdr1.

Appendix B: What happens when Wh ⊂ WE?

We now study the configurations where Wh ⊂ WE ,
namely the speckle correlation length is smaller than the
width of the point spread function. This situation is en-
countered with near-field speckles or when the illumina-
tion pupil is larger than the collection pupil. In this case,
we show that even if the variance is sensitive to the sam-
ple spectrum in WhE , there is a loss of information that
prevents its recovery. In addition, we show that two sam-
ples with different spectra in Wh2 can provide the same
variance image.

To simplify the discussion, we assume that (Wh,WE)
are centered plain disks with frequency cut-offs νh and
νE respectively, with νh < νE . We further assume that

the point spread function h is symmetric so that h̃ is a
real positive symmetric function, like C̃. We consider a
sample whose spectrum is restricted to the null frequency
and a high frequency ±k, ρ(r) = A+ B cos(2πk · r+ φ)
with (A,B) real positive such that ρ is real positive. The
variance of the raw images, given by Eq. (7), obtained
with such sample reads,

Vρ(r) =A2α+B2β(k) + 2ABγ(k) cos(2πk · r+ φ)

+B2η(k) cos(4πk · r+ 2φ), (B1)

with

α =

∫
|h̃|2(ν)C̃(ν)dν,

β(k) =

∫
|h̃|2(ν + k)C̃(ν)dν,

γ(k) =

∫
h̃(k− ν)h̃(ν)C̃(ν)dν,

η(k) =

∫
h̃(ν)h̃(2k− ν)C̃(k− ν)dν.

We observe that, as long as k < νh + νE , β(k) ̸= 0 and
the variance depends on the high spatial frequency of
the sample, B. This result confirms the sensitivity of the
variance to sample spatial frequencies in WhE . However,
if 2νh < k ≤ νh + νE , γ(k) = η(k) = 0 so that Vρ(r) =
αA2+β(k)B2. In this case, the variance is sensitive to the
amplitudes of the null and high frequencies of the sample,
(A,B), but it has lost the information about the phase
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of the high frequency, φ. Worse, this example shows that
a uniform sample defined by ρ1(r) = (A2 + β(k)B2)

1
2 /α

will have the same variance as the inhomogeneous sample
defined by ρ(r) = A+B cos(2πk·r+φ). Thus, when νh <
νE , the identifiability of the sample spatial frequencies
from the variance is lost, even for frequencies belonging
to Wh2 . This assertion is particularly counter-intuitive
as it shows that decreasing the size of the speckle grains
below the width of the observation point spread function
is a priori detrimental to the sample reconstruction.

Appendix C: Imaging with quasi-uncorrelated
speckles, speckle-SOFI

When the point spread function and fluorescence den-
sity vary slowly over the width of the speckle autoco-
variance function, the variance of the diffraction-limited
images is linearly linked to the square of ρ filtered over
Wh2 . In this section, we provide an example of two posi-
tive functions with different spectra in the super-resolved
domain Wh2 which, when squared, have exactly the same
spectra in Wh2 .

We consider g the sum of a constant and a one-
dimensional cosine along the x-axis with a frequency k
laying in Wh2 but not in Wh, and f the sum of a constant
and two cosines with period k and 2k. Note that 2k lays
outside Wh2 . We adapt the constant and the cosine am-
plitudes so that f and g are positive and f2 and g2 are
equal in Wh2 . A possible solution is,

f(x) = 6 +
√
2 cos(2πkx) + cos(4πkx)

g(x) =

√
101 + 7

2
√
2

+

√
101− 7

2
cos(2πkx) (C1)

Noting F the low pass filter operator that removes all
the frequencies outside Wh2 , we find,

F [f2](x) = F [g2](x) = 75 + 13
√
2 cos(2πkx).

Appendix D: Modeling SOFI at the macroscopic
scale

Generally, SOFI data are modeled with a discrete sum
that depends on the fluorophore positions [20]. However,

it is clearly impossible to recover the fluorophores posi-
tions from SOFI (second-order) image, except if a con-
straint of sparsity is assumed. It may thus be interesting
to relate SOFI images to sample characteristics that are
defined at a macroscopic scale, such as the fluorophore
concentration.
In structured illumination microscopy, one assumes

that all the fluorophores are activated. The fluorescence
density ρ is written as the product of the fluorophore
concentration g with a mean brightness b. The intensity
recorded by the camera is modeled as,

I(r) =

∫
h(r− r′)E(r′)g(r′)b(r′)dr, (D1)

where E is the inhomogeneous illumination intensity and
h the microscope point spread function.
In SOFI, the illumination E0 is homogeneous but the

fluorophores oscillate between an activated and non-
activated state. Thus, only a subset of the fluorophores
present in the sample contributes to the image inten-
sity at a given time t. The activated fluorophores in the
(macroscopic) volume V centered about r can be seen
as points popping up at random and independently of
one another. This process is conveniently modeled with
a Poisson point process of intensity proportional to the
number of fluorophores in V . Under this assumption, the
number of activated fluorophores in V at time t, written
as V q(r, t), where q is the activated fluorophore concen-
tration, is a Poisson variable of parameter V g(r)p(r) with
p the mean percentage of activation. With this definition,
the intensity of the image recorded at t can be written
as,

I(r, t) = E0

∫
h(r− r′)q(r′, t)b(r′)dr′. (D2)

It is thus a filtered Poisson variable whose time variance
reads [21, Chap. 5],

VSOFI(r) = E2
0

∫
h2(r− r′)b2(r′)g(r′)p(r′)dr′.

Note that this result recovers the expression given in the
original SOFI paper [20] if one expresses the fluorophore

concentration distribution as
∑K

k=1 δ(r− rk) where rk is
the position of the kth fluorophore.
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