
HAL Id: hal-04503225
https://hal.science/hal-04503225

Submitted on 13 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Automated selection of nanoparticle models for
small-angle X-ray scattering data analysis using machine

learning
Nicolas Monge, Alexis Deschamps, Massih-Reza Amini

To cite this version:
Nicolas Monge, Alexis Deschamps, Massih-Reza Amini. Automated selection of nanoparticle models
for small-angle X-ray scattering data analysis using machine learning. Acta Crystallographica Section
A : Foundations and Advances [2014-..], 2024, 80 (2), pp.202-212. �10.1107/S2053273324000950�. �hal-
04503225�

https://hal.science/hal-04503225
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


research papers

Acta Cryst. (2024). A80 https://doi.org/10.1107/S2053273324000950 1 of 11

ISSN 2053-2733

Received 12 October 2023

Accepted 26 January 2024

Edited by I. A. Vartaniants, Deutsches

Electronen-Synchrotron, Germany

Keywords: machine learning; nanoparticles;

SAXS; small-angle X-ray scattering; data

analysis; model selection.

Supporting information: this article has

supporting information at journals.iucr.org/a

Published under a CC BY 4.0 licence

Automated selection of nanoparticle models for
small-angle X-ray scattering data analysis using
machine learning

Nicolas Monge,a,b,c* Alexis Deschampsb and Massih-Reza Aminic

aXenocs, Grenoble, France, bSIMaP, University of Grenoble Alpes, CNRS, Grenoble INP, Grenoble, France, and cLIG,

University of Grenoble Alpes, CNRS, Grenoble, France. *Correspondence e-mail: nicolas.monge@xenocs.com

Small-angle X-ray scattering (SAXS) is widely used to analyze the shape and

size of nanoparticles in solution. A multitude of models, describing the SAXS

intensity resulting from nanoparticles of various shapes, have been developed by

the scientific community and are used for data analysis. Choosing the optimal

model is a crucial step in data analysis, which can be difficult and time-

consuming, especially for non-expert users. An algorithm is proposed, based on

machine learning, representation learning and SAXS-specific preprocessing

methods, which instantly selects the nanoparticle model best suited to describe

SAXS data. The different algorithms compared are trained and evaluated on a

simulated database. This database includes 75 000 scattering spectra from nine

nanoparticle models, and realistically simulates two distinct device configura-

tions. It will be made freely available to serve as a basis of comparison for future

work. Deploying a universal solution for automatic nanoparticle model selection

is a challenge made more difficult by the diversity of SAXS instruments and

their flexible settings. The poor transferability of classification rules learned on

one device configuration to another is highlighted. It is shown that training on

several device configurations enables the algorithm to be generalized, without

degrading performance compared with configuration-specific training. Finally,

the classification algorithm is evaluated on a real data set obtained by

performing SAXS experiments on nanoparticles for each of the instrumental

configurations, which have been characterized by transmission electron micro-

scopy. This data set, although very limited, allows estimation of the transfer-

ability of the classification rules learned on simulated data to real data.

1. Introduction

Small-angle scattering (SAS) methods are among the most

useful tools for analyzing the internal structure of materials at

the nanometre scale. One of the strengths of the SAS tech-

niques lies in the broad range of use. Particles with a wide size

range from 1 to 100 nm can be analyzed (Allec et al., 2015),

and one can obtain structural information about their shape,

size and electronic density (Tobler et al., 2009; Talapin &

Shevchenko, 2016). This adaptability makes SAS methods

increasingly popular for analysis of metals (De Geuser &

Deschamps, 2012; Li et al., 2016), polymers (Portale et al.,

2013), surfaces (Miranda et al., 2014) or biomolecules (Da

Vela & Svergun, 2020). One of SAS’s drawbacks is that the

experiments only provide an indirect characterization, whose

interpretation requires the use of appropriate models, neces-

sitating choices and a high level of expertise. Once an inter-

pretation model is chosen, software tools exist to refine the

model parameters on the experimental data. For instance,

SASView (https://www.sasview.org/) is a free open-source

program that includes tools for analyzing and fitting 200 SAS

https://doi.org/10.1107/S2053273324000950
https://journals.iucr.org/a
https://scripts.iucr.org/cgi-bin/full_search?words=machine%20learning&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=nanoparticles&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=SAXS&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=small-angle%20X-ray%20scattering&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=data%20analysis&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=data%20analysis&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=model%20selection&Action=Search
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
mailto:nicolas.monge@xenocs.com
https://www.sasview.org/
http://crossmark.crossref.org/dialog/?doi=10.1107/S2053273324000950&domain=pdf&date_stamp=2024-02-29


models. Thus, the difficulty consists of choosing among the

many available models, and a newcomer can be easily over-

whelmed by the amount of tunable parameters. One popular

strategy is to choose a few alternative models that may fit the

data well, then use a regression procedure like expectation–

maximization (Bakry et al., 2019; Moon, 1996; Benvenuto et

al., 2016) or a Gaussian process (Fong et al., 2021) to choose

the best fit. Because this is an ill-posed problem, several

models and parameters may produce similar results; hence

regression-based techniques rely largely on the initialization

step. As a result, prior knowledge and competence with SAS

data processing are required in order to achieve appropriate

model selection prior to regression approaches.

Several studies have been carried out in order to overcome

this problem, especially using machine learning techniques to

assist users in the selection of the best model for analyzing

small-angle X-ray scattering (SAXS) data (Franke et al., 2018;

Archibald et al., 2020; Tomaszewski et al., 2021), small-angle

neutron scattering (SANS) data (Do et al., 2020; Tung et al.,

2022), and deep learning has been used for characterization of

SAXS (Molodenskiy et al., 2022; Abdel Aty et al., 2022) and

grazing-incidence small-angle X-ray scattering (GISAXS)

(Liu et al., 2019) data.

These machine learning approaches have been shown to be

effective in finding relationships between input data and their

desired corresponding output. The use of machine learning

techniques becomes even more attractive with simulation

tools such as SASView, which allows one to generate the large

number of simulated SAXS data needed for the training of

learning algorithms. Recent studies have demonstrated that

learning approaches can associate SAXS or SANS curves to

the geometric shape or dilute particle structure of the studied

material (Archibald et al., 2020; Do et al., 2020). However, the

outcome of these studies reveals that this classification task

remains inaccurate when the models used for the curve

generation consider models with similar shapes, like spheres

and ellipsoids, as an example. Inter-curve criterion-based

approaches, such as K-nearest neighborhoods (KNN) and

variations (Archibald et al., 2020), may thus lose efficiency if

the models produce similar curves, especially when the data

are noisy. Franke et al. (2018) and Liu et al. (2019) proposed to

represent the data in another space than the intensity space.

Franke et al. (2018) proposed to apply a drastic dimension

reduction down to three features based on the integral of the

Kratky representation, to classify models of particles with

homogeneous scattering length density. Liu et al. (2019)

proposed to learn the data transformation using the famous

AlexNet neural network, in order to predict a lattice orien-

tation from GISAXS data, with really good results.

While these studies demonstrate the potential of a data-

driven approach for automatic model detection, they are

limited in several aspects. In the studies of Archibald et al.

(2020), Do et al. (2020), Tomaszewski et al. (2021) and Franke

et al. (2018), the simulation models used to produce the data

did not take into account the laboratory instrument char-

acteristics, whose smaller brilliance and smaller photon flux

when compared with synchrotrons generate important noise

levels and whose geometrical characteristics induce data

smearing and convolution with the source’s characteristics. In

machine learning, consistency between training and test data

is a key factor in determining the effectiveness of a model. A

discrepancy between simulated training data and real test data

is likely to render the classification model unusable. The first

three aforementioned studies did not test their algorithms on

real data, which makes it impossible to validate the relevance

of these classification models to a real-life use case. Franke et

al. (2018) evaluated the performance of their algorithm on real

synchrotron data, but the classification problem was relatively

simple because the data sets did not include inhomogeneous

particles.

We propose several improvements to overcome these

limitations and advance towards an efficient and user-friendly

model selection algorithm. We simulate intensity curves of

dilute isotropic aqueous solutions of nanoparticles, using a

simulation process adapted to create realistic data, repre-

sentative of data from laboratory instruments. Two variants of

the data set are created, each associated with a specific device

configuration. A small data set of real data is also produced

using these two device configurations. It is used to estimate the

transferability of classification rules learned on simulated data

to real data. These data sets, used to benchmark different

classification models, are available at https://data.mendeley.

com/datasets/b96sw3jffy/1 (Monge, 2023). We manage to

surpass the results of previous studies by using representation

learning methods. Representation learning techniques have

proven to be extremely effective in many fields such as speech

recognition (Hinton et al., 2012), signal processing (Boulanger-

Lewandowski et al., 2012), computer vision (Veit et al., 2017)

or in natural language processing (Astudillo et al., 2015). The

main idea of representation learning is to transform the input

data into a new space, named latent space, which directly

captures similarity between data. Knowing the association

between the input data and the class label, the transformation

from input data to latent vector can be fitted to keep only the

relevant information for that specific purpose. Input vector

transformation can be carried out using deep learning

methods, such as neural networks, trained to apply a trans-

formation that will optimize the classification task. Finally, we

look at the influence of the device configuration on classifi-

cation. Using both real and simulated data sets, in the two

device configurations, we establish the transferability of rules

learned on one configuration to another, and propose a simple

method for reducing the number of classification models

needed to implement an efficient classification application.

2. Proposed approach

2.1. Collected data sets

Well characterized systematic experimental SAXS data sets

covering uniformly the parameter space of form factors are

elusive and would be very difficult to obtain. It is therefore

complicated to use a database of real SAXS data to train the

machine learning algorithms. Fortunately, a large amount of

research papers

2 of 11 Nicolas Monge et al. � Automated selection of nanoparticle models for SAXS Acta Cryst. (2024). A80

https://data.mendeley.com/datasets/b96sw3jffy/1
https://data.mendeley.com/datasets/b96sw3jffy/1


data can be quickly generated using the form factors imple-

mented in SASView. In our study, the choice of form factors is

voluntarily focused on nine geometric shapes that are repre-

sentative of classical nanoparticles and can be very similar to

each other with a specific choice of parameters, and thus

difficult to classify. The form factors used as targets are

spheres, cylinders, oblate ellipsoids, prolate ellipsoids and

corresponding core shells: core shell spheres (with a dense

core), hollow spheres, core shell cylinders, core shell oblates,

core shell prolates. This choice is motivated by the desire to

push as far as possible the limit of detection of one form factor

compared with another, so that a user can choose a form factor

as precisely as possible. Also, in order to complete what has

been proposed by Tomaszewski et al. (2021) and Franke et al.

(2018), a large part of the data set comprises inhomogeneous

scattering length density form factors. A comparison of SAXS

curves generated with the different form factors is presented

in Fig. 1. The database is composed of 4184 I(q) curves per

form factor, and the range of parameters used for the data

generation can be found in Appendix A1 (see the supporting

information).

In order for the classification model to learn classification

rules on synthetic data which are transferable to real data, the

synthetic data must be as close as possible to the real data. For

this purpose, the ‘perfect’ data generated by SASView were

processed by Xenocs’ Xsact software to add patterns repre-

sentative of a Xenocs laboratory device to the noiseless data.

Two device configurations were simulated:

(i) A Xeuss1800HR configuration, with a Dectris Eiger1M

detector, a sample-to-detector distance of 1800 mm, which

leads to a 0.0031 to 0.1493 Å� 1 q range, a Cu source with � =

1.54 Å, an FWHM of the incident beam of 0.0016 Å� 1, a

transmitted flux of 3.43 � 106 photons s� 1 and a counting time

of 20 min. The data set created with this configuration has

been used to benchmark the classification model. As the

sample-to-detector distance is variable on the Xeuss device,

the distance is chosen to suit the size of the nanoparticles to be

analyzed.

(ii) A NanoInXiderHR data set, with a Dectris Eiger1M

detector, a sample-to-detector distance of 938 mm, which

leads to a 0.0019 to 0.4452 Å� 1 q range, a Cu source with � =

1.54 Å, an FWHM of the incident beam of 0.0024 Å� 1, a

transmitted flux of 7.22 � 106 photons s� 1 and a counting time

of 20 min, which has been used to evaluate the influence of

device configuration on classification model performance.

To assess the transferability of classification rules learned

on synthetic data to real data, a real data set has been

acquired. Ten samples of nanoparticles in solution were

characterized by SAXS with the two instrumental configura-

tions cited above, as well as by transmission electron micro-

scopy (TEM) after drying, using a Jeol 1010 instrument

working at 100 kV located at CEA/IRAMIS/LIONS, allowing

us to determine without ambiguity the form factor, as well as

polydispersity, and to check that the aspect ratios of the

nanoparticles are well within the limits defined during the

simulations. Six samples were labeled as spheres, three as

prolate ellipsoids and one as a core shell sphere. The spheres

and prolate ellipsoids are Au nanoparticles, the core shell has

an Au core and SiO2 shell, and nanoparticle diameters ranged

from 20 to 150 nm. Fig. 2 shows three representative examples

of TEM images and the associated SAXS curves; TEM images

and SAXS curves of all samples are available in Appendix F2

(see the supporting information). The experimental SAXS

data have been fitted by models corresponding to the

observed shapes and to some proposed by the classification

model; the resulting fitting parameters are given in Appendix

F1 (see the supporting information).

2.2. Classification model selection

Data preprocessing is a key step in machine learning

(Huang et al., 2015), especially when analyzing SAXS data. A

SAXS curve contains structural information, like the size and

shape of the analyzed particles. Shape information is located

in the central zone of the curve, named the Fourier regime

(Boldon et al., 2015), where amplitude is really weak against

the amplitude at small scattering vector q, i.e. in the Guinier

regime where size information is located. A first goal of

preprocessing is to weight the amplitudes of the different parts

of the curve. For this purpose, two preprocessing steps are

proposed in this study: the logarithm (LOG) and the stan-

dardization (STD). Let us note:

q = [q0, . . . , qj, . . . , qJ] is the list of the scattering vector

values.

research papers

Acta Cryst. (2024). A80 Nicolas Monge et al. � Automated selection of nanoparticle models for SAXS 3 of 11

Figure 1
Example of noiseless I(q) curves generated using the nine form factors, all
particle sizes having the same order of magnitude and all particles having
the same scattering length density.



In(q) = [In(q0), . . . , In(qj), . . . , In(qJ)] is the nth simulated

curve, where In(qj) is the intensity of the nth simulation at the

jth scattering vector value. n 2 ½½1; N�� with N the total

number of simulations in a data set.

�ðqjÞ ¼ ð1=NÞ
PN

n¼1 InðqjÞ is the mean of the jth intensity

values over all the simulations.

�ðqjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1=NÞ
PN

n¼1½InðqjÞ � �ðqjÞ�
2

q

is the standard

deviation of the jth intensity values over all the simulations.

Then logarithm preprocessing and standardization are

defined as: logarithm (LOG): In(qj) ! log[In(qj)]; standardi-

zation (STD): InðqjÞ ! ½InðqjÞ � �ðqjÞ�=�ðqjÞ.

In the context of particle shape classification, it is useful to

normalize the data against some of the other parameters, such

as electronic contrast or volume fraction. Therefore the

quantity
P

j½InðqjÞq
2
j � (Guinier et al., 1955) can be used as a

normalization factor. This integral normalization will be noted

IntN: InðqjÞ ! ½InðqjÞ�=
P

j½InðqjÞq
2
j �.

In practice, it is common to observe the curves with the q

axis in a logarithmic scale. The advantage of this practice is

that it allows information at medium and high q to be visually

condensed. Inspired by this practice, a preprocessing designed

to condense information in medium and high q is proposed: in

the q = [q0, . . . , qJ] list, q values are linearly sampled. A new

list of q values, qlog ¼ ½q
log
0 ; . . . ; q

log
j ; . . . ; q

log
J � is created, in

which values are logarithmically sampled between q0 and qJ,

and q
log
0 ¼ q0 and q

log
J ¼ qJ . The list of intensity values In(qlog)

is computed using linear interpolation from In(q): q loga-

rithmic scale (QLOG): In(q)! In(qlog).

Finally, to get rid of a problem of negative intensity due to

the noise addition, the first preprocessing step will always be a

thresholding operation at 10� 15 cm� 1, noted TH. The

threshold value is defined empirically to always be lower than

the signal.

As these preprocessing operations can be complementary

and in order to optimize their action, they will be applied as

composite functions. As an example, the notation TH � LOG �

STD � QLOG means that the TH function is applied on the In

vector. The output of TH is then given as input to the LOG

function, and so on up to the QLOG function. The output of

the QLOG function will be used as input in the classification

step. In this study, different preprocessing combinations were

tried and all the results are available in Appendix C (see the

supporting information).

Following the preprocessing, the second step of the classi-

fication method consists of projecting the input data in a latent

space in which data will be compared by a classifier. As

mentioned in the Introduction, we claim that the original

space, i.e. the intensity space, is inefficient for the classification

task because it does not allow us to capture the relevant

pattern characteristics to differentiate efficiently the form

factors. The transformation to the latent space has two

research papers

4 of 11 Nicolas Monge et al. � Automated selection of nanoparticle models for SAXS Acta Cryst. (2024). A80

Figure 2
TEM imaging of three nanoparticle samples and corresponding SAXS curves realized with two different devices. Nanoparticles are diluted in solution
for the SAXS acquisition, and dried and deposited for TEM imaging, resulting in clustering on the TEM images. (a) TEM image of sphere No. 1. (b)
TEM image of core shell sphere No. 1. (c) TEM image of prolate No. 3. (d) SAXS curves of sphere No. 1. (e) SAXS curves of core shell sphere No. 1. (f)
SAXS curves of prolate No. 3.



objectives: firstly, it has to perform a dimensional reduction,

which leads to a concentration of the information (Bengio et

al., 2013). In this study the intensity space has 890 dimensions

(i.e. J = 889 in q ¼ ½½q0; . . . ; qJ��). Secondly, it has to filter

important information against useless information for the

classification task. To define the transformation function, three

types of methods are compared: transformation based on prior

knowledge of SAXS theory, unsupervised representation

learning and supervised representation learning. The classifi-

cation on intensity space will be noted I and will be our

baseline.

As the first space transformation, we propose to apply the

transformation described by Franke et al. (2018), noted

Franke5 in the following. For each simulation, the gyration

radius Rg is estimated using the AutoRg program of AtSAS

software (Petoukhov et al., 2007). The new space is a six-

features space, where the first features correspond to V0

quantities evaluated in five points and the last feature corre-

sponds to Rg. The transformation is defined as

Franke5 :

Inðq;RgÞ ! fV
0ð3Þ;V 0ð4Þ;V 0ð5Þ;V 0ð6Þ;V 0ð7Þ;Rgg

where V 0ðqRgÞ ¼ 2�2=½Q0ðqRgÞ� with

Q0ðqRgÞ ¼
X

qj < q

ðqjRgÞ
2 IðqjÞ

Iðq0Þ
�q:

Due to the presence of form factors with inhomogeneous

scattering length density in the data set, we decided to extend

the upper qRg bound to 7, in order to keep intraparticle

contrast information present at higher q. The original trans-

formation using the upper qRg bound equal to 5 has also been

tested on the data set with worse results; thus those results will

not be presented in the following. We also tried a transfor-

mation with a less drastic dimension reduction: instead of

computing V0 on five points, V0 is computed on 200 points

linearly spaced in [3, 7]:

Franke200 :

Inðq;RgÞ ! fV
0ð

1
qRgÞ; . . . ;V 0ð

i
qRgÞ; . . . ;V 0ð

200
qRgÞ;Rgg

with iqRg 2 [3, 7].

It is important to notice that this method is not adapted to

particles which have one dimension that exceeds the SAXS

measurement range, as is the case for cylinders and core shell

cylinders, which can be really long. Indeed, the notion of

gyration radius loses its meaning for those form factors, and

we will not apply these methods on them.

The second way to design the transformation is to use an

unsupervised representation learning method to extract

important information and to apply a dimension reduction.

The first method of this type applied is principal components

analysis (PCA) (Pearson, 1901), proposed by Tomaszewski et

al. (2021), which allows us to summarize information in a

smaller number of uncorrelated features. We apply PCA to

our preprocessed data set in order to keep 90% of the

variance. This choice leads us to keep the 37 first principal

components. This transformation is noted PCA90.

The second unsupervised representation learning algorithm

designed is a convolutional auto-encoder (CAE). It consists of

two convolutional neural networks: an encoder which applies

the dimension reduction from the intensity space to the latent

space, and a decoder which takes the latent vector as input and

reconstructs the intensity vector. The network is trained to

output the intensity curve through the latent space. This forces

the encoder to concentrate information in the latent space

dimension, keeping maximum useful information to recon-

struct the original input. The CAE is trained by back-

propagation, the target being the same vector as the input, i.e.

the preprocessed intensity curve. An Adam optimization is

used with mean square error (MSE) as loss function. Different

latent space dimensions have been tried: 10, 50 and 200. The

training performs optimally with a 200 features latent space.

The exact architecture is available in Appendix D (see the

supporting information). All neural networks presented in the

study have been trained on an Nvidia RTX 3080 GPU and

have been implemented with Keras (v.2.4.3). A similar auto-

encoder has been designed with fully connected layers instead

of convolutional ones, but its performances were poor.

Finally, we propose to use supervised representation

learning to design an optimal transformation. To do so, a

convolutional neural network (CNN) is trained by back-

propagation using preprocessed data as input and the corre-

sponding form factor as target. This network is composed of

two blocks: the convolutional block, referred to as CNN in the

following, contains convolutional layers and max pooling

operations and takes the preprocessed data as input and

outputs a latent vector of dimension 256. The second block is a

perceptron layer activated by a softmax function and used as

classifier: it takes the latent vector as input and outputs a

probability for each form factor. Once the network is trained,

the CNN block can be used independently from the percep-

tron layer, in order to transform the data to the latent space.

Nevertheless the perceptron layer can also be used as classi-

fier, as described in the following section. The CNN block’s

architecture has been optimized using neural architecture

search methods (Jin et al., 2019; Pham et al., 2018) and is as

follows:

1D convolutional layer [n filters: 64, kernel size: 7, activa-

tion function: ReLU (rectified linear unit)].

1D convolutional layer (n filters: 64, kernel size: 7, activa-

tion function: ReLU).

Max pooling operation (kernel size: 6).

Dropout operation (rate: 0.25).

1D convolutional layer (n filters: 64, kernel size: 7, activa-

tion function: ReLU).

1D convolutional layer (n filters: 256, kernel size: 7, acti-

vation function: ReLU).

Max pooling operation (kernel size: 6).

Dropout operation (rate: 0.25).

Global max pooling (output size: 256).

The network is trained using an Adam optimizer and

categorical cross-entropy as loss function.

research papers

Acta Cryst. (2024). A80 Nicolas Monge et al. � Automated selection of nanoparticle models for SAXS 5 of 11



For each space transformation, the three classifiers that

provided the best performance in the Tomaszewski et al.

(2021) study have been compared. The first one is the KNN,

which is a non-parametric classification method based on the

Euclidean distance comparison between a test curve to be

classified and training data set curves. Two classifiers based on

decision trees are proposed: the random forest (RF) classifier

(Verikas et al., 2011), which consists of training independently

several decision trees and making a decision based on a vote,

and the extreme gradient boosting (XGBoost) classifier

(Friedman, 2001), which consists of training each decision tree

to correct the errors of the previously fitted ones. The last

classifier presented is the perceptron layer activated with a

softmax function. It is only employed in combination with the

CNN transformation in our experiments, and while this is the

most practical technique to train the network, it underper-

forms when compared with the other classifiers. KNN and RF

are implemented using the scikit-learn Python package

(v.0.24.1), XGBoost is implemented using the XGBoost

Python package (v.1.6.0.) and the perceptron layer is imple-

mented using Keras (v.2.4.3).

For each latent space, a hyper-parameter exploration is

conducted for each classifier. As the computational costs

necessary for the search of optimal hyper-parameters are very

high, only limited sets of hyper-parameters have been tested.

The list of hyper-parameters tested is available in Appendix B

(see the supporting information). Once the hyper-parameters

have been chosen, the different methods are tested by cross-

validation on the whole data set divided using five folders.

Our approach is depicted in Fig. 3.

2.3. Influence of device configuration

SAXS devices are flexible machines with various para-

meters that can influence the data acquisition. Sample-to-

detector distance, detector pixel size, beam size, beam center

and acquisition time are a non-exhaustive list of the para-

meters that influence the measurement. Modification of these

parameters leads to data with various qmin, qmax, sampling

frequency �q and more or less important smearing effects. In

order to assess the transferability of the classification model

between device configurations, the model has been trained on

a data set with only Xeuss1800HR data, DSsyn
xeuss, or only

NanoInXiderHR data, DSsyn
nano, and tested on synthetic data for

both configurations. The classification model has also been

trained on mixed data sets, mixing the two configurations. A

data set, designed by DSsyn
comp, contains all the synthetic

samples, half in the NanoInXiderHR configuration and the

other half in the Xeuss1800HR configuration. A data set

designated by DS
syn
full groups all the synthetic data in both

configurations, and therefore contains twice as much data as

the other data sets, but is based on the same number of

noiseless data as the other data sets.

The two configurations lead to certain discrepancies in data:

Xeuss1800HR data have a qmin = 0.85 � 10� 4 Å� 1, qmax =

1511 � 10� 4 Å� 1 and a sampling step �q = 1.7 � 10� 4 Å� 1.

NanoInXiderHR data have a qmin = 3.74 � 10� 4 Å� 1, qmax =

4527 � 10� 4 Å� 1 and a sampling step �q = 7.5 � 10� 4 Å� 1.

As NanoInXiderHR data are very noisy at high q, we have

observed that setting qmax to 1511 � 10� 4 Å� 1 improves the

prediction accuracy on this configuration. As the classification

model requires a fixed input shape, NanoInXiderHR data are

oversampled given the input shape using linear interpolation.

The multi-configuration context requires another adaptation:

when training and testing the model in a multi-configuration

context, a q-values list is therefore a variable about which the

model has no direct information if the input consists solely of

the intensity values. To overcome this limitation, the model

input is modified to accept a 2D input: (I, q).

2.4. Real data classification

To find out whether models trained on synthetic data can

predict the form factors of real data, we produced data sets,

DSreal
xeuss and DSreal

nano, from ten real samples, using two different

devices. As the data set is very limited and does not include all

research papers

6 of 11 Nicolas Monge et al. � Automated selection of nanoparticle models for SAXS Acta Cryst. (2024). A80

Figure 3
Representation of the classification in the intensity space versus in the CNN space.



the form factors, it is not possible to make a statistical

evaluation of the model’s performance on those real data sets.

Nevertheless, analysis of the model’s predictions can give us

an idea of the transferability of the rules learned from

synthetic data to real data. For the evaluation of predictions

on real data, we propose to use a score incremented by +1 for

a correct prediction, � 1 for an erroneous prediction and 0 for

an informative prediction. An informative prediction corre-

sponds to a confusion with a similar form factor. For spheres,

confusion with a prolate or oblate is considered informative.

Similarly, for prolates, confusion with an oblate or sphere is

informative. For the core shell sphere sample, confusion with a

core shell prolate, core shell oblate or hollow sphere will be

considered informative. A score of +10 or � 10 corresponds to

a situation where all the samples were, respectively, well

classified and misclassified.

At small q, some samples show artifacts characteristic of

large objects, certainly due to the onset of aggregation or to

micro air bubbles suspended in the solution. Only the part of

the curve with q > 0.005 Å� 1 is retained for both synthetic

training data and real test data. This leads to degraded

performances on synthetic test data sets but it significantly

improves results on real data.

3. Results and discussion

3.1. Model performances on synthetic data

For comparing the performances of the different approa-

ches on the synthetic data set, accuracy is an appropriate

measure since the class distribution is balanced throughout the

data set. Furthermore, this metric is discriminant and easy to

understand. The F1 score and Matthews correlation coeffi-

cient were also computed, but do not bring extra information.

The main results of the representation space comparison are

presented in Table 1. The best results according to a Wilcoxon

rank sum test used at a p-value threshold of 0.01 (Lehmann &

D’Abrera, 1975) are shown in bold. Different preprocessing

combinations are evaluated for each latent space. In this

section, just the combination that produces the best outcome

will be detailed below; other tested combinations are supplied

in Appendix C (see the supporting information). The training

and testing operation is repeated 20 times, and the presented

results are the average accuracy obtained over the 20 trials.

Applying the RF classifier directly on the preprocessed I(q)

space allows us to reach 75.0% accuracy on the data set. The

best method in terms of accuracy is the CNN � XGBoost which

performs with 86.7% accuracy. The perceptron layer (PL)

does not appear in the table because it is used only with CNN,

but the CNN � PL performs with 83.4% accuracy.

PCA90 and CAE spaces lead to similar results for the

different classifiers, and do not allow us to overcome the

baseline performances. Overall, the performance of classifi-

cation based on the CNN latent space far exceeds the

performance of classification applied on other spaces. An

research papers

Acta Cryst. (2024). A80 Nicolas Monge et al. � Automated selection of nanoparticle models for SAXS 7 of 11

Table 1
% accuracy of different classifiers applied on different data representa-
tions with the best preprocessing combination.

Uncertainty corresponds to 3�, with � the standard deviation of the accuracy
over the different training sessions. For each classifier, results in bold are
significantly the best with respect to a Wilcoxon rank test at a p-value

threshold of 0.01 (Lehmann & D’Abrera, 1975).

Representation KNN RF XGBoost

I(q) space 55.4 � 0.0 75.0 � 0.9 73.8 � 1.1

PCA90 64.9 � 0.3 69.5 � 1.6 70.0 � 1.8
CAE 66.5 � 1.3 69.6 � 1.0 70.1 � 1.5
CNN 84.1 � 1.1 84.9 � 1.2 86.7 � 1.6

Figure 4
Confusion matrix of the (a) CNN � XGBoost and (b) I � RF methods on the whole data set. These confusion matrices are normalized by the number of
predictions, so that the sum of a row is equal to 1. As an example, on (a) 93% of the prolates were well classified, 4% were confused with oblates, 2% with
core shell spheres and 1% with spheres.



explanation of this phenomenon is that the CNN space is the

only space especially trained to be optimal for the targeted

classification task. Unsupervised methods are trained to

compress information without specifically selecting informa-

tion useful for classification. It is interesting to note that for a

given representation space, decision trees based methods have

higher accuracy than KNN. This is interesting for prediction

time: when a KNN-like algorithm’s computing cost is precisely

proportional to the size of the database, the RF and XGBoost

classifiers provide an instantaneous form factor prediction.

In both cases of CNN space and I(q) space, the prepro-

cessing combination leading to the best performance is TH �

IntN � LOG � STD � QLOG.

To understand the origin of the observed improvement of

methods involving CNN space compared with methods

involving I space, it is interesting to examine the details of

performance by class in Fig. 4. We compare the confusion

matrix (Ting, 2010) of the best I space classifier and of the best

CNN space classifier, which are, respectively, the I � RF

method and the CNN � XGBoost method. Regarding the

confusion matrix of I � RF in Fig. 4(b), the principal difficulties

of this classification task lie in the classification of particles

with inhomogeneous scattering length density. Indeed,

homogeneous form factors have high accuracy: around 100%

for cylinders and spheres, 76% for oblates and 82% for

prolates. Most of the nonhomogeneous particles are predicted

with a low accuracy: 49% for core shell oblates, 62% for core

shell prolates and 53% for core shell spheres. Hollow spheres

and core shell cylinders are better classified with 80% and

78%, respectively. A large part of the misclassified nonho-

mogeneous particles are confused with other nonhomoge-

neous particles. As an example, among the 38% of

misclassified core shell prolates, 90% are confused with

nonhomogeneous particles.

Let us now analyze the confusion matrix of the CNN �

XGBoost method in Fig. 4(a). The classification scores of

homogeneous particles have been significantly improved with

respect to I � RF: prolate and oblate accuracy exceeds 90%.

There is also significant improvement in nonhomogeneous

particle classification: the ellipsoidal and spherical core shell

particles rise from a 49–62% accuracy range to a 71–74%

accuracy range. Nevertheless, those form factors still have a lot

of misclassification. Analysis of the misclassification shows

that, for a given nonhomogeneous form factor, the misclassi-

fied samples are largely confused with a unique other form

factor, which is a more informative situation than when the

confused form factor is random. The example of core shell

prolate is representative: 70% of the misclassified core shell

prolates are confused with core shell oblates. To summarize,

training a convolutional neural network to project data from

the intensity space into a space specifically adapted for the

classification task allows the classifier to detect finer discri-

minant patterns in the data. It increases the prediction accu-

racy of every form factor that was not already maximal.

The classification on Franke’s space has been evaluated on a

data set from which cylinders and core shell cylinders have

been removed, so the average accuracy on this data set is not

comparable with the results of Table 1. In order to have

comparison points, baseline methods I � RF were also eval-

uated on this data set. Classification on Franke’s space has

performance below the baseline. Details of the Franke’s space

results are available in Appendix E (see the supporting

information).

It is interesting to observe the influence of nanoparticle

structural parameters on the predictor success rate. The

influence of the aspect ratio for homogeneous and nonho-

mogeneous ellipsoids on CNN � XGBoost predictor accuracy

can be seen in Fig. 5. When the aspect ratio tends towards 1,

i.e. when ellipsoids tend towards spherical shapes, we observe

a significant decrease in prediction success rates, for both

homogeneous and core shell ellipsoids. This example shows

that the predictor’s performance is logically affected by the

structural parameters of the nanoparticles, and that nano-

particles at the boundary between two form factors will

generate high uncertainty in the prediction.

3.2. Multi-configuration training for model generalization

A sharp deterioration of prediction results is observed in

Table 2(a) when a model trained on Xeuss1800HR data is

tested on the NanoInXiderHR configuration. The same

phenomenon is observed for a model trained on NanoInXi-

derHR data and tested on Xeuss1800HR data. It seems that

the classification rules learned on a given device configuration

are poorly transferable to another device configuration.

Training on mixed configuration data sets should enable the

model to be generalized rather than specific to a single

configuration. Training on DS
syn
full, which regroups all samples in

both configurations, allows us to reach the accuracy level

obtained on synthetic data for models trained specifically for a

given configuration. We have further observed that adding the

q vector as input to the model has improved accuracy by 2 to 4

points, both in the multi-configuration training context, which

was expected, and in the single-configuration training, which is

more surprising because the q vector does not vary during

training in this context.

research papers

8 of 11 Nicolas Monge et al. � Automated selection of nanoparticle models for SAXS Acta Cryst. (2024). A80

Figure 5
Prediction success rate when using CNN � XGBoost for ellipsoid and core
shell ellipsoid form factors versus their aspect ratio Requatorial/Rpolar. A
ratio of 1 corresponds to a (core shell) spherical shape.



3.3. Transferability to real data classification

In this section we apply the classification model with best

accuracy CNN � XGBoost on the real data. The predictions

are detailed for each measured sample in Fig. 6. On Figs. 6(c)

and 6(d) we can see that training on DS
syn
full allows the model to

make globally correct predictions for spheres No. 1 to No. 4,

but fails to correctly classify spheres No. 5 and No. 6 for both

configurations. The core shell sphere prediction is mostly

confused with a cylinder in the Xeuss1800HR configuration,

whereas in the NanoInXiderHR configuration it is classified as

a core shell oblate, which seems to be close to reality according

research papers

Acta Cryst. (2024). A80 Nicolas Monge et al. � Automated selection of nanoparticle models for SAXS 9 of 11

Figure 6
Details of predictions for each sample in DSreal

xeuss and DSreal
nano when the model is on DSsyn

xeuss, DSsyn
nano and DS

syn
full. Values correspond to the frequency with

which a sample is classified as a given form factor over the 20 training sessions.



to TEM characterization [cf. Fig. 2(b)]. The three prolate

ellipsoids are well classified overall with the Xeuss1800HR

configuration, but the results with the NanoInXiderHR

configuration exhibit diminished efficacy, since prolate No. 2 is

often confused with a core shell sphere and prolate No. 1 is

classified as an oblate.

Table 4 in Appendix F1 (see the supporting information)

summarizes the fits and predictor results for the experimental

data acquired on the Xeuss device. The samples that are

always predicted correctly by the machine learning model

(sphere No. 1, sphere No. 4, prolate No. 2 and prolate No. 3)

correspond to very good quality SAXS curves which give an

excellent quality fit with the expected form factor. The

samples sphere No. 2, sphere No. 3 and sphere No. 6 are often

confused by the predictor. For those three samples, the

confused form factor leads to better fits than the expected

form factor. Despite this, the predictor was still able to detect

the correct form factor in the majority of training sessions. The

samples sphere No. 5, core shell sphere No. 1, prolate No. 1 are

almost always misclassified. In the first two cases, the expected

and confused form factors lead to very poor quality fits, which

may explain the difficulty of the predictor in proposing a

consistent output. The prolate form factor fits the sample

prolate No. 1 very well. However, the curve shows a residual

pattern from buffer subtraction at low q, which could explain

the predictor’s difficulty in choosing the right form factor, and

suggests that the predictor is over-sensitive to this type of

pattern.

It can be underlined that, for each sample, the predictions

are very similar whether the model has been trained on the

data-specific configuration or on DS
syn
full. This evaluation thus

shows that a single model trained on several device config-

urations is competitive in terms of accuracy with a model

dedicated to a single configuration, with a much improved

versatility.

Predictions on some samples show that the predictor can

produce more realistic results than the method of choosing the

form factor by selecting the best fit, while eliminating para-

meter initialization and calculation time issues. Also, the

model trained on synthetic data seems to be able to generalize

the learned rules to real data. However, this generalization is

far from perfect, because the predictor is over-sensitive to

patterns intrinsic to real data that are not simulated in

synthetic data. Thus, obtaining a more substantial experi-

mental data set could be a way to fine-tune the model, as was

done by Abdel Aty et al. (2022) in order to overcome this

issue.

4. Conclusion

In this paper, we propose a supervised representation learning

approach based on convolutional neural networks that auto-

matically determines an optimized space transformation for

SAXS data classification. We show that training several

machine learning classifiers on the learned representation

space improves their performance significantly on synthetic

data when compared with training them on the original

intensity space or on a transformed space found by other

classical approaches. When training a classifier on the space

generated by the suggested technique, our findings reveal that

misclassification is nearly always caused by confusion with the

most comparable form factor rather than confusion with

different form factors when classification is done in intensity

space.

We show that classification rules learned on a single device

configuration transfer poorly to other device configurations,

from one device configuration to another, while demon-

strating that a model trained on several configurations

performs as well as a model dedicated to one configuration,

which reduces the number of models needed to create an

efficient classification applicable to multiple experimental

conditions. Using a small experimental data set of real samples

on several laboratory devices allowed us to show that classi-

fication rules learned on real data are partially transferable to

real data classification. The methodology presented here has

the potential for creating an easy-to-use classification appli-

cation, which could enable the user to quickly select the

optimal form factor to use for fitting the data with the

appropriate deterministic SAXS model, or which could be

applied to real-time quality control use-cases as well as cases

involving the management of large quantities of data. To

achieve this, several directions will be explored in future work.

To evaluate the robustness of the machine learning model,

validation on a more complete real data set is required. Access

to such a data set will also enable us to improve performance

on real data by using few shot learning. Also, a more in-depth

assessment of robustness to noise and variety of configura-

tions, and the implementation of an out-of-distribution data

detector are essential to avoid major confusion and to give

users confidence in the predictions. Finally, using machine

learning to speed up the fitting process could also lead to a

complete and versatile nanoparticle analysis application.

research papers

10 of 11 Nicolas Monge et al. � Automated selection of nanoparticle models for SAXS Acta Cryst. (2024). A80

Table 2
% accuracy on the synthetic data set and score on the real data set for the
CNN � XGBoost classification method for various synthetic training data
sets (DS, data set).

Test DS

Train DS DSsyn
xeuss DSsyn

nano

(a) Accuracy (%) for synthetic test data sets in single- and multi-configuration
training contexts. Uncertainty corresponds to 3�, with � the standard
deviation of the metric over the different training sessions

DSsyn
xeuss 88.5 � 0.8 44.5 � 4.8

DSsyn
nano 56.1 � 4.2 86.8 � 1.2

DSsyn
comp 85.2 � 1.3 85.2 � 1.7

DS
syn
full 87.5 � 1.1 87.4 � 0.8

Test DS

Train DS DSreal
xeuss DSreal

nano

(b) Score for real test data sets in single- and multi-configuration training
contexts. Uncertainty on score corresponds to 3�, with � the standard

deviation of scores over the different training sessions
DSsyn

xeuss 4.35 � 0.75 � 4.65 � 0.70
DSsyn

nano 1.85 � 0.72 1.60 � 0.79
DSsyn

comp 3.80 � 0.77 2.25 � 0.81
DS

syn
full 4.40 � 0.77 1.90 � 0.81



Acknowledgements

The authors would like to express their gratitude to Chiara

Cavallari, Andrea Lassenberger, Guillaume Evrard and Pierre

Panine for helping us produce high-quality experimental

SAXS data, as well as Olivier Taché and Emeline Cournède

from CEA Saclay for characterizing our nanoparticle samples

by TEM. They would also like to thank Al. Kikney, Oana

Bunau, Jean-Luc Parouty and Christophe Coué for their

insightful comments and valuable advice.

Funding information

This work was partially supported by MIAI@Grenoble Alpes

(ANR-19-P3IA-0003).

References

Abdel Aty, H., Strutt, R., Mcintyre, N., Allen, M., Barlow, N. E., Páez-
Pérez, M., Seddon, J. M., Brooks, N., Ces, O. & Gould, I. R. (2022).
Digital Discovery, 1, 98–107.

Allec, N., Choi, M., Yesupriya, N., Szychowski, B., White, M. R.,
Kann, M. G., Garcin, E. D., Daniel, M.-C. & Badano, A. (2015). Sci.
Rep. 5, 12085.

Archibald, R. K., Doucet, M., Johnston, T., Young, S. R., Yang, E. &
Heller, W. T. (2020). J. Appl. Cryst. 53, 326–334.

Astudillo, R. F., Amir, S., Ling, W., Silva, M. J. & Trancoso, I. (2015).
Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 1: Long Papers), pp.
1074–1084.

Bakry, M., Haddar, H. & Bunău, O. (2019). J. Appl. Cryst. 52, 926–
936.

Bengio, Y., Courville, A. & Vincent, P. (2013). IEEE Trans. Pattern
Anal. Mach. Intell. 35, 1798–1828.

Benvenuto, F., Haddar, H. & Lantz, B. (2016). SIAM J. Appl. Math.
76, 276–292.

Boldon, L., Laliberte, F. & Liu, L. (2015). Nano Rev. 6, 25661.
Boulanger-Lewandowski, N., Yoshua, B. & Pascal, V. (2012).

arXiv:1206.6392.
Da Vela, S. & Svergun, D. I. (2020). Curr. Res. Struct. Biol. 2, 164–170.
De Geuser, F. & Deschamps, A. (2012). C. R. Phys. 13, 246–256.
Do, C., Chen, W.-R. & Lee, S. (2020). MRS Adv. 5, 1577–1584.
Fong, A. Y., Pellouchoud, L., Davidson, M., Walroth, R. C., Church,

C., Tcareva, E., Wu, L., Peterson, K., Meredig, B. & Tassone, C. J.
(2021). J. Chem. Phys. 154, 224201.

Franke, D., Jeffries, C. M. & Svergun, D. I. (2018). Biophys. J. 114,
2485–2492.

Friedman, J. H. (2001). Ann. Statist. pp. 1189–1232.

Guinier, A., Fournet, G. & Yudowitch, K. L. (1955). Small-Angle
Scattering of X-rays, pp. 156–160. New York: Wiley.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A., Jaitly, N.,
Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T. & Kingsbury, B.
(2012). IEEE Signal Process. Mag. 29, 82–97.

Huang, J., Li, Y.-F. & Xie, M. (2015). Inf. Softw. Technol. 67, 108–127.

Jin, H., Song, Q. & Hu, X. (2019). Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 1946–1956. ACM, Association for Computing
Machinery.

Lehmann, E. L. & D’Abrera, H. J. (1975). Nonparametrics: Statistical
Methods Based on Ranks. Holden-Day.

Li, T., Senesi, A. J. & Lee, B. (2016). Chem. Rev. 116, 11128–11180.

Liu, S., Melton, C. N., Venkatakrishnan, S., Pandolfi, R. J., Freychet,
G., Kumar, D., Tang, H., Hexemer, A. & Ushizima, D. M. (2019).
MRS Commun. 9, 586–592.

Miranda, S. M., Romanos, G. E., Likodimos, V., Marques, R. R. N.,
Favvas, E. P., Katsaros, F. K., Stefanopoulos, K. L., Vilar, V. J. P.,
Faria, J. L., Falaras, P. & Silva, A. M. T. (2014). Appl. Catal. Environ.
147, 65–81.

Molodenskiy, D. S., Svergun, D. I. & Kikhney, A. G. (2022). Structure,
30, 900–908.

Monge, N. (2023). SAXS Nanoparticles for Machine Learning. https://
doi.org/10.17632/b96sw3jffy.1.

Moon, T. K. (1996). IEEE Signal Process. Mag. 13, 47–60.

Pearson, K. (1901). London, Edinb. Dubl. Philos. Mag. J. Sci. 2, 559–
572.

Petoukhov, M. V., Konarev, P. V., Kikhney, A. G. & Svergun, D. I.
(2007). J. Appl. Cryst. 40, 223–228.

Pham, H., Guan, M., Zoph, B., Le, Q. & Dean, J. (2018). International
Conference on Machine Learning, pp. 4095–4104. PMLR,
Proceedings of Machine Learning Research.

Portale, G., Cavallo, D., Alfonso, G. C., Hermida-Merino, D., van
Drongelen, M., Balzano, L., Peters, G. W. M., Goossens, J. G. P. &
Bras, W. (2013). J. Appl. Cryst. 46, 1681–1689.

Talapin, D. V. & Shevchenko, E. V. (2016). Chem. Rev. 116, 10343–
10345.

Ting, K. M. (2010). Encyclopedia of Machine Learning, edited by C.
Sammut & G. I. Webb, p. 209. Springer.

Tobler, D. J., Shaw, S. & Benning, L. G. (2009). Geochim. Cosmochim.
Acta, 73, 5377–5393.

Tomaszewski, P., Yu, S., Borg, M. & Rönnols, J. (2021). Mach. Learn.
pp. 1–6.

Tung, C. H., Chang, S. Y., Chen, H. L., Wang, Y., Hong, K., Carrillo,
J. M., Sumpter, B. G., Shinohara, Y., Do, C. & Chen, W. R. (2022). J.
Chem. Phys. 156, 131101.

Veit, A., Alldrin, N., Chechik, G., Krasin, I., Gupta, A. & Belongie, S.
(2017). Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 839–847.

Verikas, A., Gelzinis, A. & Bacauskiene, M. (2011). Pattern Recognit.
44, 330–349.

research papers

Acta Cryst. (2024). A80 Nicolas Monge et al. � Automated selection of nanoparticle models for SAXS 11 of 11

https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB13
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB13
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB13
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB19
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB19
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB19
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB19
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB22
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB22
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB22
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB25
https://doi.org/10.17632/b96sw3jffy.1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB26
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB27
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB27
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB29
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB29
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB29
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB30
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB30
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB30
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB31
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB31
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB32
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB32
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB33
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB33
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB34
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB34
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB35
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB35
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB35
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB36
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB36
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB36
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB37
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=iv5034&bbid=BB37

	Abstract
	1. Introduction
	2. Proposed approach
	2.1. Collected data sets
	2.2. Classification model selection
	2.3. Influence of device configuration
	2.4. Real data classification

	3. Results and discussion
	3.1. Model performances on synthetic data
	3.2. Multi-configuration training for model generalization
	3.3. Transferability to real data classification

	4. Conclusion
	Acknowledgements
	Funding information
	References

