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ABSTRACT

This work explores plug-and-play algorithms for PET recon-
struction, combining deep learning with model-based varia-
tional methods. We aim to integrate classical convolutional
architectures into algorithms such as ADMM and Forward-
Backward (FB) while ensuring convergence and maintaining
fixed-point control. We focus on the scenario where only
high- and low-count reconstructed PET images are available
for training our networks. Experimental results demonstrate
that the proposed methods consistently reach fixed points with
high likelihood and low mean squared error, thus showcasing
the potential of convergent plug-and-play techniques for PET
reconstruction.

Index Terms— PET reconstruction, plug-and-play, ADMM,
forward-backward, convergence, fixed point

1. INTRODUCTION

Positron Emission Tomography (PET) imaging plays a key
role in oncology, neurology, and pharmacology: it allows
molecular activity within tissues to be quantified by adminis-
tering specific radioactive tracers to a patient. Reconstruction
of the activity concentration map from PET measurements is
an ill-posed inverse problem with Poisson data. It is usually
solved using variational methods, minimizing a cost function
that combines a data fidelity term and a regularization term
that explicitly incorporates image priors whose choice has
been a subject of active research [1, 2].
In recent years, deep learning approaches have been intro-
duced for PET reconstruction, primarily to predict high-
count quality images from low-count - or low-dose - inputs
using convolutional neural networks [3]. However, these
approaches have shown instability and limited generaliza-
tion [4], a concern also observed in other medical imaging
modalities [5, 6]. To address these issues, new approaches
combine deep learning with robust minimization algorithms
derived from classical optimization. These include networks
that loosely simulate a fixed number of iterations of a recon-
struction algorithm and Plug-and-Play (PnP) algorithms. The
latter capitalizes on denoising networks, implicitly serving
as image priors to replace the operator related to the regular-

ization (a proximity operator or a gradient1) in minimization
algorithms. Given that PET reconstruction often requires
numerous iterations for convergence, PnP methods emerge as
scalable solutions.
Integrating a neural network into an iterative scheme raises
questions about convergence and fixed point characteristics.
Recent research has partly addressed these issues, providing
convergence conditions for PnP variants of well-known op-
timization algorithms (ADMM, FB, gradient descent) using
either results from fixed point theory [7] or from non-convex
minimization [8–11]. For instance, PnP-ADMM offers con-
vergence guarantees for a class of firmly nonexpansive (FNE)
denoisers. Another approach [9, 11] explores denoisers ex-
plicitly defined as gradient steps, relaxing the FNE condition
to demonstrate convergence to a stationary point of a cost
function with an explicit regularization term derived from
the denoiser. The choice of denoiser is crucial in PnP meth-
ods. A common approach is to use a Gaussian denoiser as
a surrogate for the regularization’s proximity operator, inter-
preted as a maximum-a-posteriori (MAP) estimator. Other
works leverage Tweedie identity, using a Gaussian denoiser
trained with the mean square error (MSE) loss to approx-
imate the minimum mean square error (MMSE) estimator,
giving access to a smoothed version of the log prior. How-
ever, one should note that the MAP interpretation is just
one possibility [12], and concerns remain about the qual-
ity of the MMSE approximation with few training data and
the relevance of the smoothed prior. Other works have also
shown that using a Gaussian denoiser for reconstruction may
not be optimal [13], and there are alternative denoising ap-
proaches [14] to remove more general artifacts. Hereinafter,
we will follow this line and choose a denoiser mapping low-
count to high-count images over a Gaussian denoiser. We
will examine two convergent PnP schemes for PET recon-
struction and investigate the impact of different denoisers.
Apart from our preliminary work [15], we are unaware of any
other research on PnP methods for PET reconstruction. Our
contributions include (1) comparing two PnP schemes with
varying denoiser constraints for our application, (2) training a
prox-surrogate network using the reconstruction’s fixed point
equation, demonstrating lower sensitivity to hyperparameter

1When the learned operator is a gradient, the method is often labeled as a
RED method.



choices compared to using a low-to-high count mapping, and
(3) comparing the PnP approach with classical iterative re-
construction and post-reconstruction processing. The paper is
structured as follows: Section 2 introduces PnP-ADMM [7]
and PnP-FB [8] and their convergence conditions. Section 3
presents PET datasets and implementation details of the PnP
schemes. Section 4 presents experimental results, followed
by discussions in Section 5 and conclusions in Section 6.

2. METHOD

2.1. PET reconstruction problem

We aim to reconstruct of an image x ∈ [0,+∞[
N from noisy

measurements or projections y ∈ NM given by

y = P(Hx+ b), (1)

where H ∈ RM×N is the projection matrix, b ∈ ]0,+∞[
M is

a known background term and P(·) a Poisson process. Varia-
tional methods estimate x by

x̂ = argmin
x∈RN

(
C(x) = LL(x) +R(x) + ι[0,+∞[N (x)

)
,

(2)
where LL(x) = −

∑M
m=1[y]m log([Hx + b]m) + [Hx +

b]m + cte is the negative log-likelihood corresponding to the
generalized Kullback Leibler divergence on the projection
space, ιS , the indicator function over the convex set S and R
a convex non necessarily smooth regularization term typically
based on the intensity difference between neighboring pixels.
Equivalently, x̂ reads as the zero of the sum of three operators

0 ∈ ∇LL(x̂) + ∂ι[0,+∞[N (x̂) + ∂R(x̂), (3)

and can be computed using various algorithms.

2.2. PET PnP algorithms

In the PnP framework, a denoising neural network (Dθ,Dθ,GS)
with a set of learnable parameters θ replaces an operator re-
lated to R in the reconstruction algorithm. We now focus on
two algorithms.

Algorithm 1 PnP ADMM

Require: K, z0ρ,u
0
ρ, ρ > 0, Dθ : RN 7→ [0,+∞[

N

for k = 0 to K − 1 do
xk+1
ρ = prox1/ρLL(z

k
ρ − uk

ρ)

zk+1
ρ = Dθ(x

k+1
ρ + uk

ρ)

uk+1
ρ = uk

ρ + xk+1
ρ − zk+1

ρ

end for

PnP ADMM (Algo 1) When Dθ is FNE (2Dθ − Id is 1-
Lipschitz), xk

ρ , zkρ , uk
ρ defined in Algo 1 converge to x∗

ρ, z∗ρ,

u∗
ρ such that

x∗
ρ = z∗ρ u∗

ρ = ∇LL(x∗
ρ)/ρ x∗

ρ = Dθ(x
∗
ρ−∇LL(x∗

ρ)/ρ)
(4)

Fixed point x∗
ρ also writes as the zero of a sum of operators:

0 ∈ (D−1
θ − Id )x∗

ρ +∇LL(x∗
ρ)/ρ. (5)

Note that x∗
ρ is no longer a minimizer of C and ρ does not

only influence convergence speed but also fixed point selec-
tion, contrary to ADMM.
It is well known that the FNE property is difficult to enforce
numerically. As [7], we will enforce it only locally when
training the denoiser. We will also set z0ρ to an ordered subset
expectation maximization (OSEM) solution and u0

ρ to zero.

Algorithm 2 PnP FB

Require: K, x0
λ, λ > 0, τ > 0, Dθ,GS : RN 7→ RN

for k = 0 to K − 1 do
xk+1
λ = proxτLL+ι

[0,+∞[N
(λτDθ,GS(x

k
λ) + (1− λτ)xk

λ)

end for

PnP FB (Algo 2) If the residual operator Id − Dθ,GS is
L-Lipschitz and the gradient of a lower semi-continuous but
non-necessarily convex function Rθ, the sequence (xk

λ)k∈N
converges to a fixed point x∗

λ provided the step size τ satisfies
τ < 1

λL . The fixed point is a critical point of the cost function
C with regularization λRθ. Additionally, the value of C(xk

λ)
is non-increasing and x∗

λ satisfies

0 ∈ ∇LL(x∗
λ)+∂ι[0,+∞[N (x∗

λ)+λ(x∗
λ−Dθ,GS(x

∗
λ)). (6)

When comparing PnP-ADMM and PnP-FB, we see that the
constraint on the Lipschitz constant of 2Dθ − Id in PnP-
ADMM for convergence is traded for a constraint on the ar-
chitecture of the network in PnP-FB. In [8], the authors sug-
gest using Rθ(x) = 1

2∥x − Nθ(x)∥2 where Nθ is a neural
network, leading to

Dθ,GS(x) = Nθ(x) + J⊤
Nθ(x)

(x−Nθ(x)). (7)

When comparing (3), (5), and (6), we observe that the denois-
ers play a distinct role in the fixed point equation. In PnP-FB,
Dθ,GS is a surrogate to a gradient residual, i.e., Id − ∇Rθ,
whereas in PnP-ADMM, Dθ appears implicitly through its in-
verse as a surrogate to the resolvent [16] of ∂(R+ ι[0,+∞[N ),
i.e., (Id + ∂(R+ ι[0,+∞[N ))−1.
The hyperparameters ρ and λ have distinct interpretations as
well: in (6), λ defines x∗

λ as the equilibrium point between
two sets zer (∂(LL + ι[0,+∞[N )) and Fix (Dθ,GS), while, in
(4), ρ appears in the input of the denoiser: (4) is akin to a
denoising operation where ∇LL(x∗

ρ)/ρ is an additive image-
dependent degradation. In the following, we will demonstrate
the advantage of learning a resolvent and thus using PnP-
ADMM because one can train the denoiser using the fixed
point equation.



3. NUMERICAL EXPERIMENTS

3.1. Data

The database used for learning and evaluation consists of 14
brain [18F]-FDG PET scans from healthy subjects, along with
their corresponding T1-weighted MRI images. The T1 im-
ages were segmented into 100 regions and the corresponding
PET values were then measured in a frame between 30 and
60 minutes after injection to generate 14 3D phantoms with
anatomical and functional variability. Noisy sinograms were
simulated by considering normalization, attenuation but also
scatter, and random effects for a Biograph 6 TruePoint TrueV
PET system. For these, we derived paired high-count and
low-count sinograms. The high-count sinograms were simu-
lated by sampling for each phantom the total number of de-
tected events in the range observed in the 14 original scans,
and the low-count sinograms by further simulating a dose re-
duction factor of 5 (with appropriate scaling of the randoms).
The resulting sinograms were reconstructed through CAS-
ToR [17] (OSEM with 8 iterations of 14 subsets) to yield
paired high-count and low-count reconstructions (xi,HD

j and
xi,LD
j ). In total, we simulated 10 doses for each phantom

and considered 11 phantoms for training and 3 for validation,
leading to 110 pairs (xi,HD

j , xi,LD
j ) for training and 30 for

validation.

3.2. Architecture

As advocated in [7–9], Dθ is built as a DRUnet [18]. It
comprises three levels, a single residual block, 32 channels,
ELU activations, 3D strided and transposed convolutions, and
a global skip connection for learning functions close to the
identity operator, which is already FNE. For Dθ, we added
an outer ReLU activation enforcing positivity. For PnP-FB,
Dθ,GS writes as (7) with Nθ a DRUnet.

3.3. Training strategy

For each high-count target (xq = xi,HD
j ), we considered

two types of inputs for the networks: xq,1 = xi,LD
j and

xq,2 = xi,HD +∇LL(xi,HD)/ρ.
Dθ is either trained using xq,1, yielding DLH

θ , or using
{xq,1,xq,2} for several values of ρ ∈ {10−4, 10−5, 10−6},
yielding DFP

θ . The rationale for keeping xq,1 is that in the
first iteration of ADMM, the network is applied on an image
close to an OSEM solution. To locally enforce the FNE prop-
erty and handle images with varying doses and thus value
ranges, we use the following regularized loss inspired by [7]:

∥xq −Dθ(x
q,s)∥22

∥xq∥2
+βmax{|||J2Dθ−Id (x̃

q,s)|||+ϵ−1, 0}1+α,

(8)
where β = 0.01, ϵ = 0.05, α = 0.1 and x̃q,s = κxq + (1 −
κ)xq,s, κ ∼ U [0, 1]. The spectral norm ||| · ||| of the jaco-

bian was computed using 10 iterations of the power method
and autodifferentiation. Since the computation of the spectral
norm is intensive, we pre-trained the network without the ja-
cobian regularization for 100 epochs, then we trained using
(8) for 20 epochs.
Contrary to PnP-ADMM, PnP-FB does not allow for training
from the fixed point equation for a range of λ. Dθ,GS was
trained on xq,1 for 100 epochs using the scaled MSE loss,
yielding DLH

θ,GS. Nθ is initialized to our previous DRUnet
pretrained on low-count images (DPre,LH

θ ).

3.4. Reconstruction details and reference methods

Computation of the proximity operators in PnP-ADMM and
PnP-FB are penalized PET reconstruction problems for which
efficient algorithms exist. Following [8], a backtracking loop
is used in PnP-FB to set the step size. The PnP schemes are
compared to an OSEM reconstruction processed by DPre,LH

θ ,
a variational method solving (2) with the Fair regularization
function on the difference between the first-order neighboring
pixels [2]. PnP-ADMM was run until ∥xk+1

ρ − vk
ρ∥2/∥vk

ρ∥2
and ∥vk+1

ρ − vk
ρ∥2/∥vk

ρ∥2 are below 5× 10−4. PnP-FB was
run until ∥xk+1

λ − xk
λ∥2/∥xk

λ∥2 < 5× 10−4.

4. RESULTS

Figures 1a and 1b display the log-likelihood and MSE for dif-
ferent denoisers and varying values of ρ in PnP-ADMM and
λ in PnP-FB. We see the performance of PnP-ADMM and
PnP-FP with DLH

θ and DLH
θ,GS is highly sensitive on the choice

of these hyperparameters and that the lowest MSE/high like-
lihood is achieved for λ = 10−6 and ρ = 10−6. For these val-
ues, the MSE and likelihood are comparable for PnP-ADMM
and PnP-FP (≈ 3.8 × 104 for the MSE and 8.842 × 107

for the likelihood), which is corroborated by the images (not
shown). In addition, we observe that both schemes exhibited
rapid convergence (not shown) in about 20 iterations.
As depicted on figures 1a and 1b, using DFP

θ results in con-
stant MSE (≈ 3.9 × 104) and higher log-likelihood for a
wide range of ρ values, close to the optimal value obtained at
λ = ρ = 10−6 with DLH

θ and DLH
θ,GS. This improvement also

translates visually (fig. 1g-1p). We note that when DFP
θ is

trained without regularizing the spectral norm, |||J2DFP
θ −Id |||

explodes rapidly (fig. 1d) and PnP-ADMM does not converge
as observed in our previous work [15] (fig. 1c). This obser-
vation highlights the importance of satisfying convergence
conditions when implementing PnP schemes.
Finally, PnP-ADMM with DFP

θ outperforms post-filtered
OSEM using DPre,LH

θ (fig. 1n, MSE: 3.8 ×104, likelihood:
8.831 × 107) and the IR solution (fig. 1k, MSE: 4.3 ×104,
likelihood: 8.842× 107) with the lowest MSE on figure 1b.



(a) Log-likelihood as a function of ρ or λ (b) MSE as a function of ρ or λ (c) ∥vk+1
ρ −vk

ρ∥ along ADMM iterations (d) Spectral norm along ADMM iterations

(e) High-count OSEM xq (100 iterations) (f) x∗
ρ with DLH

θ and ρ = 10−5 (g) x∗
ρ with DFP

θ and ρ = 10−5

(h) Low-count OSEM (100 iterations) (i) x∗
ρ with DLH

θ and ρ = 10−6 (j) x∗
ρ with DFP

θ and ρ = 10−6

(k) x̂ with Fair penalty (l) x∗
ρ with DLH

θ and ρ = 5 × 10−7 (m) x∗
ρ with DFP

θ and ρ = 5 × 10−7

(n) DRUnet-filtered low-count OSEM (DPre,LH
θ ) (o) x∗

ρ with DLH
θ and ρ = 10−7 (p) x∗

ρ with DFP
θ and 10−7

Fig. 1: Comparison of the different PnP reconstructions, post-reconstruction filtering and IR reconstructions

5. DISCUSSION

Our experiments demonstrated that PnP-ADMM and PnP-FB
with denoisers mapping low- to high-count images produce
similar images despite having distinct denoiser constraints.
Both PnP schemes display high sensitivity to hyperparame-
ters governing fixed point selection and convergence speed.
PnP-FB stands out for its use of a backtracking line search,
eliminating the need for knowledge of L. Consequently, the
scheme is guaranteed to converge, albeit potentially slowly,
especially when L is high (close to 1 in our experiments). In
contrast, because we enforced a local FNE constraint, PnP-
ADMM is not guaranteed to converge per se. However, our
interpolation rule was found sufficient to satisfy the FNE con-
dition on the PnP-ADMM iterates.
Only PnP-ADMM allows enforcing proximity of the fixed
point to high-count images across varying ρ values, which is
crucial as ρ varies per patient per exam. While this approach
does not offer complete control over the optimization path,
it consistently produced interesting fixed points in a range of
ρ values, close to the best MSE/log-likelihood trade-off. We
hypothesize that this is due to the input of the denoiser being

a perturbation of a proximity operator, keeping the estimate
close to the training images, especially if ρ is not excessively
large - the sole regime of interest. This effect would not be the
same in algorithms such as primal dual schemes where recon-
struction and regularization are performed jointly. Complete
fixed point control would require solving a costly bilevel op-
timization problem via implicit differentiation.
Our reconstructed images remain noisy due to noisy target
images. The Artifact2Artifact approach of [14] may be worth
investigating to address this issue.

6. CONCLUSION

In this study, we introduced two novel PET reconstruction
methods combining deep learning and convergence guaran-
tees. The first employs the plug-and-play forward-backward
algorithm with minimal denoiser requirements. The second
relies on the plug-and-play ADMM framework, providing en-
hanced fixed-point control. Our experiments demonstrate that
these methods outperform CNN post-filtering and a classical
variational approach, thus highlighting their potential to en-
hance PET image quality for improved clinical applications.
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