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Abstract

Wave-based imaging techniques play a critical role in diverse scientific, medical, and indus-
trial endeavors, from discovering hidden structures beneath the Earth’s surface to ultrasound
diagnostics. They rely on accurate solutions to the forward and inverse problems for par-
tial differential equations (PDEs) that govern wave propagation. Surrogate PDE solvers
based on machine learning emerged as an effective approach to computing the solutions
more efficiently than via classical numerical schemes. However, existing datasets for PDE
surrogates offer only limited coverage of the wave propagation phenomenon. In this paper,
we present WaveBench, a comprehensive collection of benchmark datasets for wave prop-
agation PDEs. WaveBench (1) contains 24 datasets that cover a wide range of forward
and inverse problems for time-harmonic and time-varying wave phenomena in 2D; (2) in-
cludes a user-friendly PyTorch environment for comparing learning-based methods; and (3)
comprises reference performance and model checkpoints of popular PDE surrogates such as
U-Nets and Fourier neural operators. Our evaluation on WaveBench demonstrates the
impressive performance of PDE surrogates on in-distribution samples, while simultaneously
unveiling their limitations on out-of-distribution (OOD) samples. This OOD-generalization
limitation is noteworthy, especially since we use stylized wavespeeds and provide abundant
training data to PDE surrogates. We anticipate that WaveBench will stimulate the devel-
opment of accurate wave-based imaging techniques through machine learning.

1 Introduction

Waves are behind imaging modalities as diverse as reflection seismology, medical ultrasound, and X-ray
crystallography. Imaging with waves relies on mathematical models of wave propagation expressed through
partial differential equations (PDEs) called wave equations.

Since conventional numerical PDE solvers are computationally expensive for large-scale problems, recent
research has witnessed a rapid emergence of machine learning-based models to approximate PDE solutions
(Li et al., 2020; Nelsen & Stuart, 2021; Lu et al., 2019; Bhattacharya et al., 2021; Li et al., 2021; Huang et al.,
2021; Wang et al., 2021; Gupta et al., 2021; de Hoop et al., 2022a; Kissas et al., 2022; Brandstetter et al.,
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2023). These models, collectively referred to as PDE surrogates, are trained using a dataset of ground-truth
PDE solutions. Properly trained PDE surrogates can offer faster inference speeds compared to traditional
numerical solvers while maintaining accuracy. Realizing this advantage, however, typically requires having
access to high-quality PDE solutions for training purposes.

Indeed, it is hard to overstate the significance of high-quality datasets in the success of modern machine
learning models in computer vision and natural language processing. Similarly, in the case of PDE surrogates,
the importance of high-quality datasets has become evident. Recent efforts focus on constructing high-quality
datasets for PDE surrogates (Lu et al., 2022; de Hoop et al., 2022b; Gupta & Brandstetter, 2022; Takamoto
et al., 2022). These datasets cover a wide range of equations, especially those related to fluid dynamics, such
as Darcy flow, shallow-water, and Navier–Stokes equations (Li et al., 2021; Gupta & Brandstetter, 2022;
Stachenfeld et al., 2022; Holl et al., 2020). However, a comprehensive dataset for a broad family of wave
PDEs is still missing.

To address the gap, we present WaveBench, an extensive collection of benchmark datasets designed for
wave propagation PDEs. WaveBench includes 24 datasets, encompassing two categories of forward and
inverse problems of acoustic waves: time-harmonic problems and time-varying problems. These datasets are
constructed using open-source software tools hawen (Faucher, 2021) for time-harmonic waves and j-wave
(Stanziola et al., 2023) for time-varying waves. We have made these datasets publicly accessible for re-
searchers to access. Moreover, we provide a PyTorch (Paszke et al., 2019) environment that enables easy
training and comparison between various PDE surrogate models. We also include checkpoints and reference
results for popular PDE surrogates of Fourier neural operators (Li et al., 2021), U-Nets (Ronneberger et al.,
2015), and the U-shaped neural operator (Rahman et al., 2023). By providing these resources, we aim to
foster the development of machine-learning techniques for wave imaging.

2 Background and related work

ML methods to approximate operators described by PDEs. The solution map of a generic PDE can
be written as an operator G† : A → U , where A and U are normed function spaces defined on some bounded
subsets in Rd. We focus on 2D domains, thus d = 2. For instance, G† can be a mapping that converts
PDE coefficients a ∈ A into a PDE solution G†(a) ∈ U . A PDE surrogate Gθ is a data-driven emulator of
the true PDE solution map G†, with θ denoting the model parameters. A PDE surrogate is learned from
a training dataset of input–output pairs {(aj , uj)}N

j=1, where aj ∈ A and uj = G†(aj) are prepared using
conventional numerical solvers. The loss quantifying how well a PDE surrogate with parameters θ fits the
data is formulated as

LN (θ) := 1
N

N∑
j=1

l
(

Gθ(aj), uj

)
,

where the error function l(·, ·) is often chosen as the absolute error l(û, u) = ∥û − u∥U or the relative error
l(û, u) = ∥û − u∥U ∥u∥−1

U (Kovachki et al., 2023). Once trained, the model Gθ yields approximate PDE
solutions, often faster than traditional solvers.

PDEs surrogates. A PDE surrogate Gθ can be parameterized in various ways. Popular choices include
kernel-based models (Kadri et al., 2016; Griebel & Rieger, 2017), random feature models (Nelsen & Stuart,
2021), Gaussian processes Chen et al. (2021); Harkonen et al. (2022); Henderson et al. (2023), and neural
networks (Lu et al., 2019; Kovachki et al., 2023; Bhattacharya et al., 2021; Wang et al., 2021; Kissas et al.,
2022; Brandstetter et al., 2023). Among them, neural networks represent the current state-of-the-art in
empirical performance. Recently, Lu et al. (2022); de Hoop et al. (2022b); Gupta & Brandstetter (2022);
Takamoto et al. (2022) ran a comprehensive numerical comparison of various models, showing their relative
merits in different scenarios. For PDEs discretized on 2D grid meshes, Fourier neural operators (FNO) and
U-Nets are highly performant (Takamoto et al., 2022; Gupta & Brandstetter, 2022); we thus adopt them as
baselines.

Benchmarks and datasets for PDEs surrogates. Recent advancements in PDE surrogates have led
to the development of standardized datasets that serve as benchmarks (Lu et al., 2019; Kothari et al., 2020;
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Li et al., 2021; Lu et al., 2022; de Hoop et al., 2022b; Gupta & Brandstetter, 2022; Takamoto et al., 2022;
Benitez et al., 2023). These datasets comprise a wide range of PDEs, usually with particular emphasis
on fluid dynamics problems such as Darcy flow, shallow-water, and Navier–Stokes problems. Despite this
impressive variety, there is a noticeable gap in the coverage of wave propagation PDEs. While a few work
apply PDE surrogates on wave problems (Kothari et al., 2020; de Hoop et al., 2022b; Deng et al., 2022;
Benitez et al., 2023), each focuses on a specialized setting. For instance, Kothari et al. (2020) and Deng et al.
(2022) focus on certain time-varying wave problems, and Stanziola et al. (2021); de Hoop et al. (2022b) and
Benitez et al. (2023) concentrate on time-harmonic ones. In contrast, the proposed WaveBench provides
a comprehensive range of wave propagation datasets by considering both time-varying and time-harmonic
problems. Additionally, we cover a wide range of frequency configurations for time-harmonic problems and
take different types of wave speeds into account for both time-varying and time-harmonic problems. To
facilitate model comparisons, we also offer a unified PyTorch environment for comparing and benchmarking
models.

3 WaveBench datasets

Our proposed WaveBench consists of 24 datasets, divided into two problem categories: time-harmonic
wave problems and time-varying problems. The time-harmonic wave problem is further decomposed into
two with the consideration of acoustic and elastic waves.

3.1 Datasets for time-harmonic wave problems

3.1.1 Time-harmonic acoustic waves.

We consider the propagation of time-harmonic acoustic waves (Martin, 2021; Colton et al., 1998; Faucher &
Scherzer, 2020) written in terms of the pressure field p. Upon assuming a medium with constant density, it
results into considering the Helmholtz equation (e.g., Faucher (2017)):

−
(

∆ + ω2

c(x)2

)
p(x, ω) = f(x, ω), (1)

where p = p(x, ω) is a pressure field at the angular frequency ω, c is a wavespeed function. Throughout
this work, our domain is in 2D, that is, x ∈ R2. For the source function f , we consider a delta-Dirac in
space δ(y) where y is the position of the source. On the boundary of the domain, we follow a geophysical
configuration (Benitez et al., 2023; Faucher & Scherzer, 2020): The boundary is divided into two distinct
parts. The upper boundary corresponds to an interface Γ1 where Dirichlet zero conditions (free surface) are
enforced. In the remaining portion of the boundary, Γ2 we assume absorbing boundary conditions to prevent
waves from reflecting back to the medium, Engquist & Majda (1977). We have,

p(x, ω) = 0 , on Γ1 (free surface), (2a)(
∂ν − iω

c(x)

)
p(x, ω) = 0 , on Γ2 (absorbing boundary conditions). (2b)

Experimental setup We use the same domain size and a fixed point source (near surface) for all fre-
quencies. To stay in the statistical learning setup, we randomly generate wavespeed as the composition of
an affine transformation and a Gaussian random field with the Whittle–Matérn covariance as described in
Benitez et al. (2023). Using the same notation as Benitez et al. (2023), we set the smoothness parameter ν of
the field to be 1 for all the cases. Furthermore, we let the coefficients λ = (λx, λy) appear in Whittle–Matérn
covariance (Benitez et al., 2023) be as follows: (a) for the isotropic case we choose λ = (0.1, 0.1), and (b) for
the anisotropic case we have λ = (0.2, 0.5). We illustrate in Figure 1 a wavespeed c and the corresponding
pressure field p.

Experiment
config.


The domain is 2D having the size 1.27×1.27km2

50 000 GRF wave speeds generated, imposing 1.5km s−1 ≤ c(x) ≤ 5km s−1

The data are p that solve (1) at frequency ω/(2π) = 10, 15, 20 and 40 Hz.

(3)
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Isotropic GRF 10 Hz 15 Hz 20 Hz 40 Hz
Wavespeed Real parts of pressure fields            at different frequencies

Anisotropic GRF 10 Hz 15 Hz 20 Hz 40 Hz

Figure 1: Visualization of samples from the acoustic time-harmonic datasets. At a fixed frequency
ω, the solver to the Helmholtz equation (1) converts a wavespeed c to a pressure field p(·, ω). Two wavespeed
c are shown in the left-most panels. They are realizations of Gaussian random field (GRF) with an isotropic
kernel and an anisotropic kernel, respectively. The right panels display ground-truth pressure field p(·, ω) at
frequencies ω/(2π) = 10Hz, 15Hz, 20Hz, and 40Hz.

At a fixed frequency ω and source f , the parametric form of the Helmholtz equation describes an operator
G†

helm that maps the wavespeed c to a pressure field p:

G†
helm : c 7→ p(·, ω). (4)

To estimate the operator G†
helm from data, our dataset contains paired wavespeed and pressure field

{(cj , pj)}j . We let the wavespeed c be realizations of Gaussian random fields (GRF) with an isotropic
kernel or an anisotropic kernel. For each wavespeed c, the corresponding ground truth pressure field p is ob-
tained by solving the PDE using a hybridizable discontinuous Galerkin (HDG) method (Faucher & Scherzer,
2020) implemented in hawen package (Faucher, 2021). We produce 8 time-harmonic datasets corresponding
to 2 types of GRF wavespeeds (isotropic and anisotropic), and 4 frequencies. Each dataset contains 49,000
training samples, 500 validation samples, and 500 test samples. For an overview of these time-harmonic
datasets, see Table 1.

3.1.2 Time-harmonic elastic waves.

Unlike the acoustic wave problem which models a scalar pressure field, the elastic case works with the
displacement vector field u, written in two dimensions as u = [ux, uy]. Following time-harmonic propagation,
each component (ux or uy) is complex-valued. Under elastic isotropy, the time-harmonic equation has the
form, (Carcione, 2007; Faucher, 2017):

−ρ(x)ω2u(x) − ∇
(

λ(x)∇ · u(x)
)

− ∇ ·
(

µ(x)
[
∇u(x) +

(
∇u(x)

)⊤
] )

= g(x) , (5)

where ω is the angular frequency and g the source. The isotropic elastic medium is characterized by its density
ρ(x), and the Lamé parameters λ(x) and µ(x) (in particular, µ(x) is the shear modulus). In elastic media,
two body waves propagate, the P-wave (compressional or primary wave) and S-wave (shear or secondary
wave), Carcione (2007). Each wave is associated with a wavespeed, respectively cp(x) and cs(x), which can
be used to characterize the medium as an alternative to the Lamé parameters, and are given by,

cp(x) :=

√
λ(x) + 2µ(x)

ρ(x) , cs(x) :=

√
µ(x)
ρ(x) . (6)
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Wavespeed c Frequency ω/2π

Acoustic wave

Isotropic GRF

10 Hz
15 Hz
20 Hz
40 Hz

Anisotropic GRF

10 Hz
15 Hz
20 Hz
40 Hz

Elastic wave Anisotropic GRF

10 Hz
15 Hz
20 Hz
40 Hz

Table 1: Summary of 12 time-harmonic datasets. Each dataset corresponds to a governing time-
harmonic wave equation (acoustic or elastic), a type of wavespeed (isotropic GRF or anisotropic GRF) and
frequency (10, 15, 20, or 40 Hz). Each dataset consists of 49,000 training samples, 500 validation
samples, and 500 test samples. The roles of the wavespeed c and frequency ω in time-harmonic wave
propagation can be seen in the Helmholtz equation (1).

Experimental setup Throughout our elastic wave experiments, we let P-wavespeeds cp, the S-wavespeed
cs be realizations of anisotropic GRFs while the density is kept to ρ = 1. More precisely, we first generate cp

as a GRF with values between 2.5 and 5.5 km.s−1, we then generate a GRF function c with values between
0.35 and 0.50 that we use as a scaling to create cs = c cp. Therefore, cs is a randomly scaled version of
cp. This choice is motivated as cp and cs are physical properties of a medium that are expected to contain
the same geometry of structures (e.g., µ and ρ appear in both cp and cs in (6)). For boundary conditions,
we follow the same configuration as for the acoustic case with absorbing boundary conditions on the lateral
and bottom boundaries, and a free-surface condition for the upper surface where (representing the interface
between the ground and the air), see, e.g., Faucher (2017). We visualize the wavespeeds and the real parts
of the displacement fields at different frequencies in Figure 2.

P-wavespeed

S-wavespeed

field (real part)

field (real part)

field (real part) field (real part) field (real part)

field (real part) field (real part) field (real part)

Figure 2: Visualization of samples from the elastic time-harmonic datasets. The wavespeeds are
separated into P-waves and S-waves shown in the left-most column. At a fixed frequency ω, the solver
converts wavespeed c to a displacement field u = [ux, uz]. The right panels display these displacement fields
at frequencies ω/(2π) = 10Hz, 15Hz, 20Hz, and 40Hz.
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In the case of elastic propagation, for a fixed frequency ω and source f , the parametric form describes an
operator G†

elst that maps the P- and S-wavespeeds cp and cs to a displacement vector field u:

G†
elst : (cp, cs) 7→ u(·, ω) := [ux(·, ω), uz(·, ω)]. (7)

For the computation of G†
elst, similar to the acoustic case we use the open-source software hawen (Faucher,

2021). We list in Table 1 the frequencies used to generate the dataset.

3.2 Datasets for time-varying wave problems

We now turn to the governing equation for acoustic wave propagation in the time domain. The acoustic
wave equation describes the evolution of pressure q = q(x, t) over time under the influence of the wavespeed
c = c(x):

∆q(x, t) − 1
c(x)2

∂2q(x, t)
∂t2 = 0 (8)

This equation is subject to radiating boundary conditions detailed in Appendix A. The time-varying quan-
tity q = q(x, t) in (8) and the time-harmonic quantity p = p(x, ω) in (1) are related: under appropriate
assumptions, q(x, t) can be written as an integration of p(x, ω) in the frequency domain. See Faucher (2017,
Section 1.6) for a detailed derivation. We consider two problems that arise from the time-varying wave
dynamics: the reverse time continuation and the inverse source problem.

Isotropic GRFGaussian Lens Anisotropic GRF
wavespeed wavespeed wavespeed

Final pressure Initial pressure Final pressure Final pressure 
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Figure 3: Visualization of samples from the reverse time continuation (RTC) problems. With a
fixed wavespeed c, the goal of RTC is to map the final pressure q(·, T ) to the initial pressure q(·, 0). The
top-most panels depict three types of wavespeeds c. The left-most panels depict two realizations of initial
pressures q(·, 0). The remaining panels display the final pressures q(·, T ), which are influenced by both the
initial pressure q(·, 0) in its respective row and the wavespeed c in its corresponding column.
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Reverse time continuation (RTC) problem. The goal of this problem is to determine the initial
pressure of the wave equation (8) based on the final pressure. Let q(·, 0) be the initial pressure, which
propagates over a time span T to reach the final pressure q(·, T ). Note that the final pressure q(·, T ) is
influenced by both the initial pressure q(·, 0) and the wavespeed c in (8). With wavespeed c fixed, the
ground-truth operator that solves the RTC task is represented by

G†
rtc : q(·, T ) 7→ q(·, 0). (9)

We construct the RTC dataset in the form of
(
qj(·, T ), qj(·, 0)

)
j
, with a fixed propagation time T but different

wavespeed types. Figure 3 illustrates samples from these datasets. We consider three types of wavespeed
c (top panels of Figure 3): Gaussian lens and realizations of isotropic and anisotropic Gaussian random
fields. For configuring the initial pressure q(·, 0), we use two approaches. In the first approach, we place
boxes or thick lines of random sizes, orientations, and locations in the domain, following the approach in
Kothari et al. (2020). Additionally, to evaluate the out-of-distribution (OOD) generalization performance of
models, we construct test datasets using MNIST images (LeCun et al., 1998) as the initial pressure. The
two bottom rows of Figure 3 display samples from both the in-distribution thick line initial pressure and the
OOD MNIST pressure. Appendix A provides detailed configuration information about the RTC datasets.

Isotropic GRFGaussian Lens Anisotropic GRF
wavespeed wavespeed wavespeed

Initial pressure Sensor record Sensor record Sensor record
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Figure 4: Visualization of samples from the inverse source (IS) problems. At a fixed wavespeed
c, the goal of IS is to map [q(x, t)]x∈S,t∈T (pressure recorded at sensor locations S and time T ) into the
initial pressure q(·, 0). The top-most panels depict three types of wavespeeds c. The left-most panels depict
two realizations of initial pressures q(·, 0). The remaining panels exhibit the sensor records [q(x, t)]x∈S,t∈T ,
which are influenced by both the initial pressure q(·, 0) in its respective row and the wavespeed c in its
corresponding column.

Inverse source (IS) problem. In the previous RTC problem, we are given the final pressure q(·, T ) on
the full domain at a terminal time T . However, this assumption is often too strong in applications such as
seismic imaging, where the pressure can only be measured by sensors placed at some portions of the domain
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boundary. To address this limitation, we turn to the inverse source (IS) problem. The IS problem aims to
predict the initial pressure q(·, 0) based on pressure measurements taken at certain boundary locations over a
time span [0, T ]. Given a fixed wavespeed c, sensor locations S, and discrete time steps T , the ground-truth
operator that solves the IS task can be expressed as:

G†
is : [q(x, t)]x∈S,t∈T 7→ q(·, 0). (10)

This problem is illustrated in Figure 4. Similar to the RTC dataset, we create random thick lines and use
them as initial pressure q(·, 0). In Figure 4, we visualize samples from IS datasets. The sensor locations S
are fixed to be the upper boundary of the domain. Further details on the configuration of the IS datasets
are provided in Appendix A.

We summarize our 12 time-varying datasets of RTC and IS in Table 3 in Appendix A. Each dataset based
upon the initial pressures of thick lines consists of 9,000 training samples, 500 validation samples, and 500
testing samples. Each dataset based upon the initial pressures of MNIST is for out-of-distribution testing
purposes, comprising of 500 testing samples.

3.3 Dataset accessibility and format.

The datasets are in the beton format of FFCV (Leclerc et al., 2023), which is open-source software that
provides high-throughput data loading for model training. Our datasets are accessible on Zenodo (an open
platform for datasets sharing): https://zenodo.org/records/8015145, and the benchmark code is acces-
sible through our GitHub repository: https://github.com/wavebench/wavebench.

4 Wavebench Benchmarks

4.1 Baseline models

We provide reference implementations and benchmark performance of PDE surrogates trained on
WaveBench datasets. We focus on U-Nets and FNOs as PDE surrogates, which exhibit high performance
across various PDE problems (Takamoto et al., 2022; Gupta & Brandstetter, 2022).

Model # parameters Forward pass runtime [s] Backward pass runtime [s]
FNO-depth-4 4.2M 0.011 0.018
FNO-depth-8 8.4M 0.019 0.033
U-Net-ch-32 7.8M 0.006 0.012
U-Net-ch-64 31.0M 0.016 0.031

UNO-modes-12 10.1M 0.024 0.032
UNO-modes-16 17.9M 0.024 0.033

Table 2: Comparison of baseline models. The baseline models include two variants of FNO (Li et al.,
2021) and two variants of U-Net (Ronneberger et al., 2015). FNO-depth-4 and FNO-depth-8 are two FNO
variants with of 4 or 8 hidden Fourier layers. U-Net-ch-64 stands for the standard U-Net that has 64 channels
in its first layer, and U-Net-ch-32 is a smaller variant with all convolutional channels halved. Both UNO-
modes-12 and UNO-modes-16 variants have 3 scales that correspond to domain-discretization of 128 × 128,
64 × 64, and 32 × 32. The UNO-modes-12 model uses [12, 6, 3] Fourier modes for each scale, while the
UNO-modes-16 uses [16, 8, 4] Fourier modes for each scale. The model runtime was assessed using a batch
(8, 1, 128, 128), consisting of 8 samples of 128 × 128 array. The benchmarking procedure involved initial 10
dry runs followed by 100 test runs conducted on an 11 GB NVIDIA GeForce RTX 2080 Ti GPU.

FNO. The Fourier neural operator (Li et al., 2021) represents one of the state-of-the-art models for PDE
data on regular grids. We use FNOs in 2D consisting of 64 hidden channels, 16 Fourier modes, and either
4 or 8 Fourier layers as hidden layers; for the input lifting and output projection parts of FNOs, we use
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single-hidden-layer MLPs that consisted of 1x1 convolution with 128 channels. The FNO variants with 4
and 8 hidden Fourier layers are referred to as FNO-depth-4 and FNO-depth-8, whose parameter count and
runtime are summarized in Table 2.

U-Net. The U-Net (Ronneberger et al., 2015) is a convolutional network originally developed for 2D image-
to-image regression problems such as image segmentation. However, its versatility has led to its adoption
in PDE learning tasks (Kothari et al., 2020; Li et al., 2021; Gupta & Brandstetter, 2022; Chen & Thuerey,
2023), both as a component within larger architectures or as standalone model. Remarkably, even as a
standalone model, U-Nets perform well in several PDE modeling tasks, sometimes matching or surpassing
dedicated PDE surrogates such as FNOs (Takamoto et al., 2022; Gupta & Brandstetter, 2022). In our
baselines, we employ either the standard U-Net (Ronneberger et al., 2015), referred to as U-Net-ch-64 as it
uses 64 channels in the first hidden layer, or a smaller variant with halved convolutional channels (referred
to as U-Net-ch-32). Table 2 summarizes their parameter counts and runtime.

UNO. The UNO (U-shaped neural operator) (Rahman et al., 2023) combines U-Net and FNO design
elements. Like U-Net, UNO encodes input into smaller domains and decodes to generate output on greater
domains. UNO’s layers are parametrized with Fourier layers in a way identical to FNOs. We consider two
UNO variants, UNO-modes-12 and UNO-modes-16. For both versions, we use 3 scales on domains 128×128,
64 × 64, and 32 × 32. UNO-modes-12 uses Fourier modes of [12, 6, 3] for each scale, and UNO-modes-16 with
[16, 8, 4] for each scale.

Training protocol. We trained and tested the baseline U-Net, FNO, and UNO models using the 20
datasets described in Section 3 and summarized in Table 1 and Table 3 in the appendix. For all datasets, we
trained all models for 50 epochs using the AdamW optimizer (Loshchilov & Hutter, 2019). The learning rates
were initially set to 1e-3 and then annealed to 1e-5 using the cosine annealing (Loshchilov & Hutter, 2017).
We employed the relative L2 loss for training and evaluation in all our problems, following the approach
in Li et al. (2021); de Hoop et al. (2022b). Since all datasets were divided into training, validation, and
test splits, we monitored the model’s generalization performance on the validation split during training. We
selected the model that performed the best on the validation split for the evaluation of the test split. All
experiments were conducted on an 11 GB NVIDIA GeForce RTX 2080 Ti GPU.

In the following sections, we present empirical results on a subset of WaveBench datasets. Additional
visualizations and complete qualitative results are provided in Appendix A. Due to space limitations, we
present results for PDE surrogates of FNOs and U-Nets here in the main text; UNO variant outcomes are
in the appendix. In most experiments, UNOs outperform some U-Nets but not the best FNOs.

4.2 Performance of baseline models on time-harmonic datasets

In-distribution performance. Figure 5 illustrates the performances of models applied to the time-
harmonic dataset with isotropic GRF wavespeeds and frequency 40 Hz. All models are trained using the
training split of the dataset; the figure presents results based on a sample from the test split. All PDE
surrogates produce visually comparable predictions. However, the error fields (the third row of Figure 5)
show that two FNO variants produce smaller errors in comparison to U-Nets.

Numerical values of the errors are provided in Table 4 in the Appendix B.

Out-of-distribution (OOD) performance. While FNOs and U-Nets produce both visually and nu-
merically appealing results for in-distribution samples, their out-of-distribution (OOD) test results clearly
indicate room for further improvements (Figure 6). In this experiment, we trained models on a time-harmonic
dataset with isotropic GRF wavespeed and evaluated them on the anisotropic version of the dataset. This
setup presents a greater challenge, as models that can successfully solve it presumably must capture a greater
extent of the physics of wave propagation. The results demonstrate that PDE surrogates generally perform
over 5 times worse in OOD tests compared to in-distribution tests in the metric of relative L2 error (Table 5
in the Appendix B).
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Wavespeed Pressure (real part)

FNO depth-4 FNO depth-8 U-Net ch-32 U-Net ch-64
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Figure 5: In-distribution test performance of models on a acoustic time-harmonic dataset. The
model is trained and tested on splits of the acoustic time-harmonic dataset with isotropic GRF wavespeed
and frequency ω/2π = 40Hz. The input wavespeed c and real part of the ground-truth pressure field are
shown in the top panels, cf. Equation (1). The middle panels show the predictions from 4 different models.
The bottom panels show the relative error |p(·, ω) − p̂(·, ω)| / ∥p(·, ω)∥L2 between the predicted pressure p̂
and the ground-truth pressure p.

4.3 Performance of baseline models on time-harmonic datasets

Recall that WaveBench contains two time-varying wave problems: reverse time continuation (RTC) and
the inverse source problem (IS). Here in the main text, we report the model performances on the more
challenging IS problem. Full results of both problems can be found in Appendix D.

Figure 7 provides a visual performances comparison of PDE surrogates on the IS dataset that uses isotropic
Gaussian Random Field (GRF) wavespeeds. Both U-Nets and Fourier neural operators yield comparable
results on in-distribution samples. U-Nets slightly exceed FNOs in performance, though the margin is narrow
(Table 7 in Appendix D). The outputs from both models are within reasonable expectations.

However, when it comes to OOD samples, both models introduce artifacts, leading to inaccuracies in re-
constructing the target. This can be seen in the third row of Figure 7. There, U-Nets generate outputs
with box-like patterns, which are derived from the training data; FNOs struggle to accurately reproduce the
smooth contour of the OOD target. It is worth noting that similar artifacts can be consistently observed
across all time-varying datasets (Appendix D).

10



Published in Transactions on Machine Learning Research (02/2024)

Wavespeed Pressure (real part)

FNO depth-4 FNO depth-8 U-Net ch-32 U-Net ch-64

Pr
ed

ic
tio

n
R

el
at

iv
e 

er
ro

r

Figure 6: OOD test performance of models on an acoustic time-harmonic dataset. Here, the
model is trained on the time-harmonic dataset with isotropic GRF wavespeed and frequency ω/2π = 40Hz,
but tested on the anisotropic version instead.

5 Discussion

This paper introduces WaveBench, a comprehensive repository of 24 benchmark datasets designed for
wave PDEs. The datasets cover a broad range of wave-related problems, including time-dependent prob-
lems derived from the wave equation and time-harmonic problems derived from the Helmholtz equation.
WaveBench serves two purposes: providing a data source for machine learning for wave problems and
providing a user-friendly PyTorch environment for training and evaluating PDE surrogate models.

After evaluating PDE surrogates on the WaveBench datasets, we have identified several recurring patterns.
Firstly, across all datasets, U-Nets and FNOs showed remarkable capabilities in approximating wave prop-
agation for in-distribution data. The larger models, such as FNO-depth-8 and U-Net-ch-64, outperformed
their smaller counterparts like FNO-depth-4 and U-Net-ch-32. This shows the potential advantages of em-
ploying high-capacity models to tackle challenging PDE problems, assuming the existence of abundant and
high-quality PDE data.

However, the performance of PDE surrogates declines significantly when moving from in-distribution to out-
of-distribution (OOD) samples. This implies that although these models learn statistical patterns from the
data, they do not capture the wave-propagation physics present in the data. Given the importance of OOD
generalization in the practical use of wave-based techniques in exploratory scientific applications like seismic
imaging and medical imaging, future PDE surrogates that have the capability to learn wave-propagation
physics from data are highly sought-after.

Limitations. While WaveBench contains a broad range of wave propagation PDE problems, we note
that all WaveBench datasets are presently simulated on 2D domains. A simulation of wave propagation
within a 3D domain could provide a more realistic and challenging setting for applying PDE surrogates. At
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Figure 7: Test performance of models on the time-varying IS dataset with isotropic GRF
wavespeed. The first row shows the input and target samples of the IS dataset; they can be either
in-distribution or OOD. The second row shows the model predictions on the in-distribution sample. The
third row shows the model predictions on the OOD sample.

the same time, preparing such a dataset is computationally much more demanding. We leave this aspect for
future work.
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WaveBench: Benchmark Datasets for
Modeling Linear Wave Propagation PDEs

Supplementary Material

A Details of the time-varying datasets

To simulate wave propagation for both Reverse Time Continuation (RTC) and Inverse Scattering (IS) prob-
lems, we use the open-source j-wave package (Stanziola et al., 2023). The j-wave package simulates the
wave dynamics in (8) by an equivalent system of first-order equations (Treeby et al., 2012; Pierce, 2019):

∂u

∂t
= − 1

b0
∇q, (momentum conservation)

∂b

∂t
= −b0∇ · u, (mass conservation)

q = c2b. (pressure-density relation)

where u = u(x, t) is called the acoustic particle velocity and b0 is ambient density. Radiating boundary
conditions are enforced with a perfectly matched layer (PML), following the default setting of j-wave
(Stanziola et al., 2023).

In our simulation, the domain is represented as a square grid, with dimensions of 1.024 km × 1.024 km
discretized into a 128 × 128 array. Recall that for the time-varying experiments, the wavespeed c can be a
realization of an isotropic GRF, anisotropic GRF, or a Gaussian lens. In the case of isotropic and anisotropic
GRF, the wavespeeds are taken from the time-harmonic datasets; in the case of the Gaussian-lens wavespeed,
the wavespeed is a point mass situated at the grid coordinates of (50, 55) blurred by a Gaussian filter with a
standard deviation 50 in both spatial directions. Across all types of wavespeeds considered in our simulations,
the minimum wavespeed is normalized to a value of 1.4 km s−1, while the maximum wavespeed is normalized
to 4 km s−1. The propagation time for both the RTC and IS simulations is set to be T = 0.2 s.

For both RTC and IS datasets, the initial pressure datasets q(·, 0) can either be thick lines or MNIST images,
represented by 128 × 128 arrays; see Figure 3 and Figure 4. The thick lines represent pressures that are
used as in-distribution samples for training and evaluating the model. They are box-like patterns of random
sizes, orientations, and locations in the domain, following the approach in Kothari et al. (2020). Each sample
contains 5 to 10 boxes, uniformly distributed. The box centroids are sampled on the discretized grid of the
domain. Dimensions of boxes are sampled from uniform distributions: length from [50, 100], width from
[20, 40], and orientation from [0, π]. The dataset consists of 9000 training samples, 500 validation samples,
and 500 test samples. Additionally, there are 500 out-of-distribution (OOD) MNIST pressure samples for
testing.

The IS problem is more challenging than RTC. This is because in IS we only get to measure the wave pressure
at the top of the domain. That is, the sensor locations S in the measurements [q(x, t)]x∈S,t∈T correspond
to the topmost coordinates of the domain (excluding the size of PML). The time steps T consist of 128
equidistant intervals within the range of [0, T ]. These settings result in the sensor record [q(x, t)]x∈S,t∈T
having a square image-like appearance as in Figure 4. To make the IS problem more tractable to solve, we
use the following way to prepare the initial pressure q(·, 0). We resize thick line and MNIST images that
with an original size 128 × 128 into the size of 64 × 64 and put them on the top center of the domain. The
remaining entries are filled with zeros. Consequently, all nonzero entries of the initial wave pressure q(·, T )
are concentrated in the top center of the domain. This configuration, with the sensors positioned at the top,
allows for better reception of propagated waves and helps mitigate the ill-posedness of the problem.
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Problem Wavespeed c Initial pressure q(·, 0)

Reverse time continuation
(RTC)

Gaussian lens Thick lines
MNIST

Isotropic GRF Thick lines
MNIST

Anisotropic GRF Thick lines
MNIST

Inverse source
(IS)

Gaussian lens Thick lines
MNIST

Isotropic GRF Thick lines
MNIST

Anisotropic GRF Thick lines
MNIST

Table 3: Summary of the 12 time-varying datasets. Each dataset corresponds to specific problem
types (reverse time continuation or inverse source), wavespeed variations (Gaussian lens, isotropic GRF, or
anisotropic GRF), and initial pressure characteristics (thick lines or MNIST). The thick line initial pressure
datasets consist of in-distribution samples: they contain 9000 training samples, 500 validation samples,
and 500 testing samples. The MNIST pressure dataset consists of out-of-distribution (OOD) samples
used exclusively for testing and comprises 500 samples.
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B Full experimental results of the acoustic time-harmonic datasets

Wavespeed c Freq. ω/2π FNO-depth-4 FNO-depth-8 U-Net-ch-32 U-Net-ch-64 UNO-modes-12 UNO-modes-16

Isotropic GRF

10 Hz 0.063 0.040 0.073 0.063 0.064 0.054
15 Hz 0.093 0.057 0.116 0.087 0.106 0.081
20 Hz 0.122 0.070 0.157 0.106 0.147 0.114
40 Hz 0.283 0.165 0.286 0.191 0.407 0.301

Anisotropic GRF

10 Hz 0.059 0.025 0.144 0.119 0.074 0.051
15 Hz 0.098 0.039 0.204 0.165 0.123 0.093
20 Hz 0.135 0.060 0.230 0.176 0.171 0.129
40 Hz 0.315 0.172 0.321 0.231 0.422 0.343

Table 4: In-distribution performance comparison of models on the test folds of the time-harmonic datasets. The error metric is the relative L2 error
∥p − p̂∥L2/ ∥p∥L2 between the ground-truth p and prediction p̂.

Wavespeed c Freq. ω/2π FNO-depth-4 FNO-depth-8 U-Net-ch-32 U-Net-ch-64 UNO-modes-12 UNO-modes-16

Isotropic GRF

10 Hz 0.485 0.379 0.527 0.506 0.489 0.458
15 Hz 0.633 0.464 0.638 0.620 0.674 0.618
20 Hz 0.758 0.533 0.751 0.717 0.770 0.747
40 Hz 1.152 0.895 0.883 0.891 0.893 0.951

Anisotropic GRF

10 Hz 0.560 0.388 0.541 0.527 0.376 0.382
15 Hz 0.771 0.518 0.671 0.656 0.498 0.483
20 Hz 0.812 0.612 0.754 0.725 0.607 0.599
40 Hz 1.018 0.887 0.905 0.898 0.803 0.950

Table 5: OOD performance comparison of models on the test folds of the time-harmonic datasets. The table layout is similar to Table 4. The
wavespeed c reported in the left column shows the OOD wavespeed used in test data; for instance, the three “Isotropic GRF” rows are based on
models trained on the corresponding Anisotropic GRF versions, and vice versa.
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Figure 8: In-distribution test performance of models on an acoustic time-harmonic dataset. The time-
harmonic dataset is configured with isotropic GRF wavespeed and frequency ω/2π = 10Hz. The figure
layout is same as Figure 5 in the main text.

C Full experimental results of the elastic time-harmonic datasets

Freq. ω/2π FNO-depth-4 FNO-depth-8 U-Net-ch-32 U-Net-ch-64 UNO-modes-12 UNO-modes-16
10 Hz 0.080 0.039 0.154 0.141 0.103 0.076
15 Hz 0.130 0.072 0.229 0.217 0.205 0.127
20 Hz 0.225 0.124 0.267 0.225 0.264 0.204
40 Hz 0.504 0.365 0.497 0.470 0.534 0.490

Table 6: In-distribution performance comparison of models on the test folds of the elastic time-harmonic
datasets. Wavespeeds are anisotropic GRFs for all frequencies. The error metric is the relative L2 error
∥u − û∥L2/ ∥u∥L2 between the ground-truth u and prediction û.
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Figure 9: In-distribution test performance of models on a acoustic time-harmonic dataset. The time-
harmonic dataset is configured with with isotropic GRF wavespeed and frequency ω/2π = 15Hz. The figure
layout is same as Figure 5 in the main text.
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Figure 10: In-distribution test performance of models on a acoustic time-harmonic dataset. The time-
harmonic dataset is configured with isotropic GRF wavespeed and frequency ω/2π = 20Hz. The figure
layout is same as Figure 5 in the main text.
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Figure 11: In-distribution test performance of models on a acoustic time-harmonic dataset. The time-
harmonic dataset is configured with anisotropic GRF wavespeed and frequency ω/2π = 10Hz. The figure
layout is same as Figure 5 in the main text.
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Figure 12: In-distribution test performance of models on a acoustic time-harmonic dataset. The time-
harmonic dataset is configured with anisotropic GRF wavespeed and frequency ω/2π = 15Hz. The figure
layout is same as Figure 5 in the main text.
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Figure 13: In-distribution test performance of models on a acoustic time-harmonic dataset. The time-
harmonic dataset is configured with anisotropic GRF wavespeed and frequency ω/2π = 20Hz. The figure
layout is same as Figure 5 in the main text.
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Figure 14: In-distribution test performance of models on a acoustic time-harmonic dataset. The time-
harmonic dataset is configured with anisotropic GRF wavespeed and frequency ω/2π = 40Hz. The figure
layout is same as Figure 5 in the main text.
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Figure 15: OOD test performance of models on a time-harmonic dataset. The model is trained on the time-
harmonic dataset with isotropic GRF wavespeed and frequency ω/2π = 10Hz, but tested on the anisotropic
version instead. The figure layout follows from Figure 6 in the main text.

26



Published in Transactions on Machine Learning Research (02/2024)

Wavespeed Pressure (real part)

FNO depth-4 FNO depth-8 U-Net ch-32 U-Net ch-64

Pr
ed

ic
tio

n
R

el
at

iv
e 

er
ro

r

Figure 16: OOD test performance of models on a time-harmonic dataset. The model is trained on the time-
harmonic dataset with isotropic GRF wavespeed and frequency ω/2π = 15Hz, but tested on the anisotropic
version instead. The figure layout follows from Figure 6 in the main text.
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Figure 17: OOD test performance of models on a time-harmonic dataset. The model is trained on the time-
harmonic dataset with isotropic GRF wavespeed and frequency ω/2π = 20Hz, but tested on the anisotropic
version instead. The figure layout follows from Figure 6 in the main text.

28



Published in Transactions on Machine Learning Research (02/2024)

Wavespeed Pressure (real part)

FNO depth-4 FNO depth-8 U-Net ch-32 U-Net ch-64

Pr
ed

ic
tio

n
R

el
at

iv
e 

er
ro

r

Figure 18: OOD test performance of models on a time-harmonic dataset. The model is trained on the time-
harmonic dataset with isotropic GRF wavespeed and frequency ω/2π = 10Hz, but tested on the anisotropic
version instead. The figure layout follows from Figure 6 in the main text.
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Figure 19: OOD test performance of models on a time-harmonic dataset. The model is trained on the time-
harmonic dataset with anisotropic GRF wavespeed and frequency ω/2π = 15Hz, but tested on the isotropic
version instead. The figure layout follows from Figure 6 in the main text.
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Figure 20: OOD test performance of models on a time-harmonic dataset. The model is trained on the time-
harmonic dataset with anisotropic GRF wavespeed and frequency ω/2π = 20Hz, but tested on the isotropic
version instead. The figure layout follows from Figure 6 in the main text.
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Figure 21: OOD test performance of models on a time-harmonic dataset. The model is trained on the time-
harmonic dataset with anisotropic GRF wavespeed and frequency ω/2π = 40Hz, but tested on the isotropic
version instead. The figure layout follows from Figure 6 in the main text.
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Figure 22: In-distribution test performance of models on an elastic time-harmonic dataset. The time-
harmonic dataset is configured with anisotropic GRF wavespeed and frequency ω/2π = 10Hz.
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Figure 23: In-distribution test performance of models on an elastic time-harmonic dataset. The time-
harmonic dataset is configured with anisotropic GRF wavespeed and frequency ω/2π = 15Hz.
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Figure 24: In-distribution test performance of models on an elastic time-harmonic dataset. The time-
harmonic dataset is configured with anisotropic GRF wavespeed and frequency ω/2π = 20Hz.
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Figure 25: In-distribution test performance of models on an elastic time-harmonic dataset. The time-
harmonic dataset is configured with anisotropic GRF wavespeed and frequency ω/2π = 40Hz.
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D Full experimental results of the time-varying datasets

Problem Wavespeed Init. press. FNO-depth-4 FNO-depth-8 U-Net-ch-32 U-Net-ch-64 UNO-modes-12 UNO-modes-16

RTC

Gaussian lens Thick lines 0.421 0.381 0.393 0.371 0.466 0.433
MNIST 0.461 0.410 0.525 0.520 0.478 0.434

Iso. GRF Thick lines 0.365 0.329 0.451 0.430 0.411 0.378
MNIST 0.342 0.349 0.535 0.517 0.337 0.329

Aniso. GRF Thick lines 0.348 0.308 0.432 0.414 0.395 0.362
MNIST 0.378 0.377 0.469 0.491 0.364 0.362

IS

Gaussian lens Thick lines 0.550 0.500 0.446 0.443 0.551 0.545
MNIST 0.695 0.686 0.629 0.627 0.652 0.667

Iso. GRF Thick lines 0.436 0.380 0.383 0.356 0.462 0.441
MNIST 0.489 0.479 0.511 0.511 0.463 0.465

Aniso. GRF Thick lines 0.415 0.351 0.359 0.327 0.436 0.419
MNIST 0.471 0.449 0.537 0.514 0.413 0.414

Table 7: Performance comparison of models on the test folds of the time-varying datasets. The error metric is the relative L2 error
∥p − p̂∥L2/ ∥p∥L2 between the ground-truth p and prediction p̂.37
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Figure 26: Test performance of models on the time-varying RTC dataset with isotropic GRF wavespeed.
The first row shows the input and target samples of the RTC dataset; they can be either in-distribution or
OOD. The second row shows the model predictions on the in-distribution sample. The second row shows
the model predictions on the OOD sample.

E Case study: Gradually challenging the OOD generalization

We have seen the limitation of PDE surrogates on OOD samples. We note that the comparison “in-
distribution vs OOD” is a simplified, binary notion, as it implies that a sample is either within a distribution
or outside of it. More fine-grained OOD notions are helpful, as intuitively the performance of models on a
sample may depend on the degree to which that sample differs from those in the training distribution.

In this section, we present a case study where we vary wavespeeds from near in-distribution samples (“less
OOD”) to distant ones (“more OOD”). See Figure 31 for visualization. We employ neural style transfer
(NST) (Gatys et al., 2016) to create ‘0’ digits of different OOD levels. These images are then used as
wavespeeds in time-varying problems.

Recall that the NST algorithm separates and recombines the content and the style of images. Our content
of interest is a ‘0’ digit and the style of interest box-like strokes. The style and content of an image are
balanced by a content weighting factor; see Gatys et al. (2016) for details. By adjusting the content weighting
factor (referred to as OOD weight in Figure 31) from small to large, we generate images that resemble in-
distribution thick lines (left panels of Figure 31(A)) and OOD MNIST (right panels of Figure 31(A)). We
use the open-source NST implementation1 for data generation.

Using different OOD degrees for wavespeed samples, we assess various PDE surrogates on RTC and IS tasks.
Figure 31(B) displays the numerical results. As anticipated, higher OOD degrees’ wavespeeds are harder to
recover, giving higher relative errors.

1https://github.com/crowsonkb/style-transfer-pytorch
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Figure 27: Test performance of models on the time-varying RTC dataset with Gaussian lens wavespeed.
The figure layout is the same as Figure 26.
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Figure 28: Test performance of models on the time-varying RTC dataset with anisotropic GRF wavespeed.
The figure layout is the same as Figure 26.
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Figure 29: Test performance of models on the time-varying IS dataset with Gaussian lens wavespeed. The
figure layout is the same as Figure 7.
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Figure 30: Test performance of models on the time-varying IS dataset with anisotropic GRF wavespeed.
The figure layout is the same as Figure 7.
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Figure 31: Case study: Model performance and OOD degree. Panel (A): Samples from neural style transfer,
with content factor weights as 20 OOD weights ranging from 0.001 to 0.2. Panel (B): Models’ performance
on diverse wavespeed samples. More OOD wavespeed (closer to MNIST than thick lines) results in higher
errors.
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