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This neuroimaging (functional magnetic resonance imaging) study investigated neural
correlates of strategy selection. Young adults performed an arithmetic task in two
different conditions. In both conditions, participants had to provide estimates of two-
digit multiplication problems like 54 × 78. In the choice condition, participants had to
select the better of two available rounding strategies, rounding-up (RU) strategy (i.e.,
doing 60 × 80 = 4,800) or rounding-down (RD) strategy (i.e., doing 50 × 70 = 3,500
to estimate product of 54 × 78). In the no-choice condition, participants did not have to
select strategy on each problem but were told which strategy to use; they executed RU
and RD strategies each on a series of problems. Participants also had a control task (i.e.,
providing correct products of multiplication problems like 40 × 50). Brain activations and
performance were analyzed as a function of these conditions. Participants were able to
frequently choose the better strategy in the choice condition; they were also slower when
they executed the difficult RU than the easier RD. Neuroimaging data showed greater brain
activations in right anterior cingulate cortex (ACC), dorso-lateral prefrontal cortex (DLPFC),
and angular gyrus (ANG), when selecting (relative to executing) the better strategy on each
problem. Moreover, RU was associated with more parietal cortex activation than RD.These
results suggest an important role of fronto-parietal network in strategy selection and have
important implications for our further understanding and modeling cognitive processes
underlying strategy selection.

Keywords: strategy selection, arithmetic problem solving, fMRI, anterior cingulate cortex, dorso-lateral prefrontal

cortex

INTRODUCTION
During the last 30 years, research on human cognition has shown
that, in many domains, people use several strategies to accom-
plish cognitive tasks (Siegler, 2007). A strategy can be defined as “a
procedure or a set of procedures for achieving a higher level goal
or task” (Lemaire and Reder, 1999, p. 365). Strategy variability
enables participants to alternate flexibly between different strate-
gies from one problem to the next so as to adapt to the demands of
problems and situations. One of the crucial issues concerns how we
choose a strategy among several available strategies to solve each
problem. Although a number of behavioral studies have investi-
gated strategy selection processes, no previous works examined the
neural bases of strategy selection, which we do here in a functional
magnetic resonance imaging (fMRI) study. We first review previ-
ous relevant findings on strategy selection from behavioral studies
and on brain activations in frontal and prefrontal lobes for tasks
that require executive functions involved in strategy selection.

Behavioral studies have shown that participants select strate-
gies on a trial-by-trial basis (i.e., they choose among available
strategies on each problem) and that performance depends on
the strategies they use, how often they use each available strategy,
how fast and accurate they are when they execute each strategy,
and how they select strategies on each problem. Previous studies

have also found that participants’ strategy choices are influenced
by several parameters like characteristics of problems (e.g., partic-
ipants retrieve solutions directly in memory more often on small
arithmetic problems like 3 × 4 and use counting more often on
large problems like 7 × 8; Zbrodoff and Logan, 2005), of situations
(e.g., participants tend to use retrieval strategy more often under
speed pressures when solving arithmetic problems; Campbell and
Austin, 2002), of strategies (e.g., participants are faster when they
use memory retrieval than when using counting strategies to solve
arithmetic problems; Imbo and Vandierendonck, 2007), and of
participants (e.g., as children grow older they use retrieval strat-
egy more and more often; Lemaire and Siegler, 1995). Over and
above main effects, all these characteristics interact when partic-
ipants select strategies on each problem. For example, Lemaire
et al. (2004) found that in a computational estimation task, par-
ticipants chose a rounding-down (RD) strategy more often on
small-unit problems (e.g., 62 × 47 = 60 × 40 = 2400) than
on large-unit problems (e.g., 78 × 24 = 70 × 20 = 1400).
Moreover, this difference was larger in younger than in older
adults; and such age differences increased when accuracy was
emphasized.

Several computational models of strategy selection have
attempted to formalize the mechanisms by which people choose
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strategies on each problem: Lovett and Anderson’s (1996) ACT–R;
Lovett and Schunn’s (1999) RCCL; Payne et al. (1993) adaptive
decision maker; Reder and Ritter’s (1992) model; Rieskamp and
Otto’s (2006) SSL model; Schunn et al. (1997) SAC model; and
Siegler and Araya’s (2005) SCADS∗. Previous works by Reder and
Ritter (1992) and Schunn et al. (1997) has shown that participants
can base strategy selection on a rapid feeling of knowing (FOK)
process. Consistent with this view, Reder and Ritter (1992) found
that participants’ FOK judgments were predicted by the familiar-
ity with components of the problem. Other models, like RCCL,
SSL, and SCADS∗, argued that strategy selection processes involve
associative mechanisms, like activating relative costs/benefits of
each strategy. These mechanisms are more complex and require
more processes, such as the analysis of the problems’ characteris-
tics. All models also assume that strategies including fewer and/or
simpler procedures (e.g., retrieving correct solution of arithmetic
problems like 3 × 4 directly from memory) are easier to execute
than strategies including more and/or more complex procedures
(e.g., adding 3 four times). These assumptions proved sufficient
to account for most findings on strategy choices and strategy
execution.

However, an important limitation of previous works concerns
the limited understanding of the fact that participants do not
always choose the better strategy on each problem. For example,
sometimes people repeat the same strategy over two consecutive
trials, whereas using a different strategy on the second problem
would have yielded better performance (e.g., Luwel et al., 2009;
Lemaire and Lecacheur, 2010). Such findings suggest that strategy
selection involves additional mechanisms not originally assumed
by previous theoretical models. Several recent findings are consis-
tent with this possibility. For example, Hodzik and Lemaire (2011)
found that better strategy selection correlated with executive func-
tions. Such findings suggest that selecting a strategy on a given
problem is not just a product of considering problem and strategy
characteristics as assumed by models of strategy selection. Other
mechanisms, like executive control mechanisms for example, are
crucial for strategy selection. Neuroimaging approach was adopted
here with the hope that brain activations would fruitfully help to
precise mechanisms involved in strategy selection. For example,
discovering that better strategy selection is accompanied by brain
activations in frontal and prefrontal areas would be additional
pieces of evidence that strategy selection involves executive con-
trol processes and would prompt revisions of theories of strategy
selection.

OVERVIEW OF THE PRESENT STUDY
In this study, our goal was to examine the neural activations associ-
ated with strategy selection. We pursued this goal in the context of
arithmetic problem solving tasks as previous research found that
this is a good context to investigate strategic aspects of human cog-
nition and that findings in this context generalize to other cognitive
domains (e.g., Lemaire, 2010). Participants performed a compu-
tational estimation task in which they were asked to select (and
execute) the better of two available strategies. They had to provide
the better estimate of multiplication problems (e.g., 36 × 52) while
using either the rounding-up (RU) strategy (40 × 60 = 2,400) or
the RD strategy (30 × 50 = 1,500). Following the choice/no-choice

method proposed by Siegler and Lemaire (1997), we tested par-
ticipants in two different conditions, a choice condition, and a
no-choice condition. In the choice condition, participants had to
select the better strategy on each problem and execute it. Partic-
ipants were explained that the better strategy is the strategy that,
among the available RD and RU strategies, enables to provide
the product that is the closest product from the correct product.
Participants were not informed about whether there is a rule to
determine which strategy is the better strategy on each problem. In
the no-choice condition, participants were asked to execute strate-
gies without selecting strategies on each item. That is, they were
asked to use a pre-specified strategy on each problem. Brain acti-
vations were compared between choice and no-choice condition
to dissociate brain activations associated with strategy execution
from those associated with strategy selection.

Two sets of predictions were tested, one each on behavioral
performance and brain-imaging data. Regarding participants’
performance, we expected to replicate previous findings in compu-
tational estimation tasks (e.g., Lemaire et al., 2000, 2004; Lemaire
and Lecacheur, 2010). Participants should select each strategy
when it works better. That is, they should use the RU strategy
more often on RU problems (e.g., doing 40 × 60 for 37 × 58) and
the RD strategy on RD problems (e.g., doing 30 × 50 for 32 × 54).
They should be slower and less accurate when they choose and
execute the RU strategy than the RD strategy, as rounding up is
harder than rounding down. As analyzed in previous studies, this
comes from the fact that, when participants use the RU strategy,
they have to increment both operands up to the nearest larger
decades whereas when using the RD strategy they can use decades
that are still displayed on the screen.

Regarding brain activations, as strategy selection involves a
component choice (i.e., choosing between two rounding strate-
gies), we expected specific activations in ACC to the extent that
ACC is crucial in choice behaviors (e.g., Anderson et al., 2009b;
D’Esposito et al., 2009). Moreover, to select a strategy, partici-
pants should maintain active both rounding strategies in memory
and flexibly alternate between these two strategies. Such main-
tenance and strategy switching are assumed to rely on executive
control processes. Therefore, following previous findings of frontal
and prefrontal activations in tasks requiring executive control
processes (e.g., Dove et al., 1999), we also expected activations
in prefrontal cortex. This would support behavioral findings
regarding the crucial role of executive functions during strategy
selection.

With regards to brain activations underlying strategy execution,
given the lack of research on neural bases of strategy execution, it
was hard to make specific and precise predictions. Nevertheless, a
previous research by Gandini et al. (2008) found that when par-
ticipants used two different strategies to accomplish numerosity
estimation tasks, each strategy was sustained by both overlapping
and distinct brain areas. This may not be limited to numerosity
estimation tasks; it may also generalize to arithmetic problem solv-
ing tasks like computational estimation tasks tested here. This is
highly likely as the two computational estimation strategies tested
here yielded different levels of performance in previous works
(e.g., Lemaire et al., 2000, 2004; Lemaire and Lecacheur, 2010;
Uittenhove and Lemaire, 2012, 2013; Uittenhove et al., 2013).
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Most of previous studies investigating the neural bases of math-
ematical cognition found activations in the parietal regions when
people accomplish arithmetic tasks (e.g., Piazza et al., 2004; Pinel
et al., 2004; Castelli et al., 2006). More specifically, solving com-
plex arithmetic problems was mainly associated with increased
activations in left and right posterior lobes, and in left frontal
cortex (e.g., Zago et al., 2001; Grabner et al., 2007). Moreover, as
solving complex arithmetic problems involves mental processes
like visual processing, manipulation, and storage of numbers in
working-memory, we expected activations of brain areas usu-
ally activated by these processes. Indeed, brain activations were
observed in superior frontal sulcus when solving visuo-spatial
working-memory tasks (e.g., Klingberg, 2006), in supramarginal
gyrus (SMG), and in occipito-temporal junction when partici-
pants maintained and manipulated items or intermediate results
in working-memory (e.g., Petit and Zago, 2002). Therefore, we
expected larger activations in left and right posterior lobes (pari-
etal and occipital lobes), as well as in frontal lobe when participants
execute the RU strategy than when executing the RD strategy.

MATERIALS AND METHODS
PARTICIPANTS
Twenty-two right-handed participants were tested. They were
undergraduate students from Aix-Marseille University, and their
first language was French. Participants were excluded if they were
taking any CNS-active or vasoactive medication, or if they reported
significant neurological, cardiovascular, psychiatric, or systemic
illness. Prior to participation, all participants signed information
consent, and were informed that they could withdraw from the
study at any time. Four participants were excluded from this study
because they did not perform the task well. Two participants chose
the better strategy on 50% of problems, which did not significantly
differ from a random selection, and the other two participants used
the RD strategy on all problems. Data from a sample of 18 par-
ticipants (nine men) from the age range 19–30 (mean 24.0 years)
were analyzed.

For purpose of comparisons with previous studies and in order
to test participants with a minimum level of arithmetic fluency, we
assessed participants’arithmetic skills with an independent, paper-
and-pencil test, the so-called French Kit test (French et al., 1963).
This test consists in subtests of addition, subtraction, and multipli-
cation problems. Each subtest contains two pages of problems. The
addition subtest consists in two pages of addition problems pre-
sented in columnar (e.g., 47 + 63 + 9), and two pages of subtrac-
tion/multiplication subtest which consists in alternation between a
row of subtraction problems and a row of multiplication problems.
All participants were told that they have 2 min to accurately solve
as many problems as possible on one page. The correctly solved
problems for each page were summed to yield a total arithmetic
score. As participants are supposed to give their answer within a
limited time, only participants with an arithmetic score of at least
60 were included in the study (mean 81). This was done in order
to test only participants with a good level in arithmetic.

STIMULI
We tested two types of experimental problems. Half the prob-
lems were so-called small-unit problems and the other large-unit

problems. Small- and large-unit problems differed on the basis
of the size of the sum of unit digits. Sums of unit digits were
smaller or equal to 10 (7–10) and larger or equal to 10 (10–
13) for small- and large-unit problems, respectively. Also, small-
and large-unit problems differed on relative strategy accuracy.
Relative strategy accuracy for a given problem was based on
mean percent deviations between estimates and correct products,
calculated with the following formula: |[(estimate product –
correct product)/correct product] × 100|. For each problem we
calculated percent deviation between correct product and esti-
mate. For example, percent deviations were 26.9 and 16.9% for
38 × 54 when using RD and RU strategies, respectively. For
this problem, the better strategy was the RU strategy. Abso-
lute differences in mean percent deviations between correct
products and estimates for small-unit problems were 15.1%
(range = 8.3%−24.8%) and 21.0% (range = 13.8%−28.8%)
when using the RD and RU strategies, respectively. Similarly,
mean percent deviations between correct products and estimates
for large-unit problems were 23.1% (range = 13.1%−40.3%)
and 15.2% (range = 8.9%−22.1%) when using the RD and
RU strategies, respectively. Small- and large-unit problems had
comparable correct products when solved with each round-
ing strategy. More precisely, mean correct products were 3,330
(range = 1,426−6,364) and 3,355 (range = 1,638−5,568) for
small- and large-unit problems, respectively. This was necessary
for determining which strategy is the better on each problem to
be unconfounded with the difficulty of calculating the correct
product.

Given effects that are known in the domain of mental arith-
metic (see Campbell, 2005, for an overview), when selecting the
experimental problems, we controlled the following factors: (a) no
operands had 0 (e.g., 30 × 48) or 5 as unit digit (e.g., 35 × 48); (b)
the decades were between 3 and 8; (c) digits were not repeated in
the same decade or unit positions across operands (e.g., 43 × 47);
(d) no digits were repeated within operands (e.g., 44 × 59); (e)
no reverse order of operands were used (e.g., if 52 × 76 was
used, then 76 × 52 was not used); (f) no tie problems (e.g.,
32 × 32) were used; (g) the first operand was larger than the
second in half the problems; (h) no operands had its nearest
decade equal to 0, 10, or 100. Control problems were constructed
such that (a) both operands had its unit digits equal to 0, (b) the
decades were between 3 and 9, and (c) no decades were equal (e.g.,
40 × 40).

We created 120 experimental problems and 60 control prob-
lems. In the choice condition, each of the two sets contained 60
experimental and 60 control problems. The same experimental
and control problems used in the choice condition were mixed
and presented into two sets of problems in the no-choice condi-
tion. These four sets were equal for mean correct products and
mean percent deviations between correct products and estimates,
for experimental problems, and for mean correct products for
control problems.

PROCEDURE
Participants had a training session one to 2 weeks before entering
the fMRI scanner. This was to familiarize them with the task envi-
ronment (see Table 1). The RD strategy was described as rounding
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Table 1 | Summary of the procedure.

Session Task Condition Number of trials

Session 1 Standardized tests French Kit test As many as possible

Mill Hill test 33

Familiarization with the computational estimation task Rounding-down (RD) condition 20

Rounding-up (RU) condition 20

Choice condition 40

Practice to the experimental task: sequence of three problems Choice condition 12

RD condition 12

RU condition 12

Session 2 Practice to the experimental task: sequence of five problems Choice condition 40

RD condition 20

RU condition 20

both operands down to the nearest smaller decades, like when
doing 50 × 80 to estimate 51 × 89. The RU strategy was described
as rounding both operands up to the nearest larger decades, like
when doing 60 × 90 to estimate 51 × 89. Then, participants had
to choose which one of these two rounding strategies yields the
better estimate. Instructions emphasized that participants should
not use any other strategies, should do only the initial rounding
up or down, and should do nothing more (i.e., adding or sub-
tracting small amounts) after calculating the product of rounded
operands.

After a few minutes rest, participants practiced the experimen-
tal task. Participants were told to pay attention to the symbol above
the multiplication problem. An arrow pointing up “↑”cued par-
ticipants to use the RU strategy; an arrow pointing down “↓”cued
participants to use the RD strategy; a question mark “?” cued par-
ticipants to choose among the two rounding strategies which one
yields the better estimate, and the sign “=” cued them to calcu-
late the exact answer. The latter symbol was used only for control
multiplication problems.

Participants were told that they were going to encounter three
different conditions as in the previous practice. They were first
tested in the choice condition (i.e., choosing the better round-
ing strategy) and then in the no-choice RD and RU conditions.
These latter two sets were counterbalanced between participants.
Based on previous works (e.g., Siegler and Lemaire, 1997), we
decided to test participants in the choice condition first as this
order enables their strategy choices to not be contaminated by
recent execution of strategies in the no-choice condition when
no-choice conditions are taken before the choice condition. Partic-
ipants were informed that multiplication problems were displayed
with different durations. Multiplication problems cued with “?”
were displayed during 7.5 s, problems cued with “↑” during
4 s, problems cued with “↓,” and problems cued with “=” dur-
ing 3.5 s. Lengths of trials differed because participants needed
more time in the choice condition to choose between the two
rounding strategies. Likewise, in the execution condition, RD
problems are known to be solved more quickly than RU prob-
lems because they are easier. Participants were instructed to

answer before the multiplication problems disappeared. They
gave their estimates aloud. For example, for “↓” 31 × 57, par-
ticipant should say “1,500” and then click as fast as possible on
the mouse button. Verbal protocols and solution latencies were
recorded. Finally, participants were explained about the special
design we used. In each condition, a sequence of three con-
secutive experimental problems appeared with the same symbol
(experimental task) followed by a sequence of three control prob-
lems cued with “=” symbol (control task). For example, in the
choice condition, three problems cued with “?” were alternated
with three problems cued with “=.” The two (experimental and
control) tasks were separated by a black screen. The duration
of the black screen was determined by adding (a) the differ-
ence between the maximum duration display of an item and
the participant solution latency of each item in a sequence, and
(b) 1 s. For instance, suppose participant’s solution latencies
were 6.5, 5, and 4 s for the experimental task in the choice
condition. The black screen appeared for 6.5 s (i.e., [(7.5 –
6.5) + (7.5 – 5) + (7.5 – 5.5)] + 1 = [1 + 2.5 + 2] + 1).
We decided to use block design for two reasons. The first rea-
son was to increase statistical power. Indeed fMRI signal in
response to a stimulus is additive. This means that the amplitude
of the hemodynamic response increases when multiple stim-
uli are presented in rapid succession. So block designs offer
considerable statistical power in comparison to event-related
design because the signal change in the fMRI signal follow-
ing a single stimulus presentation is small. Thus, block design
was favored here in order to maximize brain activations under-
lying strategy selection. The second reason was to control for
the length of each block. We wanted durations to be longer
than 12 s so that hemodynamic responses were well stabi-
lized (plateau) for each condition. The goal was to have no
bias, due to differences in processing time, across the different
conditions.

One to 2 weeks later, in the second session, participants were
reminded both rounding strategies and were given an additional
practice similar to the task to be performed in fMRI scans.
The same duration display as in the previous practice was used.
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However, two parameters differed from the previous practice.
First, each sequence included five problems instead of three prob-
lems. Second, each set of problems started with an instruction
screen which appeared for 14 s. This screen indicated which task
to perform in each tested condition (e.g., “?” or “=,” for selection
condition; see Figure 1).

After a few minutes rest, participants were installed in the
scanner. A microphone placed in front of participant’s mouth
allowed us to record participant’s response during scanning. Par-
ticipants underwent four fMRI scans which correspond to two
functional selection runs and two functional execution runs. Fol-
lowing Siegler and Lemaire (1997), the choice condition always
preceded the no-choice conditions so that strategy selection in
the choice condition was not contaminated by recent strategy
execution. In each condition, the two functional runs were coun-
terbalanced between participants. Each choice run lasted 12 min
and the no-choice runs lasted 7 and 8 min for the RD and the RU
strategies, respectively.

fMRI PROCEDURE
Data acquisition
Imaging was performed with a 3T whole-body imager MED-
SPEC 30/80 ADVANCE (Bruker). High-resolution structural
T1-weighted images were required for all participants to allow
precise anatomical localization. The anatomical slices covered the
whole brain and were acquired parallel to the anterior–posterior
commissure (AC–CP) plane. For each choice run, 342 functional

volumes, for RD run 229, and for RU run 244, sensitive to blood
oxygen level-dependent (BOLD) contrast were acquired with T2*-
weighted echo-planar (EPI) sequence at 32 axial slices (field of
view = 192 mm × 192 mm, slice thickness 3 mm; inter-slice
gap 1 mm, 64 × 64 matrix of 3 mm × 3 mm voxels). The slices
were parallel to AC–CP commissure and covered the whole brain.
Acquisition of all functional volumes took place continuously dur-
ing a single session, with a repetition time (TR) of 2.133 s/volume.
The six first volumes were discarded to allow for T1 equilibration
effects.

Preprocessing
Preprocessing were realized using Statistical Parametric Mapping
(SPM8, Wellcome Trust Centre for Neuroimaging, London, UK;
Friston et al., 1995, http://www.fil.ion.ucl.ac.uk/spm/software/
spm8/). SPM8 software was implemented in MATLAB 7.5 (Math-
works Inc. Sherborn, MA, USA). Because slices were not acquired
simultaneously but one after the others, to correct the different
volume acquisitions over time, the signal measured in each slice
was shifted relative to the acquisition of the middle slice using
a tri temporal linear interpolation. To correct movements dur-
ing volume acquisition, the functional images were realigned on
the first image of the first session. For multi-subject analysis,
anatomical and realigned functional images of all subjects were
transformed (non-linear basis transformations) in a common
standard space using the Montréal Neurological Instute (MNI)
template. Images were then smoothed with a 6 mm full width half

FIGURE 1 | Experimental design.
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maximum (FWHM) isotropic Gaussian filter to reduce residual
anatomical variations between subjects. Finally, data were high-
pass filtered with a cut-off period of 128 s to remove from analysis
low frequencies corresponding to breathing or heartbeats.

Whole brain data analyses
For all participants, activations in each run were modeled using a
combination of standard SPM functional hemodynamic response
functions. For single-subject analyses, we carried out several anal-
yses. In each run, we contrasted activations on experimental
problems minus control problems. First, to delineate strategy
selection networks, we contrasted experimental task minus con-
trol task in choice condition to experimental task minus control
task in no-choice condition. Second, to delineate strategy execu-
tion networks, we contrasted experimental task and control task
in no-choice RU run to no-choice RD run.

In the second step of statistical analyses, data were submitted to
a random-effect group analysis with subjects as a random variable.
The contrasts produced statistical parametric maps (SPMs) of the
t statistics at each voxel, which were subsequently transformed to
the unit normal Z distribution. Results represent one-sample t-
tests and paired t-tests. For two-samples t-tests and two-factorial
ANOVAs, threshold for the resulting images was set at p < 0.001
level (uncorrected); we kept only the cluster size greater than
20 voxels in order to retain only clusters that passed a corrected
threshold (p < 0.05).

ROIs data analyses
We focused on four important regions following activations found
in the whole brain analyses: anterior cingulate cortex (ACC), angu-
lar gyrus (ANG), dorso-lateral prefrontal cortex (DLPFC), and
SMG. We used the coordinates from the meta-analysis of Arsali-
dou and Taylor (2011) to locate ACC (x = −8, y = 8, z = 46, and
x = 4, y = 22, z = 36), ANG (x = −50, y = −58, z = 42,
and x = 30, y = −58, z = 32), SMG (x = 54, y = −42,
z = 32, and x = −44, y = −40, z = 42), and the DLPFC
(x = −30/+30, y = 28, z = 56) from Pastötter et al.’s (2010)
paper. For each ROI, these coordinates represented the center of
a 10-mm circle. Then, we applied a mask using anatomical areas
available in the Automated Anatomical Labeling (AAL; Tzourio-
Mazoyer et al., 2002) to exclude white matter in our ROI. For
all participants, activations in each run were modeled using a
combination of standard SPM functional hemodynamic response
functions.

RESULTS
BEHAVIORAL PERFORMANCE
We conducted analyses on mean percentage use of the RD strat-
egy, mean solution times, and mean percentages of errors (i.e.,
answering 3,100 when rounding down 82 × 47). We removed
from the analyses 7.8% of problems on which participants did
not click on the button response or clicked too quickly (i.e.,
solution latencies smaller than 800 ms). In all reported analy-
ses unless otherwise noted, differences are significant to at least
p < 0.05. Analyses aimed at determining which strategy partic-
ipants chose to provide the better estimate (choice condition),
and how fast and accurate participants executed the required
rounding strategy (no-choice condition; see Table 2). Two raters
who independently transcribed recorded answers agreed on 97%
answers.

Choice condition
Repeated-measure ANOVA with 2 (Problem: small-unit, large-
unit problems) on mean percent use of RD strategy revealed a
significant effect of problem, F(1,17) = 133.8, MSE = 141.55,
η2

p = 0.88, p < 0.01. Participants used the RD strategy
more often on small-unit (74.7%) than on large-unit problems
(28.8%).

Repeated-measure ANOVAs with 2 (Problem: small-unit, large-
unit problems) × 2 (Strategy: RD, RU strategies) conducted on
mean solution latencies and mean percentages of errors revealed
that participants were faster when selecting and executing the RD
(3,782 ms) than the RU strategy (4,566 ms), F(1,17) = 53.7,
MSE = 194790, η2

p = 0.77, p < 0.01. Moreover, the Problem x

Strategy interaction, F(1,17) = 8.54, MSE = 63932, η2
p = 0.35,

p = 0.01, showed that participants were faster when choosing the
RU strategy on large-unit problems (4,452 ms) than on small-unit
problems (4,680 ms), but equally fast on the two types of problem
for the RD strategy (3,847 and 3,716 ms, F < 2).

Analyses on mean percentages of errors revealed a signifi-
cant Problem x Strategy interaction, F(1,17) = 4.9, MSE = 904,
η2

p = 0.22, p = 0.04, showing that participants made fewer errors
when they selected and executed the RD strategy on small-unit
problems (3.3% vs. 12.5%, F < 4) and the RU strategy on
large-unit problems (3.9% vs. 8.9%, F < 4) than the reverse.

No-choice conditions
We conducted repeated-measure ANOVAs with 2 (Problem: small-
unit, large-unit problems) × 2 (Strategy: RD, RU strategies)

Table 2 | Mean solution latencies (in ms) and mean percentages of errors as a function of strategies and problems in each condition.

Conditions RD strategy RU strategy Control

Small-unit problems Large-unit problems Mean Small-unit problems Large-unit problems Mean

Solution latencies (in ms)

Choice 3716 3847 3782 4680 4452 4566 2333

No-choice 2222 2244 2233 3108 3045 3076 2204

Percentages of errors

Choice 3.3 12.5 7.9 8.9 3.9 6.4 5.8

No-choice 1.7 1.1 1.4 2.4 2.0 2.2 2.5
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design on mean solution latencies and on mean percentages of
errors. These analyses only revealed a main effect of strategy
F(1,17) = 242.4, MSE = 52820, η2

p = 0.93, p < 0.01. Partici-
pants made fewer errors when executing the RD (1.4%) than the
RU strategy (2.2%). No other effects came out significant in either
solution latencies or on percent of errors.

IMAGING DATA
Functional MRI data analyses were carried out to determine the
neural bases of strategy selection and of strategy execution. Two
main sets of comparisons were conducted. We compared brain
activations associated with experimental task relative to control
task. First, ANOVA was performed on BOLD signal using con-
dition as factor to identify which regions were associated with
strategy selection. Second, paired t-tests were used to test specific
cerebral regions engaged by RU strategy relative to RD strategy in
the no-choice condition. Such method means that all voxels listed
as demonstrating significant effects were significant in the choice
condition relative to the no-choice condition, and in the no-choice
RU condition relative to the no-choice RD condition. We report
cerebral activations first for strategy selection and then for strategy
execution (see Table 3)1.

Neural network involved in the choice condition
In our experiment, strategy selection required participants to
choose between two rounding strategies and to execute the chosen
strategy. The contrast between the choice condition and the no-
choice condition revealed specific activations in inferior parietal

1The same analyses were conducted with motion parameters of participants as a
covariate. The same results were found.

cortex (i.e., right and left SMG, right ANG, and right precuneus),
frontal cortex (right DLPFC, and right and left middle frontal
gyrus) and ACC (see Figure 2). As selecting a strategy involved
to execute this strategy, the no-choice/choice contrast revealed no
specific activations.

Neural network involved in the no-choice RU condition
The comparison between the no-choice RU and the no-choice RD
conditions revealed a specific cerebral network involving activa-
tions in parietal cortex (i.e., right and left precuneus, right SMG),
right and left middle frontal gyri, and left middle occipital gyrus
(see Figure 3).

The absence of brain activations in contrasting the no-choice
RD and the no-choice RU conditions is consistent with the fact
that the RU strategy involved incrementing each decade relative
to the RD strategy. Moreover, as control task is highly similar to
RD strategy execution, no clusters passed through the threshold
of 20 voxels when comparing the experimental task to the control
task in the no-choice RD condition.

ROIs analyses
The GLM yielded four beta weights per ROI for each participant.
A two-way ANOVA was performed, using the mean activation
values in each ROI, with a within-subjects factor of 2 (Condition:
choice, no-choice) × 4 (ROI: ACC, DLPFC, ANG, SMG) design.
Analysis revealed significant effects of Condition F(1,17) = 5.68,
MSE = 2.66, η2

p = 0.25, p = 0.03, showing less activations
in the no-choice than in the choice condition. We also found
a Condition × ROI interaction, F(1,17) = 3.68, MSE = 0.34,
η2

p = 0.18, p = 0.02, showing greater activation, for choice

Table 3 | Brain activations associated with strategy selection and strategy execution.

Size Peak Z Side Cerebral region Tal (x ) Tal (y ) Tal (z)

Choice > no-choice

242 5.14 R Angular gyrus (ANG) 39 −57 42

5.09 R Supramarginal gyrus (SMG) 45 −48 48

82 5.26 L SMG −36 −45 33

73 3.57 R Middle frontal gyrus 24 12 45

69 4.46 R Anterior cingulate cortex (ACC) 6 24 39

58 4.53 R Precuneus 27 −72 45

42 3.66 L Middle frontal gyrus −24 12 51

37 3.99 R Dorso lateral prefrontal cortex 39 24 45

RU > RD in no-choice condition

243 5.24 R SMG 51 −39 54

4.97 R Precuneus 18 −69 51

59 5.78 L Precuneus −12 −63 48

42 4.42 R Middle frontal gyrus 42 3 51

31 4.25 L Middle frontal gyrus −21 3 51

23 4.31 L Middle occipital gyrus −30 −75 15

Regions tabulated show significant (p < 0.001, cluster size > 20) signal increases for experimental task versus control task. N refers to the number of significant
voxels in each cluster, Z to the Z statistic value for each peak, and x, y, z refer to the distances in mm from the origin in Talairach space.

www.frontiersin.org February 2015 | Volume 6 | Article 61 | 7

http://www.frontiersin.org/
http://www.frontiersin.org/Cognition/archive


Taillan et al. Strategies in arithmetic

FIGURE 2 | Neural correlates of strategy selection (A) right precuneus, (B) right angular gyrus, (Ca) right and (Cb) left supramarginal gryi, (Da) right

and (Db) left middle frontal gyri, (E) right dorso-lateral prefrontal cortex (DLPFC), and (F) right anterior cingulated cortex.

FIGURE 3 | Cortical regions of increased activations for the RU

strategy (A) right supramarginal gyrus (SMG), (Ba) right and (Bb) left

precuneus, (Ca) right and (Cb) left middle frontal gyri.

than no-choice condition, in ACC, F(1,17) = 5.44, MSE = 1.76,
η2

p = 0.24, p = 0.03, than in ANG, F(1,17) = 7.44, MSE = 0.63,

η2
p = 0.30, p = 0.01, than in DLPFC, F(1,17) = 6.93,

MSE = 0.66, η2
p = 0.29, p = 0.02, but not in SMG, F < 1,

p = 0.63.

DISCUSSION
In this study, we investigated neural correlates of strategy selec-
tion and strategy execution. In the context of an arithmetic
computational estimation task, participants were asked to select
the better strategy in a choice condition, and to execute a pre-
determined strategy on each problem in no-choice conditions.
We replicated previously found behavioral data regarding strategy
selection and strategy execution. Indeed, participants performed
the strategy selection task as expected as they chose more often
than chance the better strategy on each problem. In the exe-
cution task, the RD strategy was faster than the RU strategy.
These results suggest that participants accomplished our compu-
tational estimation task in the scanner the same way as outside

the scanner. Most originally, the present data revealed specific
brain activations involving (1) ACC, DLPFC, and ANG for strat-
egy selection, and (2) occipito-parietal networks for strategy
execution processes. We discuss implications of these findings
for further our understanding of strategic aspects of human
cognition.

STRATEGY SELECTION NETWORK
The contrast between activations in the choice and in the no-choice
conditions revealed specific activations in the right hemisphere
including ACC, DLPFC, ANG, and bilateral activations in SMG
and in middle frontal gyrus.

Regarding the choice condition, it is important to empha-
size that to obtain further evidence that participants were not
randomly choosing the better strategy, we collected participants’
verbal reports outside the scanner. All participants reported that
they added the two unit digits and compared the sum of unit
digits to a reference number (i.e., 10) to decide which strat-
egy was the better strategy. Participants chose RU when the
sum of unit digits was larger than or equal to 10, and decided
to round down when the sum of unit digits was smaller or
equal to 10. It is possible that activations in the right ANG
reflect the focused attention on the unit digits and the com-
parison to the reference number 10. Göbel et al. (2001) investi-
gated the role of ANG in a Transcranial Magnetic Stimulation
(TMS) study to understand the function of this brain region.
They contrasted performance in a visuo-spatial task (i.e., decid-
ing of the presence or absence of a specific stimulus among
distractor stimuli) and a number comparison task (i.e., decid-
ing whether a two-digit number is smaller or larger than 65),
while disrupting activations in ANG. They found that num-
ber processing was greatly impaired with TMS in the left ANG
whereas deficits in visuo-spatial task were more important after
TMS stimulation in the right ANG. Such findings are consis-
tent with well-known literature on right hemisphere’s activations
for visuo-spatial attention (e.g., Corbetta and Shulman, 1999)
and number processing activations associated with left hemi-
sphere (e.g., Dehaene, 1999). In our study, participants had to
decide which cue is important to choose the better strategy in
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the choice condition. Using the sum of unit digits heuristic to
do so, the task goal representation (i.e., choosing the better
strategy) could have been more precisely defined as first cal-
culating the sum of unit digits, comparing this sum to 10, to
decide to use RU or RD. Such an interpretation is also con-
sistent with the role of ANG in tasks involving goal-directed
salience representations (Zenon et al., 2010), and facts retrieval in
long-term memory during problem solving (Menon et al., 2000;
Grabner et al., 2009).

In parietal cortex, we expected greater activations in SMG as
participants had to maintain an intermediate result as a verbal
storage (e.g., Smith and Jonides, 1998). In our study, intermedi-
ate step may consist in maintaining active the sum of unit digits
and both strategies in memory during processing of unit digits.
Participants may maintain strategies as verbal storage as “Down”
and “Up” strategies linked to strategy procedures (i.e., multiplying
the decades for RD, and increasing the decades and multiplying
them for RU). However, even if in the no-choice condition, a pre-
determined strategy had to be executed, participants may maintain
these rounding procedures as verbal storage, leading to no specific
activations in SMG when contrasting the choice and no-choice
conditions.

As sum of unit digits and strategy procedures needed to
be actively maintained, activations in DLPFC are consistent
with maintenance in working memory, selection processes
(Curtis and D’Esposito, 2003, for a review), and cognitive control
(e.g., Koechlin et al., 2003; Badre and Wagner, 2004; Ridderinkhof
et al., 2004; Braver and Barch, 2006). Badre and Wagner (2004)
investigated prefrontal cognitive control mechanisms while focus-
ing on the nature of DLPFC, frontopolar cortex (FPC), and
ACC structures. Brain activations in DLPFC were mostly asso-
ciated with tasks involving working memory (e.g., Petrides,
2000; Curtis and D’Esposito, 2003), strategic organization dur-
ing encoding (e.g., Shimamura, 1995; Blumenfeld and Ranganath,
2006, 2007), and response selection (e.g., MacDonald et al., 2000;
Rowe et al., 2000; Miller and Cohen, 2001). In our experiment, in
addition to select relevant information, activations in the DLPFC
may be linked to an updating of relevant information (i.e., small
or large unit digits) leading to inhibiting one of the two rounding
strategies.

Anterior cingulate cortex activations found here are consis-
tent with studies in decision making (e.g., Walton et al., 2007;
Anderson et al., 2009a; D’Esposito et al., 2009; Boorman et al.,
2011; Rushworth et al., 2011). Anderson et al. (2009a) compared
brain activations predicted by their ACT-R model (Adaptive Con-
trol of Thoughts, Lovett and Anderson, 1996) to brain activations
when participants solve arithmetic equations (e.g., 7x + 3 = 38).
When participants decided to solve +3 before solving 7x, ACC was
activated as predicted by the model. These activations in ACC were
interpreted as sustaining which decision to make after encoding
equation information. In our study, greater activations in ACC
may reflect strategy selection and regulation processes. That is,
after choosing and executing a strategy, the just executed strat-
egy efficiency may be associated with the relevant cue, the sum of
unit digits. Such interpretation is supported by activations in ACC
found to support regulation processes (MacDonald et al., 2000;
Sohn et al., 2007).

Investigating more precisely PFC, Koechlin et al. (2003) pro-
posed a cascade model of cognitive control organized in the
lateral PFC following a rostrocaudal axis (see also Badre, 2008).
The functional model showed that sensory (i.e., motor response),
contextual (i.e., selecting the appropriate response according to
the stimulus) and episodic control (i.e., relevant past events)
were implemented in premotor, caudal, and rostral lateral PFC
regions, respectively. Koechlin and Summerfield (2007) specified
that anterior DLPFC activations were associated with maintain-
ing or monitoring the rules for action, while activity in posterior
DLPFC varied with the contexts (i.e., contextual signals guide
response selection). Posterior regions of PFC were shown to sub-
serve selection mechanisms. Furthermore, Koechlin and Hyafil
(2007) described a neurocomputational model of how a reward
task set is placed from an ongoing state to a pending state, and
reverting back to an active state later, in anterior PFC. The authors
showed that FPC implemented reward-based cognitive branching
in interaction with anterior lateral and medial/orbital prefrontal
regions. However, the model was limited to two identical expected
reward task sets, suggesting that complex decision making may rely
on other brain structures like parietal cortex which supported for-
mation of mental spatial maps of multiple branching sets. This
is consistent with activation in PFC and parietal areas in our
study.

Finally, studies on working memory found cerebral activity
in a fronto-parietal network (e.g., Brass and von Cramon, 2004;
Roth et al., 2006) similar to the network found in task switch-
ing studies (e.g., Dosenbach et al., 2006; Slagter et al., 2006).
Montojo and Courtney (2008) specified that in the fronto-parietal
update network, inferior frontal junction exhibited greater activa-
tion for rule update whereas intraparietal sulcus showed greater
activation for stimulus update. Also, the fronto-parietal network
is recruited for top–down attention control (Knight et al., 1995;
Miller, 2000; Knight, 2007). Wang et al. (2010) suggested that in
such network, ACC and DLPFC interact with each other to resolve
conflict, and intraparietal sulcus was associated with attention
control.

Our findings have important theoretical implications as brain
activations found here bring further evidence for the involvement
of executive functions in strategy selection. Some models, like
ACT-R and SSL, argue that there are close relations between strat-
egy selection and activated associations from long-term memory.
However, this does not exclude executive functions during strategy
selection. Thus, involvement of executive functions in the strat-
egy selection is not incompatible with models of strategy selection
involving considerations of strategy costs/benefits if an evalua-
tion of relative costs and benefits of different strategies requires
controlled attentional resources. Nevertheless, current strategy
selection models do not explicitly assume any role of executive
functions, it would be interesting to test whether implement-
ing executive functions in these computational models would
account for age-related differences in strategic variations (e.g.,
in arithmetic, Hodzik and Lemaire, 2011; in memory, Taconnat
et al., 2009). Executive functions may be involved in maintain-
ing active strategy procedures or focused attention, updating
relevant information, and/or inhibiting irrelevant information
when choosing a strategy among several ones, processes that
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could easily be implemented in current models of strategy
selection.

Strategy execution networks
The networks associated with execution of RU showed activations
in parietal cortex (i.e., right and left precuneus, right SMG), right
and left middle frontal gyri, and left middle occipital gyrus.

Such activations are consistent with activations reported by
Zago et al. (2001) when they contrasted activations of a compute
condition to a read condition. In their compute condition, partic-
ipants solved two-by-two digit number multiplication problems
(24 × 13). To solve such multiplication problems, participants
used an algorithm involving several steps which required retrieving
intermediate results in memory. In their read condition, partici-
pants saw pairs of Arabic digits composed of zero and one (e.g.,
1 0) and had to read them aloud (e.g., “one zero”). The authors
found activations in middle frontal gyrus associated with working
memory tasks and executive processes (e.g., Courtney et al., 1998;
Smith and Jonides, 1998, 1999) and with simple multiplication
problems solving task (e.g., Chochon et al., 1999; Pesenti et al.,
2001).

In our study, right SMG activations may be related to active
working-memory maintenance of the increased decades. This
interpretation is supported by studies showing activations in this
brain area when intermediate results are maintained as verbal
storage (e.g., Smith and Jonides, 1998).

Activities in middle occipital gyri were found when complex
stimuli were presented (e.g., multi-digits vs. single-digit visual
processing; Dehaene and Cohen, 1997). Such activations can be
interpreted as manipulating larger numbers when executing RU
as compared to RD.

Furthermore, to round up, participants may focus their
attention on each decade to increment each of them and shift
their attention from the decade localization to another so as to
avoid the interference between the incremented decades and pre-
sented decades. This interpretation is consistent with precuneus
activations found to exhibit activations when participants vol-
untarily shift attention in different visuo-spatial tasks (Simon
et al., 2002) and in tasks requiring spatial information (see
Cavanna and Trimble, 2006, for an overview of behavioral corre-
lates of precuneus). Bilateral activations in precuneus may support
more focused and shifts of attention for RU than for RD.

In conclusion, this study provided evidence that cognitive
demands of each strategy can be seen in both behavioral and neu-
ral differences between RU and RD. Each rounding strategy here
was associated with specific neural network activations. Moreover,
strategy selection was also interestingly associated with specific
brain activations. These brain activations for strategy selection
overlap in structures known to be activated in decision mak-
ing. Results showed that DLPFC and ACC might play a crucial
role in strategy selection. Functionally, this supports that strategy
selection involves executive control processes. As these processes
were not included in theoretical models of strategy selection, our
findings suggest revisions of these models to explicitly take into
account their role in explaining how participants try to choose
the better strategy on each item while accomplishing cognitive
tasks.
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