
HAL Id: hal-04502632
https://hal.science/hal-04502632

Submitted on 13 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Fixed interval scheduling with third-party machines
Ilia Fridman, Mikhail Kovalyov, Erwin Pesch, Andrew Ryzhikov

To cite this version:
Ilia Fridman, Mikhail Kovalyov, Erwin Pesch, Andrew Ryzhikov. Fixed interval scheduling with
third-party machines. Networks, 2020, 77 (3), pp.361-371. �10.1002/net.21973�. �hal-04502632�

https://hal.science/hal-04502632
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Received: 2 November 2019 Revised: 21 April 2020 Accepted: 23 June 2020 Published on: 8 August 2020

DOI: 10.1002/net.21973

R E S E A R C H A R T I C L E

Fixed interval scheduling with third-party machines

Ilia Fridman1,2 Mikhail Y. Kovalyov2 Erwin Pesch1,3 Andrew Ryzhikov2,4

1Center for Advanced Studies in Management,

HHL Leipzig Graduate School of Management,

Leipzig, Germany
2United Institute of Informatics Problems, National

Academy of Sciences of Belarus, Minsk, Belarus
3Institute of Information Systems, Faculty III,

University of Siegen, Siegen, Germany
4LIGM, Université Paris-Est, Marne-la-Vallée,

France

Correspondence
Erwin Pesch, Institute of Information Systems,

Faculty III, University of Siegen, 57068 Siegen,

Germany.

Email: erwin.pesch@uni-siegen.de

Funding information
This research was supported by the Friede Springer

foundation, Grant/Award Number: 6000108.

Abstract
We study a problem of scheduling n jobs on machines of two types: in-house

machines and third-party machines. Scheduling on in-house machines incurs no

additional costs, while using third-party machines implies costs depending on their

number and the time of usage. Each job has a fixed time interval for being processed

which can be divided and allocated among several machines, as long as there is only

one machine processing the job at any time. No machine can process more than

one job at a time. Jobs can be rejected, and they are of different importance that is

reflected in the weight of each job. The objective is to find a subset of the jobs and

the number of third-party machines for any period of time so that the accepted jobs

can be feasibly scheduled, the total weight of the accepted jobs is maximized, and the

total machine usage costs does not exceed a given upper bound. We also study a sim-

ilar problem in which the objective is to maximize the total time at which at least one

job is processed. Both problems are encountered in situations in which certain activ-

ities with given start and completion times have to be serviced by human operators.

Examples are air traffic control and the monitoring safe vehicle unloading. Other

examples are the employment of subcontractors in agriculture, construction or trans-

portation. We will present NP-hardness proofs, polynomial and pseudo-polynomial

optimal algorithms and an approximation algorithm for these problems and their spe-

cial cases. These problems admit graph-theoretical interpretations associated with

finding independent sets and a proper vertex coloring in interval graphs.

KEYWORDS

fixed interval scheduling, outsourcing, parallel machines, subcontracting, interval

graphs, air traffic control

1 INTRODUCTION

Small and medium-sized companies often reach the point where internal resources—both technological and human—are

inadequate. Therefore, collaboration within the business network is becoming increasingly important. Among other things, sub-

contractors are employed in the event of a bottleneck in the main contractor’s human resources or due to time constraints when

the main contractor is overloaded. A subcontractor executes orders or parts of orders for the entrepreneur (i.e., the main con-

tractor). The main contractor is the one who accepts the order from the client. The main entrepreneur is virtually intermediary.

Subcontracting is therefore particularly suitable for entrepreneurs to compensate for weak customer acquisition. Subcontrac-

tors are primarily active in industries like construction, IT, travel and transportation, or agriculture. One of the most common

and oldest examples is house building. Subcontractors are often commissioned here, for example, because there are not enough

employees available for the construction contract. An entrepreneur receives the order to build the house, but has no capacity to

accept another order. But instead of rejecting it, the entrepreneur hires a subcontractor. The costs for the entrepreneur consist

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original

work is properly cited.

© 2021 The Authors. Networks published by Wiley Periodicals LLC.

Networks. 2021;77:361–371. wileyonlinelibrary.com/journal/net 361

https://orcid.org/0000-0003-0832-0829
https://orcid.org/0000-0003-0182-870X
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnet.21973&domain=pdf&date_stamp=2020-08-08

362 FRIDMAN ET AL.

mainly of two components: a fixed cost share that only depends on the duration of the subcontractor’s use of resources (e.g.,

machinery) and a variable cost share for the amount and duration of the resources (e.g., number of workers on each day) used.

The entrepreneur is interested in keeping the number of external workers and their duration of employment low and will agree

with the subcontractor on a cost limit that cannot be exceeded.

Problems studied in this paper generally arise in planning human operator services, where both the service quality and

ergonomics of the operator’s work substantially drop as the load of the operator with simultaneously serviced jobs exceeds a

certain threshold. The operator’s work costs are fixed if this threshold is not exceeded, but if it is exceeded then extra costs incur

which depend on the number of the additional jobs and the time of their servicing. The problems can be formulated as follows.

From the jobs of a set N = {1, … , n}, some can be accepted for processing on machines of two types: m in-house machines

and an unlimited number of third-party machines. No machine can process more than one job at a time. Each job j has a fixed

processing time interval (aj, bj] of length dj = bj − aj > 0, and it can either be accepted and processed entirely and without

interruption in this interval by the in-house and third-party machines or it can be rejected and not processed at all. Processing

of a job can be distributed among several machines, but by a single machine at any time instant reflecting the fact that an

operator may immediately continue the service of a colleague. Using in-house machines incurs no additional costs, while using

x third-party machines over a time interval of length 𝛿 implies a costs sgn(x𝛿)(𝛼 + 𝛽x)𝛿, where sgn(⋅) is the signum function

and 𝛼 and 𝛽 are given numbers. Thus, if no third-party machine is used in any time interval, there are no costs, and if x≥ 1

third-party machines are used in a time interval of non-zero length, the corresponding costs are a linear function of x in each

unit-time sub-interval of the latter interval. Each job j has a weight wj. The objective is to find a set X ⊆N of accepted jobs, the

number of third-party machines and an assignment of in-house and third-party machines to the accepted jobs over time so that

the accepted jobs are feasibly scheduled, the total weight of the accepted jobs is maximized, and the total machine costs do not

exceed a given upper bound U. All numerical data and function values are assumed to be non-negative integer numbers. We

denote this problem as MAXWEIGHT and the value (maximum weight) of an optimal solution as W*.

Furthermore, we study a problem which differs from MAXWEIGHT in that the goal is to maximize the total amount of time

at which jobs are processed. We denote this problem as MAXCOVER and the value of an optimal solution as C*. There is an

O(nlogn) time algorithm of Gupta et al. [16] for the interval graph coloring problem which can be used to find the minimum

number of machines required to feasibly schedule all the jobs with fixed processing intervals. If this minimum number does not

exceed m, then the algorithm in Gupta et al. [16] is optimal for both problems MAXWEIGHT and MAXCOVER. In what follows

we assume that it is not the case.

Another example of MAXWEIGHT is the work planning of a flight dispatcher, who can qualitatively and ergonomically

service at most m flights at the same time in his responsibility area. There are n flights to be serviced, and flight j is permanently

present in the responsibility area in a given time interval (aj, bj]. If there are more than m flights at the same time in the

responsibility area, then the ergonomics of the dispatcher’s work drops, and he is paid a compensation for each unit-time interval

of such a service, which is a linear function of the number of extra flights to be serviced simultaneously. Thus, the compensation

includes a fixed part 𝛼 and a variable part 𝛽x which is proportional to the number x of the extra flights. Both parts are paid for

each time unit of the reduced ergonomic work. The compensation payment can be used to motivate the dispatcher and to evaluate

the dispatching service quality. Each flight is associated with a value. The problem is to select a subset of flights to be serviced

by the dispatcher so that the total value of the selected flights is maximized and the total compensation paid does not exceed a

given upper bound. The upper bound bases on past experience as to balance service quality and the compensating payment.

An example of the problem MAXCOVER is similar. It is the work planning of an operator who monitors the safe unloading

of vehicles (vessels, trains, buses) with the aid of an electronic video surveillance system. There are n vehicles to be monitored,

and vehicle j is unloaded in a given time interval (aj, bj]. The operator can qualitatively and ergonomically monitor the unloading

of m vehicles at the same time at most. If more than m vehicles are unloaded at the same time, the ergonomics of the monitoring

process drops and the operator is paid a compensation for each unit-time interval of such service, which is a linear function of

the number of extra vehicles monitored simultaneously. The problem is to select a subset of vehicles to be monitored by the

operator so that the total duration of the intervals in which unloading of at least one vehicle is monitored, that is, the operator’s

productive time, is maximized and the total payment compensating low ergonomic service does not exceed a given upper bound.

Problems MAXWEIGHT and MAXCOVER belong to the category of fixed interval scheduling problems, see the different

surveys and further results in Kolen et al. [19], Kovalyov et al. [20], Krumke et al. [21], Angelelli et al. [1], van Bevern et al.

[4] and Bentert et al. [3]. These problems admit graph-theoretical interpretations, associated with finding independent sets and

a proper vertex coloring in interval graphs. The set of vertices of the corresponding interval graph is the set of jobs, and an

edge between two vertices exists if and only if the corresponding intervals intersect. MAXWEIGHT and MAXCOVER differ from

fixed interval scheduling problems in that third-party machines exist and using them causes costs depending on their number

and the length of their operating period. If U = 0, no third-party machine can be used, and problem MAXWEIGHT can be solved

in O(mnlogn) time by the algorithms of Bouzina and Emmons [6] and Carlisle and Lloyd [7], and problem MAXCOVER can be

solved in O(nlogn) time by the algorithm of Gupta et al. [16].

 10970037, 2021, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.21973 by C

ochrane France, W
iley O

nline L
ibrary on [13/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

FRIDMAN ET AL. 363

TABLE 1 Results

Problem Results Reference

MAXWEIGHT NP-hard for 𝛼 + 𝛽 > 0 Section 2.1

O
(

nm+2 max
{

W,
(m+1)2

n

})
Section 2.2

O
(

nm+2 max
{

U,
(m+1)2

n

})
Section 2.3

MAXCOVER (m∈ {0, 1}) NP-hard for 𝛼 + 𝛽 > 0 Section 3.1

O(nm+ 2L) Section 3.2

O(nm+ 2U) Section 3.3

1/2-approximation Section 3.4

MAXCOVER(m≥ 2) O(nlogn) Section 3.5

The time window concept is a generalization of the fixed interval concept, according to which there is a flexibility in the

time of performing a job in its time window. Studies of scheduling and vehicle routing problems with time windows were

initiated by Schrage [30] and Bodin et al. [5]. Recent publications include Sarasola and Doerner [29], Gnegel and Fügenschuh

[15], Mohammadi et al. [25], Chen et al. [8] and Lera-Romero et al. [23], among others.

Problems MAXWEIGHT, MAXCOVER and scheduling problems with order acceptance and job rejection are related. The dif-

ference is that, with reference to the latter two problems, a job can be either accepted (entirely processed on in-house machines)

or rejected (entirely processed on third-party machines). Problems MAXWEIGHT and MAXCOVER allow a job can be rejected

and not at all processed. If a job is accepted, then any part of this job can be processed on in-house and third-party machines.

Besides, in the order acceptance and job rejection settings the jobs are not restricted to being processed in fixed time intervals.

Recent results on scheduling with job rejection can be found in Bartal et al. [2], Engels et al. [12], Dosa and He [11], Shabtay

et al. [31], Mnich and Wiese [24] and Hermelin et al. [17], and those on scheduling with order acceptance in Slotnick [32] and

Zhong et al. [37].

A large part of the relevant literature deals with scheduling with sub-contracting. It differs from scheduling with order

acceptance or job rejection in two ways. In addition to the rejection option, a job can be processed at a sub-contractor facility,

and conditions of its processing such as job delivery time, or job sequence, or sub-contractor selection are considered. Again,

problems of this kind do not include fixed time intervals for jobs and the possibility of processing the same job by in-house and

third-party machines. Publications on scheduling with sub-contracting include Chen and Li [9], Qi [27], Mokhtari and Abadi

[26], Zhong and Huo [36], Vairaktarakis [33], Wang et al. [35], Hezarkhani and Kubiak [18], Vairaktarakis and Aydinliyim

[34], Ren et al. [28], and the references therein.

Fukunaga et al. [13] studied a “rent-or-buy” scheduling and cost coloring problem, in which machines belong to different

classes and the machine usage costs depend on the class of the machine and on the set of jobs assigned to it. Two classes

of in-house and third-party machines can be identified for problems MAXWEIGHT and MAXCOVER. However, the problem

considered in Fukunaga et al. [13] cannot model the situation in which in-house and third-party machines work on the same set

of jobs and the costs depend on the working duration of the third-party machines.

Our results for the problems MAXWEIGHT and MAXCOVER are described in Sections 2 and 3, respectively. Each problem

is proved to be NP-hard in the ordinary sense and two dynamic programming algorithms of incomparable computational

complexities are presented for each problem. It is convenient to introduce the following notation.

W =
n∑

i=1

wi.

L is the number of integer points in the union of the intervals (aj, bj], j∈N.

Our results are summarized in Table 1.

The paper concludes with a short summary of the results and suggestions for future research. In this article, we will use the

names “job” and “interval” interchangeably.

2 PROBLEM MAXWEIGHT

We start with an NP-hardness proof in Section 2.1 and then proceed with two dynamic programming algorithms, denoted as

DPW1 and DPW2. The running time of DPW1 is O
(

nm+2 max
{

W,
(m+1)2

n

})
and it is described in Section 2.2. The running

time of DPW2 is O
(

nm+2 max
{

U,
(m+1)2

n

})
and it is described in Section 2.3.

 10970037, 2021, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.21973 by C

ochrane France, W
iley O

nline L
ibrary on [13/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

364 FRIDMAN ET AL.

2.1 Ordinary NP-hardness

Theorem 1. MAXWEIGHT is NP-hard even if the number of in-house machines m is any non-negative constant, 𝛼 and
𝛽 are any constants satisfying 𝛼 + 𝛽 > 0, and wj = bj − aj, j = 1, … , n.

Proof . We use a reduction from the following NP-complete problem Partition (Garey and Johnson [14]): Given k+ 1 positive

integer numbers p1, … , pk and P such that
∑k

j=1 pj = 2P, is there a subset X ⊆K = {1, … , k} such that
∑

j∈X pj = P?

Given an instance of Partition, construct an instance of MAXWEIGHT, in which the number of in-house machines m is a

given non-negative integer number, 𝛼 and 𝛽 are given numbers satisfying 𝛼 + 𝛽 > 0, and the number of jobs is n = (m+ 1)k.

The jobs are partitioned into k groups numbered 1, … , k. Each group j contains m+ 1 identical jobs associated with the same

interval of length pj and the same weight wj = pj, j = 1, … , k. It is required that intervals of jobs from any two different groups

do not intersect. We show that the instance of Partition has a solution if and only if there exists a solution of the constructed

instance of MAXWEIGHT with the total weight of at least (2m+ 1)P and the total machine costs of at most (𝛼 + 𝛽)P.

Let X be a solution of the instance of Partition. Construct a solution of the instance of MAXWEIGHT, in which the subset of

the selected jobs includes all m+ 1 jobs of each group j, j∈X, and it includes m jobs of each group j, j∈K\X. The total weight

of the selected jobs is (m+ 1)
∑

j∈Xpj +m
∑

j∈K\Xpj = 2mP+
∑

j∈Xpj = (2m+ 1)P. Since the processing intervals of jobs from

any two different groups do not intersect, no more than one third-party machine is needed at any time, and therefore, the total

machine costs of the selected jobs are equal to (𝛼 + 𝛽)
∑

j∈Xpj = (𝛼 + 𝛽)P. Hence, the selected jobs are a solution of the instance

of MAXWEIGHT.

Let Y be the set of the selected jobs in a solution of the instance of MAXWEIGHT with the total weight of at least (2m+ 1)P
and the total machine costs of at most (𝛼 + 𝛽)P. Observe that if r, 0≤ r ≤m− 1, jobs of group j are present in Y for any j, then,

since processing intervals of the jobs from any two different groups do not intersect, and the use of in-house machines has

zero costs, m− r such jobs can be added to Y with no decrease of the total weight and no increase of the total costs. Therefore,

assume without loss of generality that if a job of group j is in Y , then either m+ 1 or m such jobs are in Y . Denote by X(Y) the

set of indices j∈K for which Y includes exactly m+ 1 jobs of group j. For the total weight of the jobs in X(Y), we must have

(m+ 1)
∑

j∈X(Y)pj +m
∑

j∈K\X(Y)pj = 2mP+
∑

j∈X(Y)pj ≥ (2m+ 1)P. Hence,
∑

j∈X(Y)pj ≥P. Furthermore, for the total machine

costs, we must have (𝛼 + 𝛽)
∑

j∈X(Y)pj ≤ (𝛼 + 𝛽)P, which implies
∑

j∈X(Y)pj ≤P. We deduce
∑

j∈X(Y)pj = p, which means that

X(Y) is a solution of the instance of PARTITION. ■

We now describe two dynamic programming algorithms of incomparable computational complexities for the problem

MAXWEIGHT. In the algorithms it is assumed that the jobs are re-numbered in a non-decreasing order of the left endpoints of

their intervals such that a1 ≤ · · ·≤ an, and the following notations are used.

• M = {1, … , m+ 1}.

• Bj = {0, b1, … , bj}, j∈N.

• e(0) is vector with m+ 1 components such that e(0) = (0, … , 0).

• e(1) is vector with m+ 1 components such that e(1) = (b1, 0, … , 0).

• c(1) = max{0, (1−m)(𝛼 + 𝛽)d1}.

2.2 Algorithm DPW1
In the algorithm DPW1, partial solutions are constructed by considering the jobs in the order 1, … , n and deciding for each

job j (interval (aj, bj]) whether to accept or reject it. Once the decision has been made, it will not be changed later. Each partial

solution is characterized by a state (j, w, r) and a cost function Fj(w, r), where j is the number of jobs considered so far, w is

the total weight of the accepted jobs, r = (r1, … , rm+ 1), and ri is the latest endpoint of the accepted intervals, which belongs to

at least i accepted intervals, i∈M. If an endpoint satisfying this condition does not exist, then ri ≔ 0 by the definition, i∈M. If

ri = ri+ 1, 1≤ i≤m, then we assume that ri corresponds to a job accepted later, and ri+ 1 corresponds to a job accepted earlier.

For example, if m = 2 and intervals (a1, b1] = (0, 3], (a2, b2] = (1, 2] and (a3, b3] = (2, 3] were accepted in this order, then

r1 = b3 = 3, r2 = b1 = 3 and r3 = 0. The value of Fj(w, r) is equal to the minimum total costs of the partial solutions in the same

state (j, w, r).

Consider a partial solution in the state (j, w, r) and assume that it is obtained from a partial solution in the state (j− 1, w0, r0)

by making a decision about job j (interval (aj, bj]). Observe that.

r0
1 ≥ · · · ≥ r0

m+1 and r1 ≥ · · · ≥ rm+1 (1)

 10970037, 2021, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.21973 by C

ochrane France, W
iley O

nline L
ibrary on [13/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

FRIDMAN ET AL. 365

FIGURE 1 The case bj ≥ rm+ 1. Sets S(j)
L , S(j)

0
and S(j)

R

by the definition of the state variables. Denote by l0i the left endpoint of the interval whose right endpoint is r0
i . Due to the

consideration of jobs in the order 1, … , n,

aj ≥ max
i∈M

{l0i } (2)

at any state of the dynamic programming.

If job j has been rejected in state (j, w, r), then the previous state is (j− 1, w, r), and Fj(w, r) = Fj− 1(w, r). Assume that job

j has been accepted. The previous state is (j− 1, w−wj, r0). Consider the current state (j, w, r). It is obvious that if bj < rm+ 1,

then r0 = r and Fj(w, r) = Fj− 1(w−wj, r)+ 𝛽dj.

Consider the case bj ≥ rm+ 1. Define the following sets of indices after job j has been accepted.

S(j)
L = {i|ri < aj, i ∈ M}, S(j)

0 = {i ∣ ri ∈ (aj, bj], i ∈ M}, S(j)
R = {i|bj < ri, i ∈ M}. (3)

These definitions are illustrated in Figure 1. Numbers ri with indices from S(j)
L , S(j)

0 and S(j)
R are represented by the filled

circles.

Denote i(j) ≔ min{i|i ∈ S(j)
0 }. Since job j is accepted last, we have ri(j) = bj. For a set of indices S∈M, define r(S) as a

sequence of right endpoints ri, i∈ S, in the non-increasing order. If S = ∅, then define r(S) = ∅. It follows from Equations (1-3)

that, if job j is accepted, then the previous state vector r0 is.

r0 = (r(S(j)
R), r(S(j)

0 ∖{j}), x, r(S(j)
L)), (4)

where x is the ∣ S(j)
R ∪ S(j)

0 ∣-th component of vector r0 such that max{ri|i ∈ S(j)
L } ≤ x. Note that x = 0 if max{ri|i ∈ S(j)

L } = 0.

Below we show that, after job j has been accepted, the change of the total costs when passing from state (j− 1, w−wj, r0)

to state (j, w, r) depends only on j, r0
m and r0

m+1. Denote this change as Δj(r0
m, r0

m+1) = Fj(w, r) − Fj−1(w − wj, r0). Taking into

account (1) and (2), we have

Δj(r0
m, r0

m+1) =
⎧⎪⎨⎪⎩

0, if r0
m ≤ aj,

(𝛼 + 𝛽)(min{r0
m, bj} − aj), if r0

m+1 ≤ aj < r0
m,

(𝛼 + 𝛽)(min{r0
m, bj} − r0

m+1) + 𝛽(min{r0
m+1, bj} − aj), if aj < r0

m+1.

Note that if r0
m ≤ aj, then job j is fully processed on an in-house machine. If r0

m+1 ≤ aj < r0
m, then job j is processed in the time

interval (r0
m,max{bj, r0

m}) on an in-house machine and it is processed in the interval (aj,min{r0
m, bj}) on a third-party machine.

The fixed cost 𝛼 is accounted for the latter interval because no third-party machine was used in this interval before job j was

assigned. If aj < r0
m+1, then job j is processed in the time interval (r0

m,max{bj, r0
m}) on an in-house machine and it is processed

in the interval (aj,min{r0
m, bj}) on a third-party machine. The fixed cost 𝛼 is accounted for the interval (r0

m+1,min{r0
m, bj}) and

it is not accounted for the interval (aj,min{r0
m+1, bj}) because it was accounted for this interval before job j was assigned.

Since Fj(w, r) = Fj−1(w − wj, r0) + Δj(r0
m, r0

m+1) and Δj(r0
m, r0

m+1) ≥ 0, we deduce that a partial solution in the state (j, w,

r), at which the minimum costs Fj(w, r) are attained, dominates all other partial solutions in the same state in the sense that if

there is a solution in this state that can be extended to an optimal solution, then the dominant solution can be extended in the

same way to an optimal solution as well. Note that, while the change of the total costs depend only on r0
m and r0

m+1, these values

can only be recursively calculated if the whole vector r0 is maintained.

We are now able to formally describe algorithm DPW1. The initialization is F1(0, e(0)) = 0, F1(w1, e(1)) = c(1) and F1(w,

r) = U + 1 if (w, r)�∈{(0, e(0)), (w1, e(1))}, 0≤w≤W, r = (r1, … , rm+ 1), ri ∈Bn, i = 1, … , m+ 1. For each j = 2, 3, … , n,

generate the following two sets of vectors r = (r1, … , rm+ 1):

R(rm+1>bj) = {r|r1 ≥ · · · ≥ rm+1 > bj, ri ∈ Bn, i ∈ M},

R(rm+1≤bj) = {r|r1 ≥ · · · ≥ ri(j) = bj > ri(j)+1 ≥ ri(j)+2 ≥ · · · ≥ rm+1, ri ∈ Bn, i ∈ M}.

Denote nj ≔ ∣ {i| ri < bj, ri ∈Bn, i∈M} ∣ . We have

∣ R(rm+1>bj) ∣≤ O((n − nj)m+1) ≤ O(nm+1), j = 2, 3, … , n,

 10970037, 2021, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.21973 by C

ochrane France, W
iley O

nline L
ibrary on [13/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

366 FRIDMAN ET AL.

∣ R(rm+1≤bj) ∣≤
m+1∑
i=1

O((n − nj − 1)i(nj)m−i) ∣≤ O((m + 1)nm), j = 2, 3, … , n.

All the sets R(rm+1>bj) and R(rm+1≤bj), j = 2, 3, … , n can be generated in O(nm+ 2) time. For each r ∈ R(rm+1≤bj) and j∈ {2, 3,

… , n}, generate sets S(j)
R , S(j)

0 and S(j)
L satisfying Equation (3), calculate vectors r0 satisfying Equation (4) and values Δj(r0

m, r0
m+1)

satisfying Equation (5), which can be done in O(m+ 1) time for fixed r and j, and hence, in O((m+ 1)2nm+ 1) time for all

r ∈ R(rm+1≤bj) and j = 2, 3, … , n.

The recursion for j = 2, 3, … , n, 0≤w≤W, and r ∈ R(rm+1>bj) ∪ R(rm+1≤bj) is as follows.

Fj(w, r) = min

⎧⎪⎨⎪⎩
Fj−1(w, r),
Fj−1(w − wj, r) + 𝛽𝑑j, if r ∈ R(rm+1>bj),

F0, if r ∈ R(rm+1≤bj),

where F0 = min{Fj−1(w − wj, r0) + Δj(r0
m, r0

m+1) ∣ r0 = (r(S(j)
R), r(S(j)

0 ∖{j}), x, r(S(j)
L)), x ∈ Bj−1,min{ri|i ∈ S(j)

0 ∖{j}} ≥ x ≥

max{ri|i ∈ S(j)
L }}. Here and below the term under the minimum is skipped if the condition on the right hand side of it is not

satisfied. If the minimum in the recursion is attained at the upper term, then job j is rejected. If it is attained at the middle term,

then job j is accepted and it is fully processed on a third-party machine. If this minimum is attained at the lower term, then

job j is accepted and the machines and the time intervals where it is processed either on an in-house machine or a third-party

machine are determined by the value Δj(r0
m, r0

m+1) via (5).

The maximum total weight is equal to

W∗ = max{w ∣ Fn(w, r) ≤ U,w = 0, 1, … ,W, r = (r1, … , rm+1), ri ∈ Bn, i = 1, … ,m + 1}.

The corresponding set of accepted intervals and partition of each accepted interval into sub-intervals processed either on an

in-house machine or a third-party machine can be found by tracing back optimal solutions of the recursive equation. Then, the

O(nlogn) time algorithm of Gupta et al. [16] can be used twice to find an optimal assignment of the “in-house” sub-intervals to

the particular in-house machines and to find an optimal assignment of the “third-party” sub-intervals to the particular third-party

machines.

The running time of the algorithm DPW1 is

O
(
(m + 1)2nm+1 + W

n∑
j=2

max{R(rm+1>bj)|Bj−1|⋅,R(rm+1≤bj)}
)

= O
(

nm+2 max

{
W,

(m + 1)2
n

})
.

2.3 Algorithm DPW2
Algorithm DPW2 differs from DPW1 in that the roles of the cost function Fj(w, r) and the state variable w are switched. In

DPW2, similar to DPW1, partial solutions are constructed by considering jobs in the order 1, … , n and deciding for each

job j of whether to accept it or reject. Once the decision has been made, it will not be changed later. Each partial solution is

characterized by a state (j, c, r) and a weight function Gj(c, r), where c is the total machine usage costs, and j and r are the same

as in DPW1. The value of Gj(c, r) is equal to the maximum total weight of the partial solutions in the same state (j, c, r).

Initialization is G1(0, e(0)) = 0, G1(c(1), e(1)) = w1, and G1(c, r) = −∞ if (c, r)�∈{(0, e(0)), (c(1), e(1))}, 0≤ c≤U,

r = (r1, … , rm+ 1), ri ∈Bn, i = 1, … , m+ 1. Generate sets R(rm+1>bj), R(rm+1≤bj), S(j)
R , S(j)

0 and S(j)
L , vectors r0 satisfying Equation (4)

and values Δj(r0
m, r0

m+1) satisfying Equation (5) in the same way as in algorithm DPW1. The recursion for j = 2, … , n, 0≤ c≤U
and r ∈ R(rm+1>bj) ∪ R(rm+1≤bj) is as follows.

Gj(c, r) = max

⎧⎪⎨⎪⎩
Gj−1(c, r),
Gj−1(c − 𝛽𝑑j, r) + wj, if r ∈ R(rm+1>bj), and c ≥ 𝛽𝑑j

G0, if r ∈ R(rm+1≤bj) and c ≥ Δj(r0
m, r0

m+1).

where G0 = max{Gj−1(c − Δj(r0
m, r0

m+1), r0) + wj ∣ r0 = (r(S(j)
R), r(S(j)

0 ∖{j}), x, r(S(j)
L)), x ∈ Bj−1,min{ri|i ∈ S(j)

0 ∖{j}} ≥ x ≥

max{ri|i ∈ S(j)
L }}. The maximum weight is equal to

W∗ = max{Gn(c, r) ∣ 0 ≤ c ≤ U, r = (r1, … , rm+1), ri ∈ Bn, i = 1, … ,m + 1}

and the corresponding optimal solution can be found in the same way as in algorithm DPW1. The running time of algorithm

DPW2 is O
(

nm+2 max
{

U,
(m+1)2

n

})
.

 10970037, 2021, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.21973 by C

ochrane France, W
iley O

nline L
ibrary on [13/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

FRIDMAN ET AL. 367

3 PROBLEM MAXCOVER

We begin with an important “at most two machines” property of the problem MAXCOVER and a proof of its ordinary

NP-hardness for the case m∈ {0, 1} in Section 3.1. We denote special cases of the problem MAXCOVER in which m∈ {0, 1} and

m≥ 2 as MAXCOVER(m∈ {0, 1}) and MAXCOVER(m≥ 2), respectively. Dynamic programming algorithms DPC1 and DPC2
with running times O(nm+ 2L) and O(nm+ 2U) for MAXCOVER(m∈ {0, 1}) are described in Sections 3.2 and 3.3, respectively.

A simple approximation algorithm for this case is presented in Section 3.4. Finally, we describe an O(nlogn) time algorithm for

MaxCover(m≥ 2) in Section 3.5.

3.1 “At most two machines” property and ordinary NP-hardness for m∈ {0, 1}

Property 1. There exists an optimal solution of the problem MAXCOVER, in which no more than two machines are used.

Proof . If there are three accepted intervals (a, b], (a′
, b′

] and (a′′
, b′′

] that intersect in a point x then there are two of these

intervals, one containing [inf{a, a′
, a′′

}, x] and one containing [x, max{b, b′
, b′′

}], that cover the third interval completely which

can be removed without increasing the objective function. Hence, there exists an optimal solution, in which there is no accepted

interval which is covered by other accepted intervals. ■

Theorem 2. If 𝛼 and 𝛽 satisfy 𝛼 + 𝛽 > 0, then MAXCOVER(m∈ {0, 1}) is NP-hard.

Proof . A reduction from the Partition problem is used, see the definition of this problem in Theorem 1.

Case m = 0. For any instance of PARTITION, we construct the following instance of MAXCOVER. There are n = k jobs such

that job j is associated with an interval of length pj, and the intervals do not intersect, j = 1, … , k. We show that the instance

of PARTITION has a solution if and only if the instance of MAXCOVER has a solution with the total amount of time at which at

least one job is processed of at least P and the total machine usage costs of at most (𝛼 + 𝛽)P.

Let a set X ⊆K be a solution of PARTITION. Construct a solution of MAXCOVER in which, if j∈X then job j is accepted,

else if j �∈ X then job j is rejected. For this solution, the total amount of time at which at least one job is processed is equal to∑
j∈Xpj = P, and the total costs are equal to (𝛼 + 𝛽)

∑
j∈Xpj = (𝛼 + 𝛽)P.

Now, assume that MAXCOVER has a solution of the required quality. Let X denote the set of accepted jobs in this solution.

For this solution, the total amount of time at which at least one job is processed is equal to
∑

j∈Xpj, and the total machine usage

costs are equal to (𝛼 + 𝛽)
∑

j∈Xpj. Since relations
∑

j∈Xpj ≥P and (𝛼 + 𝛽)
∑

j∈Xpj ≤ (𝛼 + 𝛽)P must hold, we deduce
∑

j∈Xpj = P.

Case m = 1. For any instance of PARTITION, we construct an instance of MAXCOVER, in which there are n = k pairs of

jobs (intervals). The length of any interval of the same pair j is equal to 2pj, and the length of their common part is equal to pj,

j = 1, … , k. Intervals of jobs from different pairs do not intersect. We show that the instance of PARTITION has a solution if

and only if the instance of MAXCOVER has a solution with the total amount of time, at which at least one job is processed of at

least 5P, and the total machine usage costs of at most (𝛼 + 𝛽)P.

Assume that set X ⊆K is a solution of PARTITION. Construct a solution of MAXCOVER in which, if j∈X then both jobs

from the pair j are accepted, else if j�∈X then exactly one job of this pair is accepted. For this solution, the total amount of time at

which at least one job is processed is equal to 3
∑

j∈Xpj+2
∑

j�∈Xpj = 5P, and the total costs are equal to (𝛼 + 𝛽)
∑

j∈Xpj = (𝛼 + 𝛽)P.

Assume that MAXCOVER has a solution of the required quality. Let X denote the set of job pairs such that both jobs of the pair

are accepted. For this solution, the total amount of time at which at least one job is processed does not exceed 3
∑

j∈Xpj+2
∑

j�∈Xpj,

and the total machine usage costs are equal to (𝛼 + 𝛽)
∑

j∈Xpj. Since 3
∑

j∈Xpj + 2
∑

j�∈Xpj ≥ 5P and (𝛼 + 𝛽)
∑

j∈Xpj ≤ (𝛼 + 𝛽)P
must be satisfied, we deduce

∑
j∈Xpj = P. ■

We now describe dynamic programming algorithms DPC1 and DPC2 for the problem MAXCOVER(m∈ {0, 1}). These

algorithms are similar to the algorithms DPW1 and DPW2 for the problem MAXWEIGHT.

3.2 Algorithm DPC1 for MAXCOVER(m∈ {0, 1})
In DPC1, each partial solution is characterized by a state (j, l, r) and a cost function Hj(l, r), where j is the number of jobs

considered so far, l is the total amount of time at which at least one job is processed, r = (r1, … , rm+ 1), and ri is the latest

endpoint of the accepted intervals, which belongs to at least i∈M accepted intervals. If an endpoint ri does not exist, then ri ≔ 0

by the definition, i∈M. If ri = ri+ 1, 1≤ i≤m, then we assume that ri corresponds to a job accepted later, and ri+ 1 corresponds

to a job accepted earlier. The value of Hj(l, r) is equal to the minimum total costs of the partial solutions in the same state (j, l, r).

 10970037, 2021, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.21973 by C

ochrane France, W
iley O

nline L
ibrary on [13/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

368 FRIDMAN ET AL.

The initialization is H1(0, e(0)) = 0, H1(d1, e(1)) = c(1), and H1(l, r) = U + 1 if (l, r) ∉ {(0, e(0)), (𝑑1, e(1))}, 0≤ l≤ L,

r = (r1, … , rm+ 1), ri ∈Bn, i = 1, … , m+ 1. Generate sets R(rm+1>bj), R(rm+1≤bj), S(j)
R , S(j)

0 and S(j)
L , vectors r0 satisfying Equation (4)

and values Δj(r0
m, r0

m+1) satisfying Equation (5) in the same way as in algorithm DPW1. The recursion for j = 2, … , n, 0≤ l≤ L
and r ∈ R(rm+1>bj) ∪ R(rm+1≤bj) is.

Hj(l, r) = min

⎧⎪⎨⎪⎩
Hj−1(l, r),
Hj−1(l, r) + 𝛽𝑑j, if r ∈ R(rm+1>bj),

H0, if r ∈ R(rm+1≤bj),

where

H0 = min

{
Hj−1(l − 𝛿j(x), r0) + Δj(r0

m, r0
m+1) ∣ r0 = (r(S(j)

R), r(S(j)
0 ∖{j}), x, r(S(j)

L)),

x ∈ Bj−1,min{ri|i ∈ S(j)
0 ∖{j}} ≥ x ≥ max{ri|i ∈ S(j)

L }
}
,

𝛿j(x) =

{
0, if bj < r1,

min{𝑑j, r1 − x} if bj = r1.

If the value of Hj(l, r) is attained at the upper term of the minimum in the recursion, then job j is rejected, else it is accepted.

The maximum total amount of time at which at least one job is processed is equal to

C∗ = max{l ∣ Hn(l, r) ≤ U, l = 0, 1, … ,L, r = (r1, … , rm+1), ri ∈ Bn, i = 1, … ,m + 1}

and the corresponding optimal solution can be found in the same way as in algorithm DPW1. The running time of the algorithm

DPC1 is O(nm+ 2L) for m∈ {0, 1}. We remark that DPC1 is not optimal for m≥ 2. If m≥ 2, then the function 𝛿j(x) needs to be

corrected.

3.3 Algorithm DPC2 for MAXCOVER(m∈ {0, 1})
Algorithm DPC2 differs from DPC1 in that the roles of the cost function Hj(l, r) and the state variable l are switched. Each

partial solution is characterized by a state (j, c, r) and a length function Kj(c, r), where c is the total machine usage costs, and j
and r are the same as in DPC1. The value of Kj(c, r) is equal to the maximum total amount of time at which at least one job is

processed for the partial solutions in the same state (j, c, r).

Initialization of the algorithm DPC2 is K1(0, e(0)) = 0, K1(c(1), e(1)) = d1, and K1(c, r) = −∞ if (c, r) ∉ {(0, e(0)), (c(1), e(1))},

0≤ c≤U, r = (r1, … , rm+ 1), ri ∈Bn, i = 1, … , m+ 1. Generate sets R(rm+1>bj), R(rm+1≤bj), S(j)
R , S(j)

0 and S(j)
L , vectors r0 satisfying

Equation (4) and values Δj(r0
m, r0

m+1) satisfying Equation (5) in the same way as in algorithm DPW1. The recursion for j = 2,

… , n, 0≤ c≤U, ri ∈Bj, i = 1, … , m+ 1, is

Kj(c, r) = max

⎧⎪⎨⎪⎩
Kj−1(c, r),
Kj−1(c − 𝛽𝑑j, r), if r ∈ R(rm+1>bj) andc ≥ 𝛽𝑑j,

K0, if r ∈ R(rm+1≤bj) andc ≥ Δj(r0
m, r0

m+1),

where

K0 = max

{
Kj−1(c − Δj(r0

m, r0
m+1), r0) + 𝛿j(x) ∣ r0 = (r(S(j)

R), r(S(j)
0 ∖{j}), x, r(S(j)

L)),

x ∈ Bj−1,min{ri|i ∈ S(j)
0 ∖{j}} ≥ x ≥ max{ri|i ∈ S(j)

L }
}

and functions 𝛿j(x) are the same as in DPC1. The maximum total amount of time at which at least one job is processed is equal

to.

C∗ = max{Kn(c, r) ∣ 0 ≤ c ≤ U, r = (r1, … , rm+1), ri ∈ Bn, i = 1, … ,m + 1}

and the corresponding optimal solution can be found in the same way as in algorithm DPW1. The running time of the algorithm

DPC2 is O(nm+ 2U) for m∈ {0, 1}.

3.4 1/2-approximation algorithm for MAXCOVER(m∈ {0, 1})
Due to Property 1, at most two machines are used in an optimal solution of the problem MAXCOVER(m∈ {0, 1}). Hence, the

optimal solution value C* can be represented as C∗ = C∗
1 + C∗

2 − C∗
12, where C∗

i is the total job processing time on machine i,

 10970037, 2021, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.21973 by C

ochrane France, W
iley O

nline L
ibrary on [13/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

FRIDMAN ET AL. 369

i = 1, 2, and C∗
12 is the total time at which machines 1 and 2 operate simultaneously. It is convenient to use the graph-theoretic

interpretation, in which intervals are vertices of an interval graph, and two vertices are linked by an edge if the corresponding

intervals intersect.

A feasible solution of the problem MAXCOVER(m∈ {0, 1}), in which at most two machines are used, is determined by two

non-intersecting independent sets (or 2-coloring) of the interval graph, and vice versa. Vertices of an independent set (of the

same color) are jobs processed on the same machine. Denote by C0 the maximum total length of the intervals of any independent

set of the interval graph. An independent set with the value C0 can be found in O(nlogn) time by the min-cost flow algorithms

of Bouzina and Emmons [6] and Carlisle and Lloyd [7], which are intended for maximizing the weighted number of accepted

jobs on identical parallel machines. For our purposes, there is a single machine and the weight of each job is equal to the length

of its interval.

It is clear that C0 ≥ max{C∗
1 ,C∗

2}, which implies C0 ≥C*/2. A solution in which intervals of the independent set with value

C0 are processed on a single machine is feasible for the problem MAXCOVER(m∈ {0, 1}). Hence, the following theorem holds.

Theorem 3. Any of the algorithms of Bouzina and Emmons [6] and Carlisle and Lloyd [7] is a 1/2-approximation
algorithm for the problem MAXCOVER(m∈ {0, 1}).

Note that the approximation ratio 1/2 is asymptotically tight. Indeed, consider an instance, in which m = 1, there are two

intervals of the same length Y + 1, the length of their intersection is 1, and U = 𝛼 + 𝛽, which implies that at most one third-party

machine can be used during one time unit. The algorithm in Bouzina and Emmons [6] will deliver a single interval solution

with value Y + 1, while the optimal solution includes both intervals with value 2Y + 1. Hence, the approximation ratio is
Y+1

2Y+1
=

1

2
+ 1

4Y+2
, which approaches 1/2 for sufficiently large Y .

3.5 An O(n log n) time algorithm for MAXCOVER(m≥ 2)
We now demonstrate that the problem MAXCOVER(m≥ 2) can be solved in O(nlogn) time. The solution consists of two stages.

The first stage is a pre-processing algorithm, denoted as Remove, which removes all intervals which are inside of another one.

The algorithm of Kung et al. [22] designed to find the set of maximal 2-dimensional vectors (intervals) with respect to a partial

order can serve as algorithm Remove. Below we describe algorithm Remove for completeness. Due to Property 1, an optimal

solution of the new problem, in which (ai, bi] ⊈ (aj, bj] for all i and j, is an optimal solution of the original problem.

The second stage is an algorithm, denoted as Greedy, which solves the new problem as follows. Firstly, an interval with

the earliest endpoint is accepted. Secondly, intervals are processed in a non-decreasing order of their left endpoints. Thirdly,

among intervals that intersect with the interval accepted last, the interval with the latest endpoint is accepted. If no unprocessed

interval intersects with the last accepted interval, then the interval with the earliest endpoint is accepted.

Algorithm Remove.
Initialization. Denote by V a maximal set of intervals from N such that (ai, bi] ⊈ (aj, bj] for i∈V and j∈V . Re-number

intervals from N according to a1 ≤ · · ·≤ an breaking ties so that bi ≤ bi+ 1 ≤ · · ·≤ bj if ai = ai+ 1 = · · · = aj. Initialize V ≔ {(as,

bs]}, where s = max{j∈N | aj = a1}. Let (a*, b*] denote the interval included last into the set V . Process intervals in the order

s, s+ 1, … , n.

General step. If s= n then stop: set V is constructed. If s≤ n− 1, then perform the following computations. If bs+ 1 ≤ b*, then

re-set s≔ s+ 1 and repeat General step. If b* < bs+ 1, then re-set V ≔V ∪ (at, bt], a* ≔ at, b* = bt, where t = max{j| aj = as+ 1},

re-set s≔ t and repeat General step. ■

The running time of algorithm Remove is O(n log n).

Algorithm Greedy.
Input: Set V (maximal set of intervals from N such that (ai, bi] ⊈ (aj, bj] for i∈V and j∈V).

Initialization. Re-number intervals of the set V such that a1 < · · ·< av. Initialize optimal set of accepted intervals O = {(a1,

b1]}. Let (a*, b*] denote the interval accepted last. Set (a*, b*] = (a1, b1] and s = 1.

General step. If s = v then stop: O is the optimal set of accepted intervals. If s≤ v− 1, then perform the following com-

putations. If as+ 1 > b*, then re-set O≔O∪ (as+ 1, bs+ 1], (a*, b*]≔ (as+ 1, bs+ 1], re-set s≔ s+ 1, and repeat General step. If

as+ 1 ≤ b*, then determine largest i, s+ 1≤ i≤ v, such that ai ≤ b*. Intervals (ak, bk], k = s+ 1, s+ 2, … , i, are all intervals

(ai, bi], i≥ s+ 1, intersecting with (a*, b*]. Among them, select the interval with the latest endpoint br. Re-set O≔O∪ {(ar,

br]}, a* ≔ ar, b* = br, s≔ i, and repeat General step. ■

Let us show that algorithm Greedy is optimal for the problem MAXCOVER(m≥ 2) with the set of intervals V . Denote by

O* an arbitrary optimal set of accepted intervals. It is obvious that inclusion (a1, b1]∈O* must be satisfied. Assume that O*

 10970037, 2021, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.21973 by C

ochrane France, W
iley O

nline L
ibrary on [13/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

370 FRIDMAN ET AL.

contains intervals selected by Greedy up to the interval (as, bs]. If as+ 1 > bs, then inclusion (as+ 1, bs+ 1]∈O* must be satisfied,

else inclusion (at, bt]∈O* must be satisfied, where (at, bt], t≥ s+ 1, is the interval intersecting with (as, bs], which has the latest

endpoint. Observe that at+ 1 > bs, which implies that, among the intervals which intersect with (as, bs], only (at, bt] is present

in O*. Hence, two machines are enough to process these intervals without intersection. Continuing in the same fashion, we see

that Greedy outputs an optimal set of accepted intervals. The running time of this algorithm is O(nlogn) because in General

step each interval is considered at most twice: when comparing with b* and when selecting the interval with the latest endpoint

br. The following theorem holds.

Theorem 4. Sequential application of algorithms Remove and Greedy constitutes an optimal algorithm for
MAXCOVER(m≥ 2). Both algorithms run in O(nlogn) time.

4 CONCLUSIONS

We have proved that the problems MAXWEIGHT and MAXCOVER(m∈ {0, 1}) are NP-hard in the ordinary sense and devel-

oped dynamic programming algorithms for them which are pseudo-polynomial if the number of in-house machines m is a

constant. An O(nlogn) time 1/2-approximation algorithm is designed for MAXCOVER(m∈ {0, 1}). Surprisingly, the problem

MAXCOVER(m≥ 2) is solvable in O(nlogn) time.

For future research, it is interesting to develop faster optimal algorithms and (Fully) Polynomial Time Approximation

Schemes for the problems MAXWEIGHT and MAXCOVER(m∈ {0, 1}) as well as to prove or disprove their NP-hardness in

the strong sense and fixed parameter tractability (Cygan et al. [10], Mnich and Wiese [24]). Considering time windows instead

of fixed intervals and different but still realistic cost functions for using third-party machines are other promising research

directions.

We conjecture that the dynamic programming algorithms DPW1, DPW2, DPC1 and DPC2 can be modified to solve

more general problems than MAXWEIGHT and MAXCOVER(m∈ {0, 1}). One way of modification is to introduce costs for the

activation and deactivation of third-party machines. Using in-house machines entails no costs regardless of the time as assumed

in this paper, while using xab third-party machines in a time interval (a, b], b> a would incur costs

u(xab)(b − a) + h(xa−1,a, xa,a+1) + f (xb−1,b, xb,b+1), where

• u(xab) are the costs for using xab third-party machines a time unit such that u(0) = 0 and u(xab) = 𝛼 + 𝛽xab if xab > 0, as it

is in the problems MAXWEIGHT and MAXCOVER,

• h(xa− 1, a, xa, a+ 1) are activation costs such that h(xa− 1, a, xa, a+ 1)> 0 if xa− 1, a = 0 and xa, a+ 1 > 0, and h(xa− 1, a, xa, a+ 1)= 0

if xa− 1, a > 0,

• f (xb, b+ 1) are deactivation costs such that f (xb, b+ 1)> 0 if xb− 1, b > 0 and xb, b+ 1 = 0, and f (xb, b+ 1) = 0 if xb, b+ 1 > 0.

ACKNOWLEDGMENT

The research of the first author was supported by the Friede Springer foundation, grant 6000108. Open access funding enabled

and organized by Projekt DEAL.

ORCID
Mikhail Y. Kovalyov https://orcid.org/0000-0003-0832-0829

Erwin Pesch https://orcid.org/0000-0003-0182-870X

REFERENCES

[1] E. Angelelli, N. Bianchessi, and C. Filippi, Optimal interval scheduling with a resource constraint, Comput. Oper. Res. 51 (2014), 268–281.

[2] Y. Bartal, S. Leonardi, A.M. Spaccamela, J. Sgall, and L. Stougie, Multi-processor scheduling with rejection, SIAM J. Discrete Math. 13 (2000),

64–78.

[3] M. Bentert, R. van Bevern, and R. Niedermeier, Inductive k-independent graphs and c-colorable subgraphs in scheduling: A review, J. Sched.

22(1) (2019), 3–20.

[4] R. van Bevern, M. Mnich, R. Niedermeier, and M. Weller, Interval scheduling and colorful independent sets, J. Sched. 18(5) (2015), 449–469.

[5] L. Bodin, B. Golden, A. Assad, and M. Ball, Routing and scheduling of vehicles and crews: The state of the art, Comput. Oper. Res. 10(2)

(1983), 62–212.

[6] K.I. Bouzina and H. Emmons, Interval scheduling on identical machines, J. Global Optim. 9 (1996), 379–393.

[7] M.C. Carlisle and E.L. Lloyd, On the k-coloring of intervals, Discrete Appl. Math. 59 (1995), 225–235.

 10970037, 2021, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.21973 by C

ochrane France, W
iley O

nline L
ibrary on [13/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0003-0832-0829
https://orcid.org/0000-0003-0832-0829
https://orcid.org/0000-0003-0182-870X
https://orcid.org/0000-0003-0182-870X

FRIDMAN ET AL. 371

[8] L. Chen, F. Eberle, N. Megow, K. Schewior, and C. Stein, A general framework for handling commitment in online throughput maximization,

Math. Program. 183 (2020), 215–247.

[9] Z.-L. Chen and C.-L. Li, Scheduling with subcontracting options, IIE Trans. 40(12) (2008), 1171–1184.

[10] M. Cygan, F.V. Fomin, Ł. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh, Parameterized Algorithms, Berlin:

Springer, 2015.

[11] G. Dosa and Y. He, Scheduling with machine cost and rejection, J. Comb. Optim. 12 (2006), 337–350.

[12] D.W. Engels, D.R. Karger, S.G. Kolliopoulos, S. Sengupta, R.N. Uma, and J. Wein, Techniques for scheduling with rejection, J. Algorithms 49
(2003), 175–191.

[13] T. Fukunaga, M. Halldórsson, and H. Nagamochi, “Rent-or-Buy” scheduling and cost coloring problems, International Conference on

Foundations of Software Technology and Theoretical Computer Science FSTTCS, 2007, pp. 84–95.

[14] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, CA, 1979.

[15] F. Gnegel and A. Fügenschuh, An iterative graph expansion approach for the scheduling and routing of airplanes, Comput. Oper. Res. 114
(2020), 104832.

[16] U.I. Gupta, D.T. Lee, and J.Y.-T. Leung, An optimal solution for the channel-assignment problem, IEEE Trans. Comput. 28 (1979), 807–810.

[17] D. Hermelin, M. Pinedo, D. Shabtay, and N. Talmon, On the parameterized tractability of single machine scheduling with rejection, Eur. J. Oper.

Res. 273(1) (2019), 67–73.

[18] B. Hezarkhani and W. Kubiak, Decentralized subcontractor scheduling with divisible jobs, J. Sched. 18(18) (2015), 497–511.

[19] A.W.J. Kolen, J.K. Lenstra, C.H. Papadimitriou, and F.C.R. Spieksma, Interval scheduling: A survey, Naval Res. Logist. 54 (2007), 530–543.

[20] M.Y. Kovalyov, C.T. Ng, and T.C.E. Cheng, Fixed interval scheduling: Models, applications, computational complexity and algorithms, Eur.

J. Oper. Res. 178 (2007), 331–342.

[21] S.O. Krumke, C. Thielen, and S. Westphal, Interval scheduling on related machines, Comput. Oper. Res. 38(12) (2011), 1836–1844.

[22] H.T. Kung, F. Luccio, and F.P. Preparata, On finding the maxima of a set of vectors, J. ACM 22(4) (1975), 469–476.

[23] G. Lera-Romero, J.J. Miranda Bront, and F.J. Soulignac, Linear edge costs and labeling algorithms: The case of the time-dependent vehicle
routing problem with time windows, Networks 76(1) (2020), 24–53.

[24] M. Mnich and A. Wiese, Scheduling and fixed-parameter tractability, Math. Program. 154(1–2) (2015), 533–562.

[25] S. Mohammadi, S.M.J.M. Al-e-Hashem, and Y. Rekik, An integrated production scheduling and delivery route planning with multi-purpose
machines: A case study from a furniture manufacturing company, Int. J. Prod. Econ. 219 (2020), 347–359.

[26] H. Mokhtari and I.N.K. Abadi, Scheduling with an outsourcing option on both manufacturer and subcontractors, Comput. Oper. Res. 40 (2013),

1234–1242.

[27] X. Qi, Production scheduling with subcontracting: The subcontractor’s pricing game, J. Sched. 15 (2012), 773–781.

[28] J. Ren, G. Sun, and Y. Zhang, The supplying chain scheduling with outsourcing and transportation, Asia-Pac. J. Oper. Res. 34(2) (2017),

1750009.

[29] B. Sarasola and K.F. Doerner, Adaptive large neighborhood search for the vehicle routing problem with synchronization constraints at the
delivery location, Networks 75(1) (2020), 64–85.

[30] L. Schrage, Formulation and structure of more complex/realistic routing and scheduling problems, Networks 11(2) (1981), 229–232.

[31] D. Shabtay, N. Gaspar, and M. Kaspi, A survey on offline scheduling with rejection, J. Sched. 16(1) (2013), 3–28.

[32] S.A. Slotnick, Order acceptance and scheduling: A taxonomy and review, Eur. J. Oper. Res. 212(1) (2011), 1–11.

[33] G.L. Vairaktarakis, Noncooperative games for subcontracting operations, Manuf. Serv. Oper. Manag. 15(1) (2013), 148–158.

[34] G.L. Vairaktarakis and T. Aydinliyim, Benchmark schedules for subcontracted operations: Decentralization inefficiencies that arise from
competition and first-come-first-served processing, Decision Sci. 48(4) (2017), 657–690.

[35] X. Wang, Q. Zhu, and T.C.E. Cheng, Subcontracting price schemes for order acceptance and scheduling, Omega 54 (2015), 1–10.

[36] W. Zhong and Z. Huo, Single machine scheduling problems with subcontracting options, J. Comb. Optim. 26 (2013), 489–498.

[37] X. Zhong, J. Ou, and G. Wang, Order acceptance and scheduling with machine availability constraints, Eur. J. Oper. Res. 232(3) (2014),

435–441.

How to cite this article: Fridman I, Kovalyov MY, Pesch E, Ryzhikov A. Fixed interval scheduling with

third-party machines. Networks. 2021;77:361–371. https://doi.org/10.1002/net.21973

 10970037, 2021, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.21973 by C

ochrane France, W
iley O

nline L
ibrary on [13/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1002/net.21973

