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Abstract

Poroelastic materials mounted against rigid surfaces often result in partial contact between the

two, affecting their mechanical interaction. The surface roughness of cellular materials introduces

complexity in predicting their behavior due to the interface with partial contact. This interface

exhibits a stiffness distinct from the bulk material, which is driven by the surface asperities and the

preload. This study conducts compression experiments on an open-cell poroelastic melamine foam,

and compares them to finite elements simulations and analytic predictions. The material’s intrinsic

stress-strain nonlinearity is accounted for, and an original hyperelastic aging model is proposed to

achieve accurate predictions of its compression stiffness across multiple time scales. Predicting the

compression stiffness of a macroscopic pyramidal asperity demonstrates a good agreement with

the simple analytic solution for an elastic pyramidal geometry. Using a Greenwood-Williamson-

like model based on the distribution of asperities of different heights, we propose a method to

predict the contact stiffness of a rough surface. Our findings have important implications for

understanding and optimizing efficient vibration barriers, resulting from the simple stacking of

layers and screens of raw poroelastic materials, a configuration widely adopted in the transportation

and civil engineering industries.
Keywords: contact stiffness, poroelastic material, open-cell foam, viscoelasticity, relaxation,
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1. Introduction

Poroelastic materials have many practical applications thanks to their high porosity, flexibility,

and damping. Notably, polymer foams are used for shock absorption in packaging (Wang and Low,

2005; Ge and Rice, 2018), impact damping (Oh et al., 2020; Belingardi et al., 2001), sometimes

associated with a structure (Yang et al., 2021; Lee et al., 2022). As components of multilayer panels,

they contribute significantly to vibration reduction (Chen and Sun, 2012) and acoustic insulation

(Novak, 1992; Bolton et al., 1996; Panneton and Atalla, 1996; Lagarrigue et al., 2013; Luo and

Huang, 2014). Porous screens are also used to provide radiation attenuation of vibroacoustic

sources (Amédin et al., 1995; Cummings et al., 1999; Doutres et al., 2007; Campolina et al., 2012),

as for the encapsulation of car combustion engines (Lei, 2018). In all of these use cases, accurately

modeling the porous layer behavior usually requires a thorough understanding of its mechanical

response, which can be difficult to predict for several reasons.

The first obstacle relies on the difficulty of interpreting the stiffness characterization of these

materials. A round-robin study on their dynamic mechanical characterization revealed that the

measured mechanical properties can span several orders of magnitude, depending on the laboratory

and the method used (Bonfiglio et al., 2018). Moreover, material characterization without preload

is often sought, but there is no widely accepted procedure to do so in practice. Some authors

(Dauchez, 2014; Chevillotte et al., 2020) suggest extrapolating these properties from measurements

at different compression amounts, but this method can be difficult to implement because of material

nonlinearity and the difficulty of identifying the stress-free position when the sample has an uneven

or non-flat surface.

A second difficulty comes from predicting the mechanical behavior of porous materials in-situ

when installed against rigid walls. The inherently irregular surface of porous materials results in

partial contact and heterogeneous a preload, which affect their mechanical behavior. Understand-

ing the mechanical stiffness of a porous material, especially at its contact boundary, is therefore

crucial in predicting its in-situ behavior in many situations. Guastavino and Göransson (2007) ob-

serve a soft boundary layer at the contact boundaries of foam samples using 3D image correlation.

Dauchez et al. (2002) theorize that such a zone is caused by damaged cells at the surface of the

sample when it is cut into shape. Mao et al. (2021) model this phenomenon by damaging the struts

of the cells composing the material near the sample’s boundaries by disconnecting their extremities,

to mimic the damage experienced by the material sample when it is cut. This method, however,
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Figure 1: Examples of uneven porous material surfaces, due to (a) uneven cutting on an open-cell material (micro-
scopic scale), (b) uneven cutting on a closed-cell material (microscopic scale), (c) industrial manufacturing process
(mesoscopic scale) and (d) intentional design for acoustic absorption and aesthetic purposes (macroscopic scale).

does not account for material surface roughness. This surface roughness of raw poroelastic layers

can lie at different length scales, and, for example, can result from uneven cutting (Figure 1(a)

and Figure 1(b)), manufacturing processes (Figure 1(c)) or intentional design (Figure 1(d)).

To improve the modeling of compressed porous materials against a surface by accounting for

their irregular surface shape, three phenomena should be accounted for. First, porous materials

made of cellular structures are known to exhibit a nonlinear behavior as they are compressed. This

is historically well documented (Ashby, 1983; Gibson, 1989; Gibson and Ashby F, 1997; Dauchez

et al., 2002; Gong et al., 2005; Jaouen et al., 2008; Geslain et al., 2011; Schiffer et al., 2018)

and can be modeled using a nonlinear constitutive behavior model, such as a hyperelastic model

(Mooney, 1940; R.S.Rivlin, 1947; Rivlin et al., 1951). Second, porous materials undergo stress

relaxation over time while under constant strain, similarly to viscoelastic materials, leading to a

significant stress deviation over long durations. Third, the surface roughness can be modeled using

a statistical surface roughness approach. The multi-asperity surface roughness model proposed

by Greenwood and Williamson (Greenwood and Williamson, 1966; Greenwood and Tripp, 1967)

amounts to representing a rough surface by a sum of asperities of known stiffness following a height

probability distribution. This requires that the surface’s asperities be considered homogeneous,

a condition which Hentati et al. (2020) have shown to be valid for a cellular material that has

enough strands in contact with the rigid indenting plane.

The aim of this study is thus to predict the compression stiffness of macroscopic asperities

of a rough open-cell material’s surface, by accounting for material nonlinearity, relaxation, and

asperity geometry.
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This article is structured as follows. In Section 2, the material’s nonlinearity and relaxation are

studied to establish its constitutive laws. This characterization is performed on a homogeneous

cylinder of melamine. Then, in Section 3, the prediction of the stiffness of a single pyramidal

asperity of melamine foam is performed analytically and numerically and compared with experi-

mental results. Square-base pyramidal asperities are considered because they allow for accurate

control over their geometry in their manufacturing process. Compression ramps are performed, in

which the ramp response of the material is examined, and isolated surface asperities are studied

in order to disregard the transition to the bulk material behavior below the asperities. Finally, in

Section 4, a surface of multiple pyramidal asperities of different heights is created and compared

with predictions to assess the validity of their integration within a surface roughness model.

2. Material nonlinearity and relaxation

In this section, the material’s constitutive behavior is examined and modeled. A compression

ramp is applied to a cylindrical sample of the studied material to obtain a force-displacement

curve, which is turned into a stress-strain relationship to express its constitutive behavior.

2.1. Experimental setup

Compression measurements are performed on an Anton Paar MCR 502 rheometer. Cylindrical

foam samples are placed between two plates, as pictured in Figure 2. The top plate compresses

the sample, up to around 80 % of its initial height H0 = 19.3 mm. The top plate’s position relative

to the bottom plate and the compression force are measured over time. The temperature is also

tracked to ensure its stability. The cylindrical sample is taped to the plate so that all the cells at

the interface (about 42 000 cells within the 29 mm in diameter cross-section) are in contact with it.

Taping the sample rules out effect of surface irregularities, allowing interpreting the deformation

of the sample as an effect of its bulk properties only, and avoids any contact detection protocol to

determine the reference deformation.

2.2. Material hyperelasticity

The schematic of the uniaxial compression is presented in Figure 2(b). Nominal stress and

strain expressions are used, and strains are supposed uniform during the tests. The axial strain

is expressed as ε = δ
H0

, where δ is the compression distance, and the axial stress is expressed as

TL = F
S0

, where F is the measured compression force and S0 is the initial sample cross-section
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Figure 2: Experimental setup to measure the compression force and the compression distance over time. (a)
Experimental cylindrical melamine foam sample between the two plates of the rheometer. (b) Schematic of a
cylindrical sample being compressed uniaxially.

area. Measurement results averaged over five cylindrical samples are shown in Figure 3 reveal the

nonlinearity between stress and strain. The three usual compression regimes can be identified: the

quasi-linear bending of the surface strands between 0 % and 2 % strain, the buckling of the cell

walls between 2 % and 20 % strain, and the densification of the cell struts which begins above 20 %

strain. The strain in the bulk of the foam is thus inhomogeneous by nature, including at the scale

of the finite size of the constituting cells. It is thus worth noting that defining an elastic modulus

from the stress-strain relation relies on an effective feature at the scale of the sample itself, rather

than a definition stemming from homogenization techniques.

The tangent modulus of the material Etan is defined as the slope of the stress-strain curve at

a given position, and is obtained as Etan = ∂TL

∂ε
. The secant modulus Esec is defined as the ratio of

the stress TL over the strain ε: Esec = TL

ε
. The secant modulus Esec is different from the tangent

modulus Etan, as shown in Figure 3(b). Indeed, between 0 % and 20 % strain, the tangent modulus

Etan decreases from 290 kPa to 12 kPa due to cell buckling. It then increases to 35 kPa at 50 %

strain and 436 kPa at 80 % strain due to cell densification. Meanwhile, the secant modulus Esec

drops from 290 kPa for strains less than 1 % to 50 kPa at 25 % strain and 34.7 kPa at 50 % strain,

as a consequence of buckling. Then, it increases to 72 kPa at 80 % strain due to densification.

Additionally, the secant modulus at the inflection point I, EI = Esec(εI), is computed at

εI = 20 % strain. This corresponds to the minimum of the tangent modulus Etan, and marks the
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transition from buckling to the start of densification. This inflection point is sometimes called the

crush strain in the literature (Tan et al., 2002; Li et al., 2006; Xing et al., 2023). EI has a value

of 58.0 kPa and will be used as an average equivalent modulus for the material in Section 3.5.3. It

is worth noting that the tangent modulus Etan is obtained here from a compression ramp, which

can give different values from the dynamic tangent modulus, as shown by some authors (Cavender

and Kinkelaar, 1996; White et al., 2000) and found by some of our measurements not presented

here.
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Figure 3: (a) Nonlinear stress-strain relationship of compressed foam averaged over five measurements. (b) Tangent
modulus Etan and secant modulus Esec as a function of strain, and inflection modulus EI location.

The nonlinear behavior of the material can be predicted with a hyperelastic model that is

tailored for polymer foams subject to large strains (Abaqus Inc., 2006b; Hill, 1979; Storåkers, 1986).

This model is called the hyperfoam model in Abaqus and is derived from Ogden’s hyperelastic

model (Ogden, 1972). It relates the stress and strain in the uniaxial mode through

TL = 2
λ

N∑
i=1

µi

αi

(λαi − J−αiβi), (1)

where N represents the number of terms of the model, βi = νi

1−2νi
with νi the ith Poisson ratio,
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Table 1: Parameter values obtained for the hyperfoam model, with their standard deviation. These parameters are
obtained from the instantaneous stress-strain relationship of a compressed cylindrical sample of melamine foam.

α1 (-) µ1 (kPa) ν1 (-)
49.8 189.1 0.005

± 8.2 ± 28.3 ± 0.002

λ = 1 + ε the stretch in the compression direction, and J the elastic volume ratio. Increasing

the number of terms N in the hyperfoam model can help improve the fit over the measured data

range. However, it also increases the risk of violating the Drucker stability condition for different

strain values and strain modes, such as uniaxial, equibiaxial, shear or volumetric strains (Abaqus

Inc., 2006a). Since only uniaxial compression is studied here, N = 1 is reliable. For uniaxial

strain and assuming a linear relationship between axial and lateral displacement, J = λ(1 − νε1)2.

This model therefore requires three parameters (α1, µ1, ν1) that can be fitted to measurements

to represent the material’s nonlinear stress and strain relationship. Their values computed from a

26 second-long compression ramp from 0 % to 80 % strain are given in Table 1.

2.3. Material relaxation

When compression measurements are performed for different strain rates, a variation in the

measured stress can be observed. This is shown in Figure 4, in which cylindrical samples were com-

pressed experimentally for strain rates going from 3.0 % s−1 to 3.7 × 10−3 % s−1. This corresponds

to compression ramps lasting between approximately 26 s and 6 hours (or 21 600 s). The variation

in the results can be explained by the viscous relaxation of the material. Standard protocols to

measure the compression stiffness of rubber (ASTM International, 2001), flexible cellular materials

ASTM International (2002), and certain foams in the industry (Renault, 2014) define a sequence

of compressions and decompression cycles before taking measurements, resulting in values that

incorporate the material’s hysteresis.

In contrast, our interest lies obtaining material properties which are independent of its loading

history. If measurements are performed quickly enough, the instantaneous time response of the

material can be captured and its relaxation can be neglected. This is ideal because it is impractical

to measure the long-term response of the material due to very long wait times. The experimental

results reveal that for compression ramps short than 106 s, the stress-strain curves are very similar,

indicating that they are representative of the material’s instantaneous response. It is concluded

that the material’s instantaneous response can be obtained when it is excited quickly enough,
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Figure 4: Experimental stress-strain results for cylindrical melamine samples compressed from 0 % strain to 80 %
strain at different strain rates, resulting in ramps of different durations.

that is to say for strain rates greater than 1.5 % s−1. This hypothesis is verified with an original

hyperelastic aging model in Appendix A.

3. Compression stiffness of a single pyramidal asperity

The behavior of a single pyramidal asperity is analyzed in this section. First, the open-cell

microstructure of the porous material is modeled and compared with the expected results for a

continuous medium. Then, the material hyperelasticity is integrated with the pyramidal geometries

to shed light on the interaction between the shape and the material nonlinearities.

3.1. Experimental setup

The same compression measurement setup is used as for the cylindrical samples described in

Section 2.1. Compression ramps are performed quickly enough, such that the strain rate is greater

than 1.5 % s−1 and the instantaneous stress response can be measured. Square-base pyramidal

asperities of melamine foam, with a side angle of θ = 45° from the horizontal plane, are created

to obtain the relation between their compression force and compression distance. The geometry

of the pyramids is presented in Figure 5(a) and a real pyramid of melamine foam is pictured in

Figure 5(b). Five repetitions are performed on different pyramids to obtain an average result with

a standard deviation.

The pyramid tips are supposed to be pointy, however due to imperfections in the cutting

process and the microstructure of the material, there is an uncertainty on the tip width a0 in the

same order of magnitude as the foam’s cell size h0 and ligament size l0: a0 ∼ h0 ∼ l0. Since this

bias is at the edge of a continuous description of the pyramids, it is assumed to have a negligible

effect at the macroscopic scale, such that a0 = 0. The cell size h0 for melamine foam is found
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Figure 5: (a) Diagram of a pyramid being compressed by an amount δ. The flat top of the pyramid of length a0 is
due to possible cutting defects and microstructural cell size. (b) Picture of a pyramid created experimentally.

between 0.10 mm and 0.15 mm by Kino and Ueno (2008), and between 0.1 mm and 0.2 mm

by Hentati et al. (2020), both estimations being obtained from independent scanning electron

microscopy measurements. In the frame of our study, we chose h0 = 0.125 mm as a fair value lying

in both intervals, to identify the effects related to the cell size of melamine foam in dimensionless

quantities.

3.2. Numerical analysis: open-cell microstructural model

A Finite Elements Method (FEM) model is created to accurately represent the 3D stress and

strain undergone by a compressed open-cell pyramidal sample made from an open-cell material.

This model represents the microstructure of the porous network using Kelvin cells. It attempts

to capture the nonlinear phenomena of the material through its microgeometry, such as the initial

contacts with an indenting plate, involving the progressive recruitment of a finite number of free

ligaments and struts near the foam’s surface, and their buckling at large strains.

The open-cell microstructure is modeled using distorted Kelvin cells composed of beam ele-

ment, using the same modeling approach as Hentati et al. (2020). Material parameters and cell

properties are presented in Table 2. The cell height is the same as the M7 polyurethane foam in

reference (Doutres et al., 2011) and the strut length and radius are from references (Tan Hoang

and Perrot, 2012; Hoang, 2012). The aim of this numerical model is to be qualitative. Conse-

quently, its specifications (cell size, elasticity) describe a typical open-cell foam but do not match

the melamine foam used in this study quantitatively, and the results are examined as dimensionless

relative to the cell size. Matching quantitatively the parameters of this model to the specifications

8



Table 2: Parameters used in the microstructural Kelvin cell FEM model.

Avg. cell height h0 0.574 mm
Avg. beam length l0 0.203 mm
Beam radius r0 0.021 mm
Elastic modulus E 3000 MPa
Poisson ratio ν 0.38
Mass density ρ 1300 kg.m−3

Mass damping αR 0
Stiffness damping βR 1.10−4

of the sample is a matter of adjusting a prefactor, it thus brings less understanding than analyzing

the trends qualitatively.

Rayleigh damping (αR, βR) = (0, τR) is introduced in the beams’ response to improve com-

putation convergence. A viscous relaxation time, τR = 10−4 s, relying on the beam material is

imparted by adding a viscous-like damping stress tensor σd = τRDε̇ to the elastic tensor, with ε̇

the strain rate tensor and D the elastic constitutive tensor. The value of τR is chosen much smaller

than the loading duration of the sample (τL > 10 s), such that the damping has no other effect

than accelerating the numerical convergence, by filtering spurious and non-physical high-frequency

artifacts (e.g. when light and stiff submillimetric edge ligaments go into resonance).

The pyramidal shape is created by intersecting a wide parallelepipedic lattice of Kelvin cells

with a pyramidal geometry of total height H0 = 10.0 mm and of side angle θ = 50° using a Python

routine. An angle θ = 50° is used, instead of the 45° considered in experiments, in order to break

up the geometric repetition stemming from the Kelvin cells along the side of the pyramid at 45°.

The resulting pyramid of Kelvin cells is compressed by a rigid plate by an amount δ = 5 mm. A

vertical slice of the 3D Kelvin cell pyramid is shown in Figure 6(a).

The frictionless contact between the cell struts and the rigid plane is handled by Abaqus.

Only a quarter of the pyramid is created by exploiting the symmetry of the geometry and of the

loading. Each strut is composed of two aligned B32 beam elements. A uniformly distributed

random displacement, ranging within ±7.5 % of the strut lengths, i.e. ±15.2 µm, is applied to

each node’s position. No contact between beams is considered, meaning that the densification

of the material at large strains can not be represented. An implicit numerical time integration

scheme is used.
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(a) (b)

Figure 6: Numerical model meshes of the material geometry. Quarter-pyramids are modeled by exploiting the
problem’s symmetry. (a) Slice of the FEM model composed of approximately 1 185 Kelvin cells. (b) Model with
continuous elements composed of approximately 353 553 elements.

3.3. Analytic model for a compressed pyramidal asperity

The expected tendency of the compression force of a compressed pyramid can be approximated

using geometric considerations. Using geometric arguments only, Hooke’s law states that the

pyramid’s compression force F per unit of contact area S(δ) is proportional to an elastic modulus

E and the strain ε(δ):
F (δ)
S(δ) ∝ Eε(δ). (2)

The cross-section area S(δ) of the pyramid at compression distance δ is computed as

S(δ) = a2(δ), (3)

where a(δ) is the length of the sides of a horizontal cross-section of the pyramid :

a(δ) = a0 + 2δ

tan(θ) , (4)

where a0 is neglected in our case. Therefore, combining Equation 2 to Equation 4 provides a

tendency of the compression force for the pyramid as

F ∝ E

tan θ
δ2. (5)

In this case, the force F increases quadratically with the compression distance δ, which confirms

findings by several authors that pyramidal indenters behave similarly to cones in contact mechanics,

which also behave as F ∝ δ2, up to a small correction factor (Antunes et al., 2006; King, 1987).

Interestingly, the naive geometric model provided in Equation 5 agrees with the exact prediction

of the compression force F of a pyramid being indented by a rigid plane by an amount δ (Sirghi

10



et al., 2008; Sneddon, 1965)

F = 4
π

√
π

E∗

tan θ
δ2, (6)

where E∗ = E
(1−ν2) is the effective elastic modulus of the material and ν is its Poisson ratio. In

other words, the resulting force is expected to evolve quadratically with the compression distance

δ, and its magnitude is driven by a prefactor E
tan θ

which is proportional to the equivalent material

modulus E and inversely proportional to the pyramid angle tangent tan θ.

3.4. Comparison between predictions and measurements

In this section, the results for the measurements, the analytic prediction from Equation 5, and

the Kelvin cell numerical simulation are compared to each other in Figure 7. The compression

distance δ is normalized by the cell height h0, in order to compare the qualitative features of

the numerical model with the experiment. The magnitude of the numerical predictions are not

compared quantitatively to the experimental results because the numerical Kelvin cells are not

quantitatively equal to the cells of the melamine foam; attention is focused on qualitative tendency.

A key question is the validity of a continuum mechanics description in the context of an inherently

inhomogeneous porous material made of finite-size cells.

The contact detection protocol to determine the accurate location of the tip of the undeformed

pyramid is performed by translating the indenting plate by 0.1 mm increments until sensing at

least a 0.01 N force, where 0.01 N is the reading threshold of the built-in sensor display. Then,

extrapolating the force F - displacement δ relationship above 0.01 N with the behavior determined

in Equation 5, F ∝ (δ − δ0)2, allows determining the contact origin offset δ0 ≃ 0.23 mm, with an

error likely bound well below the cell size. In any case, the error on the estimation of the offset

causes a valuable relative correction, but which is insignificant in absolute values at small deforma-

tions. In turn, the offset correction and its uncertainty quickly become negligible at deformations

larger than few cell sizes, due to the F ∝ (δ − δ0)2 nature of the force.

As predicted analytically, both the measured pyramid and the numerical model forces seem to

increase quadratically with the compression distance. Nonetheless, for small strains (i.e. δ/h0 ≈ 2,

or fewer than 20 cells in contact with the indenting plane), the experimental stress does not follow

the expected quadratic tendency with the compression distance. A first explanation for this is

the imperfectly cut tip of the pyramid, and a second is that the material cannot be considered as

a continuous medium at the scale of the cell size. This corroborates previous results by Hentati
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Figure 7: (a) Force and compression distance relationship for a single pyramid, obtained experimentally and with
the Kelvin cell FEM model. The standard deviation measured over 5 repetitions is given. The expected quadratic
tendency is plotted. The vertical line indicates the compression distance where the pyramid cross-section area is
equal to the surface area of 20 cells. (b) Deformation of the Kelvin cell FEM pyramid at δ = 1 mm, i.e. δ/h0 = 1.7
and approximately 15 cells in contact, and (c) δ = 4 mm, i.e. δ/h0 = 7.0 and approximately 247 cells in contact.

et al. (2020) that material homogeneity is valid once enough material strands are in contact with

the rigid indenting plane, which is a few tens of strands.

For large compression distances, around δ/h0 ≈ 50, the measured force diverges from the

expected quadratic tendency because the strain field inside the pyramid reaches the rigid plate

below the pyramid. This phenomenon can be understood thanks to the numerical simulation: for

small strains in Figure 7(b), the strain field does not extend much into the pyramid, whereas for

larger strains in Figure 7(c), the strain field extends further and spherically into the pyramid, until

it reaches the plate below the pyramid. This increases its apparent rigidity since the problem is

not a single contact behavior anymore.

Finally, in a non-trivial way, the nonlinear hyperelasticity of the material does not appear in

the experimental results in Figure 7. In the following section, the material nonlinearity is included

in models of a pyramid to understand how it interacts with the shape nonlinearity.

3.5. Models accounting for non-homogeneous strain

The objective of this section is to understand how the material nonlinearity and the shape

nonlinearity interact by combining the hyperelastic model with the pyramidal geometry.
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3.5.1. Analytic slices model

An analytic model accounting for varying strain and modulus throughout the height of the

pyramid is investigated. This model consists in studying horizontal slices throughout the height of

the pyramid, in which the strain is considered constant. Considering a constant force F transmitted

throughout the height of the pyramid, the local stress-strain relationship in a thin horizontal slice

at distance z from the pyramid tip gives

F = S(z) Esec(ε(z)) ε(z), (7)

where S(z) is the local cross-section area computed from Equation 3, and where the Poisson effect

is neglected because the Poisson ratio was found small in Table 1. The strain ε(z) in each horizontal

slice is computed from Equation 7, and then the total compression distance δ is

δ =
∫ H0

0
ε(z)dz, (8)

which yields the relationship between the force F and the compression distance δ.

Using this model, the strain throughout the height of the pyramid can be estimated for a given

force F , as shown in Figure 8. Near the tip of the pyramid, where the contact area is small, the

local strain is close to 100 %, meaning that the material is completely crushed: its contribution to

the apparent stiffness disappears. Beyond this region, in the center of the pyramid, the strain and

the modulus evolve quickly: this region mainly drives the relationship between applied force and

the total compression distance of the pyramid. Near the base of the pyramid, the strain is closer

to 0 %. In this zone, the pyramid has a high modulus and a high surface area: it hardly deforms

and its contribution to the apparent stiffness is also small. The overall behavior is then mostly

governed by pyramidal geometry, which leads to a F ∝ δ2 law.

3.5.2. Hyperelastic solid FEM model

To obtain a more accurate 3D representation of the strain inside a pyramidal asperity, a

pyramid made of a continuous solid hyperelastic material is simulated numerically under the same

conditions. The model mesh is shown in Figure 6(b). Linear tetrahedral elements (C3D4) of

average size 0.2 mm are used, ensuring results which are independent of the element size. The

material behavior is described by a hyperfoam model using parameters from Table 1.
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Figure 9: Compression force and compression distance relationship for the measured pyramid, the hyperelastic solid
FEM model, and the analytic slices model. The expected quadratic tendency is also represented.

3.5.3. Results and interpretation

The analytic slices model and the hyperelastic FEM model are compared to measurements in

Figure 9. Both models follow the same tendency as a quadratic law, despite the hyperfoam material

behavior used. The slices model overestimates the compression force, which could be due to the

hypothesis of constant strain within each horizontal slice, since Figure 7(c) shows that the strain

field front in fact extends spherically into the pyramid. The force predicted by the hyperelastic

FEM model matches the quadratic tendency of the experiment accurately once the experimental

compression distance provides a few tens of cells of contact, to bypass surface effects and the error

on the height determination of the pyramids. Using Equation 6, the equivalent modulus fitted to

the hyperelastic FEM results is E = 65.3 kPa and the modulus fitted to the experimental results

is E = 60.2 kPa. These similar results validate the hyperfoam model in Table 1 for the pyramidal

geometry. The constant prefactor modulus fitted to experimental results is chosen to represent the

quadratic tendency of a single pyramidal asperity, by simplifying the strain-dependent modulus

with an equivalent value, providing a reasonable prediction of experimental results within the

whole range of probed deformations past the effect of the surface cells.
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3.5.4. Estimation of an equivalent modulus

The aim of this section is to determine an appropriate constant modulus to approximate the

hyperfoam law for the pyramid. Three hypotheses are proposed. A first option is to use the tangent

modulus at small strains Etan(ε = 0) = 300 kPa, as shown in Figure 3(b). This corresponds to

the more classical definition of the linear elastic Young’s modulus. A second option is to consider

the pyramid as a sum of stiffnesses in series, in which case the overall stiffness is driven by the

lowest stiffness. This means the overall stiffness can be approximated by the minimum of the

secant modulus Emin = min(Esec) = 35 kPa, found for ε = −50 %. A third option is to consider

the secant modulus at the inflection point EI = Esec(I) = 58.0 kPa, found for ε = −20 %, where

the tangent modulus transitions from buckling to densification. This modulus serves as an average

description of the material over its different compression regions, i.e. the first contacts, the linear,

the buckling, and the densification zones.

The compression force of a pyramid using the slices model and the hyperfoam law Esec(ε) is

shown in Figure 10. It is compared to models using the three proposed hypotheses Etan(ε = 0),

Emin and EI . The small strain modulus Etan(ε = 0 %) overestimates the material stiffness, whereas

the minimum of the secant modulus Emin underestimates the material stiffness. Using the secant

modulus at the inflection point EI gives a prediction that is close to the full strain-dependent

secant modulus Esec(ε). Indeed, EI = 58.0 kPa is a good approximation of the prefactor found by

the FEM hyperelastic model E = 65.3 kPa for a pyramidal geometry in Figure 9.

In short, the constant modulus is largely surrounded by the tangent modulus at small strains

Etan(ε = 0) and the minimum of the secant modulus caused by buckling min(Esec), but can be

fairly well approximated by the secant buckling modulus Esec(I).

4. Application to a multi-asperity rough surface

After analyzing a single asperity, a rough surface of multiple asperities is now studied through

a surface roughness model. The Greenwood-Williamson surface roughness model is applied to an

ideal surface of pyramids of varying heights.

4.1. Description of the Greenwood-Williamson model

The Greenwood and Williamson model (Greenwood and Williamson, 1966; Greenwood and

Tripp, 1967) is a widely used surface roughness model which assumes that a rough surface is made

up of spherical asperities of radius of curvature R, and with tip heights that follow a probability
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density function ϕ(z). The stiffness of the spherical asperities is based on the mechanics of sphere-

to-plane contact (Hertz, 1881), valid for linear elasticity in small deformation, for a size of the

contact region and an overlap between bodies much smaller than the dimensions of the bodies

themselves, for spherical shapes, and by neglecting contact surface friction and adhesion. The

medium is assumed to be isotropic and bulk behavior is neglected, since each asperity behaves

independently of the others. Strain hardening, yielding, and thermal effects are neglected.

Asperity height distribution ϕ(z) often follows a Gaussian distribution in practice (Bickel, 1963;

Greenwood and Tripp, 1967), though any probability density function can be used. Furthermore,

the Greenwood-Williamson model uses spherical asperities, though asperities can be of different

shapes, as in (Hisakado, 1974; Bush et al., 1975; Persson et al., 2004) for example. Ultimately,

the Greenwood-Williamson model predicts the load F required to compress a rough surface with

a rigid plane by an amount δ as

F (δ) = N
4
3R

1
2 E∗

∫ δ

−∞
(z − δ) 3

2 ϕ(z)dz, (9)

where N is the total number of asperities on the rough surface. The Greenwood-Williamson model

considers hemispherical asperities, which gives a prefactor 4
3R

1
2 E∗ and a force that increases as δ

3
2 .

These can be changed for pyramidal asperities, using Equation 6, to obtain

F (δ) = N
4

π
√

π

E∗

tan θ

∫ δ

−∞
(z − δ)2ϕ(z)dz. (10)

In this case the prefactor is 4
π

√
π

E∗

tan θ
and the force increases as δ2. The sketch of the surface
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Figure 11: Rough surface represented by pyramidal asperities coming into contact with a rigid plane. (a) Greenwood-
Williamson surface roughness model representation. (b) Experimental setup representing a rough surface made up
of pyramidal asperities of varying heights.

roughness model composed of pyramids and the corresponding experiment are shown in Figure 11.

4.2. Application to a surface of multiple pyramids

The Greenwood-Williamson model is usually applied to statistically distributed asperities,

although it will be used on a surface with a discrete number of asperities for validation. This

results in summing the forces of the pyramidal asperities. A surface of 13 pyramidal asperities

is created, each with a different height, as shown in Figure 11(b). The pyramids are placed on

supports to obtain different heights, and the height of each pyramid is measured individually.

The asperity tip heights are uniformly distributed over a range of 6 mm, meaning that the

average height difference between two neighboring pyramid tips is 0.5 mm for 13 pyramids. A

uniform distribution was chosen because, compared to a normal distribution for example, it is

more feasible to create experimentally and allows for more accurate control over the asperity

heights relative to each other. The pyramids are compressed by up to 8.7 mm from the position of

the highest pyramid, such that it is compressed by 83.6 % of its initial height. The reference plane

is chosen at the tip of the tallest pyramid, which means that the tallest pyramid is expected to

contribute to the force quadratically with the total compression distance. A single set of pyramids

is characterized this way, considering the averaging effect of compressing 13 pyramids at once and

the good measurement repeatability found for single pyramids.

The compression force and the displacement of the indenting plate are measured and compared

to predictions in Figure 12. It can be seen that the force resulting from the compression of several

pyramids of different heights diverges from the quadratic slope which represents the behavior

of a single pyramid. The reaction force is also predicted by using the experimental force and
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displacement relationship from Figure 7(a). This relationship provides a robust prediction of the

compression force of the multi-asperity surface, from small to large deformations. The analytic

result is obtained by applying the modulus of E = 60.2 kPa, found experimentally in Section 3.5.3,

to Equation 6. The analytic solution converges to the prediction from the experimental force and

displacement relationship, because of the good fit it provides for a single pyramid. For very large

compression distances δ > 7.5 mm, the analytic model does not predict the force increase found

experimentally caused by the finite size of the pyramids, which was already observed for a single

pyramid in Section 3.5.3. Overall, the models are able to predict the tendency of the multi-asperity

surface, which differs from the quadratic tendency which represents the reaction force of a single

asperity.
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Figure 12: Compression force and compression distance relationship for an ideal surface of 13 pyramids of different
heights. Experimental results and predictions using a Greenwood-Williamson like multi-asperity description are
plotted. The quadratic tendency expected for a single pyramid is also represented.

In short, extrapolating the behavior of a single pyramid to a surface of several pyramids of

varying heights is reliable to predict the compression stiffness of this surface. This prediction is

performed on a surface with a finite number of asperities, and can be extended equivalently to

a continuous distribution of asperities as described by the Greenwood-Williamson model. This

is promising for predicting the compression stiffness of a rough porous material characterized

statistically by a 3D surface scan, for example. The ideal surface of pyramids studied is composed

solely of asperities, so the transition to the bulk stiffness of the material underneath the asperities

does not appear, though this would be the case for a real material undergoing large compression

distances relative to the asperity size.
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5. Conclusion and perspectives

The mechanical behavior of pyramidal asperities made of melamine foam has been studied.

It has been shown that material nonlinearity and relaxation can be accounted for to predict the

compression stiffness of a multi-pyramidal surface of a cellular material.

First, the nonlinearity of the melamine foam has been observed and can be accounted for with

a hyperelastic (hyperfoam) model. Second, the material relaxation can be neglected when the

strain rate is high enough, which can be verified with an aging relaxation model that predicts the

material’s relaxation time.

The effect of the pyramidal geometry has been studied using models of varying complexity.

The hyperfoam FEM model and the analytic hyperfoam model, which take account for the mate-

rial’s nonlinear stress-strain relationship, find a quadratic tendency between force and compression

distance, which is coherent with experimental results and Kelvin cell FEM simulations. The cor-

relation between the prediction from a continuous model and measurements are satisfactory over

several orders of magnitude, except for very small strains, typically below a few tens of cells in

contact, and very large strains, typically above 90 % of the total pyramid height. Overall, the

combination of the material hyperelasticity with the pyramidal shape nonlinearity results in a

quadratic evolution of the force with the compression distance, related to the pyramidal shape.

Nevertheless, the material hyperelasticity determines the prefactor of this quadratic tendency,

which can be approximated by an average constant value given by the secant modulus evaluated

at the inflection point marking the transition from buckling to densification. Finally, the proposed

surface roughness model has shown good agreement with experimental results considering an ideal

multi-pyramidal material.

Perspectives of this work include exploring incrementally the behavior of different asper-

ity geometries, such as spherical geometries for example, and different asperity height distribu-

tions, to generalize the results to different configurations. Furthermore, applying the Greenwood-

Williamson surface roughness model to a statistically defined porous material, such as the material

pictured in Figure 1(c), would extend these results to real material configurations. Finally, the

effect of relaxation on the dynamic behavior of porous materials at long time scales would improve

their modelling for vibroacoustic applications.
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Appendix A. Material relaxation model

It is concluded from experimental compression results in Section 2.3 that the melamine mate-

rial’s response is considered instantaneous when the strain rate is high enough. The objective of

this section is to verify this conclusion by modeling the material’s relaxation.

Appendix A.1. Observation of the relaxation

When a cylindrical foam sample is subjected to compression at a constant strain, its reaction

force drops over time, as visualized in Figure A.13(a). For samples compressed to 30 % strain,

the measured force drops by 14.1 % after 1 minute, 20.0 % after 5 minutes, and 40.0 % after 24

hours. The typical relaxation time of the material τ = −F/Ḟ in the relaxation phase, shown

in Figure A.13(c)-(e), differs noticeably from common viscoelastic models. Despite an apparent

convergence of the time response of the compressed sample to its asymptotic behavior after one

minute of measurement in Figure A.13(a), it does not in fact reveal an asymptotic limit when

observed over an entire day in Figure A.13(b). The observed behavior does not reveal a classical

exponential decay as a function time, F (t) ∝ e−t/τ , but instead a power law F (t) ∝ tn with some

exponent n, as shown in Figure A.13(b). Moreover, it has been found that a viscoelastic Prony

series model for foams can sometimes fail to describe their very short-term phenomena (Dalisay

et al., 2022). This makes it more difficult to assert whether the material’s relaxation time is high

enough for its response to be considered instantaneous during a compression ramp.

Appendix A.2. Creation of an adapted relaxation model

Stress relaxation is usually represented using a viscoelastic model. A review of several usual

viscoelastic models can be found in (Tschoegl, 1989; Findley et al., 1976). The commonly gen-

eralized Maxwell model (Wiechert, 1889, 1893) is represented by a spring placed in parallel with

arrangements of springs and dashpots in series. Each spring and dashpot arrangement relaxes

over time, resulting in a material that exhibits several decay times. This viscous behavior can

be combined with a nonlinear hyperelastic model, and several models have been suggested in the

literature. Some authors consider the total stress as the sum of a viscous stress and a hyperelastic

stress (Yang and Shim, 2004; Ju et al., 2015), whereas others combine the two into a rheological

model (Anani and Alizadeh, 2011; Briody et al., 2012). The material nonlinearity is either rep-

resented using a hyperelastic model (Markert, 2005; Briody et al., 2012; Henriques et al., 2020;

Dalisay et al., 2022) or a polynomial (Batt et al., 2015) model. The relaxation is either represented
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Figure A.13: Stress relaxation of a compressed cylindrical melamine sample at 30 % strain during (a) the first
minute and (b) 26 hours. The vertical dashed-dotted line indicates when the stress relaxation at constant strain
begins. The relaxation time τ = −F/Ḟ increases linearly with time with a constant slope a = τ̇ at (c) early, (d)
intermediate, and (e) long-terms. The dashed guideline in (c), τ = at with arbitrary a = 21, relies on a power law
dependency, F (t) ∝ t−1/a, see the dashed guideline in (b).

on the basis of the generalized Maxwell model (Batt et al., 2015; Markert, 2005; Briody et al.,

2012), the fractional derivative model (Henriques et al., 2020) or an empirical time-shift method

(Grasley and Lange, 2007).

Nevertheless, the continuously varying and linearly increasing relaxation time, τ ∝ t, observed

in Figure A.13(c)-(e), is characteristic of an aging mechanism (Struik, 1977). The main concern

with such mechanisms is determining the dynamics at short times, during which the material is

fresh and highly reactive, that is to say τ ∼ 0 when t ∼ 0. For instance, the aging model described

by Derec et al. (2001) relates the stress rate ṪL to the strain rate ε̇ through a history-dependent

fluidity term f . Espíndola et al. (2012) suggest a simplified expression of the fluidity f resulting

in 
ṪL = −fTL + Eε̇

ḟ = −af 2 + rε̇2,

(A.1)

where E is an elastic modulus, a is a parameter representing material aging (decrease in f , i.e.
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Figure A.14: Schematic representation of the aging model. The nonlinear dashpot represents the nonlinear time
dependence of the aging model, and the nonlinear spring represents the hyperelastic response of the material.

increase in relaxation time over time) and r is a parameter representing material rej8uvenation

(increase in f , i.e. decrease of relaxation time over time).

In the case where f = E/µ = const, this model is equivalent to a Maxwell viscoelastic model

with a constant relaxation time, where µ stands for the viscosity of its dashpot. The second line

of Equation A.1 indicates the evolution equation of the history dependent fluidity f , which is the

inverse of a relaxation time: τ = 1
f
. When the strain rate ε̇ is null, the relaxation time increases

linearly with time as τ ∝ at, proportionally to the aging parameter a, in close agreement with our

observations shown in Figure A.13(c)-(e). When the material is being deformed, that is to say

ε̇ ̸= 0, the relaxation time decreases according to rejuvenation parameter r, such that f increases

and τ decreases consequently with time.

Considering the fact that the foam response is hyperelastic, we propose an enriched description

that encompasses both the hyperelastic and aging behaviors, in which the linear elastic modulus

E in Equation A.1 is replaced with the strain-dependent secant modulus Esec, as sketched in

Figure A.14. This results in a hyperelastic aging model that can fully describe the melamine

material’s behavior.

Appendix A.3. Prediction of the full nonlinear and time-dependent material behavior

The aging hyperelastic model described by Equation A.1 is applied to the melamine foam,

and its parameters are determined from experimental data. First, the parameter a is obtained

when the strain rate ε̇ is null, in which case a is computed as the slope of −TL

ṪL
. Second, the

hyperfoam parameters are obtained from a least squares fit on the instantaneous response of the

material. Thus, the parameters (α1, µ1, ν1) are obtained from the experimental stress-strain

curve between 0 % and 80 % strain performed for a 26 s long ramp, shown in Figure 4. Third, the

remaining parameter r is found from compression ramps with different strain rates, as those shown

in Figure 4. Compression ramps with strain rates from 3.0 % s−1 to 3.7 × 10−3 % s−1 were used

to fit the parameter r. The parameters obtained for the hyperelastic aging model are presented

in Table A.3. It is interesting to note that the Poisson ratio found is close to 0, suggesting that
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Table A.3: Parameter values obtained for the hyperelastic aging model used to represent the studied material’s
behavior, averaged over several measurements, with their standard deviation.

Hyperfoam parameters
α1 (-) µ1 (kPa) ν1 (-)
104.8 122.8 0.020

± 18.5 ± 24.5 ± 0.005

Aging parameters
a r

17.8 3.4
± 3.6 ± 1.7

the overall Poisson effect is small, which is a result which can be found in the literature for foams

undergoing large strains (Rinde, 1970; Yang and Shim, 2004; Schiffer et al., 2018).

The predictions from the hyperelastic aging model are compared to a measurement in Fig-

ure A.15, for the fastest ramp lasting 26 s. The strain ramp over time is shown in Figure A.15(a),

and the measured stress is shown in Figure A.15(c), which displays a nonlinear behavior during

the loading and stress relaxation when the strain is held constant. The predicted stress response,

also shown in Figure A.15(c), exhibits a similar behavior to the measured response. Notably, both

the nonlinear behavior and the time-dependent relaxation of the material are captured by the

proposed hyperelastic aging model.

The instantaneous stress response of the aging hyperelastic model is shown next to its time-

dependent response, which reveals that the time-dependent response is quite close to the instan-

taneous response for this 26 s compression ramp. Indeed, it can be seen in Figure A.15(b) that

the shortest mechanical relaxation time (the inverse of the fluidity f) of the material during the

26 s compression ramp is around τ = 103.8 s, indicating that the material relaxation has a weak

effect during the compression phase. As a consequence, material relaxation can be safely neglected

when the strain rate is large enough, which is the case for this 3.0 % s−1 strain ramp, confirming

experimental results found in Figure 4.
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Figure A.15: Comparison of the aging model with measurements for a compression ramp of 0 % to 80 % strain over
26 seconds. (a) Strain applied over time. (b) Predicted material relaxation time τ = f−1 over time, compared with
the characteristic time of the compression ramp. (c) Measured stress over time, compared with the predicted stress
over time using the hyperelastic aging model. Average parameters from Table A.3 are used, except for r = 2.49
which is obtained from a 26 s ramp measurement.
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