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ABSTRACT 

 

Rayleigh-Levy flights have played a significant role in cosmology as simplified models for understanding how matter distributes itself 
under gravitational influence. These models also exhibit numerous remarkable properties that enable predictions of a wide range of 
characteristics. Here, we derive the one- and two-point statistics for extreme points within Rayleigh-Levy flights, spanning one to 
three dimensions (1D–3D) and stemming directly from fundamental principles. In the context of the mean field limit, we provide 
straightforward closed-form expressions for Euler counts and their correlations, particularly in relation to their clustering behaviour 
over long distances. Additionally, quadratures allow for the computation of extreme value number densities. A comparison between 
theoretical predictions in 1D and Monte Carlo measurements shows remarkable agreement. Given the widespread use of Rayleigh- 

Levy processes, these comprehensive findings offer significant promise not only in astrophysics, but also in broader applications 
beyond the field. 
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1. Introduction 

The geometry and structure of cosmic fields form a complex 
physical system that develops from homogeneity through the 
interplay of expansion and long-range forces. Its statistical prop- 
erties should emulate those of such a class of systems. From 
the perspective of observational cosmology, its evolution mirrors 
both the history of the universe’s expansion rate and the dynamic 
growth of embedded substructures (see e.g. Bardeen et al. 1986; 
Bernardeau et al. 2002, for an account of the emergence of 
structure due to gravitational instability). While the small-scale 
(galaxy-sized) structures are determined by the interaction of 

gravitational effects and complex baryonic physics, the large- 
scale structure is shaped solely by the development of the gravi- 
tational instabilities. 

The most standard approach to describe the outcome of 
this evolution is to consider the matter correlation functions or 
(equivalently in Fourier space) the spectra (e.g. Peebles & Groth 
1975; Fry 1985; Bernardeau 1994; Scoccimarro et al. 1998; 
Cappi et al. 2015). Those quantities capture however only par- 
tially the outcome of the gravitational processes. In particu- 
lar gravitational instabilities leads to the formation of large 
scale structures, such as self-gravitating massive halos embed- 
ded in an intricate cosmic web made of voids, walls and fil- 
aments that are woven together under the influence of gravity 
(Bond et al. 1996). Inspired by such emerging features, a related 
alternative to quantify the properties of the field is to explore 
the topology of the excursion of the cosmic web. It can 
be done both in real space (e.g. Matsubara 1994; Gay et al. 
2012) and redshift space (e.g. Matsubara 1996; Codis et al. 
2013), using tools such as the void probability function (VPD, 
e.g. White 1979; Sheth & van de Weygaert 2004), the Euler- 
Poincaré characteristic (e.g. Gott et al. 1986; Park & Gott 1991; 
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Appleby et al. 2018), or (more generally) Minkowski function- 
als (e.g. Mecke et al. 1994; Schmalzing & Buchert 1997), per- 
sistent homology (e.g. Sousbie et al. 2011; Pranav et al. 2017), 
and Betti numbers (e.g. Park et al. 2013; Feldbrugge et al. 2019). 
Given the duality established by Morse-Smale theory (Forman 
2002) between the geometry or topology of excursion, and the 
loci of null gradients of the underlying density field, a sum- 
mary statistics is given by the point process of these criti- 
cal points (e.g. Bardeen et al. 1986; Bond et al. 1996; Gay et al. 
2012; Cadiou et al. 2020). For instance, there has recently been 
some interest in also using the clustering of such points as cos- 
mological probes (Baldauf et al. 2021; Shim et al. 2021), for 

instance, extracted from Lyman-α tomography (Kraljic et al. 
2022). Unfortunately, the theory for capturing their statistics has 
been limited to the quasi Gaussian limit (e.g. Pogosyan et al. 
2009), or slightly beyond (Bernardeau et al. 2015), while rely- 
ing on the large deviation principle. This puts limitation on its 
realm of application to larger scales only (or involves relying on 
calibration over N-body simulations). 

A notable cosmologically relevant counterexample is pro- 
vided by Rayleigh-Levy flights1 (Mandelbrot 1975; Peebles 
1980; Szapudi & Colombi 1996; Zimbardo & Perri 2013; 
Uchaikin 2019), which are simply defined as a Markov 
chain point process whose jump probability depends on some 
power law of the length of the jump alone. In 3D, it acts 
as a coarse proxy to describing the motion of dark halos 
(Sefusatti & Scoccimarro 2005; Trotta & Zimbardo 2015), but 
its definition can be extended to arbitrary dimensions. Rayleigh- 
Levy flights were first introduced in astrophysics by Holtsmark 
(1919) in the context of fluctuations in gravitational sys- 
tems (Litovchenko 2021). They include some degree of con- 
nection to first-passage theory (Metzler 2019), underlying 
Press Schechter theory for halo formation (Press & Schechter 

 
 

1  See Klages et al. (2008) for a fairly recent review. 
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1974), and subsequent mass accretion (Musso et al. 2018). 
Rayleigh-Levy flights have also attracted lots of attention 
beyond cosmology, (from anomalous cosmic rays diffusion 
Wilk & Włodarczyk 1999; Boldyrev & Gwinn 2003, to ISM 
scintillation) or indeed beyond astronomy (from turbulence, 
Shlesinger et al. 1987; Sotolongo-Costa et al. 2000, to earth- 
quakes), and even biology (e.g. Reynolds 2018) or risk 
management (e.g. Bouchaud & Potters 2003), as they cap- 
tures anomalous diffusion (see e.g. Bouchaud & Georges 1990; 
Dubkov et al. 2008, and references therein). 

Levy flights also provide an appealing playground with gen- 
uine scale-independent developed non-Gaussianities (that can- 
not be mimicked by a mere local nonlinear transformation 
of the fields), whose amplitudes resemble what is generally 
expected in gravitational density fields. These remarks would 
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be of limited interest however if we had no way of exploring 
the statistical properties of such fields. Building on the early 
results of Peebles (1980) and of Bernardeau & Schaeffer (1999), 
Bernardeau (2022) derived a large corpus of properties of such 
fields. They were concerned to a large extend on the joint density 
probability distribution function (PDFs) at large separations. 

In this paper, we focus on the local behaviour of the field, try- 
ing to first grasp the expected behaviour of the local density and 
its derivatives, so as to identify critical points in such a density 
field. The starting point of those investigations is based on the 
derivation of the cumulant generating function (CGF) in multi- 
ple cells. This allows us to predict their one and two point statis- 
tics to arbitrary order in the variance of the field. For clarity, the 
main text focuses on results, while all the derivations are given 
in the appendices. 

Fig. 1. Two-point correlation function for the 1D Rayleigh-Levy flights 
(before smoothing). The predictions are for 40 = 1. The solid lines are 

the exact shapes derived from Eq. (4) exhibiting a clear exclusion zone 
for r < 40. The dashed is the large scale asymptotic form. it can be 
observed that the exact solution converges very rapidly to the asymp- 
totic form. 

 
We then consider its Fourier transform, ψ(k) as: 

ψ(k) = 

∫ 

dD r f1(r) e−ik·r, (3) 

The two-point correlation functions for Rayleigh-Levy flights 
between positions r1 and r2 is then given by 

Section 2 recalls the main relevant properties of Rayleigh- 

 

(r   r ) 1 
∫ 

dD k eik·(r −r ) 2  (4) 

flights in 1D, 2D, and 3D. Section 4 compute their clustering. 
Comparisons to Monte Carlo simulations are provided through- 
out for validation for the 1D flights. The companion paper will 
provide them for 2 and 3D flights. Section 5 presents our con- 
clusions. 

 

2. Rayleigh-Levy flight model 

The random model, as introduced first in a cosmological context 
by J. Peebles (Peebles 1980), is defined as a Markov random 
walk where the PDF of the step length, 4, follows a cumulative 
distribution function given by: 

P(> 40) = 1, (1a) 
  
40 

!α 

where n is the number density of points in the sample. When 
kl0 1, then 1 ψ(k) (40k)α, the large distance correlation 
function behaves as: 

ξ(r1, r2) ∼ rα−D40
−α/n. (5) 

The expected behaviour of the large-distance correlation func- 
tion is shown on Fig. 1 below, which clearly shows that this form 
is valid as soon as r 40. 

We note that the numerical system is driven by two parame- 
ters, 40 and n, with ξ0 1/(n4α). In practice one wants to make 
sure that the filtering scale is significantly larger than both 40 
and 4n 1/n1/D and that the survey size, 4 , is much larger than 
the filtering scale. When measuring the correlation properties of 
critical points, we also want to make sure that 4 is much larger 
than the scales at which the correlation functions are measured. 

P(> 4) = 
4 

, for 4 > 40, (1b) It is always possible to meet these requirements, and reach any 
amplitude of ξ, provided there is access to enough resources to 

where 40 is a small-scale regularisation parameter. The random 
walks are dominated by rare, large events rather than the accu- 
mulation of many steps. 

build Rayleigh-Levy flights with large number of points. 
In practice, in the 1D numerical simulations we exploited, 

we have the following: 
Calling f1(r) density of the subsequent point (the first    

descendant of a given point at position r0) at position r, we have: α = 0.5 
n = 3 / pixel 

 
 

∫ ∞ 

f1(r) U 

 
sph (D) D rD−1dr = P(> 4), 

40 = 0.02 pixel 
rG = 2 pixel 

 
 

4 4 = 105 pixel size 
 

where Usph(D) is the volume of a D-dimensional sphere of unit 

radius, Usph(D) = πD/2/Γ(D/2 − 1). For |r − r0| > 40, it leads to 

Nrealisations = 200 

providing very accurate determination of all one-point quanti- 
αΓ(D/2 + 1) 4α 

ties (density and critical points, etc.) and good estimates of their 
f1(r) = 0 , in D-dimensional space. (2) correlation, as shown below. 

DπD/2 |r − r0|D+α 

Levy flights. Section 3 presents the number count of extrema of 
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A key property of Rayleigh-Levy flights involves the struc- 
ture of the higher order correlation functions. In such a model, 
not only are they known but they also display the type of 
behaviour that is generally expected in the context of cosmolog- 
ical models. We know from theory in the perturbative regime 
(Bernardeau et al. 2002), and to a large extend from observa- 
tions (Yu & Hou 2022), that the p-order matter correlation func- 
tions scale like the power p 1 of the two-point function. This 
assumption and its consequences are addressed in more details 
in Appendices A–C. 

Conversely, from a theoretical perspective, the Rayleigh- 
Levy flights model falls within the class of models whose p-point 
correlation functions follow the so-called hierarchical Ansatz 
(Fry 1984), so that they can be expressed as a sum of products 
of two-point correlations: 

ξp(r1, . . . , rp) =  
X 

Qp(t)  
. 

ξ(ri, r j). (6) 
 

  
This process actually embodies a more specific class of models, 
which correspond to cases where the Qp(t) values depend only 
on the vertex composition of the tree, that is, 

Qp(t) = νq, (7) 

vertices∈t 

where the vertices values, νq, are numbers associated with each 
vertex and depend only on their connectivity, q being the num- 
ber of lines a given vertex is connected to (see Appendix B and 
Bernardeau & Schaeffer 1999). In the case of the flight models 

we consider here, we have only two non-zero vertices, ν1 and 

ν2, so that the trees we have to consider are, in fact, simply con- 
nected lines. 

In general, the corresponding cumulant generating function 
of the underlying density field in cells of arbitrary profile given 

Formally, τ(x) is actually the rooted-Cumulant Generating Func- 
tion (the generating function of cumulants that originate from 
location x) and is denoted r-CGF hereafter. It will play an impor- 
tant role throughout this paper. The expression in Eq. (10) is 
the direct transcription of the tree model described by Eq. (7). 
It is the result of combinatoric computations, and does not rely 
on any approximation2. The practical implementation of Eq. (9) 
relies on some approximations, such as the mean field assump- 
tion, in which the r-CGF is assumed to remain constant within 
each cell (as detailed in Appendix B). This proves to be highly 
accurate for compact, non-compensated, spherically symmetric 

density profiles. Assuming it holds, we denote τi as the value of 
the r-CGF for each cell, i. We can then average Eq. (10) over 

the cell, i, with the profile i(x), which leads to the following 
system 

τi = 
X 

λ j
 
1 + τ j/2

  
∫ 

dx 

∫ 

dxJ Wi(x) W j(xJ) ξ(x, xJ). (11) 
 

 

This becomes a set of n equations coupling the different values 
of τi. As can be seen here, in case of the present minimal tree 
model, this system is linear in τi. It can therefore be explicitly 
inverted3. 

For the one-point cumulant generating function, Eq. (11) cor- 
responds to the implicit equation: 

τ1 = λ1ξ0 (1 − τ1/2) , (12) 

where ξ0 is the average two-point correlation function within one 
cell: 

ξ0 = 

∫  

dx dxJ W1(x) W1(xJ) ξ(x, xJ). (13) 

The resulting CGF can easily be computed (See Appendix C): 

by Wi(x) can be written as: 2λρ ϕ (λ ; ξ ) = . (14) 
p1 

p1 pn 1   1 n c 

1  ρ   0 
 

 

2 − ξ0λρ 
1 

p1,...,pn 

n p1! Despite its apparent simplicity, this expression fully captures the 
whole cumulant hierarchy that we would expect for the density 

We note that in the Gaussian limit, this expression is restricted 
to terms with p1 + + pn = 2. We also note that, in gen- 
eral, the full complexity of this expression is hard to exploit and 
can only be done in a perturbative sense, exploring, for instance, 
the consequences of terms at cubic order. This complexity is at 

PDF. Furthermore, it turns out that the inverse Laplace transform 
of such an expression can be explicitly derived, see Bernardeau 
(2022) and Appendix C, and leads to the closed form expression 
of the density PDF: 

the heart of the Edgeworth expansion (Kendall & Stuart 1977; 

 
P( ) 

∫ +i∞ dλρ 
exp 

     

 

(   )
 

(15) 

A remarkable property of the tree models in general, and of 

 
 

  

−2/ξ 

  

4 2(ρ+1) 

     
 

 4ρ  
 

tions that appear in this expression (over p , . . . , p ), can be done 
= δ ρ 

ξ2 

0 1  

ξ2 
 

explicitly. This is clearly an appealing feature of these models, 
as it allows for an exploration of their properties in a regime that The first (singular) term in Eq. (16) reflects the contribution to 

empty regions. The last terms involves the regularised confluent 
can be arbitrarily far from the Gaussian case. This is the motiva- 
tion for this study. hypergeometric function, 0 F̃1(a; z), given by x 

1−
2

a 
Ia−1

 

2 
    
x . We 

The details of the derivation of the resulting form for the 
CGF, ϕ(λ1, . . . , λn), is given in Appendix B, which shows that: 

note that this model indeed predicts region that are empty even 
for an arbitrarily large number of points4. More specifically, the 

( ) 
X

 
 

 

∫ 

dx W (x) (1 
 

(x) 2) 

 
(9) 

 
 

2   Yet, it is probably inaccurate to assume that flights with a finite num- 

 

where τ(x) is the λi-dependent implicit solution of the consis- 
tency equation 

3  For more general tree models, the system is fully nonlinear and the 
inversion is done numerically. 
4  For a growing number of points at fixed l0, the variance is decreasing 

) 
X ∫ 

dx (x )  (x x ) 
.
1 (x ) 2

 
(10) 

 

 j 

ber of points are equivalent to Poisson realisations drawn from a con- 

tinuous field whose correlations are computed in the continuous limit. j 

0 

ξ0 e ) + ( d 
0 e 

n 1 

the Levy flight model in particular, is that the discrete summa- 

−i∞ 
Sellentin et al. 2017). 

j lines∈t t∈trees 

= 
2πi 

2; . (16) 

λ j + τ , 
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and the VPDF will eventually vanish. If however the number 
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 of points increases while nlα is fixed, ensuring ξ0 is fixed, the VPDF 

remains finite. 
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Fig. 2. Example of a 2D density field derived from a 2D levy flight. 
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Fig. 3. Comparisons of measured density PDF from a set of 1D 
Rayleigh-Levy flights whose characteristics are given in the text, grey 
points, compared to different levels of theoretical predictions. The blue 
dotted line is the mean field approximation. The other lines correspond 
to different level of approximation, up to sixth order in an expansion in 
Hermite Polynomials. 

 

density of critical points at a density, ρ, is then expressed as: 

Parameters of the flight are α = 1., 40 = 0.012 pixel size with ten points 
2 ∫ . . . . . 

els. The initial discrete (point) field has been convolved with a Gaussian 
window function of width of 2 (in pixel size) in each direction. The 
resulting variance as measured in the sample is 1.56. On the plot, the 
contour lines are log-spaced, from density of about 0.2–7. The deep 
blue regions correspond to empty regions. 

 

void probability function (VPDF) is non-zero, even in the con- 
tinuous limit, and is given by 

i j 

 

where Sgn ρ,i j is either 0, 1 or −1, depending on the sign of 

the eigenvalues of the matrix, ρ,i j, to reflect the nature of the 
critical points considered. Hence, the computation of extrema 
densities requires the joint cumulant generating function of vari- 
ables dual to the local density, its first and second order deriva- 
tives. Appendix D shows that it is indeed possible to derive such 

P0 = e−2/ξ0 . (17) 

This feature can be appreciated on Fig. 2, where we can see 
empty regions that cover a large fraction of the sample. The 
VPDF can only be non-zero for a compact support filter, which 
not formally holds for a Gaussian filter. Yet the mean field result  
seems to accurately predict the VPDF for a top-hat filter. For a 
Gaussian filter, the behaviour of the density PDF in the low den- 
sity regime is correct when corrections to the mean field solu- 
tions are included. 

We note that for the mean-field solution, the dependence 
on the spatial dimension, the value of α and the filter shape is 
entirely contained in the value of ξ0. This is not the case for 
derivations of the density PDF beyond the mean-field solution, 

a joint CGF in the mean field limit. In short, the calculation is 
based on writing the mean field solution for a finite number of 
cells assumed to be infinitely close to one another; the deriva- 
tives are then obtained via finite differences. 

Once the cumulant generating function for the field and its 
derivatives is known, the relevant conditional expectations are 
computed to predict the extrema and critical number counts and 
their clustering properties. We present below the results for the 
Euler and critical points in 1D–3D. As Eq. (18) involves up to 
the second derivative of the field, in principle, we should com- 
pute the joint PDF of the field and its derivative up to that order. 
In practice, For 1D Euler number counts, Appendix D shows 
explicitly that thanks to the stationarity of the field, only the first 
derivative is necessary, and we can write: 

which are expected to depend on the details of the model and fil-  Euler ∂ 
∫ 0 

tering schemes. Numerical investigations beyond the mean field 
show nonetheless that the high density tail of Eq. (16) is very 
robust. This is illustrated on Fig. 3, which displays the mean- 

n1D   (ρ) = 
∂ρ

 ρ,xdρ,xP(ρ, ρ,x). (19) 
−∞ 

field solution and its corrections in terms of Hermite polyno- 
mials (up to sixth order in the expression of the r-CGF, see 
Appendix C) and compares it to numerical results. 

Overall, and after a significant amount of algebra, we derive in 
Appendix D the closed form Euler counts in ND: 

1    2ξ1  
N/2

 

  

2(ρ+1) 

 

From a given realisation of the flight, a convolution by, for 

 
× P 

(ξ , ρ) F  ̃
1; 

4ρ  + Q 
(ξ , ρ) F  ̃

2; 
4ρ 

 , 
instance, a Gaussian filter allows us to define a smooth field, 

ρ, whose critical point can be studied statistically. The number 

ξ0    

0 3. Critical point number counts 

Mean field 
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P
(ρ
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o
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s
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/2
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n
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ξ
 0
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ND 

per pixel. The sample has periodic boundary conditions with 200 pix- 
ncrit.(ρ) = , (18) 

nEuler(ρ) = e 

N−1 1 N 
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Fig. 4. Mean field predictions for extrema counts and comparison with 1D numerical Levy flight for two different indices as labelled. See text for 
details on the measurements. We note the Euler number density is negative on the low density branch as the number density of minima exceeds 
the number density of maxima. The agreement between theory and measurements is remarkable. 

 

where Pm and Qm are polynomials of order m in ρ and ξ1 is 
defined in Eq. (D.1). Specifically we find in Appendix D that 

P0 = 2ξ0,   P1 =−ξ0(ξ0 + 8ρ)/2, (21a) 
 

P2 = 16ξ0ρ(3ρ + 1)+3ξ3 /8, (21b) 

Q1 =−(ξ0 + 4ρ), Q2 = (2ξ0ρ + ξ2 + 8ρ(ρ + 1))/2, (21c) 

Q3 =−
 

6ξ2ρ + 16ξ0ρ + 3ξ3 + 32ρ2(ρ + 3)
 
/8. (21d) 
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Here, ξD     40

−αrα−D where the pre-factor defining ξ0 is a function 
of α only, given by Eqs. (A.5a)–(A.5c) for 1D–3D. 

The simplicity of Eq. (20) is quite remarkable. We note, in 
particular, that for D = 2 to 3, nEuler(ρ) also does not involve ξ2 
(see the discussion below and Appendix D). 

We could speculate that relations, such as Eqs. (21)a–d, 
hold in higher dimensions, involving polynomials, Pi and Qi 
of increasing order, so that Eq. (20) mirrors the hierarchy for 
Gaussian random field Euler counts (involving Hermite polyno- 
mials, Adler & Taylor 2009), which follow from their cumulant 
generating functions given in Appendix F. 

It is of interest to be able to distinguish between the num- 
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Fig. 5. Mean field prediction for extrema counts for 2D fields. The plots 
are for ξ0 = 1 and γ = 0.45. 

 
leads to the same leading behaviour for the number density of 
maxima and minima given by: 

 1 
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double) numerical integration path in the complex plane as: which, as expected, scales like the inverse of typical distance 
between extrema, (ξ /ξ )1/2. The next to leading order is inde- 
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12πλγ n±

1D(ρ)dρ =  
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P(ρ)dρ ± 
2 

nEuler(ρ)dρ + . . . , (24) 
n2D(ρ) = 2πi 

2π (λ2 + λ2)5/2   
χ2D(ρ; λκ, λγ) , 

−i∞±s 0 γ κ where the dots represents subsequent terms in a γ expansion. 

where χ1D(ρ; λxx) and χ2D(ρ; λκ, λγ) are given by Eqs. (D.31) 
and (D.45) respectively, while s is a negative real constant for 
maxima and a positive real constant for minima. The 2D saddle 

Euler 
2D 

To gain a bit of insight into these quantitie√s, we consider the 

Here nEuler is less sensitive to small scale high frequency fea- 
tures – or noise – compared to extrema number density. This is 
also the case for Gaussian field and for the Rayleigh-Levy flights 
in any dimension. Although we cannot demonstrate it, we spec- 
ulate that this is true for all hierarchical models in which the 
high-order correlation function behave like products of the two- 

expression of n±
1D(ρ) as a function of γ = ξ1/   ξ2ξ0 in the limit5 point correlations. Figures 4 and 5 present the corresponding 

γ → 0. The integrand in this case is greatly simplified and it 

5 Given that 0 < γ < 1 is the ratio of the distance between zero cross- 
ing and extrema, it is always possible to add arbitrary large amount of 
small scale fluctuations, which corresponds to this limit. 

number counts in 1D and 2D, respectively. In Fig. 4, in partic- 
ular, we present a detailed comparison of the extrema, minima 
and Euler number densities as a function of the local density. We 
take advantage of the fact that we could rely on large number 

that 2πi λ2 −i∞±s 

ξ1 
ber counts of maxima and minima separately. It turns out that 
the extrema counts can also be computed via specific (simple or 
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n1D(ρ) = χ1D(ρ; λxx), (22) 
γ, and corresponds to the Euler number density so 
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of realisations making the measurements of the critical points 
rather precise (numerical error bars due to the finite number of 
realisations are here negligible). For the 1D case, it is also rather 
simple to determine the position and type of critical points: they 
are obtained at locations where the local gradients (obtained after  
convolution on grid points shifted by 1/2 pixel) change sign from 

where τ1 is the r-CGF introduced in Eq. (10). The computation 
of the inverse Laplace transform of such a join CGF can be for- 

mally done at leading order in ξ(r1, r2) and has the functional 
form given by Eq. (25). More specifically, equation (15) is to be 
extended to 

one pixel to the next. The type of critical point is simply given 

 

b( )P( ) 
∫ +i∞ dλρ

 
 

 

(  ) exp 
 
 (   )

 
(27) 

cal predictions capture in exquisite details the measured densi- 
ties of critical points. The only significant departure between the 
theoretical predictions and the numerical results is for the low 
density regime (ρ < 1), for the maxima number densities and 

for the bias function. For the Rayleigh-Levy flights model, 
the large scale density bias function can be derived explicitly 
(Bernardeau 2022) and it is expressed as: 

to a less extent the minima number densities. These discrepan- 
cies are thought to be related to the breaking of the mean field 
approximation in the low density regime, as shown on Fig. 3 for 
the density PDF. All these conclusions are found to be valid irre- 

˜ 4ρ 
ξ2 

b(ρ) =
 0       

− 

2 
0 

2 
. (28) 

ξ0 

spective of the details of the simulations (this is illustrated with 
a change of the value of α in the Rayleigh-Levy flights). 

For a high density, its limiting behaviour is: 
blarge(ρ) = 

1 
+

 2   √
ρ − 1 , (29) 

 

4. Clustering of critical points 

One of the strength of analytical investigations of tree- 
hierarchical models is that the same re-summation techniques 
can be used to also infer the large distance correlation functions 
of the objects for which we can compute the number density. 

These calculations were pioneered in Bernardeau & Schaeffer 
(1999) for tree hierarchical models, applied also to the per- 
turbation theory calculations in Bernardeau (1996), and more 
recently in Codis et al. (2016), Uhlemann et al. (2017), Munshi 
(2018), Repp & Szapudi (2021). A general thorough presenta- 
tion of large-scale biasing is also to be found in the review paper 
by Desjacques et al. (2018). 

The properties of large scale biasing were more specifically 
investigated in Bernardeau (2022) for the Rayleigh-Levy model, 
which focused on the consequences of this functional form for 
the covariance properties of density PDF measurements. These 
models share the same properties: the joint density PDF at large 
separation are expected to obey the following functional form 

P(ρ1, ρ2) = P(ρ1)P(ρ2) 1 + ξ(r1, r2)b(ρ1)b(ρ2) , (25) 

where the densities ρ1 and ρ2 are taken at position r1 and r2 
respectively. At this order, the dependence in the densities ρ1 and 
ρ2 factorises, making it possible to define a density bias function. 
In this paper, we present how such a relation can be extended to 
the number counts of critical points and derive the corresponding 
bias functions. 

In Eq. (25) the bias function can be seen as the response func- 
tion of the density PDFs to a change of the global density. This 
means that although the bias function cannot be derived from the 

4     ξ0 

which corresponds to a dependence in 
√

ρ/ξ0 for high densities. 
We note that this is not a priori a generic result for hierarchical 
models and is at variance with the behaviour found in the context 
of Perturbation Theory calculations in Codis et al. (2016), where 
the bias at a high density is expected to be proportional to the 
density7. 

The objective of this section is to present the correlation 
properties of the critical points of Rayleigh-Levy flights. Cor- 
relation properties of critical points will depend in general on i) 
the type of critical points we are considering and ii) the distance 
between the points and how this distance compares to the scale 
at which these points are defined. Despite the fact that the model 
we consider is unambiguously defined, it is near impossible to 
derive the correlation properties of critical points in their full 
complexity. Results can be derived at large enough separation 
and using the mean field approach, implying that our findings 
will be solid for large enough densities only. 

The starting point is a generalisation of Equation (26) for the 
joint CGF of the density and its derivatives: 

ϕ λρ,{λi}, {λi j}; µρ,{µi}, {µi j}   = ϕ λρ,{λi}, {λi j} + ϕ µρ,{µi}, {µi j} 

+ τ λρ, {λi}, {λi j}   ξ0(d) τ µρ, {µi}, {µi j} , 

(30) 

where λρ, λi , λi j are the conjugate variables of the density and 
its derivatives at a given location, µρ, µi , µi j those at a sec- 
ond location placed at distance, d, from one another. ξ0(d) is the 
filtered matter density correlation function at distance, d. This 
expansion is valid when d is much larger than the filtering scale 
and derived from the fact that we then expect ξ0(d) « ξ0 and 

density PDFs alone6, we should be able to derive it if an opera- 

 
ξ (d)/ξ  « ξ (d)/ξ (see Appendix E). For the Rayleigh-Levy 

trary large-scale density (following the derivation of halo-bias 
function as pioneered by Mo & White (1996) in a separate uni- 
verse approach). In hierarchical tree models, it can be computed 
making use of the r-CGF. The shape of the join density CGF at 
for densities at positions r1 and r2 written up to first order in 

ξ(r1, r2)/ξ0 indeed obeys 

ϕ(λ1, λ2) = ϕ1(λ1)ϕ1(λ2) + τ1(λ1)ξ(r1, r2)τ1(λ2), (26) 
 

 

6 Indeed, P(ρ) and b(ρ) both depend on the vertex generating function 
ζ(τ) but in a different manner. It is therefore not possible to derive a 
functional relation between P(ρ) and b(ρ) that would be independent of 
ζ. 

model we further have τ = φ. As for the density field this form 
implies a similar form for the two-point number density of the 
critical points: 

n#1,#2(ρ1; ρ2) = n#1(ρ1)n#2(ρ1){1+b#1(ρ1)ξ0(d)b#2(ρ2)},          (31) 

where #i represents the types of critical points we consider and 
b#i(ρ) is the associated bias function whose expression is given 
by Eq. (E.7). 

 
 

7 To be more precise, the Rayleigh-Levy flights model leads to identi- 
cal CGF and r-CGF, whereas these two functions are expected to exhibit 
different singularities on the real axis for generic tree model, as shown 

by Bernardeau & Schaeffer (1999). 

tional method is available to compute the density PDFs for arbi- 

−i∞ by the sign of the difference. Figure 4 shows that the theoreti- 

ξ 

= 



Bernardeau, F. & Pichon, C.: A&A, 689, A105 (2024) 

A105, page 7 of 21 

 

 

Euler ρ Euler ρ = 
ξ3 

 
πξ2ρ 

 

# ρ # ρ 

ρs 
# 

∫ 

 

10 

 
8 

 
6 

 
4 

 
2 

 
0 

 
-2 

0.5 1 5 10 

ρ 

12 

 
10 

 
8 

 
6 

 
4 

 
2 

 
0 

 
0.5 1 5 10 

ρ 

Fig. 6. Theoretical prediction for the bias function of 1D extrema, of 

Euler points and that of the local density, Eq. (28), and its correspond- 

ing large scale limit (dashed line) as given by Eq. (29). As expected, 
the maxima and Euler points have the same bias at a high density, this 
is also the bias of the density field itself: high density critical points are 
likely to be maxima of the fields and their correlation properties is to a 
large extent determine by density bias. 

 
The computation of bias function of the critical points then 

makes use of the same techniques as for the number density. It 
does not lead to an explicit form for the extrema or saddle point 
position both in 1D and 2D. It is however possible to derive the 
explicit bias functions of the Euler points for the 1D and 2D case: 

N/2 

Fig. 7. Theoretical prediction for the bias function of 2D extrema, sad- 
dle points, Euler points and that of the local density (for which the pre- 
dictions is the same as in 1D). Similar conclusions can be drawn from 
the 1D case. 

 
Eq. (25). This justifies to use such a proxy for the computation 
of peak correlation in the high-density regime for more involved 
models. Such an approach, however, cannot capture proximity or 
exclusion effects that would be expected for peak correlations. 

To explore these effects specifically, we rely here on results 
from numerical experiments of 1D Rayleigh-Levy flights, for 
which accurate measurements can be achieved. The correspond- 
ing curves are presented on Figs. 8–12. To avoid too much 
numerical noise and uncertainties, they are expressed in terms 

bND  ( )nND  ( ) 1  2ξ1  
  

2(ρ+1) 

e of correlation function of cumulative quantities, where the local 

 
× P  (ξ , ρ)   F̃ 1; 

4ρ  + Q  (ξ , ρ)   F̃ 
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. (32) tors we will apply are defined as: 

N  0 0 
1  

ξ2 
 N  0 0   1 ξ2  ∫ ∞ 

d
 

 

 
 

 

b ( )n ( ) 

where the polynomials obey 

P1 = ξ0 (ξ0 − 4(1 + ρ)), Q1 = 2(ξ0 + 8ρ), (33a) 

P2 = ξ0(ξ0 − 3ξ0ρ + 4ρ(3 + ρ)), Q2 = −
 
ξ2 + 8ρ(1 + 3ρ)

 
. 

# s ∞ dρ n (ρ) 

The 1D correlation functions are directly computed in position 
space by applying a simple shift to the density fields. No binning 

0 

(33b) 

Again one could conjecture that higher order polynomials exist 
for bias functions in higher dimensions. We note that bias func- 
tions in general are dimensionless quantities. They can therefore 
be expressed in terms of dimensionless quantities such as ξ0 and 
γ. Furthermore the bias parameter of Euler points is found to be 
also independent of ξ2 (as was the case for its number density) 
and therefore of γ. 

The corresponding bias functions are shown in Fig. 6 and 7 
in 1D and 2D, respectively. These functions are computed for 
ξ0 = 1 and for γ = 0.45, which corresponds roughly to what is 

expected for α = 0.5. The results however do not depend cru- 
cially on these specific choices. 

The functions exhibit some expected generic behaviours: 
(i) the high-density asymptotic behaviour of maxima and Euler 
points are the same. It also matches the asymptotic form of the 
local density bias: high-density regions tend to trace the loca- 
tions of the maxima; (ii) for a given density, minima tend to 
be more correlated than saddle points or maxima: imposing to 
have a minima within a high-density region indeed requires an 
even higher density in the surroundings, which in turn translates 
into larger biases. One important conclusion that can be drawn 
here is that peak correlation properties derive, to a large extent, 

for the behaviour of the density bias functions in the sense of 

s ρ 
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is applied and they are measured to a separation of 1000 
pixels, which is safely smaller than the sample size. 

Fig. 8 shows the correlation functions of the thresholded 
density for different thresholds. The dashed lines are the theo- 
retical predictions, namely, the expectation when one 
multiplies the measured matter correlation function of the 
filtered density field (grey solid line) with b(> ρs)2. One can 
see that proximity effects tend to be rather insignificant for 
low density threshold, but rather large for high density 

threshold: for ρs = 4 proximity effects can be detected up to a 
distance of about 100 pixels. We can also predict the actual 
shape of the two-point function for Rayleigh-Levy flights 
models. This is presented in Fig. 1. 

Figures 8–11 display their corresponding clipped two-
point functions, while Fig. 12 shows the cross correlation of 
minima and maxima. The consistency of the results with 
theoretical pre- dictions show that on large scales, the 
functional form of the peak biases, Eq. (31), is indeed 
satisfied, and the auto- and cross correlation properties of 
critical points can be described with such a factorised form. 

 
5. Discussion and conclusions 

Rayleigh-Levy flights can serve as numerical models portray- 
ing matter distribution within highly nonlinear fields in 
cosmol- ogy. In contrast to standard Markovian processes, 
Rayleigh-Levy 
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Fig. 8. Correlation function of the thresholded density regions and com- 
parisons with predictions. The black solid line is the measured mat- 
ter correlation function. The dashed lines are the prediction correlation 
amplitudes for thresholded regions derived from their large-scale limit. 

They have been computed after applying bias factors b#(> ρs)2 to ξ0(d) 
as measured in the simulation. 

 
10 

Fig. 10. Same as previous figure for the thresholded minima. We note 
that the minima are, as expected, more clustered than maxima for a 
given threshold value. We still observe a transition towards the small 

scale to ξmaxima(d) = 1. We note that this measure is too noisy for a 

threshold ρs > 4. (not shown here). 
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Fig. 9. Same as previous figure for the thresholded maxima. Open sym- 
bols correspond to negative values. We see a sharp transition between 
the large-scale behaviour – well predicted by the theory – and the 
small-scale behaviour. Note: the plateau at small scale corresponds to 

ξmax(d) = 1, meaning that peaks generate an exclusion zone in their 
vicinity. 

 
flights display long-range correlations across all orders, which 
are precisely understood. Thus, these models serve as simpli- 
fied representations, capturing statistical properties of the cosmic 
density field after gravitational instabilities reach its full devel- 
opment, although we are well aware they do not precisely repli- 
cate the outcomes of these instabilities. Despite this, they exhibit 
key properties, such as hierarchical structure in the higher corre- 
lation functions, making their study a valuable reference point. 

Fig. 11. Same as previous figure for the thresholded Euler number den- 
sities. We still observe a transition towards the small scale. We note 

that here ξEuler(d) < 1 showing that minima and maxima tend to be 
correlated at small distance (as confirmed in the next plot). Note: this 
measure is quite noisy as the Euler number density vanishes for low 
thresholded values and the threshold ρs > 0.5 is not shown. 

 

ters, such as Euler number densities and their correlations across 
significant separations: Eqs. (20) and (32), along with corre- 
sponding quadratures for extreme value counts, represent the pri- 
mary outcomes of this study. Importantly, our predictions hold 
irrespective of the density field’s variance. While aligning with 
expectations for a Gaussian field in the regime of small vari- 
ances, our numerical experiments confirm their validity across 
all variance values. Several key insights emerge from our find- 

We wish to emphasise that Rayleigh-Levy flights differ from 
simple nonlinear transformations (like a lognormal fields intro- 

ings: 
1. The critical point density depends8 on three quantities related 

duced by Coles & Jones 1991, which are now widely used as 
toy models), as they exhibit hierarchical properties across scales. 
This makes them the only known example (at least to us) of 

to density variance, gradient variance, and variance of the 
second-order derivative, denoted as ξ0, ξ1, and ξ2, respec- 
tively. These can be re-expr√essed using two dimensionless 

an actual random process whose outcome displays the expected parameters, ξ0 and γ = ξ1/   ξ0ξ2, along with ξ1, inversely 

scaling properties in correlation functions. Although it exhibits 
such a non-trivial structure, it is yet simple enough to allow for 
a wide range of explicit predictions. 

Utilising the mean field approximation specifically enables 
the derivation of closed analytical forms for crucial parame- 

proportional to distance squared. This implies that number 
 

8 They also depend on the specificities of the model through struc- 
tural quantities encoded for instance in the scale cumulant generat- 
ing function in the context of the large-deviation principle, (see e.g. 
Bernardeau & Reimberg 2016). 
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Fig. 12. Cross-correlation between minima and maxima with the same 

threshold. The prediction is obtained here by multiplying ξ0(d) as 
measured in the simulation by bmin(> ρs)bmax(> ρs). We note a large 
positive correlation for scales that are of the order of the smoothing 
scale. 

 
densities scale as ξN/2 in N dimensions. Remarkably, while 
extrema number counts are correlated with both ξ0 and γ, 

Euler number counts remain independent of γ. This hints at 
the impact of small-scale features on peak counts, creating 
pairs of peaks and troughs at roughly the same height, ulti- 
mately leaving Euler number densities unaffected. We specu- 
late that this property may extend to all hierarchical models. 

2. Concerning point correlations, akin to matter fields, we find 
that critical points of all types exhibit a factorised structure 
in the large separation limit, as given in Eq. (31). This pat- 
tern resembles the separate universe approach and has been 
validated through our numerical experiments. It enables the 
derivation of bias parameters for various types of points, 
especially as given in Eq. (32). 

3. Notably, bias parameters of maxima, Euler points, and 
threshold-limited density fields converge to the same limit 
in the high-density limit. This suggests that regions with 
rare high-density values likely host one extremum, sharing 
identical correlation properties in this limit. This supports 
simplified approaches where peak correlations mirror those 
of high-density regions in more complex systems (see e.g. 

Bernardeau & Schaeffer 1999). 
Beyond the paper’s scope, extending Eqs. (20), (22), and (32) 

to higher dimensions, other Minkowski functionals, and cross- 
validating them via Monte Carlo techniques, as done in 1D, 
will prove valuable and will be the topic of upcoming papers. 
One interesting line of investigation is for instance to use these 
results as benchmarks for validating quasi-Gaussian expansion 
schemes. It could also be contrasted with those derived in the 
large deviation limit (as presented in Uhlemann et al. 2016). Fur- 
thermore, these statistics may find application in analyzing the 

influence of Rayleigh-Levy flights in anomalous diffusive pro- 
cesses (e.g. in supersonic turbulence, Colbrook et al. 2017) or 
finite star effects in gravitating systems (Chavanis 2009). 

Given their common occurrence, the comprehensive findings 
from this study hold promise not just in astrophysics but also in 
broader applications beyond the field. 
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over all possible trees that join the p points (diagram without 
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ξ
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ξ
3D

(rs)=
 2 2 2 0 s n 

. (A.6c) 

α 

ξp(r1, . . . , rp) = Qp(t) ξ(ri, r j), (B.1) 

 

Appendix A: Rayleigh-Levy flight model 

The random Rayleigh-Levy flights model was introduced first 
(in a cosmological context) by J. Peebles (Peebles 1980). This 
is a Markov random walk where the PDF of the step length 4 
follows a cumulative cumulative distribution function given by 
Eq. (1b), where 40 is a small-scale regularisation parameter. As 
a result, the density of the subsequent point (first descendant) at 
position r is given by: 

The main interest of this model however lies in the fact that its 
higher order correlation functions can also be computed and that 
they take a simple form. The reason is that n points are corre- 
lated when they are embedded in a chronological sequence (that 
can be run in one direction or the other). Thus the three-point 
function is simply given by 

ξ3(r1, r2, r3) = 
n2 

. 
f (r1, r2) f (r2, r3) + ...

. 
, (A.7) 

α 4α with five other terms obtained by all permutations of the indices. 
f1(r) = 0  

2 |r − r0|1+α 
in 1D space; (A.1a) Expressing the result in terms of the two-point function, we have 

1 

f1(r) =  
α
 

α 
0 in 2D space; (A.1b) ξ3(r1, r2, r3) = 

2
 
.
ξ2(r1, r2)ξ2(r2, r3)+ 

2π |r − r0|2+α . 

f1(r) = 0  
4π |r − r0|3+α 

in 3D space. (A.1c) The type of expansion can be pursued to any order. The resulting 
shapes of the p-point correlation function is the following: 

Defining ψ(k) as the Fourier transform of f1(r) with Eq. (3), 
we can easily show that when assuming there are an infinity of 

 

ξp(r1, · · · rp) =  
  1   X

 
 

f (rσ , rσ ) . . . f (rσ 
 

, rσ ) , 

position r0 
tion is: 

is given by a series of convolutions whose resumma- 
σ∈perm[p] 

where σ is any permutation of the p indices 1, . . . , p. It implies 
that the p-point correlation function can be expressed in terms of 

f (r r) 
∫ 

dD k eik.(r−r ) 1  (A.2) the two-point functions 
0, =  

 

(2π)D 

0 . 
1 − ψ(k)   

1 
!p−2  X 

The two-point density correlation function is then given by 
two possible configurations: a neighbourg can either be an ascen- 

ξp(r1, · · · rp) =   
2

 ξ2(rσ1 , rσ2 ) . . . ξ2(rσn−1 , rσn ), 
σ∈perm∗[p] 

dant or a descendant, so that the two-point correlation functions 
between positions r1 and r2 are given by 

1 
ξ2(r1, r2) = 

n   
f (r1, r2) + f (r2, r1) , (A.3) 

where n is the number density of points in the sample which 
leads to Eq. (4) of the main text. We note that the two-point cor- 
relation within the sample is therefore scaled as 1/n. The latter 
can be associated with a typical length, 4n, 

n =
 1 

. (A.4) 
n 

At large distance (compared to 40), we expect the two-point cor- 
relation to behave as power laws. They are given by 

2 tan πα 
 
 

where the exponent refers to the subset of permutations that 
lead to a unique un-oriented sequence; identifying, for instance, 
Eqs. (1, 2, 3) and (3, 2, 1)). As we see hereafter it corresponds to 
a specific hierarchical tree model. 

 
Appendix B: Hierarchical tree models 

The Rayleigh-Levy flight model is one representative of a large 
class of models, the so-called hierarchical tree models, that have 
been put forward in cosmology as a way to model the density 
field in the highly nonlinear regime. Such models are presented 
in detail in Bernardeau & Schaeffer (1999). We recall here how 
they are defined, together with the basic equation that allows 
the derivation of their cumulant-generating function. Hierarchi- 
cal tree models are a general class of non-Gaussian fields whose 

n-point correlation functions, ξp(r1, . . . , rp), follow the so-called 
hierarchical Ansatz, 

 

ξ2D(r) = 
α 

rα−24−α42 , (A.5b) 
 

t∈trees lines∈t 
2 π 0   n where ξ(r , r ) is the two-point function, while the sum is made 

 
1 − α2

 
tan

 
πα

 i j
 

2 π2 0   n loops), and the tree value, Qp, is obtained by the product of a 
fixed weight (that depends only on the tree’s topology), and the 

For practical purposes, we give here the resulting expression of 
the average correlation, ξ0, for a Gaussian window function of 
width rs, 

product of the two-point correlation functions, for all pairs that 
are connected together in the given tree. More specifically it is 
assumed that: 

2 sin πα
 

Γ 
  

1 − α 
  

Γ(α)r−αrα−14n 
 

 
 

Q(t) =  
. 

νp, (B.2) 
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π2 
, (A.6a) 
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vertices∈t 

where νp is a weight attributed to all vertices with p incoming 
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3 − α 
  

Γ(α)r−αrα−343 

 

the vertex generating function is generally introduced as: 
X νp

 
 

  
p! 

p π3 

lines (assuming ν0 = ν1 = 1 for completion). In this formalism, 
π 

points in the flight, the density in r of descendants of the point at 

4 

2 

4α 

n−1 

ξ1D(r) = 
π 

rα−140
−α4n , (A.5a) 

1D 

ζ(τ) = τp. (B.3) 
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∫ ∫ X 
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p! 2 

1 n = j j 

p p i i j 

and the equation for the r-CGF function reads: 

λ j dx W j(x ) ξ(x, x ) ζ (τ(x )). (B.15) 

2 

j 

 

Such models are thus entirely defined by i) the two-point func- 
tions ξ(r) and ii) the vertex-generating function ζ(τ). What the 
previous section has shown is that the Rayleigh-Levy flight 
model (in the continuous limit) corresponds, in the continuous 
limit, to a specific hierarchical tree model9 with ν2 = 1/2, νq = 0 

for q ≥ 3. 

 
B.1. Expression for cumulant generating function 

Then τ(x) appears to be the generating function of all trees with 
(at least) one leaf at position x. This is a sub-part of rooted- 
trees10, and we therefore call τ(x) the rooted-Cumulant Generat- 
ing Function (r-CGF). The key relevant property is then that τ(x) 
obeys a consistency relation, as it can be built recursively: when 
a line emerges from position x, it should reach a vertex of order 

p      1 at position xJ which is then connected to p     1 r-CGFs 

at position xJ. The mathematical transcription of the property is 
that 

The exact generating function of multiple cell correlation func- 
tions can be built through simple transforms. We hereafter con- 

sider a set of n cells i of profile Wi(x), thus allowing for generic 

τ(x) =    dxJξ(x, xJ)ν (xJ)+ dxJξ(x, xJ) 

∞

 

p=2 

νp(x
J) 

τp−1(xJ). (B.9) 
(p−1)! 

types of profiles, and not only top-hat boxes as was assumed in 
early papers. These profiles can obviously overlap but they are 
assumed to be well localised. The joint cumulants we consider 
in this formalism are those of the average densities in cells i that 
can be expressed in terms of spatial averages of correlation func- 

Once τ(x) is known, solving for φ then simply involves integrat- 
ing Eq. (B.8). This can be done with the help of its Legendre 
transform with respect to ν1(x). Defining ψ as a functional of 
τ(x) via 

tions: 

(ρp1 . . . ρpn )c = 

∫

 dx1,1 W1(x1,1) . . . 

∫

  dx1,p 

 
W1(x1,p ) . . . ψ = 

∫ 

dx τ(x)ν1(x) − φ, (B.10) 
1 n 1 1 

. . . 

∫ 

dx W (x   ) . . . 

∫ 

dx W (x ) 

× ξp(x1,1, . . . , x1,p1 , . . . xn,1, . . . , xn,pn ). (B.4) 

We then wish to build the cumulant-generating function (CGF) 
of the densities in each cells. It is given by: 

the relation (B.8) is satisfied when 

δψ[τ(x)] 
= ν1(x) . (B.11) 

As ξ(x, xJ) is a definite positive operator, the relation (B.9) can 
be inverted for ν1(x) as 

ν (x) = 

∫  

dxJξ−1(x, xJ)τ (xJ)−
X∞     νp(x)   

τp−1(x) , (B.12) 

ϕ(λ1, . . . , λn) = log(e
. 

λi ρi ) , (B.5) p=2 
(p − 1)! 

=   
X 

(ρp1  . . . ρpn ) 
p1 pn 1 . . . n . (B.6) 

 
 

and formally integrated via Eq. (B.11) into 
1 

p1,...,pn 
n  c p1! pn! 

ψ =  
1 

∫  

dx dxJ τ(x)ξ−1(x, xJ)τ(xJ) − 

∫  

dx 
X∞

 
νp(x) 

τp(x) , 

cumulants, where the power of the λi counts the number of 
points in each cells. When the cumulants follow the tree struc- 
ture described in the previous paragraph, each term that appear 
in this function then corresponds to a specific tree. Following a 

method pioneered by Janninck (1987), Bernardeau & Schaeffer 

 

 

with the correct boundary conditions (it should vanish when 
ν1(x) does). From Eq. (B.10), the function φ is then expressed 
as: 

φ=

∫ 

dx 
X∞  νp(x) 

τ(x)p − 
1 
∫ 

dxdxJτ(x)ξ−1(x, xJ)τ(xJ),    (B.13) 
 

 

re-derive briefly below. 
To do so, we first now define a larger class of objects, 

φ[νp(x), ξ(x, xJ)] (note the different symbol), which represents 
the sum of trees with vertices of order p having the weight νp(x) 

and lines having the weight ξ(x, xJ), and where x are space vari- 
ables that are subsequently integrated in the whole domain. In 
the context of tree theory, a point that reaches a one-point vertex 

 

which solves the formal calculation. We can then apply this 
result for our specific setting (using Eq. B.7) to derive the CGF 
we are interested in. It is then convenient to re-express τ(x) in 
Eq. (B.13) in terms of the ζ function (Eq. B.3), the profiles, 

i(x), and the λi variables. It eventually yields the following 
expression: 

ϕ(λ , . . . , λ ) 
X 

λ 

∫  

dx W (x)ζ(τ(x)) 
 

 

specific choice: 

ν (x) = ν 
X 

λ W (x) . (B.7) 
 

 

– 
1 X 

λ j 

∫ 

dx W j(x)τ(x)ζJ(τ(x)) , (B.14) 

We now consider φ[νp(x), ξ(x, xJ)] as a function of ν1(x) 

 

X ∫ 
J J J J J 

 

ν1(x) : 

δφ 
τ( ) = 

δν1(x) 

 
. (B.8) 

The expressions presented in the main text, Eqs. (9) and (10), 
are obtained for the specific expression of ζ corresponding to 
the Rayleigh-Levy flight statistics; namely, ζ(τ) = (1 + τ/2)2. 
The generic expression for the multiple CGF of hierarchical tree 

9  Note: we do not know any other explicit random processes that would models was presented in Bernardeau & Schaeffer (1999). 
fall into this hierarchical tree class of models, with other values for νp.    

The only possible limit case are peaks of Gaussian field, in their rare 10 In graph theory rooted trees are trees that emerge from a vertex that 
limit, which seem to correspond to νp = 1 for all p. have been singled out, not necessarily a leaf. 

only, with the other quantities it depends on being fixed. We can 
then define τ(x) as the functional derivative of φ with respect to 

i 

j 

ν1(x) are usually called a ’leaf’. The function we are interested 
in, ϕ(λ1, . . . , λn), is precisely equal to φ[νp(x), ξ(x, xJ)] for the 

p=1 

p=2 

λ 

δτ(x) 

This function represents the generating function of (averaged) 

(1992) showed that it is actually possible to perform the summa- 
tion over such a set of trees, leading to a formal expression we 

τ(x) = 

1 1 
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B.2. Mean field equation 

To make the resolution of the implicit Eqs. (10) more tractable, 
it is possible to assume that within each cell, τ(x) can be approx- 
imated by a constant equal to τi. The consistency equations for 
the τis, Eq. (10) is then expressed as: 

τi =        λ jξi jζJ(τ j) , (B.16) 
j 

where ξi j is the average density correlation between cells i and 
j, 

ξi j = 

∫  

dx Wi(x) dxJ W j(xJ) ξ(x, xJ). (B.17) 

From Eq. (9), we then have 

ϕn({λi}) = 
X 

λi 

 

ζ(τi) − 
1 

τiζJ(τi)

! 

. (B.18) 
 

 

C.2. MTM composition law and scale convolution 

We generically define the cumulant generating function, 
ϕn( λi ; ξi j ), of a set of n cells, of variables λi for cells whose 
two-point correlations are ξi j. Then the following identity is sat- 
isfied by ϕn: 

ϕn({λi}; {ξi j + ξ}) = ϕ1(ϕn({λi}; {ξi j}); ξ). (C.6) 

This important scaling, which we use continuously throughout, 
may seem at first view as an awkward relation, as it states that the 
ξ in ϕn can be shifted by successive application of the function 
ϕ1. This result seems specific to Rayleigh-Levy flights. 

We first briefly demonstrate the property. To avoid confusion 
in the notation, we define τi and τ̂i as the solutions of the follow- 
ing systems: 

X 
 

This is the form we will mostly use in the main text. 

 
Appendix C: Minimal tree model 

The minimal tree model (MTM) is defined as a tree model for 
which only vertices with two outcoming lines exist. It is there- 
fore associated with a vertex generating function of the form: 

ζ(τ) = 1 + τ + 
ν2 

τ2 . (C.1) 
2 

It has been shown (in Balian & Schaeffer 1989, from the 
behaviour of the void probability function) that the only pos- 

τ̂i = λ j(ξi j + ξ)(1 + τ̂ j/2) . (C.7b) 
j 

Then we also define µi and µ̂i as µi = 1 + τi/2 and µ̂i = 1 + τ̂i/2 
so that 

ϕn ≡ ϕn({λi}; {ξi j}) = 
X 

λiµi , (C.8a) 

ϕ̂n ≡ ϕn({λi}; {ξi j + ξ}) = 
X 

λiµ̂i. (C.8b) 

Then µ̂ j is the only solution of the system 

sible value for ν2 is ν2 = 1/2. This is precisely the case of the 
Rayleigh Levy flight model. From Eq. (C.1), this model is thus 
characterised by 

Mi jµ̂ j = 1 , (C.9) 
j 

 
ζMTM (τ) = 

 
1 + 

τ
 2 

. (C.2) where the matrix Mi j is defined as 

2 
In this case the stationary equations for a set of cells, Eq. (B.16) 

 
1 X 

 

is expressed as: 

τi = λ jξi j(1 + τ j/2) , (C.3) 
j 

Mi j =  δi j − 
2
 

Now, since 

λ (ξ  + ξ)  . (C.10) 
j 

and Eq. (B.18) becomes 

X 
Mi jµ j = 1 −

 ξ X 
λ jµ j , (C.11) 

ϕ ({λ }) = 
X 

λ 
 
1 + 

τi 
  

. (C.4) 
j j

 

n i i 
i 

this implies that µi/ 1 − 
ξ .

 j λ jµ j is the solution of Eq. (C.9), 

As the right hand side of Eq. (C.3) is linear in τ, this system can be solved by the simple inversion of a matrix. In practice so that by identification we have:   µi  it is therefore relatively easy to derive the expression of τi (and 
therefore of the cumulant generating function) for a finite num- 

µ̂i = 
1 − 

ξ . 
j λ jµj 

. (C.12) 

ber of cells. 

 
C.1. Mean field solution 

Hence, 

ϕ̂n = 
X 

λi 
  µi   

=  
    ϕn   

= ϕ1(ϕn; ξ) , (C.13) 
 From Eqs. (C.3)-(C.4) when only one cell is considered, the one- i 1 − 

ξ .
j λ jµ j 

1 − 
ξ 
ϕn 

point mean field solution turns out to be 
2λρ 

which establishes the relation. 
Equation (C.6) reflects some interesting physical properties 

ϕ1(λρ; ξ0) = 
2 − ξ0λ  

. (C.5) it is related to: scale composition when cell correlations are built 
as a two-steps procedure. Indeed, we consider a set of random 

It gives the expression of the CGF for a single variable ρ of mean 

unity and mean square ξ0. The successive reduced cumulants of 
such a quantity can be easily computed by Taylor expansion. 

We note that if the random variable ρ is rescaled to have a 
mean of ρ (instead of 1), its CGF is ϕ1(ρλ; ξ0), which, given 
Eq. (C.5), is equal to ρϕ1(λ; ρξ0). 

Rayleigh-Levy flights experiments, in which instead of having 
of fixed number of points in each sample, the sample density 
is itself drawn from the one-point PDF derived from an MTM 
process. We denote ρs the sample density (whose average is set 
to unity). Its CGF is then ϕ1(λs; ξs), where ξs is the variance of 
the sample density. 

i 
τi = λ jξi j(1 + τ j/2) , (C.7a) 



Bernardeau, F. & Pichon, C.: A&A, 689, A105 (2024) 

A105, page 15 of 21 

 

 

∫ 

ρ n 

ρ 

≥ 

W 

∞ 

n 
s 2πi 

i 

λi = λi/ρs , (C.17) e λcρ 
ac 0F1 (2; acρ) 

2πi 
i 

n i i j s 

  

0 

 

We then note that for each realisation the cell densities, ρi 
scale like 1/ρs (by definition ρi is defined with respect to the 
mean of the survey) and that its correlation functions ξi j scale 
like 1/ρs (this is a consequence of the expression of the scal- 
ing of the two-point function in the Rayleigh Levy model). To 

C.3. Computing PDF in the minimal tree model 

The basic quantity one wishes to have access to is the PDF, 
defined as the inverse Laplace transform of the cumulant gen- 
erating function ϕ1(λρ), that is, 

 
 

be more precise, we define ξi j as the cell correlations when the 
sample density is equal to unity. We then have 

 
 

 

P(ρ) = 
+i∞ dλρ 

exp
 

−i∞ 2πi 
−λρ ρ + ϕ1(λρ)

 
 
 

, (C.21) 

ξi j = ξi j/ρs. (C.14) 

We then define the densities ρ̂i  which represent the ‘true’ den- 
sity in the sample (that is when the sample density is taken into 
account) as: 

ρ̂i = ρs ρi, (C.15) 

where the integral runs formally along the imaginary axis, but 
can be moved in the complex plane as long as no poles or singu- 
larities are encountered along the path. 

The following relation will be exploited throughout this 
paper ∫ 

dλρ 
exp

 

−λ ρ+ 
   ac    

! 

=δ (ρ)+a e−λc ρ   F˜ (2; a ρ) ,   (C.22) 
 

  and aim at building the joint PDF of ρ̂i. This PDF is formally 
given by 

2πi λc −λρ 
c 0    1 c 

 ˜ 

P({ρ̂i}) = 
dρs 

P(ρs 
s 

)P({ρi/ρs}) , (C.16) 
where δd is the 1D Dirac distribution and 0F1(a; z) is the reg- 
ularised confluent hypergeometric function 0F1(a; z)/Γ(a). This 
formula can be applied directly to ϕ1(λρ; ξ0) to derive P(ρ). It 

= 

∫  
dρs 

P(ρs)

∫ 

Πi 
dλi  

exp − 
X 

λiρ̂i/ρs + ϕn({λi}; {ξi j})  , 

can also be applied after successive derivatives with respect to 

 

where the dependence in ρ is also present in the expression of ∫  
dλρ 

  
     1 

!n 

    ac 
!
 

s 

ξi j. Then, making the change of variable 

ˆ 

2πi λc − λρ 
exp 

 
− 

−λρ ρ + 
λc

 

  
  d 

!n n 
 

 

= 
– λρ 

˜ 
} 

and noting that: 
 

ϕn({λi}; {ξi j}) = ρsϕn({λ̂i}; {ξi j}) , (C.18) 
for n 1. Then, the application of Eq. (C.22) to Eq. (C.5) leads 
to: 

we have       −2/ξ0 4 2(ρ+1) 

 

 

 
4ρ 

 

 

P({ρ̂i}) = 

∫

 
dρs 

∫

 

dµ 
∫
 dλi Πi P(ρ) = e δd(ρ) +   

2 
e 

0 
ξ0      0

 
1  

ξ2 
 , (C.24) 

× exp − 
X 

λ̂ ρ̂ 
 

 

2πi 

– µρ 
 

 

2πi 

+ ρ ϕ ({λ̂ }; {ξ 
 

   

}) + ϕ (µ, ξ )  . (C.19) 
 

 

which yields the PDF in the mean field approximation. One can 
see that it involves the sum of two terms, a Dirac term term for 

i j 1 

i 

 
 

ρ = 0, and a continuous contribution. This highlights one of the 
key feature of this model, which is that the probability of having 

Now the integral over ρs leads to a Dirac delta function in µ − 
ϕn({λ̂i}; {ξi j}) leading to 

P({ρ̂i}) =

∫ 

Πi 
dλi  

exp −
X

λ̂iρ̂i +ϕ1(ϕn({λ̂i}; {ξi j}), ξs). (C.20) 

empty regions of finite size remains finite even in the continuous 
limit. 

 

C.4. Beyond the mean field approximation 
 

 
This expression means formally that the CGF of ρ̂i is this two- 

step  construction  given  by  ϕ1(ϕn({λ̂i}; {ξi j}), ξs).  The  relation 
 

 

beyond the mean field approximation, which provides means to 
explore the validity of this approximation. The calculations will 

(C.6) ensures that it is also given by ϕ ({λ̂ }; {ξ   + ξ }), which 
be limited to the 1D case and to a Gaussian filter and its deriva- 

 
states that survey density fluctuations can, in this model, be taken 
into account via a simple shift in the cell correlation amplitudes. W (x) 

   1 
exp

 

− 
x2 

!

 
 

 

 

 

 (C.25) 

A useful practical consequences of property (C.6) is that we 
could set any peculiar element of ξi j to zero. For instance, the 

CGF of two identical cells of density variance ξ and of cross- 

correlation ξ12 is given by: 

ϕ2(λ1, λ2; ξ, ξ12) = ϕ1(ϕ1(λ1; ξ − ξ12) + ϕ1(λ2; ξ − ξ12); ξ12) . 

It is possible to extend such a construction for a larger number 
 

 

0 = √
2π 2   

. 

The idea is then to expand τ(x) in, for instance, Eq. (10) on 
its natural ortho-normal basis, namely the basis of the Hermite 
polynomials. More precisely, τ(x) 0(x) being bounded at large 
distance, it is possible to expand it as 

τ(x) = 
X 

τ h (x), with h (x) = 
     1     

H 

  
  x  

! 

,     (C.26) 
 

of cells11, but for specific configurations only. Note finally that 
when one needs to construct the density CGF for a large number 
of cells it is convenient to set ξ = 0 for all cells as it makes the 

system in τi sparser. 
n    n 

n=0 

tives. We therefore assume that 

We explore the possibility of solving the consistency relations 

s i n s s i 

ξ 

d ac 

ac from which on can establish that 

d ρ 

∫ 

− 
2; 

, (C.23) 

F̃ 

i 
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noting that n 
2n/2 

√
n!   

n     √
2
 11 up to 3 cells at 1D, 5 cells at 2D and 7 cells at 3D. 

∫ 

dx hn(x) hnJ (x) W0(x) = δnnJ . (C.27) 
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q n qn 
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ppJ 

(q) 

1.50 
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We are specifically interested in the joint CGF, ϕ( λ0, λ1, λ2 ) 
involving fields dual to the density, the first and second deriva- 
tives. The window functions for the latter can be expressed in 
terms of the Hermite polynomials as 

 

1.62 
 

1.60 

Wq(x) = 
d q 

dx 
W0(x) = 

,
q! hq(x)W0(x) , (C.28) 

1.58 
 

1.56 

for q = 1 and q = 2, and we have 1.54 

∫  

dx W (x)h  (x) =  
,

q!δ  . (C.29) 
1.52 

 

As a result, the consistency relation in Eq. (10) for τ(x) is now 
expressed as: 

 
0 2 4 6 8 10 

expansion index 

τ(x) =

∫

 dxJξ(x, xJ) 

 

1 + 
τ(xJ) 

2 
W0(xJ) 

X

q=0 

λq 
,

q! hq(xJ), 
 

 
(C.30) 

 
Fig. C.1. Value of the reduced skewness, S 3, obtained at increasing 
order beyond the mean field. The mean field solution of the Rayleigh- 

Levy flights model, 3/2, is the same, whatever the index of the spec- 
trum and the shape of the window function. The exact expression of 

which can then be transformed into a system in τp after integra- 
tion with a weight of hp(x)C0(x) : 

S 3 depends however slightly on the power law index and on the filter 
shape. They are indicated as dotted lines. One can see that corrections 
to the mean field solution converge very rapidly to the expected value. 

X 
 (q) 

X
 τpJ (q)   (C.31) 

τp = 

 
with 

(q) 

 

q=0 

 

∫ 

q   p0 
pJ=0 

ΞppJ      , 
0.14 

 
0.12 

 
0.10 

 

The expression of CGF for the density and its gradients derives 
from Eq. (9), and is simply given by 

2 

 

0.06 

 
0.04 

ϕ({λ }) = λ  + 
X 

λ  
τq  ,

q! , (C.33) 
q 0 q 

q=0 
0.02 

0 2 4 6 8 10 

taking advantage of the orthogonality relations between q(x) 
and hp(x). We note that those quantities depend on the actual 
shape and amplitude of the correlation function. In the following, 

we simply assume that ξ(x, xJ) ∼ |x − xJ|−1/2 corresponding to 

α = 1/2 for a 1D Rayleigh-Levy flight. It implies that Ξ /ξ0 are 
all fixed quantities and that the result can therefore be expressed 

in terms of ξ0 only. 
We present hereafter the result of such derivations for the 

density, when the Hermite expansion in τ is truncated at increas- 
ing order, from 0 (where the r-CGF is assumed to be constant) 
to 4 (in practice we have been able to derive the CGF up to 10th 
order as illustrated in the figures below). We thus have 

2λ 
ϕ0(λ) = 

2 − λξ0 

, (C.34a) 

ϕ (λ) = 
  λ (5λξ0 − 64) 

, (C.34b) 
2λ2ξ2 − 37λξ0 + 64 

3 75 2 2   8240 65536 
ϕ (λ) =

 0 
, (C.34c) 

80λ3ξ3 −10849λ2ξ2 + 123024λξ0 − 196608 

 

expansion index 

Fig. C.2. Value of the void probability density function for ξ0 = 1 
at increasing order beyond mean field solution. The expression of the 
VPDF depends both on the power law index and on the filter shape. 
For a Gaussian filter, we would expect the VPDF to identically vanish, 
since they have infinite spatial extensions, unlike filters with compact 
support. It makes the prediction derived from the mean field poor in the 
low density regime. 

 

Figure C.1 for the skewness. It is actually possible to compute 
its exact expression for the Rayleigh-Levy flight model with a 
given slope for the two-point function (or, equivalently, the index 
of the power spectrum) and a given filter shape (here, a Gaussian 
filter). Figure C.1 shows that the prediction from the mean field 
expansion rapidly converges to the exact value. The rapid con- 
vergence can also be observed for higher order cumulants. This 
suggests that the high density tail of the PDF is well captured by 
mean field approach. 

On the other hand the low density part turns out to be much 

0 0 more difficult to capture with a Gaussian filter. As illustrated in 
for subsequent truncation orders. The first expression repro- 

duces the one-cell mean field approximation. The others corre- 
spond to corrections to it. 

These expressions exhibit a number of worthwhile prop- 
erties. They predict values of reduced cumulants that slightly 
evolve with the order of the truncation. This is illustrated on 

Figure 2, the density fields exhibit genuine large empty regions. 
This leads to a non-zero void probability density function for 
filters that have a compact support. However, for filters with 
extended radial tails, the probability of finding the filtered den- 
sity to be exactly zero can only vanish, leading however to 
an excess of probability at low densities. This is illustrated in 
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dx dxJ W0(x)hp(x)ξ(x, xJ)hpJ (xJ)Wq(xJ) . (C.32) 
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Figure 3. Unfortunately the mean field extensions as described 
here always lead to finite VPDF to all finite orders. This effect 
is illustrated in Fig. C.2, which also shows that the convergence 
of the PDF in the low density regions is slow. This is also illus- 
trated at the level of the density PDF in Fig. 3. To conclude, i) the 
mean field solution is very efficient at predicting the high density 
regions but fails in the low density regions; ii) solutions beyond 
the mean field, Eqs. (C.34), can account for the behaviour of 
the PDFs in the low density regions, but the convergence is slow. 
Extension beyond the mean field in higher dimensions will be 
the topic of future work. 

 
Appendix D: Extrema and Euler densities 

D.1. General formalism 

The computation of extrema densities is relies on the knowledge 
of the joint PDF of the local density, its first and second order 

with a similar construction for the 3D case. Explicit deriva- 
tion of the Euler number densities for the Rayleigh-Levy flight 
model are presented hereafter. We start with general considera- 
tion regarding the symmetry properties of both the CGF and the 
joint PDFs. 

 
D.2. Spatial homogeneity & isotropy 

In the cosmological context, density fields are statistically homo- 
geneous and isotropic. For the hierarchical tree models, it is 
ensured by the fact that the two-point correlation function 

ξ2(x, xJ) depends on  x xJ only. 
A number of properties follows. The first immediate one, for 

the 1D case, is that the expectation value of any gradient should 
vanish. That implies in particular that the expectation value of 

ρ2 + ρρ,xx vanishes, which implies Eq. (D.2). More generally a 
consequence of this invariance is that, for any integer p and q, 

derivatives (Bardeen et al. 1986). The latter will be derived from 
the CGF of those quantities. p 

D
ρp−1ρq+1

E
 + q 

D
ρpρ

q−1
ρ,xx

E
 = 0 , (D.5) 

The number of relevant variables depend on the spatial 
dimension. To fix the notation we define ξ0, ξ1, and ξ2 as the vari- 

which in terms, after summing over p and q, implies 

ance of respectively the local density, the one-component density 

 
 

λ 
  ∂  

ϕ(λ, λ ) + λ 
  ∂  

 
. ϕ(λ, λ , λ 

 
) = 0 . (D.6) 

ξ0 = 
D

ρ2
E 

− 1; ξ1 = 
D

ρ2 
E 

; ξ2 = 
D

ρ2 
E 

, (D.1) 
An alternative formulation at the level of the PDF reads 

assuming (ρ) = 1. We further note the consistency relations, 

 

∫ 

dρ 

( 
∂P(ρ, ρ,x, ρ,xx) ∂P(ρ, ρ,x, ρ,xx)

) 

= 0 . (D.7)
 

.
ρρ,xx

   
= −ξ1; 

D
ρ,xxρ,yy

E 
= 

1 
ξ2; 

D
ρ2 

E 
=  

1 
ξ2. (D.2) 

 

Integrating the second term of this equation over ρ up to ρ = 0 

  
tively ρ, ρ,i and ρ,i j (keeping in mind that ρ,i j and ρ, ji are 
identical). 

eventually be written in terms of the joint probability of the den- 
sity and its gradient as 

In general the number density of extrema is given by 
nEuler( ) 

∂ 
∫ 0  

d P( ) 

 

(D.8) 
 

ima when all eigenvalues are positive and in 2D, saddle points 
are obtained when the integral is restricted to the regions where 

the sign of the two eigenvalues is different. We finally note that 

Euler number densities are obtained with χextr. ρ,i j = 1. Its 

advantage is that it preserves the analytical structure of the oper- 
ator making in general its derivation easier. Specifically, the for- 
mulae we obtain for the 1D and 2D cases are: 

nEuler(ρ) = 

∫ 

dρ,xx ρ,xx P 
.
ρ, ρ,x = 0, ρ,xx

   
, (D.3) 

It shows that the Euler number density does not depend actually 

on the way ρ,xx is correlated to the density and its gradient. This 
is not so for the extrema counts. This points to an interesting fea- 
ture of Euler number density: it is significantly more insensitive 
to small scale fluctuations compared to other observables. 

Unfortunately this simplification does not directly extend to 
higher dimensions. There are however a number of consistency 
relations that derive from statistical invariance under translation, 
parity change and rotation. They are 
1. Translation invariance12: as in 1D, for any direction, i, we 

nEuler(ρ) = 

∫ 

dρ,xx, dρ,yy, dρ,xy

 
ρ,xxρ,yy − ρ2  

   
P

 
ρ, ρ,i = 0, ρ,i j

 
, 

expect 

and a similar (if more involved) expression for the 3D case. For 

 

λ 
 ∂ 

ϕ(λ, {λ }) + 
X 

λ 
  ∂  

. ϕ(λ, {λ }, {λ }) = 0. (D.9) 

inverse Laplace transforms. More precisely we have in 1D: 2. Parity invariance: For dimensions above 2D, there are other 

nEuler(ρ) = 

∫  
dλρ dλx ∂   exp(−λ ρ + ϕ(λ , λ , λ 

 

 

 

)). 
combinations that vanish such that the expectation values of 

 
It shows that the Euler number density, unlike the extrema den- 
sity in general, depends only on limited information from the 
joint CGF. For the 2D case, the calculations are similar but a bit 

invariance: the expectation of any rotational is expected to 
vanish. It implies that 

more involved, as: 
 

∂2ϕ ∂2ϕ  ∂2ϕ ∂2ϕ   
!

.
 

    

 

 ∫ 
dλ dλ  2 

2  

λy  
∂λxx∂λ 

− 
∂λ2 

.
 = λρ 

∂λx∂λxy 
− 

∂λy∂λxx 

|λi j =0 

× exp(−λρρ + ϕ(λρ, λi, λi j)) , (D.4) 
12 for time translation invariance such processes are called stationary, 
as explored in Adler & Taylor (2009). 

   

T,xU,y T,yU,x (as can be shown by successive integrations 
by parts). For the 2D case, this is the transcription of parity λxx =0 

the Euler number density, taking advantage of its analyticity, it 
is possible to simply re-express it in terms of the CGF through 

ρ) so that the latter can 
1D We then denote λρ, λi, and λi j the conjugate variables to respec- 

which can be derived by integration via: 

=0 gradient and second derivatives: 

2D ∂λ 

ρ ∂λx 
x 

xx 

xx 

,xx ,xx 

Eq. (18). For instance, maxima are obtained when the integral is 
restricted to the regions where all eigenvalues are negative; min- 

= 
∂ρ 

−
∞ 

ρ,x . 

j 
λi j =0 

xx 

∂ 
nEuler(ρ) = 

2π i 2π i 2 πi ∂λxx∂λyy 
− 2 

xy 

c c 
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lants. Hierarchical models are by nature such that 

x c 

0 1 

1 

 

and a similar equation after substitution y      x. We note 
that the left-hand-side of this equation is the operator for the 
computation of the Hessian in 2D. It can be reduced to first 

order derivatives in λi j. Contributions from joint cumulants 
between the density and its first and second order derivatives 
still however contribute to the Euler number density. 

d. Its expression can be derived using the correlation between 
the density and its gradient (again via integration by part) 

ρρ,xx  = −ξ1, ρρ,xxxx  = ξ2, (D.16) 

so that 

3. Rotation invariance: for a sake a completeness one can also 
derive the consequences of rotational invariance. We do it 

here for the 2D case: forcing λxρx + λyρy + λxxρxx + λxyρxy + 
ξ(d) ≈ ξ0 − 

2 
ξ1d2 

 1  
+ 

24 
ξ2d , (D.17) 

λyyρyy to be rotation invariant, a rotation of the coordinate 
system by infinitesimal angle θ leads to 

δλx = −θλy , δλy = θλx , (D.10a) 

where the coefficients ξi are precisely those defined in Eq. (D.1). 
The density gradient is then represented by a finite differ- 

ence (ρi ρ j)/d is the two cells are at a distance, d. The con- 
jugate variable associated with the density gradient, λx, would 

δλxx = −θλxy , δλyy = θλxy , (D.10b) 

δλxy = −2θ(λxx − λxx) , (D.10c) 

so that 

R 
.
ϕ(λ , λ , λ )

. 
= 0 , (D.11) 

then contribute to both λi and λ j with a weight, respectively, of 
1/d and    1/d. In general we then build the multi-values CGF 
as a function of such quantities. To make the construction more 
explicit, we consider the 2D case. To do so we need at least 6 
cells taken from a 3x3 grid. Each λα where α stands for ρ or its 

 

with                    
 
0 0 0 

 1 0 0  0  
λx∂ λy∂ λxy∂ λxy∂ 

! 
λy∂ Lρ =    0   1   0  , L = 

2d 
 −1 0 1  , (D.18a) 

 x   

 

 

Rθ = 

∂λy 
−
 

+ 

∂λx 

∂λyy 
−
 

∂λxx −2 λyy −λxx . 

∂λxy 

0   0   0 
1  0 0 0  0 0   0 

1  0   −1 1  

We now turn by exploring scaling properties of the cumu- 

Lxx = 
d2  1   −2   1  , Lxy = 

d2  0 1 −1  , (D.18b) 

(ρn)c ∼ ξn−1 . (D.12) 

In general, the cumulants of the product of powers of the local density, first and second order derivatives behave like ξsξt ξu 

with a similar definition for Ly and Lyy. Defining the 3x3 matrix 

Lλ = λρLρ + λxLx + λyLy + λxyLxy + λxxLxx + λyyLyy , (D.19) 

where s + t + u = n − 1, if the total power is n 0 1 2 the stationary equations become 

. We note that for 

dimensional reasons, if only the local density and first derivative 

is involved then 

τi = 
X 

ξi j(d)(Lλ) j 
 
1 + τ j/2

  
, (D.20) 

D
ρpρq

E ∼ ξp+q/2−1ξq/2 . (D.13)
 

derivatives contribute through the following pattern 

0 0 0 0 0 0 

4 
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9 

ρ ρ,xx c = −p ρ ρ,x c   
∼ ξ0     ξ1 . (D.14) ϕ(λρ, λi, λi j) = 

i=1 

(Lλ)i (1 + τi/2) . (D.21) 

,i c 0 1 

tives are then obtained via finite differences. More precisely if 

will not change the nEuler of the field, since the signature of the new 

j=1 

It is not possible to give rules when both density, first and second 
order derivatives are present. We can however note that 
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ξ . 

MaTHEMATICA, yielding a rather complex expression. 

− 
x ρ xx 

. (D.22) 

 
1 x ρ 1 xx 2 xx 1 xx 

;  (D.23) ϕ1 − 
(ξ1λxx −1) (ξ1λxx +2) 2 

0 

where (Lλ) j is the jth element of the matrix Lλ. The CGF is then 
expressed as: 

. p 
D 

p−1  2 
E 

p−1 X 
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Finally we conjecture13 that the following scaling is expected, 
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The result is a function of λα and of d, ξ0, ξ1 and ξ2 through 
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D
ρpρ

q 
ρ,i j

E
 

∼ ξp+q/2−1 ξ1+q/2 . (D.15)
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dependen
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can be 
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It is indeed verified in the expressions derived below. 
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D.3. Derivation of join CGF in mean field limit 
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We now turn to writing the joint CGF for a given set of cells. The 
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calculation is based on the mean field solution for a finite number 
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D.4. 1D Euler and extrema counts 
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In 1D, in the low d limit and for ξ0 = 0, the generating 1D func- 
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tion, ϕ1D(λρ, λx, λxx; 0, ξ1, ξ2), takes the remarkably simple form 
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ND 

of: 
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ND 

paired points only differ by one, so their contributions cancel. This in 
turn suggests that ξ2 does not contribute to nEuler. 

of cells assumed to be infinitely close to one another; the deriva- 
2 

 
ξ1λ2 + λ  (2 − 2ξ1λxx) + ξ2λ2  (1 − ξ1λxx)

 
 

two cells are at distance d, we then assume that the average cor- 
relation between the 2 cells, ξ(d), can be expanded in powers of 

13  Indeed, geometrically, adding high-frequency low-amplitude noise 
to a ND field, while creating new extrema, will also introduce saddle 
points along the new persistent ridges (ascending or descending 1D 
manifolds) linking them to existing extrema (Cadiou et al. 2024). This 
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(ξ1λxx − 1) (ξ1λxx + 2) 2 

Taking now advantage of the shifting relation (C.6), we can 
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write, for a general ξ0, 

ϕ1D(λρ, λx, λxx; ξ0, ξ1, ξ2) = 

 2
 
ξ λ2 +λ (2−2ξ λ )+ξ λ2 (1−ξ λ )
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=    

ξ0 
− 

γ1 + λ xy 

.. 
1D 

− 

ρ, ρx = = 
2πi 

xx   ,xx χ1D ρ λxx
 1 g1 g2 2 1 2 

0 1 2 
1   

Λ1ξ1  + 1   2 

γ2 

2 

2 1 3 1 1 1 

 

Equation (D.23) displays advantageous properties to complete 
the computation of number density of extrema. We indeed have: 

This is to be contrasted to the number density of Euler points in 
the Gaussian limit, which reads 

ϕ1D

 
λρ, λx, λxx; ξ0, ξ1, ξ2

 
=    

√ 
(1 

 

)e
− (ρ−1)2 

 
 ! nGaussian( )  

 

ξ1 − ρ 
 

 

2ξ0 (D.34) 

ϕ1D λρ + 
ξ1λ2 2 (1 − ξ1λxx) 

, 0, λxx; ξ0, ξ1, ξ2 , 1D ρ = 
, 

2πξ3/2 

which leads naturally to the change of variable 

ξ1λ2 
 

 

(D.24) 
which can also be obtained from more direct calculations (see, 
e.g. Bardeen et al. 1986). In general, it is of interest to be able to 
distinguish between the number counts of maxima and minima 
separately. This can be achieved via specific integration path in 

λe = λρ + x 

2 (1 − ξ1λxx) 
, (D.25) 

the complex plane as follows 

when computing the inverse Laplace transformation over λx, 
necessary for the joint PDF, Eq. (C.20). We are left with n±

1D(ρ) = 
+i∞±s dλxx   1   

2πi λ2 

 
χ1D(ρ; λxx) , (D.35) 

 
P(ρ, ρx = 

 
0, ρ,xx) 

∫  
dλe dλxx (1 − ξ1λxx)1/2 

 
 

 
where χ 

−i∞±
s 

(ρ; λ 

xx 

) is given by Eq. (D.31), while s is a nega- 

2πi 2πi 
,

2πξ1ρ 1D xx 

× exp (−λeρ − λxxρxx +ϕ1D ({λe, 0, λxx} , ξ0, ξ1, ξ2)) . (D.26) 

We   can   further   note   that   the   dependence   in   λe   in 

ϕ1D ({λe, 0, λxx} ; ξ0, ξ1, ξ2)   now   takes   a   very   simple   form 

tive real constant for maxima and a positive real constant for 
minima14. This quadrature, together with its Euler counterpart, 
Eq. (D.33), is one of the key result of this paper. 

D.5. 2D Euler and extrema counts 

ϕ1D ({λe, 0, λxx} ; ξ0, ξ1, ξ2) = −
 2 

with 

    ac(λxx)  
+ , (D.27) 

λc(λxx) − λe 

In 2D, it is best to re-organise the field variables. Indeed it is well 
known that while ρx and ρy form a vector field, κ = (ρxx + ρyy)/2 
is a scalar field and γ1 = (ρxx ρyy)/2 and γ2 = ρxy form a spin-2 
field. It is then worth defining the CGF for those quantities and 

ac(λxx) = 
(ξ1λxx + 2) 2 

 

2 
0 

, (D.28) 
so to write it as a function of the conjugate variables of those 
components, that is, respectively λρ, λg1 , λg2 , λκ, λγ1 , and λγ2 . 
Furthermore, because the CGF must be rotationally invariant, it 

λc(λxx) = 
  1  

(ξ1λxx + 2) 2 − 
ξ2 

λ2 . (D.29) can be expressed in terms of the following scalar quantities: 

2ξ0 2   xx 

Λ1 = λ2 + λ2 , (D.36a) 
The integral over λe in Eq. (D.26) can then be done with the g1 g2 

use of Eq. (C.22). It leads to the following expression (for the 
continuous, non singular, component) 

Λ2 = λκ = λxx + λyy , (D.36b) 

Λ3 = λ2 2  = (λxx − λyy)2 + λ2  , (D.36c) 

 

P( 0 ) 

∫ 
dλxx e−λ ρ 

 
( ; ) 

 

(D.30) 
Λ4 = λγ (λ2  − λ2 ) + 2λγ λg λg . (D.36d) 

where 

2 
√

2 

 
 

 
1/2 2 

Following the same steps as in 1D, using MaTHEMATICA to com- 
pute the small d limit of the solution of the system of Eqs. (D.20), 
relying on the shifting relation (Eq. C.6) and re-expressing the 

χ1D(ρ; λxx) = 
ξ2 

√
πξ ρ

(1 − ξ1λxx) (1 + ξ1λxx/2) × (D.31) resulting generating function in terms of the Λis, the final result 
0 1 for the generating function is expressed as: 

exp 

 

− 
 2 

+ 
ρξ2 

λxx − 
2ρ

(1+ξ1λxx/2)2

!

0 F̃12; 
4ρ 

(1 + ξ1λxx/2)2  . 
 

 

  

 

 λ + 1
 

2Λ2 + Λ 
 
ξ 

 
 

ξ0 2 ξ0 ξ2 (λ , Λ ; ξ , ξ , ξ ) = ϕ  
1 3 2 

extrema of the various kinds. The Euler number density is obtained from the computation of Eq. (D.3) which can be 
 

 

–
 ξ1 (Λ2 (Λ1ξ1 − 2) − Λ4ξ1) 

; ξ  . (D.37)
 

 

 
Λ1 ξ1   + 1

  
2 
  

Λ2 − Λ  
  
ξ2 − 4Λ  ξ  + 4

    0
 

nEuler(ρ) = 
∂ 

∂λxx 
λxx =0 

χ1D(ρ; λxx) . (D.32) 

The calculation of the number density of extrema also follows 
the same steps as for the 1D case. We first remark that 

 

ϕ2D 
 
λρ, Λi

  
= ϕ2D (λe, Λ1 = 0, Λ2, Λ3, Λ4 = 0) , (D.38) 

This finally leads to the following remarkable closed form 
expression for the 1D Euler number density of Levy flights with 

 
 Euler 

, 
2ξ1 

 
2(ρ+1) 

e ξ0 
 

λe = λρ + ξ1(−2Λ1 + ξ1Λ1Λ2 − ξ1Λ4) 
 

 

 
, (D.39) 

n1D   (ρ) = 
3

   −4 + 4ξ1Λ2 + ξ2(Λ3 − Λ2) 
πρ ξ

0 
1 2 

 ̃

 4ρ  

 

 

 ̃

 4ρ  

 

0 

obtained directly via the derivative of χ1D(ρ, λxx) defined in 
(D.31) with respect to λxx at position λxx = 0, 

i ρ ϕ2D 0 

We are now in position to compute the number densities of 

0 

x 

∫ 

ξ 

, ρxx , 

ρ 6 
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× 2ξ0 0F1 1; 

ξ2  − (ξ0 + 4ρ) 0F1 2; 
ξ2  

. (D.33) 

integration around the origin which gives the back the Euler number 

0 
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a ( 
1   2 

, 

i 

i 
. 

   

 
i j  λxy/ yy yz  

0 

 − 
i j 

0 

dλe dλi j 1    2 1 2 3  
n n n n 

 e i j i j e 2 3 

 

– γn )e κ 1 γ1 2 γ2 

2ξ0 

2D e 2 3 
ξ0 λc(Λ2, Λ3) − λe n2D (ρ) = 

2π (λ2 + λ2)5/2  
χ2D(ρ; Λ2, Λ3) , 

ξ0 2 12 2 

1   , 

2D n 

 
.
 

πξ4ρ 

ξ0 
 

ρ 

0 

1  
ξ2 
 

λ  =  2  λ λ /2 
λxz/2 λyz/2  λzz 

0 0 0 1  
ξ2  X X 

iJ iJ jJ 

λi = RiJ λ̂,iJ , (D.53) 

, (D.54) 

λi jρ = λR ρ . (D.55) 

 

which allows us to integrate over λg1 and λg2 . This leads to the 
joint PDF, 

The computation of extrema number densities in 2D require us to 
distinguish the signs of the eigenvalues of the Hessian. In prac- 
tice that means one should be able to split the integral over κ into 

∫ . 4 − 4ξ Λ + ξ2(Λ2 − Λ )
 1/2

 
3 domains, κ < −γ , −γ < κ < γ and κ < γ . We first note that 

 
2πi 

i j
 2πi 4πξ1ρ ∫ γ

n 
2

 2  iκλ 

4 
,
 π 

  

3/2 

× exp −λ ρ − 
X 

λ  ρ  + ϕ (λ , 0, Λ  , Λ  , 0)  . (D.40) 

dκ(κ −γn 
– γn )e 

κ = 
3
 

κ 2 
(γnλκ) J3/2 (γλκ) , (D.49) 

Then, defining: 

 
 

 

∫ 
2  

∫ γ
n

 
2 2  iκλ +iγ λ +iγ λ 

(ξ Λ + 2) 2 
c Λ2) = 

ξ2
 

R2 

,      (D.41) 
−γn    −8π 

π
 

 

 

∫ ∞ 

dγ γ5/2 J 
 
γλ 

  
J (γλ ) , 

1 λ (Λ , Λ ) = 
0 (ξ Λ 

+ 2)2 − 
ξ2 

(2  2 
 

 

) , (D.42) 
= 

2λ3   0 
 

  
0 γ 3/2 κ 

c 2 3 1   2 Λ2 + Λ3 = −12π(λ2 − λ2)−5/2 , (D.50) 

allows us to rewrite ϕ2D in Eq. (D.37) as: which leads to the following quadrature for the extrema counts 

ϕ (λ , 0, Λ , Λ , 0) = −
 2

 +
 ac(Λ2) 

. (D.43) 
 

extr. 

∫ +i∞+sdλκ 
∫ ∞dλγ 12πλγ  

 

 
    

Then we can carry out the integration over λe in Eq. (D.40) with 
the help of Eq. (C.22). This leads to the following expression 
for the joint PDF 

where s is a negative real constant for maxima and a positive 
real constant for minima. This double quadrature, together with 
its Euler counterpart (D.47), is also one of the key result of this 

P(ρ, ρ = 0, ρ ) = 

∫ . dλi j 
e−λi j ρ,i j χ (ρ; Λ , Λ ) , (D.44) paper. 

i 

 

where 

,i j 

i j  
2πi 

2D 2 3 
 

D.6. The 3D Euler and extrema counts 
The 3D Euler and extrema counts can be similarly derived, 

(Λ2ξ1 + 2) 2 

, 
Λ2 − Λ3

  
ξ2 − 4Λ2ξ1 + 4 

 
 

although the calculation is somewhat more sophisticated. To sort 

χ2D(ρ; Λ2, Λ3) = 2 1 4πξ2ξ ρ out the results, we strive to take full advantage of the rotation 
0 1 invariance of the result and to be a bit more precise. The quanti- 

× exp

 

−
 2

 

ρ 

( 
Λ2ξ1 

+ 1

! 
2 −

 1 
2Λ2 + Λ3

 
ξ0ξ2

) 

+ 1

!!

 ties, ρ, ρ,i and ρ,i j form respectively a tensor of rank 0, 1, and 2 

 

F̃  2; 
ρ (Λ2ξ1 + 2) 2  (D.45) 

to  derive the  conjugate  expression λ̂i  and  λ̂i j  of  the quantities 

 
that has to be integrated over λκ, λγ1   and λγ2 . In the following 
we note γ the two component vector (γ1, γ2) and γn its norm, 

 
 

ρ̂,i = Ri ρ,iJ  , ρ̂,i j = Ri R j ρ,iJ jJ  . (D.51) 
γ   =   

,
γ2 + γ2. We also note λ   ≡  

,
λ2   + λ2  . The resulting We should have 

n 1 2 γ γ1 γ2 X X 
ˆ 

X X 
ˆ
 

number density of Euler points follows through differentiation 

nEuler(ρ) =

∫ 

dκ d2γ (κ2 − γ2) P(ρ, ρi = 0, ρi j) 

λiρ,i = 
i 

 

 

λiρ̂,i , 
i 

 
i≥ j 

λi jρ,i j =  
i≥ j 

λi jρ̂,i j. (D.52) 

  
  ∂ 

!2 
 

 

  
  ∂ 

!2 
 

 

  
  ∂  

!2
 

Eq. (D.52) ensures that 
 

λρ=λγ1 =λγ2 =0 

which after some algebra yields the following final closed form 
for the 2D Euler count of Rayleigh-Levy flights 

making clear that λi is a rank-1 co-tensor. This is not the case 
for λi j as the sum in Eq. (D.52) excludes repeated symmetric 
quantities. We are then led to define 

– 2(ρ+1)       

    

 
λ
 λ  /2   λ /2  

 

nEuler( ) ξ1e − 
ξ0           

(
 

 

 

8 ) F˜ 
1;  

 

 
xx xy xz 

R   

– 
 
2ξ ρ + ξ2 + 8ρ(ρ + 1)

   
F̃  2; 

4ρ 
 , (D.47) 

so that 
 

to be once again contrasted to the Gaussian counts i≥ j 
,i j i j ,i j 

i j 

 
nGaussian(ρ) = − 

ξ1e 
(ρ−1)2 

 

2ξ0 

√ ξ0 − (ρ − 1)2 
5 2 

 
. (D.48) 

It is then clear that λR transforms as a rank-2 co-tensor. From the 

0 

0 

4ρ 
= ρ 2D 

∂λγ1 ∂λκ 

Replacing 

with respect to coordinate changes R 
j
. Therefore we would like 

κ γ 0 2πi −i∞+
s 

κ γ 6 

κ 

λ 
− 

ξ 

= 

P(ρ, ρi = 0, ρi j ) = 

i j 

2D which implies that 

d γ dκ(κ 

× 0 2 
0 

obtained after a change of coordinates, 

ρ̂,i   by  its  expression  in  the  right  hand  side  of 

− − 
∂λγ2 

χ2D(ρ; Λ2, Λ3) , (D.46) 

ξ0 + 
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definition of E q. (B.5), the CGF itself is also clearly invariant 
2D 

2
 2π3/2ξ / under rotations. We then expect it to depend on combinations 
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i j 

ii 

. . .
 .

→
 

3 i j i j 
i j Using the same approach as before we can then derive joint CGF. 

An intermediate result is given by the expression of the following 

1 5 2 1 2 2 5 

+ξ 

ξ (d)λ2 + ξ λ2 + ξ λ3 

– 2λ λ 

ρ 2 ρ 2 

3 3 

2 1 2 1 

2 1 2 1 

. 

∂ 

 

of λi and λR that are scalar invariant. Eventually we found the 

expression of the CGF to depend on the following six invariant 

quantities 

Λ1 = 
X 

λiλi ,   Λ2 = 
X 

λR , (D.56a) 
 

 

in the large separation limit. To carry out the calculation, we 
define ξ1(d) and ξ2(d) as, respectively, the first- and second- 
order derivative of the filtered densities at distance, d, and Taylor 
expand w.r.t. d as: 

δl 

Λ  = 
X 

λR λR , Λ 

i 

= det 
.
λR 

. 
, (D.56b) 

ξ(d + δl) ≈ ξ0(d) + δl ξ1(d) + 
2 

ξ2(d). (E.2) 

Λ5 = 
X 

λR λiλ j , Λ6 = 
X 

λR λiλR λk , (D.56c) quantity    
 

i j i j jk 

i j i jk 
c 

with 

ϕ (λρ, λx, λxx) ≡ 
∂µ

 

ϕ(λρ, λx, λxx; µρ) 

ϕ   (λ , Λ ; 0, ξ , ξ ) =
n
2ξ3 

 
12Λ  λ +Λ2 (2Λ  ξ −3Λ  )+4Λ  Λ  ξ 

  
n 

.
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1 4   ρ 2 4 2 1 
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3 ρ 3 2 −ξ (d)λ 
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2) + ξ2λ2 (ξ (d)λ  + 3) + ξ (d)ξ λ2 

+4ξ1 
 
6Λ2λ +Λ3ξ2 +2Λ3Λ2ξ2 −3Λ1
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∫ . . . . .     

2 2 

x xx 1 xx 1 xx 

0 2 xx 

More generally we expect that Eq. (30) holds. We note that the 
correction fully factorises in variables of each type. 

b ρ, ρ,i = , ρ,i j = 
2πi (2πi)D 

i j 
2πi 

ϕ
 
λρ, λi , λi j 

ρ 

} 

1 x   1   xx 

1 xx     2 

xx 0 
} 

2 xx 

/ 
n
6Λ2Λ4ξ5 + 3Λ2 

 
−Λ3 + Λ3Λ2 + 8Λ4

  
ξ4 − 24 

−2ξ2(d)λxx + 2ξ0λρ + ξ1 λxx  − ξ0ξ2λxx  − 4 

– 
 
3 

 
2Λ3 −4Λ2Λ3

  
−24Λ4

  
ξ3 +

 
6Λ2 +12Λ3

  
ξ2

} 
, (D.57) 

, n
2ξ0λρ + ξ0ξ1 

 
λ2 + ξ2λ3  − 2λρλxx

  
+ ξ3λ3  + 3ξ2λ2 
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0 

(|∇ | ) 

×  0 0 0    0 1  
ξ2 

 

− 0 0 0 1  
ξ2  

The computation of the expected correlations of extrema is based 
on the derivation of the joint CGF for the density and its gradi- 

ξ 

and 
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0 

ρ − 

ϕ3D(λρ, Λi; ξ0, ξ1, ξ2) = ϕ1(ϕ3D(λρ, Λi; 0, ξ1, ξ2); ξ0). (D.58) 
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As in 1 and 2D, the integral over λi and λρ can be carried out 
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−ξ ξ λ2  − 4 
2  

, (E.3) 
which in principle can be used to build cross matter-extrema 

correlations at any separation15. It is worth investigating this 
expression in the large separation limit. We assume that ξ0(d), 
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explicitly. The computation of the Euler number density from 
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Eq. (18) relies on the following rules for the integration over 
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λi j: det ρ,i j det ∂/∂λi j , identifying λi j and λ ji. After some 
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significant algebra, we eventually get 
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ξ1(d) and ξ2(d) are all small quantities. We can further note that 
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ξ2(d)ξ0 ξ0(d)ξ2 if d is much larger that the smoothing scale. 
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We can then observe the following property in the large separa- 
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+ ϕ(λρ, λx, λxx) ξ0(d) ϕ1(µρ) . (E.5) 

tion limit, 
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) = 1 + ϕ(λ , λ , λ 
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nEuler( 

e ξ0      (ξ1ρ) ρ x xx ρ x xx 0 ρ x xx 3D ρ) = − 
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√
2π3/2ξ5ρ3 
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And more generally we 
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can explicitly verify that 
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6ξ2ρ + 16ξ ρ + 3ξ3 + 32ρ2(ρ + 3)

   
F̃  2; 

4ρ
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ϕ(λρ, λx, λxx; µρ) = ϕ(λρ, λx, λxx) + ϕ1(µρ) 
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16ξ ρ(3ρ + 1) + 3ξ3

   
F̃  1; 

4ρ 
 , (D.59) 

This is a property which is generic to MTM (Bernardeau 2022). 

while the corresponding Gaussian limit is expressed as: In the large separation limit, the two-point number densities 
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of critical points has correspondingly the following functional 
3/2( 

1)e
− (ρ−1)2     

(
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nGaussian(ρ) = − 
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. (D.60) n 
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This completes our results regarding Euler number densities. 
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We note that the 1D, 2D, and 3D results are strikingly similar. 
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Their Gaussian limit is consistent with the results presented in 
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(Codis et al. 2013), noting that ξ1 = ρ 2 /3 and that the Euler 
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characteristic and the genus differ by one integration. 
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where bcrit.(ρ) is defined by 
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bcrit.(ρ)ncrit.(ρ) = dρ,i jSgn ρ,i j det ρ,i j Pb ρ, ρ,i = 0, ρ,i j , 
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(E.7) 

where Sgn 
.
ρ,i j

. 
is given in Eq. (18) and we have 
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Appendix E: Extrema correlation P 0 

∫ 
dλρ

∫  
dDλi 

∫ . dλi j {  } { }
 
 

ents at finite distance, 

× exp −iλ ρ − i 
X 

λ  ρ   + ϕ 
 
λ , {λ }, {λ }

 
 . (E.8) 

ϕ
 
λρ, {λi}, {λi j}; µρ, {µi}, {µi j}

 
. (E.1) 

 
i j 

i j ,i j ρ i i j 

What makes its estimation complicated is that it depends not 
only on the distance, d, but also on the ratio of d with the smooth- 
ing scale, R. It is however possible to get a simple expression 

The calculation then follows the same articulation as before. 
15 In practice however the inverse Laplace transformations have to be 
done numerically. 
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E.1. 1D bias asymptotic 

For the 1D case we are led to 

∫ 

  

which, after some algebra, leads to the bias factor 

 

2ξ e
− 2(ρ+1)   

   

 
 

  
  

 

 
4ρ
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F˜ 2; . (E.13) 
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× exp 
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! 

(E.10) 
The expressions (D.31), (D.45), (E.10) and (E.12) are the central 

ξ0 2 ξ0 building blocks for the construction of the extrema correlations 

× ξ0 0 F̃1 1; 
4ρ 

(1+ξ1λxx/2)2 − 2 0 F̃1 2; 
4ρ 

(1+ξ1λxx/2)2  

that derives from the use of Eqs. (C.22) and (C.23). It leads to 
the expression of the biased number density of Euler numbers 
and of maxima. We thus have 

 
 

for the 1D and 2D cases. 

 
Appendix F: Gaussian CGFs 

The cumulant generating functions in their Gaussian limits the 
take the following form: 

b1D    ( 1D 
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e ξ0 
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πρ 4 
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which gives the behaviour of the large scale bias factor. ϕGaussian(λ , λi, λi j)
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E.2. 2D bias asymptotic 2D ρ 
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