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Fixed points of contractions approximating
1-Lipschitz maps

M. ZAVIDOVIQUE∗

March 14, 2019

Abstract

A 1-Lipschitz map f from a convex compact set to itself has fixed points.

This consequence of Brouwer’s or Schauder’s fixed point theorem has more

elementary proofs by approximating f by λ-contractions, fλ. We study the

convergence of the fixed points of those contractions as they converge to f .

Introduction

Given a compact metric space X and a continuous function c : X×X → R, consider
the map T , from C0(X,R) to itself, defined by

∀u ∈ C0(X,R), ∀x ∈ X, Tu(x) = min
y∈X

(

u(y) + c(y, x)
)

.

It is easily checked that T is 1-Lipschitz for the sup norm ‖·‖∞, therefore if λ ∈ (0, 1)
the function Tλ : u 7→ T (λu) is a λ-contraction from C0(X,R) to itself. It follows
from the Banach fixed point theorem that there exists a unique function uλ verifying
Tλ(uλ) = uλ. The following theorem was proved in [2] (see also [3] for related results):

Theorem 0.1. There exists a constant α ∈ R such that, as λ → 1, uλ + α
1−λ

uniformly converges to a function u1 : X → R that verifies the following equation :

u1 = Tu1 + α.

The function u1 is called a weak KAM solution following Fathi and the proof
of this theorem uses heavily explicit formulas for the functions uλ, Aubry-Mather
theory and Fathi’s weak KAM theory.

However, the method of approaching the 1-Lipschitz map T by contractions Tλ

in order to find fixed points of T can be applied in more general settings. Therefore
it is a natural question wether the previous theorem is a particular case of a very
general phenomenon or if it relies exclusively on the very special setting.

It turns out the answer is both yes and no.
On the positive side, we prove the following theorem:
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Theorem 0.2. Let (E, ‖ · ‖) be a normed real vector space and C ⊂ E be a convex

compact subset such that 0 ∈ C. Let f : C → C be a 1-Lipschitz map. For any

λ ∈ (0, 1) let us set xλ to be the unique fixed point of the contraction fλ : x 7→ f(λx),
that is the only point of C such that f(λxλ) = xλ.

If ‖ · ‖ is C1 on E \ {0}, then the family (xλ)λ∈(0,1) converges as λ → 1.

On the negative side, we provide in the appendix an explicit example of a map
in R

2 equipped with the norm ‖ · ‖1 for which the family (xλ) does not converge.
Of course, Theorem 0.1 is not a consequence of Theorem 0.2 for many reasons,

but the most fundamental one is that the sup norm ‖ · ‖∞ on C0(X,R) is not C1.
Indeed, balls for this norm have many corners.

One may wonder if a result can be obtained for 1-Lipschitz maps that do not
have fixed points. The following theorem was established in [4] (see the reference
for more precise statements and other very interesting results).

Theorem 0.3 (Kohlberg, Neyman). Let E be a strictly convex and reflexive Banach

space and f : E → E a 1-Lipschitz map. For any λ ∈ (0, 1) let us set xλ to be the

unique fixed point of the contraction fλ : x 7→ f(λx), then the family (1 − λ)xλ

weakly converges as λ → 1. Moreover, it strongly converges if the dual E∗ has

Fréchet differentiable norm.

Organization of the paper

In the first part, we start with the case of a pre-Hilbertian norm, the results being
more precise in this case and the proof making use of more classical results.

In the second part, we will prove Theorem 0.2.
In the last part, we will discuss a generalization where the compactness hypoth-

esis is dropped, in infinite dimensional Hilbert spaces.
Finally, in the appendix, we develop two examples in R

2, one for which the
conclusions of Theorem 0.2 are not verified and one where the set of fixed points of
f is not convex.
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mensional aspects and Julien Grivaux for his contribution in the concluding remark.
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1 The pre-Hilbertian case

In this section, the norm ‖ · ‖ is obtained from a scalar product 〈·, ·〉. We keep
the previous notations: C ⊂ E is a convex compact subset such that 0 ∈ C and
f : C → C is a 1-Lipschitz map. If λ ∈ (0, 1), xλ ∈ C is the only vector verifying
the relation f(λxλ) = xλ. Moreover, we set yλ = λxλ. It is the only vector verifying
that

λf(yλ) = yλ. (1)
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It is clear that the convergence of the family (xλ)λ∈(0,1) is equivalent to that of
(yλ)λ∈(0,1), as λ → 1, and that if they converge, they have the same limit. We start
by three lemmas that shed light on the situation:

Lemma 1.1. The set Fix(f) of fixed points of f is a compact, nonempty and convex

set.

Proof. It is clearly compact by continuity of f and nonempty as any accumulation
point of (xλ)λ∈(0,1) as λ → 1 is a fixed point of f . The fact that it is convex
is true as soon as balls are strictly convex (which is the case for pre-Hilbertian
spaces). Indeed, let x and y be fixed points of f and t ∈ (0, 1). Setting z =
tx+(1− t)y, then the 1-Lipschitz property implies that f(z) must lie in both closed
balls B(x, (1− t)‖y − x‖) and B(y, t‖y − x‖). As their intersection is {z} we get
f(z) = z.

The next lemma appears in [1] and is crucial to this paper.

Lemma 1.2. The function Id− f : C → E is monotone meaning that

∀(x, y) ∈ E × E,
〈(

x− f(x)
)

−
(

y − f(y)
)

, x− y
〉

> 0.

Proof. The proof follows from a simple computation:

〈(

x− f(x)
)

−
(

y − f(y)
)

, x− y
〉

=

= ‖x− y‖2 − 〈f(x)− f(y), x− y〉

> ‖x− y‖2 − ‖f(x)− f(y)‖ · ‖x− y‖ > 0,

where we used the Cauchy-Schwarz inequality first and then the hypothesis that f
is 1-Lipschitz.

This next lemma will be used in section 3. However, we state it now as we believe
it is of independent interest.

Lemma 1.3. The function λ 7→ ‖yλ‖ is constant if 0 ∈ Fix(f) and increasing

otherwise.

Proof. If 0 ∈ Fix(f) then clearly, yλ = 0 for all λ.
Otherwise, 0 does not verify (1), except for λ = 0. It follows that yλ 6= 0 for

λ 6= 0 and that the map λ 7→ yλ is injective. Let 0 < λ < λ′ < 1. We apply the
previous lemma to yλ and yλ′ . Using (1), we obtain that

〈(

yλ′−
1

λ′
yλ′

)

−
(

yλ−
1

λ
yλ
)

, yλ′−yλ
〉

=
(

1−
1

λ′

)

‖yλ′−yλ‖
2+

(1

λ
−

1

λ′

)

〈yλ, yλ′−yλ〉 > 0.

Hence, 〈yλ, yλ′ − yλ〉 > 0. Similarly,

〈(

yλ′−
1

λ′
yλ′

)

−
(

yλ−
1

λ
yλ
)

, yλ′−yλ
〉

=
(

1−
1

λ

)

‖yλ′−yλ‖
2+

(1

λ
−

1

λ′

)

〈yλ′, yλ′−yλ〉 > 0.

Hence 〈yλ′, yλ′ − yλ〉 > 0. Finally, by summing those two inequalities, one gets

〈yλ′ + yλ, yλ′ − yλ〉 = ‖yλ′‖2 − ‖yλ‖
2 > 0.
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We finally state and prove the theorem in this case.

Theorem 1.4. If x∗ ∈ Fix(f) is the orthogonal projection of 0 on Fix(f), then

lim
λ→1

yλ = x∗.

Proof. Once again, we apply Lemma 1.2 to x = yλ for some λ ∈ (0, 1) and y ∈
Fix(f). We obtain that

(

1− 1
λ

)

〈yλ, yλ− y〉 > 0 and consequently 〈yλ, yλ− y〉 6 0. If
λn → 1 is a sequence such that (yλn

)n∈N converges to some point z, then z ∈ Fix(f)
and passing to the limit we find that

∀y ∈ Fix(f), 〈z, z − y〉 6 0.

It follows that z = x∗ and by compactness of C, the result is proved.

2 The general compact case

2.1 For C1 norms

In this section, we assume that ‖ · ‖ is a norm on E that is C1 on E \ {0}. It follows
(and both facts are actually equivalent) that for all x ∈ E there exists a unique
linear form ℓx such that ‖ℓx‖ = 1 and ℓx(x) = ‖x‖. Note that we use the same
notation for the norm on E and the norm induced on its dual E∗. The linear form
ℓx is the differential of ‖ ·‖ at x. Its kernel is the direction of the tangent hyperplane
to the sphere of radius ‖x‖ at x. It follows that the map x 7→ ℓx is continuous. Let
us finally stress that for all x 6= 0, ℓ−x = −ℓx.

Let us now state and prove the main result of this section.

Theorem 2.1. Let (E, ‖ · ‖) be a normed vector space such that ‖ · ‖ is C1 on

E \ {0}. Let C ⊂ E be a convex compact subset such that 0 ∈ C. Let f : C → C
be a 1-Lipschitz map. For any λ ∈ (0, 1) let us set yλ the unique fixed point of the

contraction λf , that is the only point of C such that λf(yλ) = yλ.
Then the family (yλ)λ∈(0,1) converges as λ → 1.

Before entering the proof, let us stress that with those hypotheses, Fix(f) is
not necessarily convex. The reader will see strong resemblance with the proof of
Theorem 1.4. The characterization we find of the limit has however a less clear
geometric interpretation.

Proof. If 0 ∈ Fix(f) then yλ = 0 for all λ ∈ (0, 1) and the result is straightforward.
In the remaining case, yλ 6= 0 and the map λ 7→ yλ is injective. The first step is

to mimic the monotonicity of Id− f . Let x 6= y we compute that

ℓx−y

(

(x− f(x))− (y − f(y))
)

= ℓx−y(x− y)− ℓx−y

(

f(x)− f(y)
)

> ‖x− y‖ − ‖f(x)− f(y)‖ > 0,

where we have used that ‖ℓx−y‖ = 1 and then that f is 1-Lipschitz.
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We then specialize the previous inequality to x = yλ for some λ ∈ (0, 1) and
y ∈ Fix(f) to obtain

(

1− 1
λ

)

ℓyλ−y(yλ) > 0 and finally

∀y ∈ Fix(f), ℓyλ−y(yλ) 6 0. (2)

Taking the limit in the previous inequality, we find that if ȳ is a limit of a sequence
(yλn

)n∈N with λn → 1 then

∀y ∈ Fix(f) \ {ȳ}, ℓȳ−y(ȳ) 6 0.

To conclude, we notice that there can be at most one point verifying the previous
property. Indeed, assume by contradiction that for some z ∈ Fix(f),

∀y ∈ Fix(f) \ {z}, ℓz−y(z) 6 0.

We discover that
ℓȳ−z(ȳ) 6 0,

ℓz−ȳ(z) = −ℓȳ−z(z) 6 0,

and summing those two inequalities

ℓȳ−z(ȳ − z) = −‖ȳ − z‖ 6 0.

This is a contradiction.

2.2 For Gateaux-differentiable norms

The hypotheses of the previous theorem can be relaxed. First let us recall some
definitions.

Definition 2.2. A function F : E → R is said to be Gateaux-differentiable at x ∈ E
if there exists a linear form L ∈ E∗ such that

∀v ∈ E, lim
t→0

1

t

(

F (x+ tv)− F (x)
)

= L(v).

We then apply this definition to the norm:

Definition 2.3. A norm ‖ · ‖ is said to be smooth if it is Gateaux-differentiable on

E \ {0}.

If ‖ · ‖ is differentiable, if x 6= 0, we still denote by ℓx the Gateaux-differential
of ‖ · ‖ at x. It can be proved that ℓx ∈ E∗ is the only continuous linear form such
that ‖ℓx‖ = 1 and ℓx(x) = ‖x‖.

Lemma 2.4. Let (xn)n∈N be a sequence of non zero vectors such that xn → x and

ℓxn
⇀ ℓ. Then ℓ = ℓx.

Proof. By properties of weak limits, ‖ℓ‖ 6 lim inf ‖ℓxn
‖ = 1. Moreover, one com-

putes that
‖xn‖ = ℓxn

(xn − x) + ℓxn
(x).

As |ℓxn
(xn − x)| 6 ‖x − xn‖ and ℓxn

(x) → ℓ(x), it follows that ‖x‖ = lim ‖xn‖ =
lim ℓxn

(xn) = ℓ(x). Hence the result.
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Theorem 2.5. Let (E, ‖ · ‖) be a normed vector space such that ‖ · ‖ is smooth. Let

C ⊂ E be a convex compact subset such that 0 ∈ C. Let f : C → C be a 1-Lipschitz
map. For any λ ∈ (0, 1) let us set yλ the unique fixed point of the contraction λf ,
that is the only point of C such that λf(yλ) = yλ.

Then the family (yλ)λ∈(0,1) converges as λ → 1.

Proof. Let us give the elements to adapt the proof of Theorem 2.1. Up to restricting
to V ect({x ∈ C}), we assume that E is separable. It follows from a theorem of
Banach that any bounded sequence in E∗ has a weakly converging subsequence.

Let λn → 1 be such that yλn
→ ȳ ∈ Fix(f). Let y ∈ Fix(f) be such that y 6= ȳ.

Up to extracting we may assume that ℓyλn−y is weakly converging. Using lemma
2.4, it follows that ℓyλn−y ⇀ ℓȳ−y.

We now pass to the limit to obtain that

ℓȳ−y(ȳ) = lim
n→+∞

ℓyλn−y(yλn
) 6 0.

The rest of the proof is the same as in Theorem 2.1.

3 The Hilbert case

We assume now that (H, 〈·, ·〉) is a real Hilbert space. We denote by ‖·‖ the induced
norm. In this section, C ⊂ H is a closed, convex and bounded set such that 0 ∈ C
and f : C → C is a 1-Lipschitz map. We will use the same notations as in section
1. We state without more detailed proofs:

Lemma 3.1. The set Fix(f) of fixed points of f is a closed, nonempty and convex

set.

Indeed, the convexity is obtained as previously, the fact it is not empty is the
content of [1].

Lemma 3.2. The function Id− f : C → H is monotone meaning that

∀(x, y) ∈ H ×H,
〈(

x− f(x)
)

−
(

y − f(y)
)

, x− y
〉

> 0.

Lemma 3.3. The function λ 7→ ‖yλ‖ is constant if 0 ∈ Fix(f) and increasing

otherwise.

Theorem 3.4. The family (yλ)λ∈(0,1) weakly converges as λ → 1 to x∗ the orthogonal

projection of 0 on C.

Proof. By Kirszbraun’s Theorem, we may extend f to a 1-Lipschitz map from H to
itself, that we still denote by f . Note that the previous lemmas remain true for this
extension of f to H . Recall that a closed bounded set is weakly compact.

Let λn → 1 be such that yλn
⇀ y∗.

We first prove that y∗ is a fixed point of f following [1]. We apply lemma 3.2 to
x = y∗ + tv for any vector v ∈ H , t ∈ R and y = yλn

to obtain

〈

y∗ + tv − f(y∗ + tv) +
(1

λn
− 1

)

yλn
, tv + y∗ − yλn

〉

> 0.
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As n → +∞, the left hand side of the bracket strongly converges to y∗ + tv −
f(y∗ + tv) (because the yλn

are bounded) and the right hand side weakly converges
to tv. Hence we obtain, passing to the limit that

∀t ∈ R, ∀v ∈ H, t〈y∗ + tv − f(y∗ + tv), v〉 > 0.

Letting t > 0 going to 0, we discover that 〈y∗ − f(y∗), v〉 > 0 and letting t < 0
going to 0, that 〈y∗ − f(y∗), v〉 6 0. In conclusion

∀v ∈ H, 〈y∗ − f(y∗), v〉 = 0,

which establishes that y∗ is a fixed point of f .
We now notice that by weak convergence,

‖yλn
‖ · ‖y∗‖ > 〈yλn

, y∗〉 → ‖y∗‖2. (3)

Hence ‖y∗‖ 6 lim
n→+∞

‖yλn
‖. Applying now lemma 3.2 to x = yλn

and y ∈ Fix(f)

it follows that 〈yλn
, yλn

− y〉 6 0 for all n. Then, using (3) and by weak convergence
we get

〈y∗, y∗ − y〉 = ‖y∗‖2 − 〈y∗, y〉 6 lim
n→+∞

‖yλn
‖2 − lim

n→+∞

〈yλn
, y〉 6 0.

Hence y∗ is again the orthogonal projection of 0 on Fix(f).

4 A concluding remark

In all of the versions of our result, the point 0 plays a distinguished role. This is
arbitrary and can be dropped. In any of the contexts of Theorem 0.2, 1.4, 2.1, 2.5
or 3.4, let us not assume anymore that 0 ∈ C. If x ∈ C and λ ∈ (0, 1), the map
fλ,x : y 7→ λf(y) + (1 − λ)x is well defined and a contraction. If yλ,x is its unique
fixed point, our theorem yields that as λ → 1, yλ,x converges to a fixed point of f
that we denote by yx ∈ Fix(f). It is characterized by the property:

∀z ∈ Fix(f) \ {yx}, ℓyx−z(yx − x) 6 0.

If (x, x′) ∈ C × C are such that yx 6= yx′, by two symmetric applications of the
previous property, it follows that

ℓyx−y
x′
(yx − x)− ℓyx−y

x′
(yx′ − x′) = ℓyx−y

x′
(yx − yx′)− ℓyx−y

x′
(x− x′) 6 0.

Hence
‖yx − yx′‖ 6 ℓyx−y

x′
(x− x′) 6 ‖x− x′‖.

It follows that the map x 7→ yx is 1-Lipschitz. As it is obviously the identity on
Fix(f) it is a continuous retraction of C on Fix(f)1.

1Note that such a retraction in the cases where C is compact can be obtained by a fixed point

argument applied to the mapping ρ 7→ f ◦ ρ.
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A An example where (xλ)λ∈(0,1) diverges

We consider here (R2, ‖ · ‖1) where the norm is defined by ‖(x, y)‖1 = |x|+ |y|. The
convex compact set we are interested in is the triangle

T =

{

(x, y) ∈ R
2, −

1

2
6 y 6 −|x|+

1

2

}

.

Of course, (0, 0) ∈ T . If α ∈ (0, 1), we aim at constructing a function of the form
f(x, y) =

(

x + ε(y), α
(

y + 1
2

)

− 1
2

)

where ε :
[

− 1
2
, 1
2

]

→ R is a function to be
determined verifying ε

(

− 1
2

)

= 0. It will follow that the bottom side of T will be
made of fixed points of f .

As we want f to take values in T , we have to check that for y ∈ [−1
2
, 1
2
], if

x ∈
[

y− 1
2
, 1
2
− y

]

then −1
2
6 α

(

y+ 1
2

)

− 1
2
6 −|x+ ε(y)|+ 1

2
. This is verified if and

only if

∀y ∈
[

−
1

2
,
1

2

]

, |ε(y)| 6 (1− α)
(

y +
1

2

)

. (4)

The condition that f is 1-Lipschitz is realized if for all (x, y) and (x′, y′) in T

‖f(x, y)− f(x′, y′)‖1 = |x− x′ + ε(y)− ε(y′)|+ α|y − y′| 6 |x− x′|+ |y − y′|.

This is true if we take ε to be (1−α)-Lipschitz. Note that if this is the case and
ε
(

− 1
2

)

= 0 then (4) is verified.
We now assume ε is (1− α)-Lipschitz. If λ ∈ (0, 1) remember that fλ is defined

by fλ(x, y) = f(λx, λy). Denoting by Xλ = (xλ, yλ) ∈ T the unique fixed point of
fλ, an explicit computation gives

(xλ, yλ) =

(

1

1− λ
ε
( λ(α− 1)

2(1− αλ)

)

,
α− 1

2(1− αλ)

)

.

By setting g(1− λ) = λ(α−1)
2(1−αλ)

, one checks that

g−1(µ) =
(α− 1)(1 + 2µ)

α− 1− 2αµ
.

Hence g is an increasing bi-Lipschitz map from [0, 1] to [−1/2, 0]. We now set
h : R → R defined by h(x) = x sin

(

ln(x)
)

for x 6= 0 and h(0) = 0 that is a Lipschitz
function. It follows that for ε0 > 0 small enough, the function ε = ε0h ◦ g−1 is
(1− α)-Lipschitz on

[

− 1
2
, 0
]

and verifies ε
(

− 1
2

)

= 0. We extend it by ε(y) = ε(0)
if y ∈

[

0, 1
2

]

.
For the function f obtained this way, we find that

(xλ, yλ) =
(

sin
(

ln(1− λ)
)

,
1

λ
g(1− λ)

)

.

It does not converge as λ → 1.
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B An example where Fix(f) is not convex

The setting here is (R2, ‖ · ‖∞) with ‖(x, y)‖∞ = max(|x|, |y|). Let g : R → R be a
1
2
-Lipschitz map and f : (x, y) 7→

(

x, g(x)
)

be the vertical projection on the graph
of g. Then f is 1-Lipschitz. Indeed, if

(

(x, y), (x′, y′)
)

∈ (R2)2,

‖f(x, y)− f(x′, y′)‖∞ = max(|x−x′|, |g(x)− g(x′)|) = |x−x′| 6 ‖(x, y)− (x′, y′)‖∞.

Of course, the set of fixed points of f is the graph of g which is in general not convex.
Let now R = [−1, 1] × [−M,M ] ⊂ R

2 with M = max(|g(x)|, x ∈ [−1, 1]).
Then by still denoting the restriction of f to R by f , we obtain a map f : R → R.
If λ ∈ (0, 1), the point Xλ such that λf(Xλ) = Xλ is

(

0, λf(0)
)

and obviously
Xλ →

(

0, f(0)
)

as λ → 1.
The norm ‖ · ‖∞ is not C1 on R

2 \ {(0, 0)}. Let us consider ‖ · ‖ a norm ob-
tained from ‖ · ‖∞ by rounding off the corners of the unit ball. It then verifies
that ‖X‖ > ‖X‖∞ for all X ∈ R

2. Let us assume ‖ · ‖ is close enough to ‖ · ‖∞
in the sense that ‖(1, y)‖ = 1 is y ∈ [−1/2, 1/2]. Then for all pairs (x, x′) ∈ R

2,
∥

∥

(

x, g(x)
)

−
(

x′, g(x′)
)
∥

∥ =
∥

∥

(

x, g(x)
)

−
(

x′, g(x′)
)
∥

∥

∞
= |x− x′|. It follows that for

all (x, x′, y, y′) ∈ R
4,

‖f(x, y)− f(x′, y′)‖ =
∥

∥

(

x, g(x)
)

−
(

x′, g(x′)
)
∥

∥

= |x− x′| 6 ‖(x, y)− (x′, y′)‖∞ 6 ‖(x, y)− (x′, y′)‖.

Hence f is still 1-Lipschitz for ‖ · ‖.
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