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Dual-Hemispherical Photometric Visual Servoing

Nathan Crombez1, Jocelyn Buisson1, Antoine N. André2, Guillaume Caron2,3

Abstract— It is well established that wide field of view
cameras, as well as using the whole photometric information
contained in images, offer many advantages for visual servo-
ing. Therefore, we propose to extend the photometric visual
servoing to full spherical cameras. More precisely, we are
dealing with 360-degree optical rigs composed of two wide-angle
lenses oriented in opposite directions that capture everything
around the device in one acquisition. The photometric visual
feature coupled to dual-hemispherical acquisitions that contain
the whole surrounding scene provide useful complementary
information, showing large convergence domains, straighter
camera trajectories than with a single hemispherical camera,
and high accuracy. We report thorough simulations and several
challenging real experiments using a 6 degrees-of-freedom
robotic arm controlled from dual-hemispherical acquisitions.

I. INTRODUCTION

A. Motivation

Unconventional cameras, such as event cameras, polariza-
tion cameras, light-field cameras to name but a few, have
made significant contributions to the field of robotics by en-
hancing perception systems, and thus improving performance
and autonomy of robots in various domains. Among these
unusual imaging devices, wide-angle acquisition systems are
very interesting for robot perception since capturing a large
view of the surroundings allows obtaining a comprehensive
awareness of the environment in a few or even a single
acquisition. This is useful for numerous robotic applications
where a wide field of view (FoV) increases the chances to see
reliable visual information and are thus studied for various
tasks such as object detection [1], obstacle avoidance [2],
navigation [3], localization and mapping [4] or visual ser-
voing (VS) [5]. The latter is a technique used to control
the motion of a dynamic system, such as a robot, using
visual information as feedback [6]. The robot velocities are
iteratively computed in order to guide it to a specific pose
in the workspace, generally by minimizing an error between
current visual features and desired ones.

The VS problem has been very well studied over time.
Various modeling for different types of cameras have been
developed. It has been demonstrated that a wide-angle cam-
era of an approximately hemispherical FoV offers several
advantages, such as robustness to occlusions and convergence
domain enlargement [7]. In parallel, various visual features
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have been proposed. Dense visual features, i.e., features that
use the whole photometric information of the images by
exploiting all their pixels, provide numerous benefits, such as
a high accuracy at convergence without the need of extracting
and tracking geometric features [6]. In this work, we combine
the potential of those considerations, extending the entire
photometric information to the whole 360-degree FoV.

There is a variety of acquisition systems designed to
capture a 360-degree view. A camera mounted on a mo-
torized pan-tilt head can successively acquire a series of
different shots in order to cover an entire scene. High-quality
panoramas in terms of size and resolution are thus made,
but the acquisition duration is not suitable for VS. Other
optical rigs use multiple synchronized cameras positioned
strategically to capture a full sphere of images. Obviously,
the smaller the FoV of each camera, the more cameras are
needed to cover the entire scene. In our context, we are
interested in systems composed of the smallest number of
cameras because they are more compact, and therefore easier
to attach to a robot. Thus, in this work, we use an optical
rig composed of two fisheye wide-angle lenses oriented in
opposite directions (Fig. 1a). An acquisition with this kind
of device produces a synchronized pair of hemispherical
images (Fig. 1b) that are often stitched together to build an
equirectangular representation of the captured scene [8]. In
our case, we directly work on the Dual-Hemispherical (DH)

(a) (b)

Fig. 1: Dual-Hemispherical camera: (a) a sketch of a 360-
degree optical rig composed of two back-to-back fisheye
wide-angle lenses, (b) an example of a captured image pair.



acquisition in order to save processing time and work with
the raw captured pixels.

B. Related works

1) Visual Servoing with a camera of hemispherical FoV:
Due to their very large FoV, fisheye and catadioptric cameras
have attracted interest for robot VS when large rotations are
needed. Indeed, such large rotations can prevent cameras of
conventional FoV to perceive the visual features correspond-
ing to those of the desired image. Hence, VS with cameras
of hemispherical FoV was formulated for features such as
points [9], lines [10], [11], and spherical objects [12] that
must be detected and matched between the current image
and the desired one for the control law to be computed.

Perspective, catadioptric, and some types of wide-angle
cameras, including hemispherical cameras having a single
viewpoint, can be modeled with the Unified Central projec-
tion Model (UCM) [9]. It describes the image geometrical
formation by projecting the scene on a unit sphere, then to the
image plane. The UCM, thanks to the sphere of projection
it involves, brings interesting control properties decoupling
the degrees of freedom for point-based VS [13], [14], thus
overcoming the interest of seeing wider with a hemispherical
camera than a conventional one.

2) Hemispherical Photometric Visual Servoing (HPVS):
The visual feature of lowest level in the VS literature is
the direct use of pixel brightness as input to the control
law. The seminal work of photometric VS for hemispherical
camera [7] controls the robot embedding the camera in order
to regulate to zero the pixel-to-pixel differences between the
current and the desired images (Sum of Squared Differences
of brightness, SSD). The major interests of HPVS are its high
accuracy at convergence and the absence of feature detection
and matching. Other ways to compare the current image
brightness to the desired ones have been researched to reach
a higher robustness to scene changes than with the SSD, e.g.
with the Normalized Mutual Information [15]. However, the
convergence domain remains tight.

More recently, transforming the images as dense Pho-
tometric Gaussian Mixtures could enlarge significantly the
convergence domain of the direct alignment of hemispherical
images to dense colored 3D point clouds [16] but the
computation complexity currently confines that visual feature
to offline alignment, thus preventing its use in real-time VS.

3) Visual Servoing with multiple cameras: The most
obvious use of multiple cameras on a robot for visual
servoing is to bring sensing redundancy to reconstruct the 3D
coordinates of geometric features. For instance, the depth of
feature points [17] or of the centroid of a segmented image
region are computed from stereo-vision using from two [18]
to arrays of up to nine conventional cameras mounted on
the end-effector of a robot arm [19] to deal with occlusions.
A combination of four static color-depth (RGB-D) sensors
pointing to the robot arm end-effector workspace and a stereo
camera mounted on the arm [20] has also been researched for
avoiding occlusions for VS in the context of manipulation.

Of course, several cameras can also be installed without
overlapping their FoV and used for visual servoing too.
However, the classical use of cameras of conventional FoV
combined with the need for the visual features corresponding
to the desired ones to stay in each FoV, the more the con-
ventional cameras, the tighter the convergence domain [21].

C. Contributions

The central idea of this work is to exploit a maximum
of direct visual information around a robot for its VS
control. To achieve this, we modeled and developed the Dual-
Hemispherical Photometric Visual Servoing (DHPVS). This
letter describes the following contributions:

• DH camera modeling,
• explicit formulation of DHPVS features and interaction

matrix,
• experimental demonstration of the effect of the 360-

degree vision on robot behavior and trajectories.
The proposed method is evaluated and compared with state-
of-the-art wide-angle photometric VS on a 6 degrees-of-
freedom robot arm through thorough simulations and several
challenging experiments.

D. Outline

The remainder of this letter is organized as follows.
Section II introduces the modeling of the DH camera. Then,
Section III presents the formulation of DHPVS including
the visual feature modeling III-A and the interaction matrix
modeling III-B. The validation of the method in simulation is
presented in Section IV. Experimental results on a real robot
including comparative, qualitative and quantitative evalua-
tions are presented in Section V. Finally, conclusions and
future works are described in Section VI.

II. DUAL-HEMISPHERICAL CAMERA MODELING

A. Extrinsic modeling

Each of the two wide-angle cameras has its own or-
thonormal frame (Fig. 1a), respectively Fc1 and Fc2 . A
unique orthonormal frame FΘ is also considered for the
whole DH camera. The pose of each wide-angle camera
ci, i ∈ {1, 2} with respect to the frame FΘ is defined by
a 4× 4 homogeneous matrix:

ciM̃Θ(4×4) =

[
ciRΘ(3×3)

citΘ(3×1)

0(1×3) 1

]
, i ∈ {1, 2}, (1)

where ciRΘ ∈ SO(3) is a rotation matrix and citΘ ∈ R3

is a translation vector. Note that the notation �̃ indicates an
element expressed using homogeneous coordinates.

In the following, a pose is also represented with its
minimal form, e.g., r = (t, θw) where t describes the
translation part, while the rotation part is expressed under
the form θw, where w represents a unit rotation-axis vector
and θ a rotation angle around this axis.

An acquisition with the DH camera at pose rΘ is noted:

Θ(rΘ) = {Ic1(r1), Ic2(r2)}, (2)



where Ic1 and Ic2 are respectively the hemispherical images
captured by the wide-angle cameras c1 and c2. The poses r1
and r2 are thus rigidly linked to the pose rΘ with the trans-
formations c1M̃Θ and c2M̃Θ (Fig. 1a). Both hemispherical
images Ici , i ∈ {1, 2} have the same size, each pixel has a
location u = [u, v]⊤ and an intensity noted Ici(u).

B. Intrinsic modeling

We use the UCM (Sec. I-B.1) to describe independently
each hemispherical camera constituting the whole DH ac-
quisition rig. According to the unified central projection
model, a 3D point ciX = [ciX, ciY, ciZ]⊤ expressed in the
coordinates system of either the wide-angle camera c1 or
c2, is first projected on a unit sphere Si, centered at the
projection center ci:

ciXS =

ciXS
ciYS
ciZS

 =


ciX
ρ

ciY
ρ

ciZ
ρ

 , (3)

where ρ =
√

ciX2 + ciY 2 + ciZ2. The spherical point ciXS
is then projected on the camera sensor plane by a perspective
projection considering a distance ξ between the unit sphere
center and the second perspective projection center:

x =

[
x
y

]
=

[
ciXS

ciZS+ξ
ciYS

ciZS+ξ

]
=

[
ciX

ciZ+ξρ
ciY

ciZ+ξρ

]
. (4)

Finally, the image point is obtained following the classical
sensor to image conversion:

ũ =

uv
1

 =

αu 0 u0

0 αv v0
0 0 1

xy
1

 = Kx̃, (5)

where αu and αv are respectively the horizontal and vertical
generalized scale factors, and where u0 and v0 are the coordi-
nates of the principal point in pixels. Therefore, in this work,
we describe the whole DH camera by two separate sets of
intrinsic parameters ki = {αui

, αvi , u0i , v0i , ξi}, i ∈ {1, 2}
and two rigid transformations ciM̃Θ, i.e., one for each wide-
angle camera (Fig. 1a).

III. DUAL-HEMISPHERICAL PHOTOMETRIC VISUAL
SERVOING

The core of a VS scheme is the interaction matrix Ls that
relates the time variation of the considered visual features s
to the camera velocity v, similar to ṙ as defined by [6]:

ṡ = Lsv. (6)

In this work, v is computed by iteratively minimizing the
visual differences between DH acquisitions captured during
the visual servoing and a desired DH acquisition captured
beforehand. This section defines both the considered photo-
metric DH visual feature and its related interaction matrix.

A. Dual-hemispherical photometric visual features

As explained before, a DH acquisition is considered as a
pair of hemispherical images. In order to leverage the entire
information they contain, and to avoid any image processing
to extract and match sparse visual features between two
pairs of wide-angle images, we propose to use the whole
DH photometric information as a dense visual feature. The
proposed visual feature is the stacking of every pixel intensity
of both hemispherical images Ic1 and Ic2 such as:

s = ¯̄Θ =

[
Īc1
Īc2

]
=



Ic1(u0)
Ic1(u1)

:
Ic1(uW−1×H−1)

Ic2(u0)
Ic2(u1)

:
Ic2(uW−1×H−1)


, (7)

with W and H , respectively, the width and height of both
images and where the camera poses are omitted for com-
pactness. The overline symbol �̄ denotes a vectorization, and
¯̄� denotes a stacking of vectorizations.

The error that has to be regulated to zero is then given by:

e = s(r)− s∗ (8)

= ¯̄Θ(r)− ¯̄Θ∗, (9)

where �∗ denotes the desired set of visual features, i.e., the
stacking of the vectorization of both hemispherical images
acquired at the desired pose r∗.

From equations (6) and (9), a classical Gauss-Newton
scheme can be used to design the control law to regulate
to zero the DH photometric error, leading to:

v = −λL†
Θe, (10)

where λ ∈ R is a positive scalar that tunes the decrease rate
of the error and where �† denotes the matrix pseudo-inverse.
The modeling of the interaction matrix LΘ that links the
variation of all pixel intensities contained in the overall DH
acquisition Θ to the camera motion is detailed hereafter.

B. Dual-hemispherical photometric interaction matrix

If we consider that c1 and c2 are two independent wide-
angle cameras, equations (6) and (7) could lead to:[

˙̄Ic1
˙̄Ic2

]
=

[
LIc1

0
0 LIc2

] [
c1v1
c2v2

]
, (11)

where c1v1 and c2v2 are the velocities of respectively cam-
eras c1 and c2 expressed in their own frame. The interaction
matrices LIci

, i ∈ {1, 2} are built from the dense photometric
features contained in the images Ici . Each of these Jacobian
matrices are composed as follows [7]:

LIci
= −∇IciLuciLxci , (12)

where:
∇Ici =

[
δIci
δu

]
=

[
δIci
δu

δIci
δv

]
(13)



are spatial gradients approximated with finite differences
(i.e., convolution with differentiation kernel), where:

Luci =

[
δu

δx

]
=

[
αui

0
0 αvi

]
, (14)

with αui and αvi are the generalized scale factors defined in
Section II-B, and where:

Lxci =

[
δx

δri

]
=

[
− 1+x2(1−ξ(α+ξ))+y2

ρ(α+ξ)
ξxy
ρ

αx
ρ

ξxy
ρ − 1+y2(1−ξ(α+ξ))+x2

ρ(α+ξ)
αy
ρ

xy − (1+x2)α−ξy2

α+ξ y
(1+y2)α−ξx2

α+ξ −xy −x

]
(15)

are the interaction matrices that relate the points variation in
the sensor frame with respect to the wide-angle camera pose
variation with α =

√
1 + (1 + ξ2)(x2 + y2). The points

distance ρ involved in the computation of the interaction
matrices is actually unknown. Practically, a single constant
value is generally used for every pixel [7].

In our case, the two wide-angle cameras are not inde-
pendent since they belong to a same 360-degree optical rig.
Then, the camera velocities c1v1 and c2v2 can be expressed
in the same reference frame such as the frame related to the
whole system FΘ (Fig. 1a) leading to a single velocity vector
Θv. Assuming that the DH camera is fully calibrated, it is
possible to express c1v1 and c2v2 with respect to FΘ:

Θv =

{
ΘVc1

c1v1

ΘVc2
c2v2

, (16)

where ciVΘ are twist transformation matrices such as:

ciVΘ =

[
ciRΘ [citΘ]×

ciRΘ

0 ciRΘ

]
, i ∈ {1, 2}, (17)

in which [citΘ]× are the skew symmetric matrices of the
translation vectors citΘ.

Injecting equation (16) in equation (11) and after rear-
rangements, we obtain:[

˙̄Ic1
˙̄Ic2

]
=

[
LIc1

c1VΘ

LIc2
c2VΘ

]
Θv, (18)

Consequently, the interaction matrix that relates the variation
of pixel intensities of a whole DH acquisition with respect
to the camera motion is:

LΘ =

[
LIc1

c1VΘ

LIc2
c2VΘ

]
. (19)

LΘ allows computing the single Θv the way recommended
by previous works [18] that shown the independent use of
images of multiple cameras to compute a single velocity
vector without considering the frame change between the
cameras can lead to uncontrolled motions.

IV. EVALUATION IN SIMULATION

We first validate and evaluate the proposed DHPVS in
simulation. A DH camera is simulated within a synthetic
environment using the game engine Unity [22]. The 3D
virtual environment is a house interior made up of several
rooms containing different furniture, decorations and lights
(Fig. 2a). The virtual DH camera consists in the simulation of
two wide angle cameras rigidly linked to a common reference
frame. A wide angle image is obtained by first projecting
the surroundings onto a unit sphere, and then rendering
this sphere with a dedicated fragment shader. This process
reproduces the unified central projection model, and thus,
produces images with wide-angle distortions (Fig. 2b). Each
camera of the virtual DH rig has its own configurable set of
intrinsic parameters ki (see Sec. II-B).

(a) (b)

Fig. 2: Simulation: (a) the 17 desired poses randomly dis-
tributed throughout the synthetic environment used in the
experiments, and (b) a sample of a synthetic DH acquisition.

In order to evaluate the contribution of using the whole
surrounding acquisition as visual features, we compare DH-
PVS to single camera Hemispherical Photometric Visual
Servoing (HPVS) [7] using either, camera c1 only (HPVSc1 )
or camera c2 only (HPVSc2 ). Despite the availability of all
the depths in simulation, we used the same depth value
(ρ = 1.0m) for every pixel to compute the interaction matrix.
This choice is made to be in the same conditions as for real
experiments where the depth is unknown (Sec. V). HPVS has
already proved to be robust to such approximation [7] so it
is reasonable to expect DHPVS will be too, as shown in the
rest of this paper. The synthetic environment is covered with
17 desired camera poses randomly distributed throughout
the scene (Fig. 2a). For each of these 17 desired poses
p ∈ {1, 2, ..., 17}, three initial poses are randomly generated
with an increased degree of difficulty. More precisely, for
the first degree of difficulty d1, the initial displacement
∆rp,1 = (∆tp,1,∆θwp,1) is set as ∆tp,1 ∈ ±[0m, 0.33m]3

and ∆θwp,1 ∈ ±[0◦, 7.5◦]3; for the second one d2:
∆tp,2 ∈ ±[0.33m, 0.66m]3 and ∆θwp,2 ∈ ±[7.5◦, 15◦]3;
and for the last d3: ∆tp,3 ∈ ±[0.66m, 1.0m]3 and
∆θwp,3 ∈ ±[15◦, 22.5◦]3. For every VS run following this
protocol, four metrics are computed:



• Convergence Success (CS): we consider that an experi-
ment has converged if the error in position is less than
1.0cm and the error in orientation is less than 1.0◦,

• Trajectory Length (TL): total distance travelled by the
camera,

• Trajectory Area (TA): area between the camera trajec-
tory and the straight line joining the initial and desired
positions.

• Condition Number (CN): conditioning of the interaction
matrix.

The averages of these metrics for each method (DHPVS,
HPVSc1 , HPVSc2 ) with respect to the degree of difficulty (d1,
d2, d3) are reported in TABLE I. DHPVS’ higher success rate
than HPVS’, regardless of the degree of difficulty, shows
that DHPVS is less inclined to diverge, or to fall into a
local minimum, than when a single hemispherical camera
is used. The trajectories obtained with DHPVS are shorter
than those of HPVS, indicating DHPVS produces velocities
that allow the camera to converge to the desired pose with
straighter trajectories than HPVS does. The TA metric can
be seen as a quantification of the trajectory scale. We can
therefore deduce that, in addition to the above-mentioned
qualities, DHPVS produces narrower and less curved cam-
era trajectories than HPVS. It is interesting to note that
the conditioning is always better when both hemispheres
are used, than with one of them only. An ill-conditioned
interaction matrix can have various significant impacts on
the VS behaviors, e.g., instability, slow convergence, limited
workspace or sensitivity and robustness issues [23]. Since
the condition number of a VS interaction matrix indicates
a global measure of the motion visibility, having the widest
possible FoV and working with the whole DH content is very
advantageous, especially with regard to the camera trajectory.

d1 d2 d3

CS TL TA CN CS TL TA CN CS TL TA CN

DHPVS 100 0.41 1.12 2.92 88 1.43 4.50 3.04 71 2.44 7.30 2.54

HPVSc1 88 0.64 1.37 5.12 71 2.29 5.10 4.83 65 4.45 27.19 5.19

HPVSc2 100 0.66 1.71 5.34 71 2.39 5.85 4.90 35 4.07 8.21 4.99

TABLE I: Simulation evaluation results: Averages of Con-
vergence Success (CS) in percent, Trajectory Length (TL)
in centimeters, Trajectory Area (TA) in square centimeters
and Condition Number (CN), regarding the 3 degrees of
difficulty considered (d1, d2, d3). The bold font indicates
the best results.

V. EXPERIMENTAL RESULTS

Real experiments are performed using a 6-axis industrial
robot (Doosan A0509) with a DH camera (Insta360 ONE
X2) mounted on its end-effector (Fig.3a) within various
environments (Fig.3b). The DH camera is made of a
front fisheye camera and a back one of the same FoV of
191◦, meaning the two cameras overlap by approximately
22◦ degrees. The DH camera has been intrinsically and

(a) (b)

Fig. 3: Experimental setup: (a) Doosan A0509 6-axis robot
arm with an Insta360 ONE X2 DH camera on its end-
effector, and (b) different environments where experiments
were carried out (the mobile base is not used in this work).

extrinsically calibrated [24]. Thus, we know for both wide-
angle cameras their respective sets of intrinsic parameters
and their poses with respect to the robot end-effector.
The latter are, in their minimal form (see Sec. II-A):
rc1 = (0.162m,−0.015m, 0.066m, 71.1◦,−71.1◦, 66.5◦)
for the first fisheye of the DH camera and
rc2 = (0.158m, 0.004m, 0.064m,−66.5◦, 68.8◦, 70.5◦)
for the second one. Without loss of generality, we set FΦ at
the robot end-effector frame. DHPVS has been implemented
using the ROS middleware [25] and the ViSP library [26].
All our developments and implementations are publicly
available at https://github.com/NathanCrombez/DHPVS.

A. Comparison with HPVS

The aim of these first real experiments is to verify the
observations arising from the comparison of DHPVS with
HPVS in simulation (Section IV).

1) Real experiment #1: The first real experiment in-
volves a deliberately short displacement between the
initial and desired camera poses in order to compare
the behavior of DHPVS with both HPVS on a sim-
ple case. More precisely, the initial displacement is:
∆ri = (0.076m, 0.019m, 0.001m, 8.1◦,−1.4◦, 9.3◦). The
initial difference in image space, i.e., the difference
between the desired DH acquisition (Fig. 4a) and
the initial one (Fig. 4b), is consequently not too
important (Fig. 4c). DHPVS converges to the de-
sired pose following almost a straight camera trajec-
tory (Fig. 4f). The final pose error is very small:
∆rf = (0.0mm,−0.1mm,−0.0mm, 0.0◦, 0.0◦, 0.0◦), as
well as the final image of differences (Fig. 4d). HPVS using
either camera c1 or camera c2 converges also accurately to
the desired pose. However, despite the small displacement
that had to be corrected, HPVS trajectories are significantly
more curvy than DHPVS ones (Fig. 4f).

https://github.com/NathanCrombez/DHPVS


2) Real experiment #2: The second experiment is con-
ducted to appreciate the value of using the whole photometric
information available all around the scene when a large
motion from the initial pose to the desired one has to
be performed. More precisely, the initial displacement is:
∆ri = (0.499m,−0.185m, 0.326m,−2.4◦,−29.5◦, 13.6◦).
Because of this significant displacement, the initial pho-
tometric error (square norm of (9)) between the desired
and initial DH acquisitions (Fig. 5a and Fig. 5b) in-
creases by 40% compared to Real experiment #1 (see
Fig. 4e versus Fig. 5e). Despite these challenging con-
ditions, DHPVS succeeds to control the camera until
the desired pose is reached. As shown by the final im-
age of differences (Fig. 5d), the convergence accuracy is
very good, and thus the final pose error is very small:
∆rf = (0.3mm, 0.0mm,−0.2mm,−0.0◦,−0.0◦,−0.0◦).
On the other hand, HPVS using either camera c1 or camera
c2 failed to control the robot to bring the camera to the
desired pose. Indeed, due to the excessively wide trajectories
that the camera achieved (Fig. 5f), the robotic arm reached
the limits of its workspace during both HPVS.

3) Real experiment #3: The third experiment involves
an even greater displacement, particularly in terms
of rotation around the three axes. Because of this
significant displacement, the photometric error between
the desired and initial DH acquisitions (Fig. 6a and
Fig. 6b) increases by 15% compared to Real experiment
#2 (see Fig. 5e versus Fig. 6e). The displacement
between the desired pose and the initial one is:
∆ri = (0.395m,−0.221m, 0.253m, 11.6◦,−31.0◦,−14.9◦).
Even if the initial DH difference is important (Fig. 6c),
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Fig. 4: Real experiment #1: (a-b) desired and initial DH
acquisitions, (c-d) initial and final visual differences, (e) DH
photometric error and (f) trajectories.
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Fig. 5: Real experiment #2: (a-b) desired and initial DH
acquisitions, (c-d) initial and final visual differences, (e) DH
photometric error and (f) trajectories.
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Fig. 6: Real experiment #3: (a-b) desired and initial DH
acquisitions, (c-d) initial and final visual differences, (e) DH
photometric error and (f) trajectories.

DHPVS successfully controlled the robotic arm in order to
drive the camera to the desired pose. As it can be seen on
the final acquisitions difference (Fig. 6d), the convergence
accuracy is very good, confirmed by the final pose error:
∆rf = (0.3mm,−1.9mm, 0.1mm,−0.0◦, 0.0◦, 0.0◦). On



the contrary, HPVS using either camera c1 or camera
c2 failed due to excessively sinuous or wide trajectories
(Fig. 6f). More specifically, on the one hand, the velocities
computed with HPVSc1 caused the arm to retract, bringing
it into a self-collision posture. On the other hand, the
broad trajectory obtained with HPVSc2 brought the robotic
arm to the limits of its workspace. These experimental
results confirm the conclusions drawn from the simulation
evaluations (Sec. IV). Indeed, using the whole photometric
information around the camera leads to straighter trajectories
than using the half of it, enabling the robot to correct larger
displacements while avoiding reaching its workspace
bounds.

4) Real experiment #4: This experiment is intended
to challenge DHPVS beyond its limits. The displace-
ment between the desired pose and the initial one is:
∆ri = (0.115m, 0.145m,−0.138m, 4.6◦, 51.1◦, 41.8◦).
Due to the large initial orientation gap (80% larger than for
Real experiment #3, particularly three times larger around the
optical axis), the visual content of the initial DH acquisition
(Fig. 7b) and the desired one (Fig. 7a) are very misaligned
(Fig. 7c). Under such conditions, neither DHPVS nor HPVS
succeeded in bringing the camera to the desired pose. They
fall into local minima (Fig. 7d). This is not surprising
because no direct visual servoing method could reach global
convergence yet, though DHPVS has practically shown a
larger convergence domain than HPVS.

B. Robustness to perturbations

The aim of this series of real experiments is to show
how DHPVS behaves in response to various perturbations
in different environments.

1) Dynamic occlusions: This experiment is to study
the behavior of DHPVS while operating in a dynamic
environment (Fig. 3b). Four persons were moving freely
around the robot throughout the experiment. Since
the persons were always moving, their postures were
never the same in either the desired DH acquisition
(Fig. 8a) or current ones (Fig. 8b). The displacement
between the desired pose and the initial one is:
∆ri = (0.179m,−0.397m, 0.366m,−2.8◦,−33.5◦,−34.4◦).

(a) (b) (c) (d)

Fig. 7: Real experiment #4: (a-b) desired and initial DH
acquisitions, (c-d) initial and final visual differences.

Despite the dynamic occlusions, DHPVS still converged
and brought the camera to the desired pose. Obviously,
the final visual error is not completely uniform, since
the scene has been continuously altered (Fig. 8d).
Nevertheless, these dynamic occlusions have not affected
significantly the final pose error that is very small:
∆rf = (−0.4mm, 2.4mm, 0.4mm, 0.0◦,−0.1◦,−0.1◦).

To compare, the same experiment was carried out with
the environment remaining static. Fig. 8e compares the
photometric errors edyn and esta for the dynamic and static
experiments, respectively. It is interesting to note that the
curves follow a broadly similar progression, except that edyn
is higher and noisier due to the continuous changes in the
scene. The trajectories of the camera for both experiments
are also quite similar (Fig. 8f), showing that the perturbations
had only a minor impact on DHPVS.

2) Specularity and transparency: The aim of this ex-
periment is to study the behavior of DHPVS while
operating in a complex real-world scene that contain
many reflective and transparent objects (Fig. 3b). The
scene’s depth range is large, approximately [1.0m, 20.0m],
as it can be seen in the desired DH acquisition
(Fig. 9a) and in the initial one (Fig. 9b). The displace-
ment between the desired pose and the initial one is:
∆ri = (0.137m, 0.208m,−0.215m, 50.8◦, 38.7◦,−7.9◦).
Despite the scene is not Lambertian, the large displace-
ment and the high difference between the initial and
the desired DH acquisitions (Fig. 9c), DHPVS has suc-
cessfully computed the velocities to control the cam-
era motion in order to precisely reach the desired pose:

(a) (b) (c) (d)

(e) (f)

Fig. 8: Real experiment #5: (a-b) desired and initial DH
acquisitions, (c-d) initial and final visual differences, (e) DH
photometric errors and (f) trajectories.



∆rf = (0.1mm,−1.3mm,−0.1mm, 0.0◦, 0.0◦, 0.0◦). We
can also note that during the experiment, the ceiling lights
were automatically switched off and then on twice. These
perturbations can be clearly seen on the photometric error
curve (Fig. 9e) around iterations 120 and 260. However, it
had no impact on the behavior of DHPVS, as the trajectory
shows (Fig. 9f).

(a) (b) (c) (d)

(e) (f)

Fig. 9: Real experiment #6: (a-b) desired and initial DH
acquisitions, (c-d) initial and final visual differences, (e) DH
photometric error and (f) trajectory.

VI. CONCLUSION AND FUTURE WORKS

This letter introduced a visual servoing that exploit the
whole surrounding visual information captured with a dual-
hemispherical camera in order to control a robot. The model-
ing of the dual-hemispherical camera, the dual-hemispherical
photometric visual feature, as well as the associated interac-
tion matrix are detailed. Combining the photometric visual
features and 360-degree acquisitions has proven to allow
convergence from way farther initial errors than using a
180-degree camera with straighter camera trajectories while
keeping the excellent accuracy at convergence.

Future works will extend the dual-hemispherical based
visual servoing to other dense visual features, such as pho-
tometric Gaussian mixtures, and to control the whole mobile
manipulator.
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