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Abstract

Identifying patients who benefit from a treatment is a key aspect of personalized medicine,

which allows the development of individualized treatment rules (ITRs). Many machine learning

methods have been proposed to create such rules. However, to what extent the methods lead to

similar ITRs, i.e., recommending the same treatment for the same individuals is unclear. In this

work, we compared 22 of the most common approaches in two randomized control trials. Two

classes of methods can be distinguished. The first class of methods relies on predicting individu-

alized treatment effects from which an ITR is derived by recommending the treatment evaluated

to the individuals with a predicted benefit. In the second class, methods directly estimate the ITR

without estimating individualized treatment effects. For each trial, the performance of ITRs was

assessed by various metrics, and the pairwise agreement between all ITRs was also calculated.

Results showed that the ITRs obtained via the different methods generally had considerable dis-

agreements regarding the patients to be treated. A better concordance was found among akin

methods. Overall, when evaluating the performance of ITRs in a validation sample, all methods

produced ITRs with limited performance, suggesting a high potential for optimism. For non-

parametric methods, this optimism was likely due to overfitting. The different methods do not
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lead to similar ITRs and are therefore not interchangeable. The choice of the method strongly

influences for which patients a certain treatment is recommended, drawing some concerns about

their practical use.

Keywords: personalized medicine; individualized treatment rule; machine learning; compari-

son study

1 Introduction

Personalized medicine aims at tailoring a treatment strategy to the individual characteristics of each

patient. An essential part of personalized medicine is identifying patients benefiting from a given

treatment which allows the construction of individual treatment rules (ITRs). Briefly, ITRs are de-

cision rules that recommend treatment based on patients’ characteristics. Of particular interest are

optimal treatment rules, which are rules that would lead to the best average outcome in the population

if they were followed by all individuals.1

ITRs can be developed using data from randomized controlled trials (RCTs) or observational data.

For instance, Farooq et al. developed the SYNTAX score II to guide decision-making between coro-

nary artery bypass graft surgery (CABG) and percutaneous coronary intervention (PCI) in patients

with complex coronary artery disease using data from the SYNTAX trial.2 In this paper, we decided

to focus on ITRs built from RCTs’ data to avoid having to additionally handle confounding factors.

However, all the approaches presented here could also be used with observational data.

The PATH statement outlines guidelines for conducting predictive analyses of heterogeneous treat-

ment effects (HTE) in clinical trials. It establishes criteria for predicting HTE and thus developing

ITRs, emphasizing the use of a risk modeling approach.3, 4 However, alternative approaches have also

been employed for predicting HTE,5 and a myriad of methods whose goal is to construct an ITR has

been proposed in the last decade. Nonetheless, their relative performance is not clearly established

and, more importantly, it is not clear whether the derived ITRs would lead to recommending the same

treatment for the same individuals. This issue is worth studying because if the ITRs are not similar, it

is important to know upstream when choosing a method to derive an ITR in real life.

From a conceptual viewpoint, two classes of methods to develop an ITR can be distinguished. The

first class relies on deriving individualized treatment effects (ITE) and then an ITR by recommend-

ing treatment to those with a predicted benefit. This class can be further divided into two sub-classes:

methods estimating the response surfaces and methods directly estimating the ITE via a contrast func-

tion. The second class comprehends methods that directly estimate the ITR without explicitly relying

on estimating ITEs or a contrast function.

Some comparisons of methods constructing an ITR via the ITE have been performed in the past. In

particular, Jacob and Zhang et al. have both studied the performance of meta-learners (T-learner,

S-learner, X-learner, DR-learner and R-learner) and causal forests.6, 7 Jacob found that the methods

resulted in differences in terms of ITEs estimates and recommended using multiple methods and com-

paring their results in practice.6 In their paper, Zhang et al. also found that the methods performed

differently.7 To our knowledge, no comparison has included all the methods we are presenting, par-
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ticularly methods that directly construct an ITR without calculating ITEs. Furthermore, none of the

previous works implemented metrics to assess the agreements between pairs of methods.

In this study, we aimed to compare a wide range of methods to develop ITRs, both in terms of per-

formance and agreement. We compared 22 different methods and applied those using data from two

randomized controlled trials: the International Stroke Trial (IST) and the CRASH-3 trial. The remain-

der of this paper is organized as follows. We start by introducing the statistical setting in section 2. In

section 3, the different methods are presented. In section 4, the 22 methods are compared on two real

RCTs. Section 5 concludes with a discussion.

2 Statistical setting

In this section, the potential outcomes framework is introduced. Then, we explain how to construct

an individualized treatment rule (ITR). Finally, we enumerate the metrics used to compare the ITRs.

2.1 Causal framework

We follow Rubin’s potential outcomes framework.8 We assume access to an independent and iden-

tically distributed sample of observations. Let X ∈ X ⊂ Rn a vector of covariate in the covariate

space X , A ∈ {0, 1} be an indicator variable for the treatment of interest and Y ∈ {0, 1} be a bi-

nary outcome. We introduce potential outcomes Y 0 and Y 1 that represent the binary outcomes that

would be observed if patients were assigned to either the control or the evaluated treatment respec-

tively. Without loss of generality, we assume that Y = 1 is a desirable event. We make the following

assumptions:9

• Consistency: the observed outcome corresponds to the potential outcome i.e. if a patient re-

ceived the treatment their observed outcome would be Y 1 and if they received the control, their

observed outcome would be Y 0.

• No interference: the outcome only depends on the treatment applied to the patient, and not on

the treatment applied to other patients.

• Unconfoundedness: all characteristics associated with both the treatment assignment and the

outcome, should have been measured in the study.

• Positivity: all patients have a non-null probability of receiving either treatment.

In the setting of RCTs, Unconfoundedness and Positivity are met by design.

2.2 Individualized treatment rules

We are interested in constructing individualized treatment rules (ITR) which are decision rules that

recommend treatment based on patients’ characteristics.

Those rules are modeled as maps r : X → {0, 1}. Accordingly, for a given set of covariates
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x ∈ X , r(x) indicates whether or not the treatment should be given to a patient. An optimal rule ropt

is obtained when the value V(r) among all r ∈ R, with R being the class of all treatment rules, is

maximized:1

ropt = argmax
r∈R

V(r),

where V(r) = E[Y (r)] with Y (r) = Y 1r(x) + Y 0[1 − r(x)] representing the outcome observed if

the rule r was followed.

Constructing an optimal treatment rule can be achieved in two different ways. The first approach

involves calculating individual treatment effects (ITE). The ITE τ represents the predicted benefit

under one treatment minus the predicted benefit under the other treatment, given a set of patients’

characteristics:

τ(x) = E(Y 1 − Y 0|X = x) = µ1(x)− µ0(x).

An optimal rule is obtained by only giving the evaluated treatment to patients with a positive value

of τ(x) i.e. ropt(x) = 1{τ>0}(x). In this approach, some methods estimate the ITE by estimating

the response surfaces whereas others directly estimate the ITE via a contrast function. The second

approach consists of directly developing an optimal rule, without estimating the ITEs, by minimizing

a loss function of the value of the rule. The methods to develop ITRs considered in this project are

described in section 3.

2.3 Metrics

Several metrics were used to compare the ITRs developed with different methods described in sec-

tion 3. Using several metrics allows us to have a comprehensive view of the performance of the ITRs.

Two classes of metrics can be distinguished: metrics whose aim is to estimate the performance of the

rules and metrics whose aim is to compare the level of agreement between two rules.

2.3.1 Performance metrics

First, metrics to assess the quality of a single ITR were used, enabling us to compare the performance

of the ITRs.

• The value of a rule: As stated previously, the value V(r) = E[Y (r)] represents the mean

outcome if the ITR was correctly followed. In this project, a desirable binary outcome is con-

sidered, thus, ITRs with V(r) closer to 1 have a better performance.

• The benefit of the rule in terms of assigned treatment among people with a positive and negative

score, is assessed with two metrics: Bpos and Bneg, where Bpos represents the average benefit

of giving the evaluated treatment among people with a positive score i.e r(x) = 1 and Bneg rep-

resents the average benefit of not giving the evaluated treatment among people with a negative

score i.e r(x) = 0.10 The values are between −1 and 1, with 1 meaning there is a benefit in

treating people with a positive score for Bpos and a benefit in not treating people with a negative

score for Bneg.

Bpos = P (Y = 1 | A = 1, r(x) = 1)− P (Y = 1 | A = 0, r(x) = 1),
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Bneg = P (Y = 1 | A = 0, r(x) = 0)− P (Y = 1 | A = 1, r(x) = 0).

• The Population Average Prescription Effect (PAPE): PAPE compares an ITR with a treatment

rule that randomly treats the same proportion of patients:11

PAPE = E[Y (r)− prY
1 − (1− pr)Y

0]

where pr represents the proportion of patients assigned to the evaluated treatment under the ITR

r.

The PAPE takes values between −1 and 1. Here, since higher values of the outcome are de-

sirable, higher values of PAPE indicate a better performance of the ITR. A value of 0 indicates

that the ITR does not perform better than treating randomly the same proportion of patients.

Negative values mean that the ITR performs worse. An advantage of the PAPE is that it is easy

to interpret.

• The c-statistic for benefit: it is the probability that from two randomly chosen matched pairs

with unequal observed benefit, the pair with greater observed benefit also has a higher predicted

probability where the observed benefit refers to the difference in outcomes between two patients

with the same predicted benefit but with different treatment assignments.12 To create the pairs,

a patient in the control group is matched to one in the treatment group with a similar predicted

treatment benefit. Higher values of the c-statistic for benefit are better. The c-statistic for benefit

quantifies how well the rule discriminates patients benefiting from patients not benefiting from

taking a given treatment. The c-statistic for benefit can only be calculated for methods using an

ITE or a benefit score to derive an ITR.

The standard errors for each metric were calculated through a Bootstrap procedure involving 1000

samples of the original dataset.

2.3.2 Agreement between two rules

Metrics to see if two ITRs have the same recommendation and agree to allocate the treatment to the

same patients were used.

• Matthews correlation coefficient (MCC): Here, the MCC is used to measure the disagreement,

in terms of treated patients, between two rules.13 The values range between −1 and 1, where

1 indicates a perfect positive correlation, 0 indicates no correlation and −1 indicates a perfect

negative correlation.

• Cohen’s kappa coefficient: Cohen’s kappa measures the agreement between two rules by con-

sidering the number of agreements and disagreements.14 It can range from −1 to 1. A value

inferior to 0 demonstrates that there is less than chance agreement between the two rules, a

value of 0 shows no agreement and a value of 1 means that there is perfect agreement between

the rules.

5



2.4 Multiple Correspondence Analysis

A Multiple Correspondence Analysis (MCA) was conducted to see if the ITRs agreed on the treatment

decision in the presence of some specific characteristics. All variables included in the different models

were put in the MCA, as well as the treatment allocation recommended by each ITR. Continuous

variables were categorized and the choice of the categories was motivated by previous works done

using the datasets.15, 16

3 Methods to construct individualized treatment rules

This section presents the different methods that were compared. We selected the most common meth-

ods which are either simple to implement with the R software17 or for which a package is available.

As mentioned in Section 2.2, two classes of methods to develop an ITR were distinguished: a first

class in which the ITR is constructed by first modeling the ITE, and an optimal rule is found by giv-

ing the treatment evaluated to the individuals with a positive ITE, and a second class, in which the

ITR is directly estimated without calculating individualized treatment effects, and where an optimal

rule is found by minimizing the risk of the value of the rule via a loss function. In the first class,

two distinct approaches can be used to obtain the ITE: either estimating the expected difference of the

potential outcomes between treatments or estimating the ITE directly via a contrast function. The ma-

jority of the methods fell under the first category: the meta-learners (T-learner, S-learner, X-learner,

DR-learner, and R-learner, both with parametric and non-parametric models), PATH, causal forests,

virtual twins, A-learning and the modified covariate method, whereas outcome weighted learning and

contrast weighted learning fell under the second class. A classification of methods based on how

they construct an optimal treatment rule is given in Figure 1. Conceptually, some methods are re-

lated and are therefore referred to as belonging to the same family (e.g. parametric meta-learners,

non-parametric meta-learners, A-learning, and the modified covariate method).

3.1 Meta-learners

Meta-learners are methods that use sub-regression problems to estimate the ITE via a base learner.

In this project, two base learners were implemented: logistic regression and random forest (RF), the

latter is selected for its good performance on tabular data.18 Since meta-learners can use several base

learners, they are flexible and can adapt to different types of data.

Meta-learners with a non-parametric model as the base learner can be prone to overfitting. A solution

to this potential overfitting is to use cross-fit.19 Cross-fit consists of splitting the dataset into several

folds. Then, the ITEs are learned on every fold and the results are aggregated to derive an ITR (more

details in Supplementary Material S1). The meta-learners were compared with and without cross-fit

when using random forests as a base learner. When cross-fit was applied, 5 folds and 30 splits were

used, because such a choice has been reported as leading to a good performance.20 However, to our

knowledge, there is no standard method or clear guidance on how to perform cross-fit, and other
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Figure 1: Classification of the methods.

choices exist.20

In the upcoming segments, we use τ̂ to represent the estimate of τ , and adhere to the same convention

for denoting the estimates of other parameters.

3.1.1 S-learner

The S-learner estimates the treatment effect within a single regression model, where the treatment

is included as a feature and where interactions between the treatment and relevant covariates are

introduced in the parametric setting.21 First, use a model to estimate the response function µ(x, a):

µ(x, a) = E(Y |X = x,A = a).

Then, estimate the individual treatment effect τ :

τ̂(x) = µ̂(x, 1)− µ̂(x, 0).

3.1.2 T-learner

In the T-learner algorithm, two models are built, one in the treatment group and one in the control

group.21 These models are used to calculate the response functions:

µ0(x) = E(Y |X = x,A = 0),

µ1(x) = E(Y |X = x,A = 1).

The ITE is estimated as the difference between the two predicted risks:

τ̂(x) = µ̂1(x)− µ̂0(x).
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3.1.3 X-learner

The X-learner consists of three steps:21

1. Estimate the response functions as in the T-learner:

µ0(x) = E(Y |X = x,A = 0),

µ1(x) = E(Y |X = x,A = 1).

2. Impute the treatment effects for the individuals in the treated group based on the control-

outcome estimator and the treatment effects for the individuals in the control group based on

the treatment-outcome estimator and estimate τ̂1(x) and τ̂0(x):

D̃1 = Y 1 − µ̂0(X
1),

D̃0 = µ̂1(X
0)− Y 0,

τ̂1(x) = E(D̃1|X = x),

τ̂0(x) = E(D̃0|X = x).

3. Define the ITE by a weighted average of the two estimates:

τ̂(x) = w(x)τ̂0(x) + (1− w(x))τ̂1(x)

where w(x) ∈ [0, 1] is a weighting function. An estimate of the propensity scores can be

chosen as the weighting function, but there is no clear theory on how to choose an optimal

weighting function. In the setting of RCTs, it is natural to choose w(x) = 1
2

if the trial had a

1:1 randomization ratio.

The X-learner has been described as advantageous in an unbalanced design or with sparse treatment

effects.21

3.1.4 DR-learner

The DR-learner is a doubly robust estimator that estimates the ITE in two stages.22 This learner

includes double sample splitting to reduce bias.

First, the data Zi = (Xi, Ai, Yi) are randomly split into three independent samples D1a, D1b, D2.

Then, the following two steps are applied:

1. Construct propensity score estimates π̂ of the propensity scores π(X) = P(A = 1|X = x)

using D1a and estimate the response functions µ̂0 and µ̂1 using D1b.

2. Construct the pseudo-outcome:

φ̂(Z) =
A− π̂(X)

π̂(X)[1− π̂(X)]
[Y − µ̂A(X)] + µ̂1(X)− µ̂0(X).

Then, regressing it on covariates X of D2 to estimate the ITE:

τ̂(x) = Ê[φ̂(Z) | X = x].
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Cross-fitting can be added as an additional third step:

3. Repeat steps 1 and 2 twice. First, D1b and D2 are used for step 1 and D1a is used for step

2. Then, D1a and D2 are used for step 1 and D1b is used for step 2. A final estimate of τ is

constructed by averaging the three estimates.

In this work, the propensity score was taken equal to 1
2

since data from RCTs with a 1:1 randomization

ratio were used.

3.1.5 R-learner

The R-learner estimates the ITEs in two steps:23

1. Fit the response function µ̂(x) and the propensity scores π̂(x) with a base learner.

2. Estimate ITEs by minimizing the R-loss, which uses Robinson’s decomposition:24

LR(τ(x)) =
1

n

n∑
i=1

[(Yi − µ̂(Xi))− (Ai − π̂(Xi))τ(Xi)]
2 + Λn(τ(·))

where Λn(τ(·)) is a regularization term on the complexity of τ(·).

The response function and the propensity scores can be fitted using a cross-validation procedure and

the regularization could be done with a penalized regression such as lasso or ridge, for instance,

when logistic regression is used as a base learner.23 When random forests are used, regularization is

achieved by tuning the hyperparameters, particularly by limiting the tree’s depth and the number of

variables used to build the trees.

3.2 PATH approach

PATH is a risk modeling approach that has been recommended by the PATH statement.3, 4 This method

involves three steps:

1. Fit a regression model (a logistic model with a binary outcome) with the relevant variables to

derive the linear predictor

2. Build a model that incorporates the linear predictor, the treatment variable, and the interaction

between the linear predictor and treatment to estimate the response functions

3. Derive the ITE based on the response functions

This approach has demonstrated strong performance in diverse scenarios according to previous simu-

lation studies.25, 26
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3.3 Causal forests

The causal forests algorithm is a special case of generalized random forests (GRF), a flexible and

general framework to estimate the ITEs.27 Causal forests extend the original random forest algorithm

by borrowing ideas from kernel-based methods and the R-learner.23

In contrast to the standard random forest algorithm in which a prediction for a new observation is ob-

tained by averaging predictions of each tree, here, the trees are used to compute a weighting scheme

similar to kernel-based methods. The trees act as weights between training points and any new obser-

vations:

αbi(x) =
1Xi∈Lb(x)

|Lb(x)|
, αi(x) =

1

B

B∑
b=1

αbi(x)

where Xi corresponds to the covariates of individual i in the training dataset and Lb(x) corresponds

to the set of observations in the training set that fall in the same leaf as x for tree b.

Then, the prediction for a new observation is obtained using the adaptive weights by minimizing the

R-loss described above.

Another characteristic of causal forests (and more generally of GRF) is the notion of honesty where

the training data is split into two parts: one for constructing the tree and the other (the estimation

sample) for estimating leaf values for each tree. In doing so, the estimates are less prone to bias

and more consistent. The notion of honesty is similar to employing the crossfit in non-parametric

meta-learners.

3.4 Virtual twins

The virtual twins method consists in predicting response probabilities for treatment and control twins

for all individuals using counterfactual models.28 The difference in the probabilities is then used as

the outcome in a classification or regression tree. A subgroup of individuals defined by a region S of

the covariate space X for which the treatment effect τ is better than a prespecified threshold can be

then identified. The two steps are described below:

1. Fit a random forest in which the covariates, the treatment indicator, and treatment-covariates

interactions are included to estimate the response function µ and the ITE τ as in S-learner.

2. Build a regression or a classification tree to find the covariates X that are strongly associated

with τ to define region S. Define τ∗, a binary variable, as the outcome. When τ > c, τ∗ = 1

and when τ ≤ c, τ∗ = 0. Develop an ITR based on the value of τ∗. Individuals for which

τ∗ = 1 are placed in the estimated region Ŝ. The evaluated treatment is given to individuals in

Ŝ

In this work, we built a classification tree and set c equal to 0.

The enhanced treatment effect Q(S) defined as:

Q(S) = (P (Y = 1|A = 1, X ∈ S)−P (Y = 1|A = 0, X ∈ S))−(P (Y = 1|A = 1)−P (Y = 1|A = 0))
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can be estimated by estimating P (Y = 1|A = 1, X ∈ Ŝ), P (Y = 1|A = 0, X ∈ Ŝ), P (Y = 1|A =

1) and P (Y = 1|A = 0) using the observed proportions of the data. One of the different approaches

that can be used to correct bias is bootstrapping. Bootstrapping measures the bias of Q(Ŝ), which is

then used to adjust Q(Ŝ). In their work, Foster et al. compared bootstrapping to other approaches;

their conclusion favored bootstrap with 20 samples.28

3.5 A-learning and the modified covariate method

A-learning and the modified covariate method are two methods that focus on treatment-covariates

interactions since treatment selection solely depends on the sign of the interactions.29, 30 Given the

covariates and the treatment, the estimated outcome can be written as:

E(Y | A,X) = m(X) + A∆(X)

where m(X),∆(X) represent respectively the main effect of X and the treatment effect given X. Only

the signs of ∆(X) matter for treatment selection.

In both methods, a personalized benefit score model f is calculated and its sign, which is consistent

with the direction of the treatment effect, is used to construct an ITR. An optimal ITR is found for

both methods by minimizing a certain loss function ℓ. Details on the loss functions are given below.

3.5.1 A-learning

In A-learning, the following expected loss function is considered:

ℓA(f) = E(ℓA(f, x))

with
ℓA(f, x) =π(x)E[M(Y, (1− π(x))f(x)) | A = 1, X = x]

+ (1− π(x))E[M(Y,−π(x)f(x)) | A = 0, X = x].

where π(x) represents the propensity scores and M is a positive function, such as the quadratic or

cross-entropy (also called logistic loss).

ℓA(f, x) is then replaced by its empirical version on the observed data:

LA(f) =
1

n

n∑
i=1

M(Yi, (Ai − π(Xi))f(Xi))

π(Xi) equals 1
2

in the context of RCTs with 1:1 randomization.

When M is chosen to be the logistic loss, LA(f) is expressed as:

LA(f) = − 1

n

∑
i

Yi(Ai − π(Xi))f(Xi)− log(1 + exp((Ai − π(Xi))f(Xi))).
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3.5.2 Modified covariate method

Similarly, the expected loss function ℓMCM(f) = E(ℓMCM(f, x)) of the modified covariate method

where
ℓMCM(f, x) =E[M(Y, f(X)) | A = 1, X = x]

+ E[M(Y,−f(X)) | A = 0, X = x]

Its empirical version is

LMCM(f) =
1

n

n∑
i=1

M(Yi, (2Ai − 1)f(Xi))

(2Ai − 1)π(Xi) + 1− Ai

,

which boils down to

LMCM(f) = − 2

n

∑
i

Yi(2Ai − 1)f(Xi)− log(1 + exp((2Ai − 1)f(Xi))

when the logistic loss function is used and π(Xi) =
1
2
. It is worth mentioning that by substituting the

benefit score of A-learning in LA with double the benefit score of the modified covariate method, we

obtain LMCM = 2LA.

3.6 Outcome weighted learning

Outcome weighted learning (OWL) uses a weighted classification framework, in which each patient

is weighted based on their outcome, with a hinge loss to estimate an ITR.31 An optimal treatment rule

is obtained by minimizing the following quantity:

L(f) =
1

n

n∑
i=1

Yi

(2Ai − 1)π(Xi) + 1− Ai

(1− (2Ai − 1)f(Xi))
+ + λn∥f∥2

where x+ = max(x, 0), π(Xi) represents the propensity scores, λn is a penalty parameter used to

avoid overfitting and ∥f∥ is a norm for the function f : X → {0, 1} . When employing the

linear kernel, the Euclidean norm of the coefficients, excluding the intercept, is utilized. The pa-

rameter λn is chosen by performing a cross-validation. OWL is a consistent estimator and has low

variability.31

3.7 Contrast weighted learning

The idea behind contrast weighted learning (CWL) is to use contrasts of the outcome between pairs of

patients to build weights used in a weighted classification algorithm to estimate an ITR.32 A contrast

function h is defined for a pair of patients to measure the relative favorability of their outcomes.

Several contrast functions exist such as the difference h(Yi, Yj) = Yi − Yj , the log ratio h(Yi, Yj) =

log(Yi/Yj) or the win indicator h(Yi, Yj) = sgn(Yi − Yj), with sgn(Yi − Yj) = 1 if Yi − Yj > 0;

sgn(Yi − Yj) = 0 if Yi − Yj = 0 and sgn(Yi − Yj) = −1 if Yi − Yj < 0. In this project, we used the

win indicator, considered the most robust contrast function by Guo et al.32 The optimal ITR is found

by minimizing the following function:

12



L(f) =
1

2
E[(1h(Yi,Yj)(2Ai−1)f(Xi)<0 + 1h(Yi,Yj)(2Aj−1)f(Xj)≥0)

|h(Yi, Yj)|
π(Xi)π(Xj)

]

where h(Yi, Yj) is the contrast function between patient i and patient j and π(Xj) represents the

propensity score. Here h(Yi, Yj) = sgn(Yi − Yj) and π(Xi) = π(Xj) = 1/2. CWL is a flexible and

robust method that only relies on the contrast of outcomes between two patients. However, a correctly

specified model is needed to ensure consistency.

3.8 Implementation

All the analyses were performed in R version 4.1.2. Virtual Twins was implemented using the

aVirtualTwins package.33 The package personalized was used to develop the modified

covariate method and A-learning.34 For outcome weighted learning and contrast weighted learning,

the package WeightSVM was used.35 Causal forests was implemented using the package grf.36

More details about the implementation such as the choice of the hyper-parameters can be found in

Supplementary Material S2.

4 Comparison of the methods on real data

In this section, the ITRs obtained when applying the methods described above are compared on two

multi-center randomized control trials: the International Stroke Trial and the CRASH-3 trial. The

train and test datasets were obtained by splitting the data at the center level using 2/3 of the data for

training.

4.1 International Stroke Trial

The 22 methods were first compared on the International Stroke Trial (IST).15The IST was chosen be-

cause an ITR has been developed on this dataset in the past using the T-learner method and found that

74% of patients would benefit from taking aspirin.37 The IST is a multi-center randomized control

trial that includes 19, 435 patients recruited from 466 centers and examines the impact of adminis-

trating aspirin, heparin, or both in stroke. For our illustration, we focused on the impact of aspirin

on stroke. Nineteen variables were included in the different methods: 16 categorical variables and 3

continuous variables, similar to what Nguyen et al. did.37 The outcome used was death or dependency

at 6 months (1=no and 0=yes). The treatment variable was binary (0=no aspirin and 1=aspirin). A

description of the covariates and the outcome is reported in Supporting Material S3.

Results of the metrics used to evaluate the ITR produced by each method are given in Table 1. The

performance in the train dataset of IST can be found in Supplementary Material S3. Higher values

of c-statistic for benefit are better but it is rare to obtain values above 0.6.12 Here, the c-statistic for

benefit was close to 0.5 for all the ITRs, indicating poor discrimination. A reason for the poor discrim-

ination could be the lack of strong heterogeneous treatment effects. This hypothesis was confirmed

13



by conducting a likelihood ratio test comparing models with and without treatment-covariate interac-

tions were compared. The test showed that the interactions did not add value meaning no significative

heterogeneity was found in the IST dataset. The adequacy index was also computed to see how much

predictive information was due to the treatment-covariate interactions. For IST, the adequacy index

was equal to 0.993 meaning adding the interactions only accounted for 0.7% of the predictive infor-

mation. The ITRs had a PAPE close to 0 meaning that the ITRs did not perform better than a rule

that treated randomly the same proportion of patients. The PAPE values of most meta-learners were

even slightly negative indicating that a non-individualized rule performed slightly better than those

individualized rules. The values of Bpos and Bneg were close to 0, meaning there were not many

benefits of giving the evaluated treatment to patients with a positive score or not giving the evaluated

treatment to patients with a negative score. The proportion of patients for whom aspirin was recom-

mended by the different ITRs ranged from 0.114 to 0.899, with most methods producing an ITR that

recommended the evaluated treatment for more than 50% of patients. Methods belonging to the same

family had similar proportions. Despite the significant disparity of proportions, the estimated values

of the ITRS were similar showing that giving the evaluated treatment to more or fewer patients did

not improve the value. For instance, OWL’s ITR recommended treating 0.898 of patients, and CWL’s

ITR recommended treating 0.114 of patients but their rule’s values were 0.399 and 0.400 respectively.

The mean outcome when no one was treated (0.380) was close to the mean outcome when everyone

was treated (0.396), which further implies that the treatment had a limited impact on the outcome

on average. The mean outcome under the individualized rule was above the mean outcome when no

one was treated for all methods. However, only five methods (Causal forests, A-learning, modified

covariate method, OWL, and CWL) had mean outcome under the rule above the mean outcome when

everyone was treated, and even for those methods, the mean outcome did not notably surpass the

mean outcome if everyone is treated. Generally, the ITRs developed by the different methods did not

drastically improve the mean outcome.

Overall, MCC and kappa’s coefficient produced similar values (Figure 2). Most methods had consid-

erable disagreements and thus almost no correlation regarding the people treated with the evaluated

treatment in their rules which can indicate that the rules did not consider the same characteristics for

the allocation of the treatment. A better concordance was found among methods of the same family.

For instance, the ITRs developed with the parametric meta-learners agreed to treat similar patients and

had MCC and Cohen’s kappa values ranging from 0.77 to 1. Similarly, non-parametric meta-learners

had a positive moderate to high correlation with each other and with their crossfitted counterparts.

However, they had less correlation with the parametric ones. A-learning and the modified covari-

ate method generated the same ITR and therefore had coefficients of 1. The ITRs obtained with the

different methods generally did not recommend the evaluated treatment to the same patients, which

draws some concerns for their usability in practice.

A majority of characteristics were located near the origin and were not associated with the treatment

allocation of the different ITRs (Figure 3). Virtual twins’ ITR recommended not treating patients in a

14
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Figure 2: Heatmap representing the MCC and Cohen’s Kappa for each combination of two ITRs

using the International Stroke Trial.

drowsy state and patients with a TACS stroke and recommended treating fully alert patients, younger

patients, and patients with no deficit or disorder. Non-parametric meta-learners produced ITRs that

recommended treatment for patients from South America and no treatment for patients from the Mid-

dle East, South Asia, and Oceania. CWL’s ITR recommended treating patients with a LACS stroke

or another type of stroke while OWL’s ITR recommended not giving aspirin to unconscious patients.

The MCA was concordant with what was found in Figure 2 and reflected well the disagreement in

terms of treatment allocation between the ITRs.

4.2 CRASH-3

In a second stage, we compared the methods on the CRASH-3 dataset.16 Some heterogeneity in early

treatment administration has been found in the CRASH-3 trial, therefore we thought it would be inter-

esting to develop ITRs on this data.16 CRASH-3 is a multi-center randomized control trial consisting

of 9, 072 patients from 175 hospitals over 29 countries. The aim of this trial was to examine the effects

of tranexamic acid (TXA) in patients with acute traumatic brain injury. This paper used head injury

death as the outcome (1=no and 0=yes). Six covariates were included in the methods: 2 categorical

variables and 4 continuous variables. A binary treatment variable (0=Placebo and 1=TXA) was used.

A description of the covariates and outcome is given in Supporting Material S3.

Table 2 shows the values of the metrics obtained with each method. The results of the training set are
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Figure 3: Multiple Correspondence Analysis on the International Stroke Trial showing all levels of

each variable and the treatment recommendation of the individualized treatment rules.

given in Supplementary Material S3. Recall that higher values of c-statistic for benefit are better but

it is rare to obtain values above 0.6.12 Here, c-statistic for benefit values were all around or under 0.5,

indicating poor discrimination except for A-learning and the modified covariate method’s ITRs which

had higher values (0.721 and 0.720 respectively). Excluding A-learning and the modified covariate

method’s ITRs, the ITRs were not able to differentiate patients benefiting from taking the evaluated

treatment from patients not benefiting. The PAPE values were close to 0 meaning that the ITRs did

not perform better than a rule which randomly treated the same proportion of patients. There was

a mix of positive and negative values but they all remained close to 0. A-learning and the modified

covariate method’s ITRs had Bpos and Bneg values around 0.2, showing some benefits of giving the

evaluated treatment to patients with a positive score and not giving the evaluated treatment to patients

with a negative score, which was not the case for the other ITRs who had values near 0. A-learning

and the modified covariate method outperformed other approaches. This better performance is at-

tributed to the treatment rules they developed, predominantly recommending treatment for patients

with moderate Glasgow coma scores and reactive pupils. These patients’ profiles align with findings

from the CRASH-3 study. The proportions of people for which the treatment was recommended went

from 0 to 1 with a majority of methods recommending to give the evaluated treatment to over 60% of

patients. Note that CWL’s ITR chose to give the evaluated treatment to no one whereas OWL’s ITR

chose to give the evaluated treatment to everyone. The rules’ mean outcomes were almost identical

and practically all above 0.8, although the proportion of treated patients differed for each method

leading us to conclude that there was a negligible treatment effect. This can be emphasized by look-
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Figure 4: Heatmap representing the MCC and Cohen’s Kappa for each combination of two ITRs

using the CRASH-3 trial.

ing at the mean outcome when no one is treated and the mean outcome when all the individuals are

treated. The mean outcome when no one was treated (0.802) was close to the mean outcome when

everyone was treated (0.819). Comparing these two mean outcomes to the mean outcome under the

rules, we found that all the methods, except the crossfitted S-learner, had a mean outcome higher than

the mean outcome when no one was treated, but only three of them (PATH, A-learning, and the modi-

fied covariate method) had a better mean outcome than the mean outcome when everyone was treated.

MCC and Cohen’s Kappa coefficient were concordant and gave coefficients of similar magnitude

(Figure 4). When one of the ITRs recommended treating everyone or no one with the evaluated treat-

ment, it did not make sense to calculate the MCC and Cohen’s Kappa coefficient, therefore we put a

dashed line in those cases. Parametric meta-learners had a strong concordance with each other with

high coefficients. The same thing was observed for non-parametric meta-learners whether crossfit

was applied or not, as well as for A-learning and the Modified covariate method. As for the IST, a

strong concordance is only found between methods belonging to the same family (e.g. parametric

meta-learners, non-parametric meta-learners, A-learner and the modified covariate method). Other-

wise, the correlation between the ITRs was moderate and most of the time low. The ITRs did not

recommend the evaluated treatment to the same patients. The choice of the method had a big impact

on the treatment allocation, meaning that in practice two different methods could lead to completely

different rules.
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Figure 5: Multiple Correspondence Analysis of the CRASH-3 trial representing the variables’ levels

and the treatment recommendation of every individualized treatment rule.

The ITRs developed with the parametric meta-learners, virtual twins and causal forests recommended

not to treat patients with a low Glasgow Coma Scale score or/and patients with none or only pupil

that reacted, whereas they recommended the treatment to patients with a moderate to high Glasgow

Coma Scale score, patients who were female and patients with moderate systolic blood pressure

(Figure 5). The non-parametric meta-learners’ ITRs recommended treating patients younger patients

with relatively high blood pressure and not treating patients with low blood pressure. The MCA

reflected well the agreement results that were found in Figure 4. Akin methods’ ITRs agreed on the

treatment allocation but overall the ITRs did not take into account the same characteristics for the

treatment decision.

5 Discussion

This paper compared different methods used to construct individualized treatment rules using data

from two RCTs: the International Stroke Trial and the CRASH-3 trial. We considered 22 methods

belonging to two different classes. The first class included methods that predicted the ITE to derive

an ITR: meta-learners (T-learner, S-learner, X-learner, DR-learner and R-learner, both with logis-

tic regression or random forests as a base learner with and without cross-fit), PATH, causal forests,

virtual twins, A-learning and modified covariate method. The second class covered methods that di-

rectly estimated the ITR without explicitly estimating ITEs: outcome-weighted learning and contrast

weighted learning. For each trial, the performance of the ITRs was assessed with various metrics.
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The pairwise agreement between ITRs was also evaluated.

Results showed that the ITRs obtained by the different methods generally had considerable disagree-

ments regarding the individuals to be treated with the evaluated treatment for both trials. The propor-

tions of patients for whom the evaluated treatment was recommended by the rules were very different

depending on which method was employed to build the ITR and the Cohen’s kappa and Matthews

correlation coefficients were low. A better concordance was found among methods of the same fam-

ily (e.g. among all meta-learners with parametric models, or all meta-learners with non-parametric

models and cross-fitting). Overall, when evaluating the performance of ITRs in a hold-out validation

sample (33% of the original sample selected at random), results showed that all ITRs had limited per-

formance, whatever the performance in the training set, which suggests a high potential of optimism

for the algorithms.

The limited performance results might be due to the distribution of treatment effects and the level of

heterogeneity. Although some heterogeneity of treatment effects was found in the trials used in this

work, especially in the CRASH-3 trial,16 the level of heterogeneity might not be sufficient to develop

a beneficial individualized treatment rule. This result was reinforced by performing likelihood ratio

tests and calculating adequacy indexes. For both trials, the likelihood ratio tests led to the conclu-

sion that there was no evidence of significant heterogeneity and the values of the adequacy indexes

showed that the treatment-covariate interactions only accounted for a low percentage of the predictive

information. Another explanation for the limited performance might be the sample size. Even if the

methods were compared on two large RCTs, perhaps more data is needed to obtain a better perfor-

mance. A solution might be using individual participant data meta-analyses (IPD-MA) since they

include a larger number of participants. However, one should consider the heterogeneity that may

arise between the studies included in the meta-analysis. Different methods to tackle the heterogeneity

in IPD-MA have been proposed and compared in previous works.38–40

In a previous work, Rekkas et al.25 demonstrated via a simulation study that "complex" methods,

which are more flexible, require large sample sizes to perform well and that, when one has access

to moderate sample sizes, simpler risk modeling methods recommended by the PATH statement3

should be preferred to obtain a good performance. Using more parsimonious models with fewer

covariates, like what has been done for the SYNTAX II score, might also lead to more robust ITRs

with better agreements.41 Investigating for which distribution of treatment effects, a model can have

good discrimination, and thus be able to develop a beneficial ITR, as well as the requirements in

effective sample size to allow reliable development of ITRs, is worth studying.

Some comparisons of methods used to construct ITRs have been conducted in the past,6, 7 but to our

knowledge, no study has investigated the agreements in terms of the treatment decision with all the

methods presented in this project. Both Jacob and Zhang et al. have found that the methods had

different performances.6, 7 These results were concordant with ours.

Although we compared many methods in this work, we did not include every existing method. Indeed,

we decided to focus on methods that are commonly used and that are easily computed or for which an

R package was available. We also focused on real data, and a simulation study should be conducted

to better delineate the parameters associated with a better performance of the methods. A recent sim-
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ulation study showed that the sample size and the shape of the distribution of treatments impacted

the performance of the methods, particularly the performance of "complex" methods.25 However, we

considered that the illustration on two large RCTs was necessary to study the agreement between the

different ITRs in real settings, simulations being often over-simplified. Using real data also allows

for tailoring each method, in the sense that each model does not necessarily need to have the same

variables. Furthermore, in this paper, we decided to compare the ITRs’ decisions on randomized con-

trolled trials. Constructing ITRs can also be done with observational data. Observational databases

have the potential to include much more participants, and more diverse participants, than trials, and

thus might have both more heterogeneity and larger sample sizes, and could be a better source of data

to develop ITRs in practice. Although an effort was dedicated to method optimization, specifically

optimizing hyperparameters for tree-based methods through cross-validation to maximize accuracy,

it is plausible that further optimization might have led to improved method performance.

In conclusion, the significant disagreements that the methods had regarding the treatment allocation

suggest that the methods are not interchangeable. Therefore, the chosen method greatly influences

the patients for which the evaluated treatment is recommended. It draws some concerns about their

practical use. Some ITRs have been developed in the past using one method with similar RCTs.37

Using multiple methods and comparing the obtained ITRs, as suggested by Jacob, might be a solution

when one wants to develop an ITR in practice.6 However, in most cases, more simple approaches such

as the risk modeling method advocated in PATH,3 or carefully adding specific interactions between

prespecified treatment-effect modifiers and treatment in the model, as done in the revised SYNTAX

score II41 may be a better strategy than currently available ITR algorithms which may be misleading

by overfitting the heterogeneity of treatment effects. Also, methods that allow evaluating the model

calibration for benefit may be favored. Evaluating a priori the probability of identifying a beneficial

ITR, as suggested by Cain et al.,42 might also be taken under consideration.
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