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Abstract 

Fifth and seventh-graders accomplished computational estimation tasks in conditions where only one versus two 
strategies were available. Children were told which strategy to execute on each problem. Results showed that 
both groups of children were faster under one-strategy condition than under two-strategy condition and that 
age-related differences in performance were larger under two-strategy condition. Also, differences in strategy 
performance tended to vary as a function of the number of strategies, and this strategy difference was largest in 
younger children. These findings have implications to further our understanding of strategy execution in 
arithmetic and in other cognitive domains, as well as of age-related differences in children’s performance during 
cognitive development.  
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1. Introduction 

In many cognitive domains, children use a variety of strategies (Siegler, 2007). A strategy is “a procedure or a set 
of procedures to achieve a higher level goal” (Lemaire & Reder, 1999, p. 365). Children’s cognitive performance 
as well as age-related differences in this performance crucially depend on which strategies children use, how 
often they use each available strategy, and how efficient they are at selecting and executing strategies (see 
Siegler, 1996, for an overview). In this study, we focused on strategy execution. Theoretical and empirical works 
have shown that relative strategy difficulty depends on the number and type of procedures included within each 
strategy: Strategies including more and/or harder procedures yield longer latencies and higher error rates. Previous 
findings also revealed that age-related differences were largest when children use harder strategies than easier 
strategies and that relative strategy performance is influenced by situation, person, and problem characteristics 
(e.g., Siegler, 2007). Unknown is whether age-related differences in children’s cognitive performance are 
influenced by the number of available strategies. The present experiment addressed this issue in the context of 
arithmetic problem solving. 

When children are given either simple (e.g., 3x4; 5+7) or more complex (e.g., 27-9; 38+46) arithmetic problems, 
they use several strategies. For example, in computational estimation tasks, investigated here, when children are 
asked to provide approximate sums to problems like 52+47, they use several rounding strategies, like rounding 
both operands down or up to their closest decades (e.g., 50+40, 60+50), or like rounding one operand down and 
the other up to its closest decade (e.g., 50+50). These strategies are known and spontaneously used by children 
as young as seven years old, and different strategies yield different levels of speed and accuracy (e.g., LeFevre, 
Greenham, & Waheed, 1993). For example, rounding both operands down is faster and more accurate (i.e., 
estimated and correct sums are closer) on small-unit problems (i.e., problems with sum of unit digits <10, like 
41+62) and rounding both operands up is most efficient on large-unit problems (i.e., problems with sum of unit 
digits >10, like 37+49). Relative strategy performance has been found to vary not only with problem features, 
but also with children’s characteristics (e.g., age, arithmetic skills) and with situational demands like the need to 
respond quickly and/or accurately (e.g., Dowker, 1997; Dowker, Flod, Griffiths, Harriss, & Hook, 1996; LeFevre 
et al., 1993; Lemaire & Lecacheur, 2002; Reys, Rybolt, Bestgen, & Wyatt, 1982; Sowder & Markovits, 1990). 
For example, Lemaire and Brun (2014; see also Lemaire & Lecacheur, 2011) found that when children 
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accomplished computational estimation tasks, young children executed the rounding-down strategy more quickly 
on small-unit problems (i.e., doing 30+40 to estimate 32+46) than on large-unit problems (i.e., doing 20+30 to 
estimate 24+39), and that this Strategy x Problem interaction was stronger in third than in fifth graders. Similarly, 
Lemaire and Brun (2014) found that age-related differences in latencies to execute the rounding-down and the 
rounding-up strategies were larger under short response-stimulus interval condition (i.e., when the next problem 
was displayed 900 ms after participants’ answer) than under longer response-stimulus interval condition (i.e., the 
next problem was displayed 1900 ms after participants’ answer). In other words, both age-related differences and 
relative strategy performance vary as a function of problem type and situational characteristics. Unknown however 
is whether age- and strategy-related differences are influenced by the number of strategies that children use. 

The goal of the present experiment was to determine whether effects of children’s age and of strategies on 
cognitive performance are influenced by how many strategies are used. This is important as it would have a 
number of significant implications to further our understanding of both strategic behaviors and age-related 
differences in performance during children’s cognitive development. For example, one of the important theoretical 
implications concerns determiners of relative strategy performance. Computational models of strategies (Lovett 
and Anderson (1996)’s ACT-R model; Lovett and Schunn (1999)’s RCCL model; Payne, Bettman, and Johnson 
(1993)’s adaptive decision maker model; Rieskamp and Otto (2006)’s SSL model; and Siegler and Arraya 
(2005)’s SCADS* model; see overview by Marewski and Link, 2014) share the core assumption that relative 
strategy performance depends on the number and types of mental procedures involved in each strategy. That is, 
individuals are faster with strategies that involve fewer and/or easier procedures. Finding that relative strategy 
performance differs in conditions where children use one versus two strategies would suggest that strategy 
execution is also influenced by some contextual factors, like the number of strategies brought to the task, above 
and beyond the component processes of each strategy.  

From a developmental perspective, in most cognitive domains, age-related differences in children’s cognitive 
performance are larger for harder than for easier strategies. For example, in arithmetic, many researchers found 
that age-related differences in performance are larger when children use harder, counting strategies relative to 
when they use an easier, direct retrieval strategy to solve arithmetic problems like 8+4 (see Cohen-Kadosh & 
Dowker, 2015; Geary, 1994, for overviews). Finding that these age-related differences for easier and harder 
strategies depend on the number of strategies that are used would imply that age-related improvements in 
children’s performance are not only the result of increased efficacy at executing strategies but also at managing 
multiple strategies. 

In the present study, fifth and seventh graders were asked to find sum estimates to two-digit addition problems. For 
each problem, a cue indicated which strategy children had to execute, which means that children did not have to 
select a strategy themselves. We controlled strategy selection to assess the role of the number of strategies on 
children’s performance. By doing so, we avoided that strategy execution would be contaminated by differences in 
the frequency with which children would use each of the available strategies as well as differences in the type of 
problems on which the respective strategies would be applied. Children were tested under both a two-strategy and 
a one-strategy condition. In the two-strategy condition, children solved a set of 32 problems and were asked to 
execute either a mixed rounding-down or a mixed rounding-up strategy on each problem. In the Mixed 
Rounding-Down strategy (MRD), children rounded the first operand down and the second operand up to the 
closest decades (e.g., doing 40+70 to estimate 43+68). In the Mixed Rounding-Up strategy (MRU), children 
rounded the first operand up and the second operand down to the closest decades (e.g., doing 50+60 to estimate 
43+68). In the one-strategy condition, children were asked to solve a first set of 16 problems and were cued with 
the same strategy on all these 16 problems. Children were also asked to solve another set of 16 problems and were 
cued with the other strategy on all these 16 problems. MRD and MRU were tested because previous works showed 
that both fifth and seventh graders know and spontaneously use these two mixed-rounding strategies (LeFevre et 
al., 1993), and because previous works on relative strategy execution found that MRD is easier than MRU and 
yields better performance (e.g., Hinault, Lemaire, & Phillips, 2016; Lemaire & Brun, 2014; Lemaire & Hinault, 
2014; Uittenhove & Lemaire, 2012).  

As previous works found that the number of strategies individuals use to accomplish a given task is related to their 
executive functions (Ardiale, Hodzik, & Lemaire, 2012; Hodzik & Lemaire, 2011), we hypothesized that the 
number of available strategies would influence children’s performance and age-related differences in this 
performance. We therefore tested the following predictions. First, children were expected to be slower and less 
accurate in the two- than in the one-strategy condition. This could happen if children have to use more executive 
control resources in the two-strategy condition relative to the one-strategy condition to maintain both strategies 
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activated in working memory and to switch between strategies across problems. Second, if the number of 
strategies affects strategy execution, relative strategy performance should differ in the one- and two-strategy 
conditions, such that speed and accuracy should decrease more strongly for the harder (MRU) strategy than for the 
easier (MRD) strategy from the one- to the two-strategy condition. Again, this should occur if managing two 
strategies requires more resources than managing only one strategy and because children need more resources to 
execute the harder than the easier strategy. Third, larger age-related differences were expected in the two-strategy 
condition relative to the one-strategy condition. This would happen if the two-strategy condition requires more 
processing resources that are known to increase with children’s age (Lemaire & Lecacheur, 2011). Finally, a 
Group x Number of strategies x (MRD/MRU) Strategy interaction was expected if, relative to older children, 
younger children are more influenced by the number of strategies while executing the harder strategy than when 
using the easier strategy. 

2. Method 

2.1 Participants 

Seventy-two children were tested: 36 fifth graders (17 girls; mean age=130 months; range=123-144) who came 
from one elementary school and 36 seventh graders (13 girls; mean age=153 months; range=145-165) who were 
drawn from two secondary schools located in Flanders, the Dutch-speaking part of Belgium. Children’s parents 
provided written informed consent, and children were told that they could quit the experiment at any moment.  

2.2 Stimuli 

Two sets of 16 two-digit addition problems (e.g., 24+39) each were selected for the two-strategy condition. All 
problems included one operand with its unit digit smaller than five and the other operand with its unit digit larger 
than five. In each set of 16 problems, the unit digit of the first operand was smaller than five and the unit digit of 
second operand was larger than five on half the problems (and the reverse for the other problems). Both sets of 16 
problems were matched on the size of correct sums and on percent deviations between estimates and correct sums.  

Moreover, following previous findings in arithmetic (see Campbell, 2005; Cohen Kadosh & Dowker, 2015, for 
overviews), the following factors were controlled: (a) no operands had 0 or 5 as a unit digit (e.g., 40+65), (b) no 
digits were repeated within operands (e.g., 22+63), (c) the first operand was larger than the second operand in half 
the problems (e.g., 73+38) and vice versa in the other problems (e.g., 27+64), and (d) the sum of the unit digits was 
never equal to 10 (e.g., 26+64).  

Two other sets of 16 problems each were tested under the one-strategy condition. These problems were the same as 
those tested under the two-strategy condition, but the order of operands was reversed (e.g., 31+58 was in one of the 
first two sets of problems tested under the two-strategy condition and 58+31 was in one of the two sets of problems 
tested under the one-strategy condition). One of these two sets of 16 problems was solved with the MRD strategy 
and the other with the MRU strategy by half the participants, and the reverse for the other participants.  

2.3 Procedure 

Before encountering the experimental problems, children were told that they were going to do computational 
estimation. The computational estimation task was explained as giving an approximate answer to an arithmetic 
problem (e.g., 34+57) that is as close as possible to the correct answer without actually calculating the correct 
answer. They were told to use only two rounding strategies, the MRD or the MRU strategy. With the MRD 
strategy, participants had to round the first operand down and the second operand up to their closest decades (e.g., 
30+60). With the MRU strategy, participants had to round the first operand up and the second operand down to 
their closest decades (e.g., 40+50). A cue, which was presented above the problem, indicated which strategy 
participants had to use (i.e., OB for Down Up in Dutch served as a cue for the MRD strategy and BO for Up Down 
in Dutch served as a cue for the MRU strategy). Participants had to use each strategy on half of the problems, 
whereby for half of the problems each strategy was the “better” strategy (e.g., when participants had to use the 
MRD strategy on problems with the unit digit of the first operand smaller than 5 and that of the second operand 
larger than 5) and for the other half the “poorer” strategy (e.g., when participants had to use the MRD strategy on 
problems with the unit digit of the first operand larger than 5 and that of the second operand smaller than 5). 

Before the experiment started in earnest, participants practiced on 12 problems to familiarize themselves with the 
two available strategies and with the procedure. Then, they solved two blocks of 16 problems each under the 
two-strategy condition in which the MRD or MRU strategy was randomly cued on each problem, with the 
constraint that participants had to switch strategy on two consecutive problems for half the items and to repeat 
the same strategy for the other items. Then, children solved two blocks of 16 problems each under the 
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one-strategy condition where respectively the MRD and MRU strategy were applied on all 16 problems. The 
two-strategy condition was always presented first in order to avoid carry-over effects from repeatedly applying a 
particular strategy in the one-strategy condition on children’s strategy execution in the two-strategy condition 
(Siegler & Lemaire, 1997). The order in which the two strategies had to be applied in the one-strategy condition 
was counterbalanced across participants.  

Each trial started with a 500-ms blank screen before a 400-ms fixation cross displayed at the center of the 
computer screen. Then, the problem was displayed and remained until participants’ response. Children were 
asked to calculate out loud so as to be sure of which strategy they used. On each trial, the experimenter recorded 
children’s response and strategy used. Following previous studies using this procedure (e.g., Lemaire & Brun, 
2014, 2016; Hinault, Lemaire, & Phililips, 2016; Lemaire & Hinault, 2014; Uittenhove & Lemaire, 2012, 2013), 
timing of each response began when the problem appeared on the screen and ended when the experimenter 
pressed the left mouse button, the latter event occurring as soon as possible after the participant’s responses. 

Participants were individually tested in one session that lasted approximately 45 minutes. Between two blocks, 
participants were allowed a short break. The computational estimation task was run on a DELL Latitude laptop 
and was controlled by E-prime software (Schneider, Eschman, & Zuccolotto, 2002), which recorded latencies to 
the millisecond.  

3. Results 

Mean correct solution latencies and percentages of errors (an error estimate was coded 1 if the estimated sum 
differed from the expected estimate given the cued strategy, as children always used the cued strategy) were 
analyzed with mixed-design ANOVAs, 2 (Group: fifth, seventh graders) x 2 (Condition: one-strategy, 
two-strategy) x 2 (Strategy: mixed rounding-down, mixed rounding-up), with repeated measures on the two last 
factors (see Table 1). In all results, unless otherwise noted, differences are significant to at least p<.05. 

Seventh graders were faster than fifth graders (4935 ms vs. 5756 ms; F(1,70)=11.02, MSe=4411337.0, η²p=0.14). 
All children were faster in the one-strategy condition (5094 ms) than in the two-strategy condition (5597 ms; 
F(1,70)=59.02, MSe=308942.0, η²p=0.46) and executed the MRD-strategy (5258 ms) more quickly than the 
MRU-strategy (5433 ms; F(1,70)=11.51, MSe=192379.8, η²p=0.14). The Group x Condition interaction 
(F(1,70)=5.49, MSe=308942.0, η²p=0.07) revealed that the effect of condition was larger in fifth graders (657 ms) 
than in seventh graders (350 ms). The Condition x Strategy interaction was significant (F(1,70)=28.10, 
MSe=181469.1, η²p=0.29), and the Group x Condition x Strategy was marginally significant (F(1,70)=3.34, 
MSe=181469.1, η²p=0.05, p=.07).  

Separate analyses in each age group revealed that the Condition x Strategy interaction was significant in fifth 
graders (F(1,35)=18.65, MSe=247674.5, η²p=0.35) and in seventh graders (F(1,35)=9.50, MSe=115263.6, 
η²p=0.21). Fifth graders were 531-ms (F(1,35)=15.51, MSe=327242.6, η²p=0.31) faster with the MRD strategy 
than with the MRU strategy in the one-strategy condition and 185-ms (F(1,35)=4.15, MSe=147609.2, η²p=0.11) 
faster with the MRU than with the MRD strategy in the two-strategy condition. Seventh graders were 352-ms 
(F(1,35)=11.90, MSe=187398.3, η²p=0.25) faster with the MRD strategy than with the MRU strategy under the 
one-strategy condition but were equally fast with the MRD and MRU strategies in the two-strategy condition 
(F<0). 

 

Table 1. Mean solution latencies (in ms) and percentages of errors for each strategy in each group under 
two-strategy and one-strategy conditions 

Strategies 

Fifth Graders Seventh Graders 

One-Strategy Two-Strategy Means Differences One-Strategy Two-Strategy Means Differences 

  Latencies (in ms) 

MRD Strategy 5163 6177 5670 1015 4584 5108 4846 524 

MRU Strategy 5694 5992 5843 299 4936 5111 5024 175 

Means 5428 6085 5756 657 4760 5110 4935 350 



jedp.ccsenet.org Journal of Educational and Developmental Psychology Vol. 7, No. 2; 2017 

47 

 

Differences 531 -185 173 352 3 178 

Percentages of Errors 

MRD Strategy 1.1 1.1 1.1 0.0 2.8 0.3 0.4 -2.4 

MRU Strategy 0.5 2.4 2.6 1.9 0.0 0.0 0.0 0.0 

Means 0.8 1.8 1.3 1.0 0.3 0.2 0.2 -0.1 

Differences -0.6 1.4 1.5   -2.8 -0.3 -0.4   

Note. MRD: Mixed Rounding-Down strategy; MRU: Mixed Rounding-Up strategy. 

 

As can be seen in Table 1, children were very accurate. They erred on average on less than 2% of the problems. 
Fifth graders made more errors than seventh graders (1.8% vs. 0.2%; F(1,70)=14.41, MSe=13.1, η²p=0.17), and 
all children tended to err more while executing the MRD strategy compared to the MRU strategy (0.8% vs. 1.3%, 
F(1,70)=3.17, MSe=6.5, η²p=0.04, p=.08). The Group x Strategy interaction (F(1,70)=10.48, MSe=6.5, η²p=0.13) 
revealed that this strategy difference was larger in fifth graders (1.5%) than in seventh graders (-0.4%). No other 
effects came out significant (Fs<1). 

4. General Discussion 

In this study, we investigated how strategy execution changes with children’s age and the number of available 
strategies. Fifth and seventh graders accomplished computational estimation task in conditions where only one 
versus two strategies were available. To control for strategy selection, which strategy had to be executed was 
cued for each problem. Results showed that children were surprisingly accurate. Due to these very low error 
rates, the accuracy measure was most probably not sufficiently sensitive to detect reliable differences between 
the one- and the two-strategy condition. With respect to speed, we found that both groups of children were faster 
under the one-strategy condition than under the two-strategy condition, and that group-related differences were 
larger under the two-strategy condition. Also, differences in speed tended to vary as a function of the number of 
strategies, and this strategy difference was largest in younger children. These findings have implications to 
further our understanding of strategy execution in arithmetic and in other cognitive domains, as well as of 
age-related differences in children’s performance during cognitive development.  

Although in both two- and one-strategy conditions participants did not have to select which strategy to use on 
each problem, the two-strategy condition differed from the one-strategy condition in several respects. First, the 
two available strategies were maintained active in the two-strategy condition, as either of them could be 
unpredictably cued on each problem. Such active maintenance may have consumed resources unavailable for 
most efficient execution of the cued strategy. In contrast, all processing resources were available for strategy 
execution in the one-strategy condition. Also, when participants encoded the to-be-executed strategy and the 
problem, they had to (at least partially) inhibit the irrelevant strategy and activate procedures of the cued strategy 
before executing them. Such inhibitory processes are not involved in the one-strategy condition. Finally, 
switching strategies across successive problems may have used resources that could not be used for strategy 
execution. Note though that we found no strategy switch costs, as seen in comparable latencies when children 
used the same strategy versus different strategies on two successive problems (5637 ms vs. 5528 ms, F<1). This 
lack of strategy switch costs contrasts with previous findings (e.g., Lemaire & Leacheur, 2010; Lemaire & Brun, 
2014). Although it is possible that switching between strategies incurs no switching costs, in contrast to what has 
been found previously, it is also possible that switching between strategies incurred costs in this study but 
durations of switching processes were absorbed by durations of other processes involved during strategy execution 
(note that average solution times were over 4900 ms). Nevertheless, a number of differences between two- and 
one-strategy conditions may have contributed to strategies being executed more slowly under the two-strategy 
condition.  

Interestingly, we found that relative strategy performance differed across two- and one-strategy conditions. 
Children were 441-ms faster with the MRD than with the MRU strategy under the one-strategy condition and 
equally fast with both strategies under the two-strategy condition. MRD is easier than MRU, possibly because 
once the first operand is rounded down, this rounded operand is stored in working memory before adding it to 
the second operand. Executing MRU involves first rounding the second operand up and storing this first rounded 
operand in working memory, then rounding the second operand down while maintaining the first operand in 
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working memory, and finally adding both rounded operands. Executing MRD involves first rounding first 
operand down and storing this rounded operand in working memory, then rounding second operand up, and 
finally adding both rounded operands. In other words, adding one rounded operand to the other operand takes 
more time if the rounding operation is carried out after encoding the first operand and temporarily storing it in 
working memory than if the rounding operation is first carried out before adding the second operand to this 
rounded operand.  

Differences in strategy performance under the one-strategy condition and the lack of such differences in the 
two-strategy condition suggest that one-strategy condition yields better assessment of strategy execution (i.e., 
uncontaminated by other factors). Indeed, in the two-strategy condition, although relative strategy performance 
is not contaminated by strategy distribution and strategy selection (as both strategies are used by all participants 
on an equal number of problems), differences in strategy performance may have been absorbed by extra-time 
required to manage two strategies as is suggested by longer latencies in the two-strategy condition than in the 
one-strategy condition. Thus, as already argued by Siegler and Lemaire (1997) and many others since, when we 
want to assess relative difficulty of strategy execution and compare strategy performance, it is best to test 
participants under a condition in which all participants have to execute the same strategy on all problems, and to 
do this for all available strategies.  

The final set of findings of interest in this experiment concerns age-related differences in children’s performance. 
It is possible that these differences could partially be explained by age-related differences in experience with and 
skills underlying these strategies. However, as these age-related differences were modulated by the type of 
strategies, other more domain-general factors, such as cognitive resources, might contribute to these differences 
as well. Age-related differences in performance were larger under the two-strategy condition than under the 
one-strategy condition, as increased latencies from the one- to the two-strategy condition were larger in younger 
children. Again managing two strategies incurred more cognitive resources and as young children have fewer 
resources available, they increased their latencies in the two-strategy condition relative to the one-strategy 
condition to a larger extent than older children.  

Both fifth and seventh graders were faster with the MRD strategy than with the MRU strategy. However, this 
strategy difference was found only in the one-strategy condition where it was larger in third than in fifth graders. 
This reflects typical larger age differences on the more difficult strategy that has been found in a number of 
cognitive domains (see Siegler, 1996). As the harder strategy requires more processing resources to execute and 
younger children have fewer resources available, they need more time to execute the harder strategy.  

Even though previous studies have already demonstrated that the number of strategies that individuals are using is 
related to their executive resources (Ardiale et al., 2012; Hodzik & Lemaire, 2011), future studies should examine 
the degree to which the effects observed in the present study could be attributed to children’s measures of 
executive functions, like inhibition and shifting capacities, as well as working-memory. This approach will 
provide a direct test of the extent to which the number of strategies in someone’s repertoire consumes executive 
resources and working-memory capacity.  

The present findings have some potential educational implications as it is shown that the number of available 
strategies negatively affects children’s arithmetic performance and that this effect becomes smaller with age. 
Although accuracy is a more important performance measure in education contexts, and we observed this effect 
only on children’s latencies and not on their error rates, it cannot be ruled out that similar effects would occur on 
children’s accuracy as well. Indeed, as mentioned earlier, children were surprisingly very accurate. Including more 
difficult problems in future work might exclude such ceiling effects and reveal similar effects on accuracy. In that 
case, it might be recommendable to instruct and let practice young children one strategy at a time, as to spare their 
cognitive resources and working-memory capacity. At a later age, when children’s executive functions and 
working-memory capacity have improved, one might consider teaching multiple strategies at the same time (see 
also Jitendra et al., 2007).  

The present effects of the number of strategies have important theoretical implications to further our understanding 
of how children execute strategies and age-related differences therein. Formal models of strategies (e.g., Lovett & 
Anderson, 1996, ACT-R model; Lovett & Schunn, 1999, RCCL model; Payne et al., 1993, adaptive decision 
maker model; Rieskamp & Otto, 2006, SSL model; or Siegler & Arraya, 2005, SCADS* model) share core 
assumptions regarding how participants execute strategies on each problem. For example, all models proposed that 
strategy performance depends on the number and difficulty of the different processing steps within a strategy. 
These models also assume that how each procedure within a strategy is executed depends on problem, situation, 
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and participants characteristics. Finally, these models assume that age-related changes in children’s speed of 
strategy execution involves an increase in the speed of triggering and executing the different component processes 
within a strategy. In other words, strategy execution on a given problem and age-related changes in strategy 
execution are, according to these models, independent of the number of strategies that are used across all problems 
in a given task. The effects of the number of strategies found here suggest that strategy execution and age-related 
changes in how children execute strategies are also influenced by processes that enable managing several 
strategies. Such processes involve working-memory and executive control processes (e.g., inhibition, switching). 
Assumptions of current models of strategies could be augmented to include assumptions regarding the role of these 
processes during strategy execution. Moreover, additional assumptions in current models of strategy selection and 
execution could computationally specify how relative strategy performance becomes more and more independent 
of the number of strategies being available for solving the different problems in a given task and, more generally, 
how developmental mechanisms enable children to more and more efficiently manage several strategies.  
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