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Nonlinear electron kinetic structures are regularly observed in space and experimental magnetized plasmas, called elec-
tron phase-space holes (EHs). The existence of EHs is conditioned and varies according to the ambient magnetic field
and the parameters of the electron beam(s) that may generate them. The objective of this paper is to extend the 3D
Bernstein-Greene-Kruskal (BGK) model with cylindrical geometry developed by Chen et al.1,2 to include simultane-
ously finite effects due to (i) the strength of the ambient magnetic field B0, by modifying the Poisson equation with a
term derived from the electron polarization current, and (ii) the drift velocity ue of the background plasma electrons
with respect to the EH, by considering velocity-shifted Maxwellian distributions for the boundary conditions. This
allows us to more realistically determine the distributions of trapped and passing particles forming the EHs, as well as
the width-amplitude relationships for their existence.

I. INTRODUCTION

Electron phase-space holes (EHs) are non-linear kinetic
structures observed in the Earth’s magnetosphere by space-
craft missions in various regions (e.g, the auroral region, the
bow-shock, the dayside magnetopause and the geomagnetic
tail),3–16 as well as in the Saturn’s magnetosphere by Cassini
mission,17,18 and very recently in the induced Venus magneto-
sphere by Parker Solar Probe and Solar Orbiter missions.19,20

Moreover, this type of structures can be generated by labo-
ratory experiments such as intense laser,21 magnetic recon-
nection facilities22 and by beam injection.23 Some theories
have been developed for solitary waves in quantum plasma24

based on a fluid model or a Bernstein-Greene-Kruskal (here-
after, BGK) approach25 for quantum Vlasov equation.26 More
generally, coherent structures appear in many fields of physics
such as biophysics, condensed matter or fluid dynamics.27

First observations in magnetized space plasmas have evi-
denced electrostatic structures propagating along the ambi-
ent magnetic field B0,3,17,28 although, for fast moving struc-
tures, a perpendicular magnetic perturbation to B0 (δB⊥) cor-
responding to the Lorentz field was detectable.4 Recently, ob-
servations in the tail of the Earth’s magnetosphere have also
reported structures with another electromagnetic signature,
characterized by a magnetic field perturbation parallel to B0
(δB∥)12–15. These structures associated with electron trapping
and a hole in phase space, are characterized in real space by a
positive electric potential and an electron density depletion in
their center. They therefore have a divergent electric field and
their crossing in the direction parallel to B0 shows a bipolar
(monopolar) spike of the parallel (perpendicular) electric field
component. Their parallel width is generally in the order of
a few to ten Debye lengths, while their perpendicular width
can be much larger. The determination of these lengthscales
and their ratio (shape of the structure) are most probably re-
lated to the generation mechanism, and to some existence cri-
teria to which this article tries to bring new elements of under-

standing. EHs can typically be generated during the nonlinear
phase of beam instabilities caused by the interaction of sev-
eral plasma populations.29–32 In a magnetized plasma, they
move along the field line at a velocity vEH close to the average
velocity vb of the electron beam(s), and are commonly charac-
terized into two types: slow8 or fast4, depending on whether
|ue| ≪ vT or |ue| ≥ vT , with ue the drift velocity of the back-
ground plasma electrons with respect to the EH and vT the
parallel thermal velocity of electrons. As demonstrated nu-
merically by Muschietti et al.33,34 and experimentally by Fox
et al.,22 one of the criteria for the existence of such a nonlinear
structure is that the electrons remain sufficiently magnetized
to be stable.

In the examples cited above, the plasma conditions vary
and, in particular, the magnitude of the ambient magnetic
field. Historically, BGK models were developed in 1D25,35 for
unmagnetized plasma and then theoretical additions or sug-
gestions were made: shifted distribution2,36, non-maxwellian
distribution (e.g, flap-top,37 Lorentzian2,38), effects of elec-
tron polarization current,1,39 and 2D40 or 3D1,2 extension.
However, these previous studies did not investigate dimen-
sionality and finite velocity effects at the same time,2,25,36,37,41

and did not give a quantified estimate of electron polariza-
tion effects.1,39 In this paper, we develop a BGK theoretical
model that includes the effects of dimensionality, finite am-
bient magnetic field, and a drift velocity of the background
plasma electrons with respect to the EH (i.e, 3D axisymmet-
ric cylindrical coordinates, shifted electron distribution func-
tion and electron polarization current). It aims at discussing
the previous studies, modeling slow and fast EH observations
for relatively weak and strong magnetized plasma, and relat-
ing the model to the PIC simulations.3,29,31,32 In particular,
the questions addressed in this paper are: how do the ambient
magnetic field strength and the finite electron drift velocity
influence the existence conditions and characteristics of such
3D EHs?

After a presentation of the 3D BGK model of EHs with
cylindrical geometry, and its underlying assumptions, such as
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those that allow the inclusion of electron polarization effects
(section II), the characteristics (distribution functions and den-
sities) of the passing and trapped particles are theoretically de-
termined in section III. Section IV aims at deriving the condi-
tions of existence of these EHs. Our model is then discussed in
section V in the light of space and laboratory measurements,
as well as simulation results.

II. 3D BGK MODEL

We consider the case of an uniform magnetized plasma
with the assumption of an unperturbed neutralizing ion back-
ground. The dynamics of ions is thus ignored for reasons of
simplicity and because of their large mass ratio with electrons.
The parallel dynamics of electrons (of charge −e and mass m)
is analyzed from the evolution of their distribution function
fe, while their perpendicular dynamics is described by a fluid
representation of their polarization drift.

A. Parallel Vlasov dynamics

The original BGK model25 of EH is a one dimensional,
stationary (∂t fe = 0) nonlinear exact solution of the Vlasov-
Poisson system of equations for a given shape of potential.
Based on the observations11–15, the EH potential can be rep-
resented in cylindrical coordinates (r,θ ,z) independent by ro-
tation around the ambient magnetic field axis (B0 = B0ẑ),
and can be written in the EH frame in the following double-
Gaussian form:

φ(r,z) = φ0 exp

(
− r2

2ℓ2
⊥
− z2

2ℓ2
∥

)
(1)

with φ0 the amplitude of the potential structure, ℓ⊥ and ℓ∥
its half-width in the perpendicular and parallel directions to
B0, respectively. It is also reasonable to consider the mag-
netic field perturbation to be much smaller than the ambient
magnetic field (δB ≪ B0) and the perturbed Lorentz term
to be negligible compared to the electric field perturbation
(v × δB ≪ δE, with δE = −∇φ ). The Larmor radius of
the electrons being generally much smaller than the perpen-
dicular size of the EH (ρL ≪ ℓ⊥) and their travel time in
the structure sufficiently slow compared to their gyroperiod
((|ue|+ vT )/ℓ∥ ≪ ωc),15,22,34,39 their motion can be approx-
imated by their guiding center motion. Due to the cylindri-
cal symmetry, azimuthal drift displacements (δE × B0) do
not contribute to equilibrium in phase space and will not be
considered15,42. Indeed, as a first approximation for describ-
ing the kinetic dynamics along the ambient magnetic field, we
will neglect the radial and azimuthal motions of the electrons
(i.e, assume no dependence on perpendicular velocities), and
we will solve the corresponding simplified Vlasov equation,
just along the z-axis for a given r value, the electrons being
closely tied to a cylindrical magnetic field surface of radius

r34,42:

vz ·
∂ fe(r,z,vz)

∂ z
+

e
m

∂φ(r,z)
∂ z

· ∂ fe(r,z,vz)

∂vz
= 0 (2)

This equation represents a simplified Vlasov equation, in the
context of azimuthal symmetry and uniform magnetic field,
where the dependence of θ and perpendicular velocities are
neglected. Its conditions of validity deserve some additional
comments, which we now address.

The condition to neglect the finite Larmor radius effects on
the electrons can be rewritten using the ratio between the elec-
tron cyclotron frequency and the electron plasma frequency,
and considering the anisotropy ratio of their temperature:

ρL

ℓ⊥
≪ 1 ⇔

ωp

ωc
≪ ℓ⊥

λD

√
Te∥
Te⊥

(3)

with λD the (parallel) Debye length. This implies for ωc/ωp ≤
1 that ℓ⊥ ≫ λD (unless Te⊥ ≪ Te∥, as in the FAST observa-
tion case4). The present model has therefore a limit and can-
not correctly describe all the structures of small perpendicular
size when the plasma is weakly magnetized. In particular, as
stressed by Hutchinson43, such a model is not valid for EHs
with a scale of the order of one Debye length (ℓ⊥ ∼ λD) in the
case of ωp/ωc = ρL/λD ≫ 1. However, even in the ℓ⊥ ∼ ρL
limit, the guiding center approximation should still give some
qualitatively acceptable results.

The finite frequency effects on the electrons are negligible
when, in the reference frame moving at their parallel velocity,
the time scale of the variations they undergo is much larger
than their gyroperiod. Similarly, this second condition for the
electrons to remain magnetized can be rewritten to give a sec-
ond condition on the electron cyclotron to plasma frequency
ratio:

ωp

ωc
≪

ℓ∥/λD

1+ |ue|/vT
(4)

Therefore, for weak magnetic field conditions, small parallel
and/or fast velocity structures could hardly be described by
our model. Note that the previous reasoning also applies to
trapped electrons35,37 and, insofar as eφ0 ≤ T∥, implies that
their bounce frequency has to be much lower than their cy-
clotron frequency for the guiding center approximation to be
valid:33,34

ωb ≃
1
ℓ∥

√
eφ0

m
≤ vT

ℓ∥
≪ ωc (5)

Note that this condition is similar to that etablished by Chen
et al.,1 as given by their Eq. (10). However, while we agree
that this is a condition for preventing trapped electrons from
escaping, i.e. their demagnetization during their bounce mo-
tion, we disagree that this condition implies that the effects
of polarization drift are negligible. Indeed these latter can be
present without causing the running away of electrons.

In view of these limitations, there are however space obser-
vations and laboratory measurements for which the conditions
developed in this paper are valid and which will be discussed
in section V (see Table I and references therein).
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B. Polarization effects

We decompose the electron charge density as a sum of two
terms: ρe = ρe∥ + ρe⊥, where ρe∥ is the contribution to the
electron charge density due to their parallel motion, which
will be determined from Eq. (2); and where ρe⊥ is an ad-
ditional contribution due to their perpendicular motion. As
a direct consequence of azimuthal symmetry, the only per-
pendicular motion to be considered is the polarization drift.
We take into account this effect in the form of an equivalent
charge, ρpol = ρe⊥, and an additional current in the Maxwell
equations. In the reference frame moving at their mean par-
allel velocity, this electron current is written to lowest order
as Jpol = n0m∂tE⊥/B2

0, where n0 is the electron background
plasma density. Taking the divergence:

∇ ·Jpol =
∂

∂ t

[
∇ ·

(
−ε0

ω2
p

ω2
c

∇⊥φ

)]
=−

∂ρpol

∂ t
(6)

leads to an expression for the contribution of the electron po-
larization displacement in the density balance that depends on
time. Integrating then with respect to time, this gives us an ex-
pression for the electron polarization charge density valid in
the EH frame. Hence, the Poisson equation for mobile elec-
trons and infinitely heavy ions,

ε0∇
2
φ =−ρ∥−ρpol (7)

where ρ∥ = en0 +ρe∥, can take the following form:39,43,44

∇
2
φ +

ω2
p

ω2
c

∇
2
⊥φ =−

ρ∥(r,z)
ε0

(8)

The second term on the left-hand side includes thus the per-
pendicular displacement of electrons due to their finite polar-
ization drift. As Hutchinson43 pointed out, this term is in
principle negligible in the setting where the guiding center
approximation applies with structures at Debye lengthscales
(as shown in Eqs. (3)-(4) for ℓ⊥, ℓ∥ ∼ λD), and should not
be invoked for explaining the ℓ⊥/ℓ∥ ≃ (1+ ρ2

L/λ 2
D)

1/2 scal-
ing observed by Franz.39 Nevertheless, with the limitations
highlighted in the previous section on the validity conditions
of our model, for sufficiently large EHs (a few to a few tens
of Debye lengths as estimated from observations), the elec-
tron polarization current can play a role in the charge balance,
which is evaluated in the next sections.

Using the form of the potential as given by Eq. (1), we
obtain the following result for the charge densities:

ρpol

ε0
=

Λ−1
ℓ2
⊥

(
r2

ℓ2
⊥
−2
)

φ (9)

ρ∥
ε0

=

{
1
ℓ2
∥

[
r2

ℓ2
⊥
+2ln

(
φ

φ0

)
+1
]
− Λ

ℓ2
⊥

(
r2

ℓ2
⊥
−2
)}

φ (10)

where Λ = 1+ω2
p/ω2

c . Figure 1 represents the charge densi-
ties ρ∥ and ρpol along z and r directions as calculated by Eqs.

(9) – (10). We then observe that the contribution of the po-
larization current ρpol (see Figures 1(b) and 1(d)) to the total
charge density ρtot =−ε0∇2φ can be of the same order when
ωc/ωp ≤ 1, which consequently changes significantly the val-
ues of ρ∥ (see Figures 1(a) and 1(c)). For consistency, one can
easily verify that the total charge of the electron hole is zero.

C. Integral equation

We introduce the total energy ε(r,z,vz) = mv2
z/2 − eφ ,

which is a constant of the electron motion along a cylindri-
cal magnetic field surface parameterized by r. We consider
two types of electrons with respect to the potential φ : trapped
electrons if their total energy ε do not exceed the potential bar-
rier, i.e, if −eφ0 ≤ ε ≤ 0, and passing electrons such as ε > 0.
This allows us to write the total electron distribution function
by introducing two distribution functions ft and fp for trapped
and passing electrons, respectively, such as:

fe(r,ε) =
{

fp(r,ε) if ε > 0
ft(r,ε) if − eφ0 ≤ ε ≤ 0 (11)

Far away from the potential influence (i.e, z →±∞), the pass-
ing electron distribution must match the boundary conditions:
fp(r,ε) = f∞(r,ε). We can then decompose the electron den-
sity using ft and fp as in the BGK approach:25,37

∫ 0

−V

ft(r,ε)dε√
2m(ε +V )

= g(r,V ) (12)

with V = eφ < eφ0 the potential energy and,

g=−
ρe∥
e

−
∫ +∞

0

fp(r,ε)dε√
2m(ε +V )

(13)

The set of Eqs. (12)–(13) has the form of an Abel integral
equation that can be solved using Laplace techniques25,37 or
another method from §12 Landau & Lifshitz,45and consider-
ing physical distributions, i.e, g(r,0) = 0 :

ft(r,ε) =

√
2m
π

∫ −ε

0

dg(r,V )

dV
dV√

−ε −V
(14)

= f (a)t + f (b)t (15)

where f (a)t and f (b)t are the integrals corresponding to the two
terms of g as given by Eq. (13). The term f (a)t stands for the
electron charge density ρe∥, and f (b)t for the contribution of
the passing electrons.
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FIG. 1. Charge densities ρ∥ and ρpol for different values of cyclotron to plasma frequency ratio ωc/ωp: (a) – (b) along parallel direction (at
r = 0) and, (c) – (d) along perpendicular direction (at z = 0) (with eφ0 = Te∥ and ℓ∥ = ℓ⊥ = 5λD).

III. SIGNATURE OF TRAPPED AND PASSING
ELECTRONS

A. Distribution functions

As a first step, using the form of the density as determined
by Eq. (10), the first integral becomes:

f (a)t (r,ε) =
n0

vT

2
√

2
π

√
−ε

Te∥

[
−2Λ

ℓ2
⊥
+

r2

ℓ2
⊥

(
Λ

ℓ2
⊥
− 1

ℓ2
∥

)

+
1
ℓ2
∥

(
1−2ln

(
−4ε

eφ0

))]
λ

2
D (16)

where vT = (Te∥/m)1/2 is the parallel thermal velocity of elec-
trons far from the EH, and λD = vT/ωp. This term is negative
at the bottom of the well, i.e, when ε →−eφ0, then becomes
positive and cancels for ε → 0. For the case of a negligible
electron polarization current, i.e. for Λ = 1, we obtain the
same result as Chen et al.1

The passing electrons for |z| ≫ ℓ∥ are all corresponding to
the background plasma. Thus, if at infinity their distribution
f∞ is a velocity shifted Maxwellian distribution (independent

of r), everywhere else it must be of the following form:

fp(ε) =
n0√
2π vT

∑
σ=±1

exp

[
−
(σ
√

2ε/m−ue)
2

2v2
T

]
(17)

with ε > 0 and ue the drift velocity of the background plasma
with respect to the EH. The contribution of passing electrons
to the distribution of trapped electrons can then be written as:

f (b)t (ε) =
2n0

π
√

2π vT
[I(β ,ζ )+ I(−β ,ζ )] (18)

with

I(a,b) =
∫ +∞

0

e−(ax−b)2

1+ x2 dx (19)

and where we have defined the quantities β = (−ε/Te∥)
1/2

and ζ = ue/
√

2vT . As an integral function of a positive inte-
grand, we get a positive function. The general expression (19)
does not allow an analytical calculation, and must be evalu-
ated numerically, except when the integral takes the form of
the Dawson’s integral, for b = 0. In that case of zero drift
velocity (ue = 0), corresponding to the EH immobile with re-
spect to the background plasma, we get:

f (b)t (ε) =
n0

vT

√
2
π

exp(−β )
[
1− erf(

√
−β )

]
(20)
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FIG. 2. Passing ( fp), trapped ( ft ) electron distribution functions at r = z = 0, and background electron distribution function ( f∞) at infinity, in
EH rest frame, for different values of drift velocity ue and ratio ωc/ωp (with eφ0 = 0.66Te∥, ℓ∥ = 5λD, and ℓ⊥ = 7λD).

where the erf function is defined as
√

π erf(x)/2 =∫ x
0 exp(−t2)dt. For the case of zero drift velocity, we then

well find the result obtained by previous authors, whether
in the 1D35,36 or 3D1,42 BGK model. For the case of a fi-
nite drift velocity, the solution (18) is in accordance with
Turikov’s result.36 The continuity property of this general
solution when ε → 0 can be easily verified. First, we ob-
tain straightforwardly f (b)t (r,ε → 0−) = fp(r,ε → 0+). Sec-
ondly, since f (a)t (r,ε → 0−) = 0 we get the continuity relation
fe(r,ε → 0−) = fe(r,ε → 0+), which is consistent with the
populations present outside the hole and generation mecha-
nism.

Figure 2 displays the different contributions to the distribu-
tion of trapped electrons ( ft , with the virtual terms f (a)t and
f (b)t determined above), the distribution of passing electrons
( fp), and the electron distribution at infinity ( f∞), as a func-
tion of velocity in the EH reference frame. The drift-free case
(ue = 0) is represented by the Figure 2(a) as reference. The
impact of ue is visualized by comparing to the Figure 2(b),
which represents a case with finite drift (ue =−2vT ). We ob-
serve an asymmetric distribution, an important decrease in the
positive virtual value of f (b)t without any change in the equally

virtual term associated with the potential, f (a)t . As a result, in
that case with ωc/ωp = 0.5, the distribution of trapped elec-
trons ft is found to be slightly negative, which is unphysical.
As we shall see later, the conditions for the existence of EHs
will be defined on the basis of this limitation. In addition, the
pseudo-Maxwellian part of fp is moved at higher velocities,
allowing for particle acceleration. Comparing Figures 2(b)–
(d) shows the impact of the drift polarization effect on f (a)t
(which increases with Λ, i.e, decreases with ωc/ωp), without
modifying f (b)t . As Λ increases, there is a decrease in the den-
sity of trapped electrons ft at the hole center (v = vEH).

Figure 2(a) with ue ≪ vT represents the case of a slow
EH (e.g, as observed in the magnetotail8,9) that may re-
sult from counterstreaming instability.30,46,47 Conversely, Fig-
ures 2(c)–(d) with ue ≥ vT represent the case of fast EH
and show a plateau-like structure as observed in space
plasmas,12 or in Particle-In-Cell (PIC) simulations of bump-
on-tail type.29,31,32

The choice of a drift velocity ue as high as 2vT may raise
questions for a reader accustomed to Schamel’s results, show-
ing that values greater than about 1.3 are impossible un-
der physical conditions.48 Unlike the BGK integral equation
method we used to solve the Vlasov-Poison equation sys-
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tem, Schamel’s approach, which used a differential equation
method, leads to a limited number of possible solutions. In-
deed, keen to find "preferred" BGK states, Schamel intro-
duced a particular shape of the trapped distribution function,
which is smoother at the separatrix ε = 0 than most BGK so-
lutions, and in particular ours as can be seen on Figure 2. Jus-
tifying what might be an acceptable trapped distribution func-
tion remains an open question49 and is beyond the scope of
our work. However, we can acknowledge that such structures
have long been observed in space and laboratory plasmas. For
instance, Andersson et al.14 reported fast EHs in the Earth’s
magnetotail with velocities ue ≥ 2.5, whereas histogram given
by Holmes et al.12 show velocities between 1 and 1.5. In ad-
dition, Fox et al.22 reported EHs with velocities ue ∼ 2 under
laboratory conditions, as did Lefebvre et al.,23 who found 80%
of structures with velocities between 1.3 and 2.3, with 2.1 as
the median velocity.

B. Electron densities in the hole

From the passing distribution function fp, we can explicitly
define the density np of passing electrons as:

np(r,z) =
n0√
2π vT

∫ +∞

+vT
√

2ψ

exp

− (
√

v2 − 2eφ

m −ue)
2

2v2
T

dv

+
∫ −vT

√
2ψ

−∞

exp

− (−
√

v2 − 2eφ

m −ue)
2

2v2
T

dv


= n0

[
J+(
√

2ψ,ζ )+ J−(
√

2ψ,ζ )
]

(21)

with

Jσ (a,b) =
1√
2π

∫ +∞

a
e−(σ

√
x2−a2−

√
2b)2/2dx (22)

and where ψ = eφ/Te∥, the ratio between the poten-
tial and thermal energy of electrons. In particular for
zero drift velocity (ue = 0), J+(

√
2ψ,0) = J−(

√
2ψ,0) =

exp(ψ)
[
1− erf(

√
ψ)
]
/2, whence:

np(r,z) = n0 exp(ψ) [1− erf(
√

ψ)]≤ n0 (23)

For finite drift velocity, the integral (22) must be evaluated
numerically. Using the definition of the charge density ρ∥, the
trapped electron density nt writes:

nt(r,z) = n0 −np(r,z)−
ρ∥(r,z)

e
(24)

and can be determined from Eqs. (10) and (21). In the case
where ue = 0 and Λ = 1 (negligible effects of EH velocity and
electron polarization drift), the trapped density nt calculated
by Chen et al.1,2 is retrieved. We can also define the density
of the trapped electrons from their distribution as:

nt(r,z) =
∫ vT

√
2ψ

−vT
√

2ψ

ft(r,z,v)dv (25)

Figure 3 displays the different electron densities in the hole
(nt , np and their sum nt + np) as a function of parallel axis z.
As indicated by the Poisson Eq. (8) and Eq. (24), the quan-
tity np +nt represents the electron density −ρe∥/e induced by
the potential of the structure and the perpendicular polariza-
tion drift effect. It can be observed that despite the variations
of the quantities np and nt , the overal neutrality remains pre-
served and the total load of the structure is zero. The impact of
the polarization effect can be seen by comparing Figures 3(a)
and 3(b). We observe that this leads to a reduction of the den-
sity of electrons trapped in the potential well, and more im-
portantly at the center than at the edges (dashed line in Figure
3(a)). Thus, for ωc/ωp < 1, the distribution of trapped elec-
trons consists of two humps. This is because the polarization
current brings additional electrons to the center of the struc-
ture (see Figures 1(b) and 1(d)), independently of the parallel
electron dynamics, so fewer trapped electrons are needed to
satisfy Poisson’s equation. Figures 3(b) and 3(d), or 3(a) and
3(c), illustrate the impact of the drift velocity. As it results
in more passing electrons, there is also less need for trapped
electrons. For ωc/ωp = 0.5, ue =−2vT and assuming a spher-
ical shape (ℓ∥ = ℓ⊥ = 5λD), as shown in Figure 3(c), the case
is even impossible, as it would require a non-physical negative
density of the trapped electrons. In this exemple, theoretical
determination of the distribution of trapped electrons ( ft ) in
fact reveal negative values around its center, similar to what is
observed in Figure 2(b). We can note that the lowest order ap-
proximation of Jpol we have used, is in principle strictly con-
sistent for small parallel perturbations of the electron density,
i.e, nt + np ∼ n0. For this reason, all our evaluations carried
out with strong disturbances are to be considered with caution
and aim at identifying trends.

This presentation of the electron density composition in the
EH allows us to recall an important observation made by Chen
and Parks35,42 on the nature of the charge density “shielding”
of the core of a BGK structure. As Figure 3 shows, the pass-
ing electrons in the middle of the hole are in deficit (relative
to the ions), simply because they are accelerated there. The
positive core is then “shielded” by the trapped electrons that
oscillate in the potential structure. In fact, the trapped elec-
trons must distribute themselves in such a way as to counter-
balance the positive charge density produced by the depletion
of passing electrons inside the potential well, thereby produc-
ing a total charge density consistent with the specified poten-
tial profile. A BGK EH is a self-consistent and self-sustaining
object with zero total charge and does not require any thermal
screening by the surrounding plasma (Debye shielding). This
result contradicts the idea that the positive core of the EH is
due to a deficit of trapped electrons, and that this positive core
is screened by the passing electrons, as for example recently
described by Hutchinson.43

IV. EXISTENCE CRITERIA

We define and analyse the criteria that allow these EH struc-
tures to exist in order to obtain information on their size. The
trapped distribution function (15) has to be physical, and thus



3D cylindrical BGK model of electron phase-space holes with finite velocity and polarization drift 7

FIG. 3. Passing (np), trapped (nt ) electron densities along paral-
lel direction, at r = 0, for different values of cyclotron to plasma
frequency ratio ωc/ωp and drift velocity ue (with eφ0 = Te∥ and
ℓ∥ = ℓ⊥ = 5λD).

ft must be non-negative. Writing ft(ε)≥ 0 for −eφ0 ≤ ε < 0,
we obtain:

ℓ2
∥

λ 2
D
≥ 2ln4−1

G(ψ0,ζ )−2Λλ 2
D/ℓ

2
⊥

(26)

where ψ0 = eφ0/Te∥ is the ratio ψ at r = z = 0 corresponding
to the potential maximum, and where we have introduced the
function

G(ψ0,ζ ) =
I(
√

ψ0,ζ )+ I(−√
ψ0,ζ )

2
√

πψ0
(27)

This function has the following limits, for ψ0 → 0+:
G(ψ0,ζ ) ∼

√
π/4ψ0 exp(−ζ 2), and for ψ0 → +∞:

G(ψ0,ζ ) ∼ 1/2ψ0. The case without drift velocity (ue = 0)
gives:

G(ψ0,0) =
√

π

2
√

ψ0
exp(ψ0)[1− erf(

√
ψ0)] (28)

The sign of the denominator in Eq. (26) imposes a second
condition on the perpendicular scale, which must be respected
and can be expressed as:

ℓ2
⊥

λ 2
D
≥ 2Λ

G(ψ0,ζ )
(29)

Eqs. (26) and (29) give amplitude-width criteria in both
parallel and perpendicular directions. In the case where ue = 0
and Λ = 1, we obtain the same criteria as those found by Chen
et al.1,2 Figure 4 represents the minimum parallel sizes of the
hole (from Eq. (26)) as a function of the amplitude of the po-
tential well for several values of the perpendicular size, and
plasma parameters. While the observations indicate that the
ratio eφ0/Te∥ does not seem to exceed 1 by much, we have
extended its range to 10 in order to show the common trend
for the different values of ℓ⊥. The area under these curves
represents forbidden zones, see for example the shaded area
of Figure 4(a) corresponding to the case ℓ⊥ = ∞, i.e, the 1D
limit. We note that for a finite perpendicular length the weaker
the magnetic field strength or the higher the electron drift ve-
locity, the larger the forbidden zone. Indeed, polarization drift
effects tend to reduce the possibility of perpendicular small
scale, large amplitude structures (compare Figures 4(a) and
4(b) where ue = 0). When a shifted Maxwellian distribution
is taken into account, which should be more realistic regarding
to a beam instability generation mechanism, we find that the
allowed zone is still more reduced, making structures below
the Debye lengthscale in the parallel direction hardly possible
(compare Figures 4(b) and 4(d)). This last result is consis-
tent with Goldmann’s.38 Furthermore, when the finite effects
of electron polarization current and electron drift velocity are
both considered, perpendicular small scale structures can only
exist for very small amplitudes (see Figure 4(c)).

Figure 5 represents the minimum perpendicular sizes of the
hole (from Eq. (29)) as a function of amplitude of the po-
tential well for several ωc/ωp ratio, in case of ue = 0 (Figure
5(a)) and ue =−2vT (Figure 5(b)). For both cases, the polar-
ization drift effects lead to an increase in the slope of ℓ⊥(ψ0)
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FIG. 4. Parallel width-amplitude relations for different values of perpendicular width ℓ⊥, drift velocity ue and cyclotron to plasma frequency
ratio ωc/ωp.

and of the forbidden zone for small ωc/ωp values. For a given
ωc/ωp ratio, the velocity drift effects also contribute signifi-
cantly to the expansion of the forbidden zone. In addition, the
width-amplitude relations ℓ⊥(ψ0) shown in Figure 5 can also
represent the maximum well amplitudes ψ0,max as a function
of ℓ⊥. The vertical asymptotes in Figure 4 correspond to the
limit of ℓ∥(ψ0 → ψ0,max), precisely. Consistently, from Fig-
ure 4(c), we observe that the conditions used to make Figure
3(c) (i.e, eφ0 = Te∥ and ℓ∥ = ℓ⊥ = 5λD, with ue = −2vT , and
ωc/ωp = 0.5) are in the forbidden zone.

V. DISCUSSION

Our study allows to precise the 3D EH existence conditions
depending on the electron drift velocity (ue) and the plasma
magnetization (ωc/ωp). In this section, we compare our re-
sults with various measurements from space and laboratory
summarized in Table I. For instance, the first statistical re-
sults of EHs observed by the Fast mission4 in highly magne-
tized auroral plasma (ωc/ωp > 5) and moving with velocities
ue < 0.6vT , have interpreted the observational relationship be-
tween eφ0/Te and ℓ∥/λD from a 1D BGK model.37 Most of

these observations (eφ0/Te ≈ 0.05−1.1, ℓ∥/λD ≈ 0.5−4) be-
long to the allowed region for EH having ℓ⊥/λD ≤ 3 (Fig-
ure 4(b)). As the same manner, a statistical study of EHs de-
tected in the cusp and in the Plasma Sheet (PS)/Plasma Sheet
Boundary Layer (PSBL) regions by the Polar satellite, showed
a relationship between their potential amplitude and parallel
size.6 In the cusp region, ωc/ωp < 1 (resp. PS/PSBL re-
gion, ωc/ωp ∼ 2), the EH velocity was found in the range
0.1-2 (resp. 0.3-1) of the thermal velocity. The potential
eφ0/Te was found between 10−3 and 10−1 (resp. between
10−5 and 10−2). Considering these different EH veloci-
ties and ωc/ωp ratios, the cusp (resp. PS/PSBL) observa-
tions can be related to our results in Figures 4(a) and 4(c)
(resp. 4(b) and 4(d)) for the slow and fast EHs. Small-
est values of ℓ∥/λD ∼ 0.5 (resp. ℓ∥/λD ∼ 0.1) in the cusp
(resp. in the PS/PSBL) region are allowed for the smallest
values of the potential 10−3 (resp. 10−5, not shown) and
only for slow EH speed ue/vT = 0. Fastest EHs in the cusp
(resp. PS/PSBL) region with ue/vT = 2 (resp. ue/vT = 1)
are allowed only for ℓ∥/λD > 0.6. Super slow EHs with
weak potential (ue/vT ∼ 0.05, eφ0/Te ∼ 0.05− 0.1) reported
from Cluster8 and MMS9 observations in weakly magnetized
plasma having ℓ∥/λD ∼ 2− 5 are allowed if ℓ⊥ ≥ 3, which
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TABLE I. Experimental data in different regions

Article Context ωc/ωp ℓ∥/λD ℓ∥/ℓ⊥ eφ0/Te∥ |ue|/vT

Ergun 19984 Auroral region (FAST) 5−15 0.5−4 < 1 0.05−1.1 < 0.6
Franz 20056 PS/PSBL region (POLAR) ∼ 2 0.1−6 > 1 10−5 −10−2 0.3−1
Franz 20056 Cusp region (POLAR) < 1 0.5−10 <1 10−3 −10−1 0.1−2
Andersson 200914 PS region (THEMIS) ∼ 0.8 ∼ 15 > 1 ∼ 0.5 1.2−5
Norgren 20158 PSBL region (Cluster) ∼ 0.4 2−4 ≤ 0.5 0.1 ∼ 0.03
Le Contel 201710 PS region (MMS) ∼ 0.8 ∼ 10 0.3−1 0.25 0.7−1.8
Holmes 201812 Duskside flank region (MMS) ∼ 0.6 4−11 0.3−2 0.5−3 1−1.5
Steinvall 201913 PS/PSBL region (MMS) ∼ 0.5 ∼ 10 ∼ 0.6 1−2 0.6−2
Fu 20209 PS region (MMS) ∼ 0.13 ∼ 5 < 0.5 ∼ 0.05 ∼ 0.05
Fox 200822 Experimental Setup ∼ 0.14 ∼ 25 ∼ 0.5 ∼ 1 ∼ 2
Lefebvre 201023 Experimental Setup 0.5-7 4.5−24.4 not measured 0.1−0.75 1.3−2.3

FIG. 5. Perpendicular width-amplitude relations for different values
of cyclotron to plasma frequency ratio ωc/ωp and drift velocity ue.

is consistent with the observed scale ratio (ℓ∥/ℓ⊥ < 0.5), see
Figure 4(a). From other observations provided by MMS12,13

in weakly magnetized plasma (ωc/ωp ∼ 0.5), fast and large-
amplitude EHs (ue/vT ≥ 1, eφ0/Te ∼ 1) have been also re-
ported. In such conditions and in accordance with observa-
tions, these structures are allowed if ℓ⊥ ≥ 10λD with a mini-
mum allowed value of ℓ∥ ∼ 4λD, see Figure 4(c).

Regarding laboratory measurements, our model is also
consistent with the EH properties reported so far. For in-
stance, Fox et al.22 observed in a weakly magnetized plasma
(ωc/ωp ∼ 0.14) fast, large amplitude EHs (ue/vT ∼ 2 and
eφ0/Te ∼ 1) with ℓ∥/λD ∼ 25 and ℓ∥/ℓ⊥ ∼ 0.5, which are

allowed by our model for ℓ⊥/λD ≥ 10, as shown in Fig-
ure 4(c). Measurements reported by Lefebvre et al. of fast
EHs (ue/vT ∼ 1.3− 2.3) in both weakly and stronlgy mag-
netized plasma (ωc/ωp ∼ 0.5 − 7) also support our results.
They have moderate amplitudes (eφ0/Te ∼ 0.1− 0.75) with
ℓ∥/λD ∼ 4.5− 24.4. In the weakly magnetized regime (Fig-
ure 4(c)), these fast EHs, for potential ∼ 0.1, are allowed if
ℓ⊥/λD ≥ 5, and for larger potentials between 0.2 and 0.75,
if ℓ⊥/λD ≥ 10. In the strongly magnetized regime (Figure
4(d), the constraints are a bit looser, the EHs are allowed with
possible smaller perpendicular scales (ℓ⊥/λD ≥ 3, for poten-
tial ∼ 0.1; ℓ⊥/λD ≥ 5, for larger potentials between 0.2 and
0.75). These constraints are more precise than those given by
Chen et al.2 and considered in Lefevbre et al.23.

Now we compare our results with 2D PIC simulations.
Note that our model is developed using a cylindrical geometry
with related assumptions whereas simulations use cartesian
geometries. Therefore, differences could be found depending
on the geometry used. However, these should be negligible
when the radius of curvature of the cylindrical structure (ℓ⊥) is
much larger than the Larmor radius, which is consistent with
the guiding center approximation used. Performing counter-
streaming simulations (ue ≃ 0) in different magnetization and
amplitude conditions (ωc/ωp ≃ 0.5−10, eφ0/Te∥ ≃ 0.7−0.8
or eφ0/Te∥ ≃ 4), Umeda47 obtained both 1D and 2D struc-
tures. For ωc/ωp ≃ 1−10, quasi 1D EHs (ℓ⊥/λD > 128) are
found whereas for a less magnetized plasma (ωc/ωp = 0.5)
and depending on the velocity beams, EHs have a 2D struc-
ture (e.g, ℓ⊥/λD ≃ 6− 8, ℓ∥/λD ≃ 3− 4). From our model
(see Figure 4(b) where ωc/ωp > 1), we observe that 1D EHs
(ℓ⊥/λD = in f ) must have ℓ∥/λD ≥ 2 for eφ0/Te∥ ≃ 0.7− 0.8
and ℓ∥/λD > 4 for eφ0/Te∥ ≃ 3− 4. In the case of 2D EHs
found, i.e. for finite values of ℓ⊥/λD, the perpendicular width-
amplitude relations, shown in Figure 5(a) for less magne-
tized plasma, require ℓ⊥/λD > 4 for eφ0/Te∥ ≃ 0.7−0.8, and
ℓ⊥/λD > 5−9 for eφ0/Te∥ ≃ 1−4. From the parallel width-
amplitude relations shown in Figure 4(a), these structures
must also have ℓ∥/λD > 2 and ℓ∥/λD > 2− 4, respectively.
Investigating numerically counterstreaming instability (ue ∼
0) in the auroral region (ωc/ωp = 5), Oppenheim50 found
oblate EHs with l∥ = 20 λD, ℓ⊥ ∼ 100 λD, and eφ0/Te∥ ∼ 1.
These structures are finally found unstable associated with
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the growth of electrostatic whistler waves after thousands of
plasma periods. Such quasi-1D structures are consistent with
our model, which requires only the condition: ℓ∥/λD ≥ 2
(Fig. 4(b)), yet indicating that all shapes of structures may
exist. Studying the bump-on-tail instability in the magnetotail
(ue/vT > 1, ωc/ωp = 1 and eφ0/Te∥ ≃ 0.5), Umeda31 found
EHs with ℓ∥ ≃ 20λD and ℓ⊥ > ℓ∥ (notably due to coalescence
of EHs in the nonlinear phase). Furthermore, the authors
found that in such conditions EHs are stable for long time
(ωpt ∼ 1000). Based on Figures. 4(d) and 5(b), our condi-
tions of existence allow even smaller EHs with ℓ∥/λD > 2−3
and ℓ⊥/λD > 3, as well as all shapes of structures. There-
fore, all EH structures obtained by numerical simulations are
located in the regions of existence of our model.

VI. CONCLUSIONS

To conclude, the model presented in this paper describes
the criteria of existence of 3D cylindrical EHs including both
the polarization drift of electrons (ωc/ωp ≲ 1) and a finite
velocity of the EH with respect to the background electrons
(|ue| ≳ vT ). For fast EHs, this allowed us to use more realis-
tic boundary conditions on the electron distribution functions,
which include a global drift consistent to the observations (e.g,
MMS recent observations12,13). These theoretical improve-
ments have shown that they could have an important impact
on the distribution functions and densities of electrons pass-
ing through and trapped in the EH structures, as well as on
their conditions of existence. These two effects, the polariza-
tion drift of electrons and a finite parallel shift in their velocity
distribution, indeed tend to restrict the possibilities of small-
scale and large-amplitude EHs. But given the conditions of
validity of the underlying gyrokinetic approach, our results
can only show a modest effect for small scale EHs.

Since these existence conditions only determine the bound-
aries of a semi-open parameter space, our results (and previ-
ous ones, e.g., see discussion in Chen et al.2) do not provide
any strong constraints on the relationship between perpendic-
ular and parallel lengthscales. Consequently, as suggested in
the introduction, we believe that what determines the oblate-
ness of these structures lies not so much in their self-consistent
physics, but rather in the mechanisms by which they are gen-
erated. So, while we disagree with Hutchinson’s approach43

that the EH’s positive core is shielded by passing electrons
(rather than arising from their depletion due to their accel-
eration by the potential well; see discussion in section III B)
and thus that the electron polarization effect would virtually
be an anisotropic shielding mechanism, we can agree with his
conclusion given in the abstract that "trapped electron charge
distribution anisotropy must [...] underlie the oblate shape of
electron holes".

As the validity of the guiding center approximation for
modelling EHs has been questionned, we would like to point
out that the parallel magnetic field perturbation reported for
fast EHs observed in the Earth’s magnetotail, has so far been
well explained by the δE×B0 electron drift current inside the
hole.12–15

Particle measurements by the MMS mission, even provided
at 30 ms time resolution,51 do not allow to fully resolve the
electron distribution function in fast EHs, which have char-
acteristic times of 1 ms. Depending on the number of EHs
detected in 30 ms, measured electron distribution functions
can be statistically representative to the EH or to the ambi-
ent plasma. Therefore, theoretical developments are crucial to
better understand in situ observations of such self consistent
structures. This could be addressed by PIC simulations and
observations in weakly magnetized media (ωc/ωp ≲ 1), in a
forthcoming study.
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