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DP-MINIMAL GROUPS

FRANK O. WAGNER

Abstract. A dp-minimal group is virtually nilpotent.

Definition 1. A partial type π(x) is dp-minimal if there are no formulas ϕ(x, y) and
ψ(x, y) and mutually indiscernible sequences (ai)i<ω and (bi)i<ω such that for any
i, j ∈ ω the type

π(x) ∪ {ϕ(x, ai), ψ(x, bj)} ∪ {¬ϕ(x, as) : s 6= i} ∪ {¬ψ(x, bt) : t 6= j}

is consistent.
Equivalently, for any two mutually indiscernible sequences (ai)i<ω and (bi)i<ω and
any c |= π, either (ai)i<ω or (bi)i<ω is indiscernible over c.

Recall that a dp-minimal theory is dependent, so in particular the Baldwin-Saxl
condition holds, and any intersection of uniformly definable subgroups is equal to a
(uniformly) finite subintersection. Moreover, Pierre Simon has shown [4, Claim in
Proof of 4.31] that in a dp-minimal group, for any two definable subgroups H and
K the intersection H ∩K has finite index in either H or in K. By compactness, for
any family of uniformly definable subgroups {Hi : i ∈ I} there is n < ω such that
Hi ∩Hj has index at most n in either Hi or in Hj, for any i, j ∈ I.
We shall call a group

∧
-definable if it is an intersection of definable groups. Recall

that a group us virtually P if it has a subgroup of finite index which is P.

Remark 2. If G is virtually soluble, then its soluble radical R(G) (the subgroup
generated by all normal soluble subgroups) is soluble and definable; if G is virtually
nilpotent, its Fitting subgroup F (G) (the subgroup generated by all normal nilpotent
subgroups) is nilpotent and definable. If G is soluble, it has a definable characteristic
series with abelian quotients; if G is nilpotent, it has a definable characteristic series
with central quotients.

Proof. If G has a soluble subgroup H of finite index, H contains a normal soluble
subgroup N of finite index. Now for any normal soluble subgroup S the group NS
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is again normal soluble. Hence G has a maximal normal soluble subgroup of finite
index, so R(G) is soluble. It is then definable by [3, Theorem 1.1]. The proof for
F (G) is analogous, replacing soluble by nilpotent.
Now if G is soluble of derived length n+1, define c0(x) = x and ci+1(x1, . . . , x2i+1) =
[ci(x1, . . . , x2i), ci(x2i+1, . . . , x2i+1)]. Then

A = Z(CG(cn(x1, . . . , x2n) : x1, . . . , x2n ∈ G)

is a definable characteristic abelian subgroup containing G(n). We divide out by A
and finish by induction. For nilpotency, the claim is obvious, as Z(G) is clearly
definable. �

Proposition 3. A dp-minimal group G is virtually soluble.

Proof. By a theorem of Simon [4, Proposition 4.31], G has a definable characteristic
abelian subgroup A such that G/A has finite exponent. As G/A is still dp-minimal,
we may assume that G has finite exponent.
Let H ≤ G be a definable subgroup. The family of its G-conjugates is a family of
uniformly definable subgroups, so there is n < ω such that H ∩ Hg has index ≤ n
either in H or in Hg. Suppose |H : H ∩Hg| ≤ n (the other case is analogous). Then

|Hg : Hg∩Hg2 | ≤ n, and |H∩Hg : H∩Hg∩Hg2 | ≤ n, whence |H : H∩Hg∩Hg2 | ≤ n2.

Iterating, we see that |H : H ∩ · · · ∩Hgk| ≤ nk. But for k = o(g)− 1 the subgroup

N = H ∩ · · · ∩ Hgk is g-invariant, so |H : N | = |Hg : N | ≤ nk. But this implies
|H : H ∩ Hg| = |Hg : H ∩Hg| ≤ n. Now NIP implies that there is ℓ such that the
intersection of any finite number of G-conjugates of H is an intersection of at most
ℓ of them, and has index ≤ ℓn in H . Hence Hnor =

⋂
g∈GH

g is a normal subgroup
of index at most ℓn in H , definable over the same parameters as H .
Let M be a model, and S the set of M-definable normal soluble subgroups. Since S

is closed under product,
⋃
S is a normal subgroup of G. If G is not virtually soluble,

there is a minimal M-
∧

-definable subgroup H which is not virtually contained in
any subgroup in S. Let p be an f-generic type of H over M . Note that by minimality
H = H0, so H is connected; if H =

⋂
iHi then H =

⋂
iH

nor
i as well by connectivity,

so H is an intersection of M-definable normal subgroups and must itself be normal.
By dp-minimality, p is either generically stable or distal. If p is distal, then by
the generalization of [5, Section 5] to

∧
-definable normal subgroups of a dp-minimal

group, H is nilpotent. By compactness it is contained in a definable normal nilpotent
group of the same class which must be in S, a contradiction.
So p is generically stable. Let (ai)Z (̂bi)Z be a Morley sequence in p over M .
If [a0, b0] lies in some M-definable coset of some group S ∈ S, say [a0, b0] ∈ mS,
then b0, b1 and b0b1 all satisfy p|Ma0 by generic stability and genericity of p, so

[a0, b0] = [a0, b1] = [a0, b0b1] = [a0, b1][a0, b0]
b1 mod S.
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Hence [a0, b0]
b1 ∈ S, so [a0, b0] ∈ S. Now CG(a0/S) contains a generic b0, so has finite

index in H , which is connected. By compactness CG(a0/S) contains an M-definable
normal supergroup K of H . Then Z(K/S) is M-definable and contains a0 which is
generic in H . By connectivity H ≤ Z(K/S). But Z(K/S) ∈ S, a contradiction.
In particular q = tp([a0, b0]/M) is a non-algebraic type over M ; it is generically stable
since tp(a0, b0/M) is. By [5, Lemma 6.2] the stabilizer Stab(q) is infinite; in fact it
contains c0c

−1
1 for some/any independent c0, c1 |= q. Thus the coset Stab(p)c1 does

not depend on c1 |= q and must be M-definable; moreover it contains all realizations
of q. By the previous paragraph, Stab(q) /∈ S; as q(x) implies x ∈ H we get
Stab(q) ≤ H and we must have equality by minimality of H .
Work over M . By dp-minimality of q, one of (ai)Z or (bi)Z is indiscernible over
[a0, b0], whence independent of [a0, b0]. In particular [a0, b0] is independent of a0 or
of b0; by symmetry [b0, a0] is independent of b0 or of a0. But [b0, a0] = [a0, b0]

−1, so
it is independent of a0 and of b0. It follows that

H = Stab(q) = Stab(q|Mb0) = Stab([a0, b0]/Mb0) = Stab(b−a0
0 b0/Mb0) = Stab(b−a0

0 /Mb0).

But H = Stab(p) = Stab(p|Mb0) by generic stability of the generic type p. Then H
is the right stabilizer of p−1. So for two independent realizations a, a′ |= p we have
that

tp(a−1a′/Ma′) = p−1a′|Ma′ = p−1|Ma′ and tp(a−1a′/Ma) = a−1p|Ma = p|Ma.

In particular p = tp(a−1a′/M) = p−1, and H is the left and right stabilizer of p.
Similarly, if a |= p|Mb0 and c |= tp(b−a0

0 /Mb0) with a |⌣Mb0
c, then

p|Mb0 = tp(ac/Mb0) = tp(b−a0
0 /Mb0).

Since b−1
0 |= dpx ∃z ∈ Gx = yz, there is m′ ∈M such that p ⊢ x ∈ m′G. As H = p · p

is normal in G, we have that H = m′G ·m′G is M-definable. Again by definability of
p there is m ∈M such that p ⊢ x ∈ mH . (In fact it is easy to see that we can choose
m = m′.)
It follows that m ∈ H(M) \

⋃
S(M); in particular H(M)/

⋃
S(M) is nontrivial.

Note that if there is S ∈ S such that m2 ∈ S, then every realization of p has order
two modulo S. But for two independent realizations a, a′ |= p we have aa′ |= p,
whence a2, a′2, (aa′)2 ∈ S and

aa′ = (aa′)−1 = a′−1a−1 = a′a mod S.

So H/S is generically commutative and [a0, b0] ∈ S; as above H ≤
⋃

S, a contradic-
tion. It follows that m2 /∈

⋃
S.

Now m 6= m−1 |= p−1 = p, so there is h ∈ H with m−1 = mh. Since m ∈ M we can
choose h ∈ H(M). Clearly h /∈

⋃
S, and m ∈ CH(h

2) \ CH(h).
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Consider any c ∈ H(M) \
⋃

S(M), and put q′ = tp(ca0/M), a generically stable
type. By [5, Lemma 6.2] for T = Stab(q′) and any t |= q′ the coset T t does not
depend on t, is M-definable and contains q′.
If T were soluble, then for generic a |= p|Ma0 we have tp(a0a/M) = p = tp(a0/M),
so q′a = q′ ⊆ (T t)a ∩ T t, whence [a, t−1] ∈ T (recall that T is a stabilizer, whence
connected, and thus normal). Hence CH(T t/T ) is a generic M-definable subgroup of
H , and must equal H by connectivity. Thus t is central in H/T , as is tG, and there
is a definable S ∈ S containing T t. Then c ∈ S, a contradiction.
Since T ≤ H we get T = H by minimality. But then q′ = p as before, and c ∈ mH .
So H(M)/

⋃
S(M) is a group of order at least 3, finite exponent, and a single non-

trivial conjugacy class, a contradiction. �

Proposition 4. Let G be a soluble dp-minimal group. Then G is virtually nilpotent.

Proof. By [5, Theorem 5.21] we may assume that G has a generically stable principal
f-generic type. Since G is soluble, it has a definable normal series with abelian
quotients. So by induction on the derived length we may assume that there is a
normal definable nilpotent subgroup N such that G/N is finite-by-abelian. Let F/N
be the finite subgroup such that G/F is abelian. Then n̄g ∈ n̄F for every n̄ ∈ G/N ,
and |G : CG(n̄)| ≤ |F |. Since G is NIP, the intersection of all CG(n̄) is a finite
subintersection Gc. We replace G by Gc and assume that G/N is abelian.
Let M be an ω-saturated model. Recall that G has a characteristic ∅-definable
abelian subgroup A such that G/A has finite exponent. Put

Z = {Z ≤ G : Z = Zn(GZ) for some normal M-definable GZ ≤ G of finite index}.

Note that Zn(GZ)Zm(GZ′) ≤ Zn+m((GZ ∩ GZ′)ZZ ′), so Z is closed under product,
and consists of normal ∅-definable groups. We want to show that N ≤ Z for some
Z ∈ Z. So suppose not.
Let H be a minimal M-

∧
-definable subgroup not virtually contained in

⋃
Z. If A

is not virtually contained in
⋃
Z we choose H ≤ A. Note that H is connected, and

G-invariant, as G/CG(H) has finite exponent, say k. Dividing out by some Z ∈ Z
we may assume that H is abelian.
Consider a principal generic element g of G over M , and a (g,M)-definable subgroup
Kg of G. Then for an independent g′ ≡M g we either have Mg . Mg′ or Mg′ . Mg.
But by generic stability of tp(g/M) we have g, g′ ≡M g′, g, so Mg and Mg′ are
(uniformly) commensurable. For any g′′ ≡M g we choose g′ ≡M g independent of
g, g′′ over M , so Mg and Mg′ are both uniformly commensurable to Mg′′ , and hence
uniformly commensurable. It follows that the intersection

⋂
g′≡M gMg′ equals a finite

subintersection, has finite index in Mg and is M-definable.
In particular, for any Z ∈ Z the centraliser CG(g/Z) has an M-definable subgroup K
of finite index normal in G which centralises modulo Z some normal generic subgroup
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GK ≤ G. Then K∩GK has finite index in CG(g/Z), and is contained in Z. Moreover,
the subgroup [g,H ] is (g,M)-

∧
-definable (as H is abelian) and connected (since H

is), whence M-
∧

-definable; it must either equal H or be virtually contained in
⋃

Z,
whence contained in

⋃
Z by connectedness. The latter case implies that H ≤

⋃
Z

again by connectedness, a contradiction.
Let R be the ring of quasi-endomorphisms modulo equivalence of H/

⋃
Z generated

by G, and their inverses (where they exist), in the monster model. Note that by the
above, the map rg : x 7→ [g, x] has kernel virtually contained in

⋃
Z and is surjective,

whence invertible in R. Composing with conjugation by an independent principal
generic g′, we see that fg,g′ : x 7→ x−gg′xg

′

is also invertible in R.
Now let I be a maximal ideal in R, so R/I is a field. Since conjugation by g has order
dividing k, there are only k different images in R/I for conjugation by realizations
of p. But since fg,g′ is invertible, it cannot be in I. As there is a unique type of two
independent realizations of p, which is realized by gg′ and g, independent generics
have a different image in R/I, a contradiction.
This finishes the proof. �
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