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EXECUTIVE FUNCTIONS AND STRATEGIC ASPECTS
OF ARITHMETIC PERFORMANCE:
THE CASE OF ADULTS’ AND CHILDREN’S ARITHMETIC

Patrick LEMAIRE
Université de Provence & CNRS

In this paper, we provide an overview of three important issues regarding
working-memory/executive functions (WM/EF), strategies, and cognitive
development in the domain of arithmetic. One goal of this overview is to
bring some lights on the depth and breadth of the most valuable contributions
that André Vandierendonck and his collaborators made on these issues. First,
we consider strategic aspects of arithmetic performance and strategic devel-
opment in arithmetic. Second, the role of WM/EF on arithmetic performance
and arithmetic strategies is discussed. Finally, some data are reported on how
age-related changes in WM/EF affect strategic development in arithmetic.
For each of these issues, we highlight how the works carried out by André
Vandierendonck and his colleagues, when integrated in the broader context
of research on cognitive arithmetic, contributed to our further understanding
of participants’ performance and age-related changes in this performance.

The main goal of research in arithmetic is to understand processes and
mental representations used by people to solve arithmetic problems such as
8x4, 23+76, or 34x89. Arithmetic has been a very important domain to in-
vestigate for André Vandierendonck. His research in this domain has made
numerous important contributions. In fact, he authored or co-authored over
20 papers in peer-reviewed journals on arithmetic in the past decade. His
research interests concerned both specificities of this domain and how gen-
eral cognitive constraints affect participants’ arithmetic performance and
changes in this performance with age. His research has made important con-
tributions to issues as varied as how participants’ performance in arithmetic
is influenced by problem features (e.g., odd/even status of numbers, size of
problems, type of arithmetic operations, carry/borrow processing), individu-
al differences (e.g., role of gender, skills, working-memory span), and by the
type of processes (e.g., role of executive processes, strategies) used to solve
arithmetic problems. I share most of André’s interests and views in my own
research. In fact, many of his findings and views have influenced my own
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research agenda and how I conducted research in arithmetic. To illustrate
this, I shall review here findings of both André’s and my research on three
specific issues. First, I shall discuss some data on the role of strategies and
strategic development in arithmetic. Second, I shall consider recent findings
on the role of working-memory/executive functions (WM/EFs) in arithme-
tic and strategic aspects of arithmetic performance. Finally, how age-related
changes in WM/EFs influence strategic development in arithmetic is a most
recent issue that has started to be scrutinized, as we shall see. The first two
issues have been greatly investigated by André and his collaborators. They
have carried out much less research on the last issue, but I shall illustrate
how their research has a number of implications on it and open up for new
research strategy that, in the future, may prove extremely useful to further
our understanding of arithmetic development.

Strategies in Arithmetic

Both André’s and my work have tried to understand the determinants of
arithmetic problem solving performance. Previous research has shown that
participants’ performance is influenced by, among others, the type of strate-
gies that participants use. Here, we present some findings regarding strategic
variations in performance and strategic development in arithmetic, two top-
ics in which André and his collaborators made invaluable contributions.

Strategic variations in arithmetic. Ever since the early days of Cognitive
Psychology, researchers have found that participants accomplish cognitive
tasks with a variety of strategies. A strategy is usually defined as “a proce-
dure or a set of procedures to accomplish a high-level goal” (Lemaire & Red-
er, 1999, p. 365) or “a set of methods to accomplish a cognitive task » (Newell
& Simon, 1972, p. 127). Investigating the strategies that people use to accom-
plish a task, how often they use each available strategy, and how they execute
and select strategies on each problem has enabled cognitive psychologists
important advances to understand participants’ performance and experimen-
tal effects as varied as item, individual, and situational characteristics. This
has also been the case in the specific domain of arithmetic problem solving.

The goal of research in arithmetic is to find out how participants solve
simple (e.g., 8x4) or complex (e.g., 34x57) arithmetic problems and mental
representations underlying participants’ performance. Usually, participants
are asked to accomplish two kinds of tasks, production or verification tasks.
In production tasks, participants are given arithmetic problems (e.g., 3x5,
14x67; 345+786) and are asked to find a solution. In verification tasks, par-
ticipants are presented arithmetic equations (e.g., 4x8=31; 35+67<100) and
have to say “true” or “false”. In both kinds of tasks, participants use several
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strategies, and strategies vary in relative efficacy.

Strategies in arithmetic problem verification tasks are determined with
indirect approaches. In these approaches, the use of multiple strategies is
inferred from the patterns of speed and accuracy that arise as a function
of the factors that define the stimulus set. Both André and I used indirect
approaches to investigate strategic aspects of verification task performance
(e.g., Lemaire & Fayol, 1995; Lemaire & Reder, 1999; Vandorpe, De Ram-
melaere, & Vandierendonck, 2004). For example, Lynne Reder and I asked
participants to verify two types of arithmetic problems, parity-match prob-
lems (e.g., 4x38=154) and parity-mismatch problems (e.g., 4x38=153). The
parity of the proposed answer matches the parity of the correct answer in
parity-match problems and mismatches the parity of the correct answer in
the parity-mismatch problems. As can be seen in Figure 1, participants are
faster in verifying arithmetic problems when the parity of the false proposed
answer mismatches the parity of the correct answer (e.g., 4x38=153) than
when both parities match (e.g., 4x38=154), especially in the high-mismatch
condition (i.e., 80% of problems were mismatch problems). This parity effect
has been interpreted as resulting from participants using two different strate-
gies, one for each problem type. When they verify parity-match problems,
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Figure 1
Data showing that participants are faster in verifying arithmetic problems
when the parity of the false proposed answer mismatches the parity of the correct
answer (e.g., 4x38=153) than when parity matches (4x38=154), especially
in the high-mismatch condition (i.e., 80% of problems were mismatch problems).
Data from Lemaire & Reder, 1999
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they use the exhaustive verification strategy including encoding, calculating
the correct answer, comparing the proposed and correct answers, making
a “true/false” decision, and responding. When they verify parity-mismatch
problems, they use a short-cut, parity checking strategy whereby they realize
that the parity of the unit digit of proposed and correct answers are different
and make a quick false decision. This quick parity checking strategy is used
more quickly and more often when the proportion of parity-mismatch prob-
lems is large. André and his colleagues, following others, have found this
parity effects while participants were verifying simpler, one-digit multiplica-
tion problems (e.g., 4x7=29 vs. 4x7=26; Vandorpe et al., 2004).

In production tasks, strategies used to solve arithmetic problems are in-
vestigated with direct approaches. In direct approaches, we collect as much
external behavioral evidence (verbal protocols, video-recordings, direct ob-
servations) of strategies as possible. This can be illustrated in complex arith-
metic problem solving task. Participants are often asked to find the solution
of problems like 28x73, 56-27, or 37458 (e.g., Duverne & Lemaire, 2005, for
a review). When participants use counting, they either count on their fingers
(i.e., taking 4 fingers out of 7 fingers raised to find the correct result of 7-4) or
count mentally. When they retrieve directly the solution from their long-term
memory (LTM), they are very fast and show no behavioral external evidence
of counting. Usually strategies vary in efficacy, such that counting for exam-
ple takes much longer than retrieving the solution directly from LTM. Some
strategies are more efficient for some problems and other strategies are more
efficient for other problems.

Strategic development in arithmetic. Adopting a strategy perspective ena-
bles a better understanding of the role of different factors and experimental
conditions (like when participants have better performance while solving
easy vs. hard problems or when asked to solve problems under some speed vs.
accuracy pressure conditions). It also enables to understand individual differ-
ences, such as skills, cognitive status, or age. Like André and his colleagues,
we conducted a number of studies investigating age-related changes in stra-
tegic variations. Our works have been conducted in both children and older
adults. In all our works, we investigated four dimensions of strategic vari-
ations: strategy repertoire (i.e., which strategies are used in a given task?),
strategy distribution (i.e., how often each strategy is used?), strategy execu-
tion (i.e., how fast is each available strategy executed?), and strategy selection
(i.e., how do people choose among strategies?). Age-related changes during
both cognitive development and cognitive aging involve changes in each of
these strategic dimensions.

For example, when Siegler and I (Lemaire & Siegler, 1995) investigated
the development of multiplication problem solving skills, we tested French
second graders three times during the same school year (January, April, and



LEMAIRE 339

June) while they were learning basic multiplication facts. We found that dur-
ing this school year, children (a) became much faster and more accurate at
each testing session (they took 9.9 s, 5.5 s, and 3.3 sec in each of the first, sec-
ond, and third testing sessions, respectively). However, magnitude of changes
varied with the strategies that children used. When children used the retriev-
al strategy (i.e., retrieving the answer directly from LTM), they took 3.9 s on
the first testing session and 2.9 s on the last testing session. When they used
repeated addition (e.g., doing 4+4+4 to calculate 3x4), they took 18.8 s and
11.8 s during the first and third testing sessions, respectively. Moreover, chil-
dren moved from using available strategies equally often to using retrieval
most often. More precisely, during the first session, children used retrieval on
38% of problems, repeated addition on 30% of problems and replied “I don’t
know” on 32% of problems. During the last session, they used retrieval on
92% of problems, repeated addition on 6% of problems, and replied “I don’t
know” on 2% of problems. In other words, this study showed that 7 year-old
children improved at solving single-digit multiplication problems via select-
ing the fastest strategy more often and executing available strategies more
quickly and accurately.

Such age-related changes in strategic aspects of arithmetic performance
has since then been documented for other arithmetic operations, showing
that it is not a specificity of one-digit multiplication problems. For example,
Imbo and Vandierendonck (2007) asked fourth, fifth, and sixth graders to
solve one-digit addition problems with the choice/no-choice method (Siegler
& Lemaire, 1997). Three main strategies were tested: retrieval (i.e., directly
retrieving the correct sum from LTM), changing (i.e., changing the problem
by making an intermediate step to 10, like doing 9+1=10+5 to solve 9+6), and
counting (i.e., counting subvocally by one until correct sum is reached, like
doing 9+1+1+1+1 to solve 9+4). In the choice condition, participants were
free to choose among the three strategies whichever strategy they want on
each problem. Then, participants had to solve all problems with the retrieval
strategy in the no-choice/retrieval condition, with the transforming strate-
gy in the no-choice/transforming strategy condition, and with the counting
strategy in the no-choice/counting strategy condition. Data in the no-choice
conditions showed age-related differences in strategy execution. As can be
seen from Figure 2, increase in speed with age varied with strategies used
by children, such that largest increase was observed when participants ex-
ecuted the counting strategy and smallest increase was found for the retrieval
strategy (with transforming in-between). Moreover, data on strategy use (see
Figure 3) showed different strategy distributions in each age group. The old-
est two groups of children used retrieval most frequently and the other two
strategies on less than 25% of problems. Fourth graders used retrieval and
transforming equally often and counting much less frequently.
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Figure 2
Data showing that age-related increase in speed is different for each strategy
used by children to solve one-digit addition problems
(data from Imbo & Vandierendonck, 2007)
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Data showing age-related changes in strategy distributions, with retrieval
being used on most problems in fifth and sixth graders and being used equally often
than transformation in fourth graders (data from Imbo & Vandierendonck, 2007)
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Strategic development has also been investigated in complex arithmetic
problem solving. For example, Lemaire and Callies (2009) showed that age-
related changes in effects of problem features depend on the type of strate-
gies that children use. Lemaire and Callies asked adults, fifth graders, and
seventh graders to solve two-digit addition problems. They asked children to
solve all problems with the full-decomposition strategy (i.e., adding tens first,
decades second, and both sums third, like doing 20+50=70; 443=7; 70+7=77
to solve 24+53) in one condition and with the partial-decomposition strategy
(i.e., adding first tens of the second number to the first number, like doing
24+50=74; 74+3=77) in another condition. They compared participants’ per-
formance for carry (e.g., 28+37) and no-carry problems (e.g., 54+32). As can
be seen from Figure 4, participants were faster on no-carry problems than on
carry problems. This carry effect decreased with increasing age. Moreover,
these age-related changes in carry effects were not the same for each strategy,
as they were larger while participants used the partial decomposition strategy
than while using the full-decomposition strategy.

In sum, a number of studies in arithmetic, including ours and André’s,
have shown that arithmetic performance is best accounted for with a strategy
perspective, as participants’ performance depends on the type of strategies
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Fifth Graders | Third Graders Fifth Graders | Third Graders
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Figure 4
Data showing that children are faster when they solve no-carry, two-digit
addition problems than carry problems, and that carry effects decreased
with increasing age, and more so for the partial-decomposition strategy than
for the full-decomposition strategy (data from Lemaire & Callies, 2009)
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they use. Moreover, age-related changes in arithmetic are best characterized
by changes in strategic aspects of children’s performance. These include
changes in strategy repertoire, strategy distributions, strategy execution, and
strategy selection. These strategic aspects can be investigated directly (like
in studies videotaping children while they solve arithmetic problems, or in
studies collecting verbal protocols on a problem-by-problem basis) or indi-
rectly (like in studies investigating the performance on different types of
problems, each of which being known to be solved with different strategies).

WM/EF and Arithmetic Problem Solving

The role of WM/EF in arithmetic performance. In a series of experiments,
both André and I independently tried to determine whether working-memory
resources influence arithmetic performance. We both used Alan Baddeley’s
theory of working-memory (Baddeley & Hitch, 1974) as a guide to address
this issue. In a first series of experiments, my colleagues and I asked partici-
pants to verify simple multiplication problems (i.e., saying whether problems
like 8x4=32 or 38 are true or false) under several working-memory load con-
ditions (Lemaire, Abdi, & Fayol, 1996). For example, in one control con-
dition, participants were asked to accomplish only the arithmetic problem
verification task. In a second condition, so-called articulatory suppression
(AS) condition, participants were asked to repeat “abcdef” (1 letter/1 sec.)
while solving arithmetic problems. Following the dual-task logic, this latter
condition tested the involvement of the phonological loop in arithmetic. We
wanted to determine whether one of the most robust findings in the psychol-
ogy of arithmetic would change as a function of WM load. This effect is
the problem-size effect (PSE). It consists in better performance with small
problems like 3x4 than with large problems like 7x8. This effect indexes how
fast people are to retrieve small and large products in LTM. It also indexes
the use of backup, counting strategies, as people tend to use repeated addition
more often on large problems than on small problems (e.g., Campbell & Xue,
2001; LeFevre et al., 1996a, b). Small problems have a better memory repre-
sentation than large problems and are thus more easily activated and/or more
often solved via retrieval. Larger PSE under the AS condition (compared to
the control condition) was expected if retrieving basic arithmetic facts (and
large problems in particular) requires working-memory resources in the pho-
nological system and/or if depletion of WM resources lead participants to
use backup strategies more often. As can be seen in Figure 5, although there
was a trend toward increased PSE in AS, the PSE x WM load interaction was
actually not significant. This result was confirmed by a subsequent study ran
by André Vandierendonck and his collaborators. They used almost exactly
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the same design with two exceptions. First, they tested addition problems,
and second they asked participants to constantly repeat “the” (at a rate of two
or three times/sec) while verifying simple addition problems. Like we did for
multiplication problems, they found no interaction between PSE and WM
load condition. In fact, such finding is very important for the psychology of
arithmetic as, to use André’s words, it “is not in agreement with models that
assume that basic arithmetic facts are stored in a language-dependent verbal
form” (De Rammelaere et al., 2001, p. 271). In these series of experiments,
both André and I had independently tested a central-executive condition. It
did not change the magnitude of PSE either. These effects of WM/EF on
arithmetic performance have been replicated by many others, and their con-
ditions of occurrence are now well documented (see De Stefano et al., 2004;
LeFevre et al., 2005, for reviews)

The role of WM/EF in arithmetic strategy use and strategy execution. To
better understand the role of WM/EF on arithmetic performance, with one of
André’s Ph.D. students (who was visiting us for six months as an ERASMUS
student) and a Ph.D. student of mine, we ran a study in which we looked at
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Figure 5

Data showing that articulatory suppression did not increase problem-size effect
(i.e., difference in solution times between small and large arithmetic problems),
suggesting that participants do not use working-memory resources
to automatically retrieve solution to addition (Lemaire et al. 1996’s data) or
multiplication (De Rammelaere et al.2001’s data) problems from LTM
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strategies (Imbo, Duverne, & Lemaire, 2007). In order to further understand
the locus of WM/EF effects in arithmetic, we hypothesized that WM/EF
would affect how participants select and execute arithmetic strategies. In this
experiment, we asked participants to accomplish a computational estimation
task. They were given two-digit multiplication problems and had to find ap-
proximate products. To do this, they could use two strategies, rounding-down
(i.e., they rounded both operands down to the closest decades, like doing
40x50 to find an estimate for 43x58) or rounding-up (i.e., they rounded both
operands up to the closes decades, like doing 50x60 for 43x58). Following
the choice/no-choice method that Siegler and I proposed (Siegler & Lemaire,
1997), participants were tested under a choice and two no-choice conditions.
In the choice condition, participants could choose between the two rounding
strategies to solve each problem. Then, participants were required rounding-
up on all problems in one no-choice condition and rounding-down on all
problems in the other no-choice condition. Thus, strategy use could be in-
dependently investigated in the choice condition and strategy execution in
the no-choice condition. Also, all participants were tested under a load and a
no-load conditions. In the no-load condition, participants accomplished only
the computational estimation task. In the load condition, the executive com-
ponents of WM were taxed with a choice-reaction time (CRT) task while
participants were accomplishing the computational estimation task. For this
CRT task, participants had to decide whether randomly presented tones are
high or low (Szmalec, Vandierendonck, & Kemps, 2005).

The data revealed two sets of interesting findings, one each for strategy
use and strategy execution. As can be seen from Figure 6, participants tended
to be less adaptive in their strategy use when their WM resources were taxed.
They used the best strategy (i.e., the strategy that yielded the closest product
from correct product, like rounding down to solve problems such as 42x8 or
rounding up to solve problems like 37x9) less often under WM-load condi-
tion, compared to no-load condition. In fact, they were less adaptive because
they used the simpler, rounding-down strategy more often under the WM-
load condition. This makes sense if using the more complex strategy and
using the best strategy on each problem is resource consuming. When part of
these resources is captured by a secondary task, participants could choose the
best strategy less often. The second set of results concerns strategy execution.
As shown in Figure 7, participants were slower under WM-load condition,
and even more so for the harder, rounding-up strategy than for the simpler,
rounding-down strategy. These two sets of findings revealed that executive
functions of working memory are involved in arithmetic strategy use and
strategy execution (see also Duverne, Lemaire, & Vandierendonck, 2008).

Strategy-switch costs in arithmetic. We recently adopted another approach
to determine whether executive functions are involved in arithmetic strate-
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Data showing that participants selected the best strategy on a given problem
less often when their WM resources were taxed. They were less adaptive because
they tended to use the simpler rounding-down strategy more often
(data from Imbo et al., 2007)

7000
O No-Load 1138 ms*

6000 - | @ WM Load 5734
z 5000 1 4596
= 468 ms*
% 4000
E
= 3090
€ 3000 1 2622
E
&

2000 -

1000 ~

0
Rounding Down Rounding Up

Figure 7
Data showing that loading working-memory led participants to execute
strategies more slowly, the harder, rounding-up strategy even more than the easier,
rounding-down strategy while participants were accomplishing computational
estimation task under a WM-load and a no-load conditions
(data from Imbo et al., 2007)
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gic variations (Lemaire & Lecacheur, 2010a). In a series of experiments,
participants were asked to accomplish computational estimation tasks. On
each problem, they were told which strategy to use (again rounding-down vs.
rounding-up strategy). Participants were asked to use the same strategy on
the two successive problems in half the trials and to use two different strate-
gies in the other trials. As can be seen from Figure 8, participants obtained
better performance when they were asked to repeat the same strategy on
two consecutive problems than when they were asked to use different strate-
gies. These strategy-switch costs were found only when participants switched
from the harder, rounding-up strategy to the easier, rounding-down strategy,
and not when they did the reverse. Such findings of asymmetrical switch
costs parallel findings from the task-switching literature in which André and
his collaborators have recently made several important contributions (e.g.,
Liefooghe, Demanet, & Vandierendonck, 2009; in press). The present study
shows that they do generalize to the case of strategy execution. In another ex-
periment, when participants were free to choose strategies on each problem,
we found that they tended to repeat the same strategy on 59% of the problems
(Lemaire & Lecacheur, 2010a, Expt. 3). Such strategy switch costs can be
explained like task switch costs as resulting in part from executive control
processes (i.e., when selecting or executing a new strategy on a problem,
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Figure 8
Data showing that participants are faster when they use the same strategy on
two consecutive problems than when they use different strategies, and this only
when they switch from the harder, rounding-up strategy to the easier,
rounding-down strategy. No strategy-switch costs were observed when they switch
from the easier to the harder strategy (data from Lemaire & Lecacheur, 2010)
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participants have to inhibit the just executed strategy and activate the new
strategy, two processes that are not necessary in the repeated strategy condi-
tion; see Vandamme, Szmalec, Liefooghe, & Vandierendonck, in press, for
ERP“data on this). Strategy switch costs have also been recently found while
participants accomplish numerosity judgment tasks (Luwel, Schillemans,
Onghena, & Verschaffel, 2009). Above and beyond generalizing switch costs
to cognitive entities like strategies, these strategy switch costs are impor-
tant because none of the computational models of strategy selection (e.g.,
SCADS* model proposed by Siegler and Araya, 2005) assume that strategy
selection and strategy execution on a given problem are influenced by the
strategy that participants used on the previous problem. None of them as-
sume such executive processes as strategy set reconfiguration that may be at
stake in strategy switch costs.

In sum, we have run a set of studies that show that one particular cognitive
domain, arithmetic, involves executive functions of working memory. The
role of WM/EF has been shown on both participants’ performance as well
as on how this performance arises (i.e., strategies). Such WM/EF processes
have not been envisaged by theories of arithmetic or theories of strategies.
Our findings, together with others’ such as those published by André and his
collaborators, point to the need to revise theories of arithmetic and strategies.

WMV/EF and strategic development in arithmetic

Both lines of research, strategic development and the role of WM/EF in
arithmetic, have been combined in some of our (and others’) studies. The
specific issue was whether age-related changes in WM/EF influence strategic
development and, if yes, to what extent. Several studies have already been
conducted on this issue.

Imbo and Vandierendonck (2007) asked fourth, fifth, and sixth graders to
solve one-digit addition problems with the choice/no-choice method (Siegler
& Lemaire, 1997). On each problem, participants could choose one of three
available strategies: retrieval (i.e., directly retrieving the correct sum from
LTM), transforming (i.e., transforming the problem by making an intermedi-
ate step to 10, like doing 9+1=10+5 to solve 9+6), and counting (i.e., count-
ing subvocally by one until correct sum is reached, like doing 9+1+1+1+1
to solve 9+4). Moreover, participants were tested under a no-load condition
(i.e., participants only solved arithmetic problems) and under a load condition
(i.e., participants were asked to categorize low and high randomly displayed
tones while solving arithmetic problems). The goal was to determine whether
strategy use is affected by working-memory load and, if yes, whether such ef-
fect would change with age. The data, summarized in Figure 9 for fourth and
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sixth graders, show no changes in strategy distribution when WM was over-
loaded with a secondary task. For example, we can see that in fourth graders,
participants used the retrieval strategy on 46% and 48% of problems in the
no-load and WM-load conditions, respectively. Similarly, sixth graders used
it on 60% of problems in both working-memory conditions. In other words,
above and beyond increase with age of mean percent use of the retrieval
strategy, loading working memory made no differences in these age-related
changes (the same findings came out for the other two strategies). This is
surprising and may stem from different factors (e.g., the secondary, CRT,
task used under the WM-load condition may have not taxed WM resources
enough). Recent findings suggest that age-related differences in WM/EF con-
tribute to age-related differences in strategy use.

Barrouillet and Lépine (2005) asked third and fourth graders to solve single-
digit addition problems (e.g., 4+7). Of particular interest were frequencies with
which participants use the retrieval strategy. They compared children with high
working-memory spans and children with low working-memory spans. They
found that mean percent use of retrieval correlated more highly with memo-
ry span in fourth graders (r=.31) than in third graders (r=.21). Note however
that (a) mean percent use of retrieval did not increase in fourth graders (67%)
compared to third graders (65%), and (b) correlations between mean percent
retrieval and working-memory spans were not significant on large problems
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Figure 9
Data showing that there were no differences between load and no-load
conditions in strategy distributions in fourth and sixth grade children
(data from Imbo & Vandierendonck, 2007)
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(rs=.11 and .18 in third and fourth graders, respectively) but was significant on
small problems (rs=.35 and .41 in third and fourth graders, respectively). These
data suggest that, in children, strategy use and WM/EF are correlated. Howev-
er, one limitation of these data is that they did not enable to determine whether
age-related changes in WM/EF affect age-related changes in strategy selection.

In a recent study, Lemaire and Lecacheur (2010b) asked third, fifth, and
seventh graders to select the best strategy for estimating sums to problems
like 36+78. They were asked to choose on each problem one of two available
strategies, rounding-down (e.g., doing 30+70) or rounding-up (doing 40+80).
For 36+78, rounding-up is the best strategy as it yields the sum (i.e., 120) that
is closest from correct sum (i.e., 114). Problems were devised so that half
the problems were best solved with the rounding-down strategy (e.g., 32+64)
and half with the rounding-up strategy (e.g., 58+67), and so that selection of
the best strategy was fairly easy (i.e., unit of both operands were smaller or
larger than 5 like in 32+54 and 58+67) or less easy (i.e., unit digit was smaller
than 5 in one operand and larger than 5 in the other operand, like in 34+78).
Children’s executive functions were also assessed with neuropsychological
tests of EFs (i.e., Stroop, TMT, and Excluded Letter Fluency). Data showed
two interesting sets of findings. First, as children grew older, they were more
and more able to select the best strategy on each problem. Indeed, seventh
graders selected the best strategy on 80% of the problems, fifth graders did
it on 75% of the problems, and third graders did it on 65% of the problems.
Moreover, mean percent use of the best strategy on each problem correlated
significantly with all measures of EFs as well as with composite executive
score. When Lemaire and Lecacheur ran hierarchical regression analyses to
investigate the extent to which EFs accounted for age differences in mean
percent use of the best strategy, they found that the proportion of age-related
variance decreased by 67% (from R?=.18 to R?=.06) after control of execu-
tive functions. This result suggests that age-related growth in EFs contributes
significantly to improvement with age in children’s strategy selection. Note
that age still had a significant effect after partialling out effects of EFs. This
means that EFs do not fully explain age-related differences in strategy selec-
tion. As Lemaire and Lecacheur did not include a no-choice condition (i.e.,
a condition in which participants are required to use a strategy on all items),
they could not assess whether age-related differences in EFs influence also
strategy execution, which some future project should examine.

In summary, some data suggest that effects of WM/EFs on arithmetic
development are mediated by strategic variations. As they grow older and
more skilled at arithmetic, children are able to not only execute available
arithmetic strategies more efficiently, but they are also able to more and more
frequently select the best strategy on each problem. This skill of strategy
selection is influenced by WM/EFs, so is its age-related changes.
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Conclusions

Studies in arithmetic aim at examining the determiners of arithmetic
performance in both adults and children. This enables researchers to deci-
pher underlying cognitive processes so as to explain intra-individual (i.e.,
condition-related) and inter-individual (i.e., person-related) differences. To
pursue this goal, a specific attention has been devoted to strategic aspects of
participants’ performance. The type of strategies that people use, how they
select them and execute them on each problem are crucial determiners of
participants’ performance. Findings from arithmetic do generalize easily to
other cognitive activities which would be fruitfully investigated with a strat-
egy perspective. Similarly, arithmetic performance is influenced by general
cognitive constraints.

One cognitive constraint that André Vandierendonck and his colleagues
have worked hard on concerns WM/EF. Some of André’s works, and oth-
ers’ in both Europe and North America, looked at the role of WM/EF on
arithmetic performance and arithmetic strategies. André’s specific and most
valuable contributions were to first look at this issue from the architecture
of WM proposed by Baddeley (using the dual-task methodology to examine
components of WM), second to try to specifically investigate the role of EFs
of WM (using some targeted secondary task like his CRT tasks and variants),
and third to test different populations under different conditions. I illustrated
his (and ours) works here with children. However, André and his collabora-
tors made equally valuable contributions when they examined other sources
of individual differences such as skills or gender differences. The success of
this approach could easily extend to other populations. We used it to address
cognitive aging issues (e.g., Gandini, Lemaire, & Dufau, 2008; Lemaire &
Arnaud, 2008; Lemaire, Arnaud, & Lecacheur, 2004); but it could be used
to investigate specific pathological populations including ADHD children,
Alzheimer’s patients, or dyscalculic adults or children. One of the great
merits of the perspective that André has developed is to make possible and
fruitful the combination of both traditional mainstream cognitive psychol-
ogy (that searches for mechanistic accounts of participants’ performance)
approach and approaches that showed how important it is to understand func-
tional architecture of the cognitive system in general, and working memory
or executive functions in particular. No doubt that future research will con-
tinue to benefit a great deal from such combination.
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