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Abstract
Introduction A third of frontotemporal dementia (FTD) is caused by an autosomal-dominant genetic mutation in one of 
three genes: microtubule-associated protein tau (MAPT), chromosome 9 open reading frame 72 (C9orf72) and progranulin 
(GRN). Prior studies of prodromal FTD have identified impaired executive function and social cognition early in the disease 
but few have studied naming in detail.
Methods We investigated performance on the Boston Naming Test (BNT) in the GENetic Frontotemporal dementia Initiative 
cohort of 499 mutation carriers and 248 mutation-negative controls divided across three genetic groups: C9orf72, MAPT 
and GRN. Mutation carriers were further divided into 3 groups according to their global CDR plus NACC FTLD score: 0 
(asymptomatic), 0.5 (prodromal) and 1 + (fully symptomatic). Groups were compared using a bootstrapped linear regression 
model, adjusting for age, sex, language and education. Finally, we identified neural correlates of anomia within carriers of 
each genetic group using a voxel-based morphometry analysis.
Results All symptomatic groups performed worse on the BNT than controls with the MAPT symptomatic group scoring the 
worst. Furthermore, MAPT asymptomatic and prodromal groups performed significantly worse than controls. Correlates of 
anomia in MAPT mutation carriers included bilateral anterior temporal lobe regions and the anterior insula. Similar bilateral 
anterior temporal lobe involvement was seen in C9orf72 mutation carriers as well as more widespread left frontal atrophy. 
In GRN mutation carriers, neural correlates were limited to the left hemisphere, and involved frontal, temporal, insula and 
striatal regions.
Conclusion This study suggests the development of early anomia in MAPT mutation carriers, likely to be associated with 
impaired semantic knowledge. Clinical trials focused on the prodromal period within individuals with MAPT mutations 
should use language tasks, such as the BNT for patient stratification and as outcome measures.

Keywords Frontotemporal dementia · Tau · Progranulin · C9orf72 · Naming · Cognition

Introduction

Frontotemporal dementia (FTD) is a heterogeneous neu-
rodegenerative disorder presenting with distinct changes 
in behaviour, language and motor function [1]. A third of 
cases are caused by an autosomal-dominant genetic mutation 
in one of three genes: microtubule-associated protein tau 
(MAPT), chromosome 9 open reading frame 72 (C9orf72) 
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and progranulin (GRN) [2]. Although mutations in any of 
these genes can lead to impaired naming ability (anomia), 
MAPT mutation carriers tend to show the most pronounced 
deficit with previous studies showing that such difficulties 
can even be detected before symptom onset [3–5]. Impor-
tantly, whilst anomia is one of the key manifestations of peo-
ple with the language variant of FTD [6], a similar pattern 
of naming deficits, albeit often less severe, has been found 
in the early stages of people presenting with both behav-
ioural and motor symptoms [7–9], suggesting that impair-
ment could potentially be seen in all of the phenotypes of 
genetic FTD.

Neuroanatomical correlates of naming deficits in FTD 
have implicated a widespread network of brain regions 
focused on the left hemisphere [10], which reflects the dif-
ferent components of the language pathway that contribute 
to naming [11]. In FTD due to C9orf72, GRN or MAPT 
mutations, there are both shared and distinct networks of 
atrophy across genetic groups, observable even at the pre-
symptomatic stage [12]. This raised our hypothesis that the 
neuroanatomical correlates underlying naming differ accord-
ing to the genetic aetiology of FTD.

The current study assessed naming deficits using the short 
30-item version of the Boston Naming Test (BNT) [13] in 
a large cohort of C9orf72, MAPT and GRN mutation carri-
ers. We expected all symptomatic mutation carriers to be 
impaired compared to mutation-negative controls on the 
BNT, but that MAPT mutation carriers would be the most 
impaired, potentially even in pre-symptomatic stages [4]. We 
also aimed to investigate the neural correlates of the BNT 
within each genetic group using voxel-based morphometric 
analyses of grey matter volume derived from structural Mag-
netic Resonance Imaging (MRI). We expected regions of the 
left-lateralised language network to be implicated in naming 
deficits across the groups, with potentially more focal ante-
rior medial temporal structures in MAPT mutation carriers 
and a wider network in the C9orf72 and GRN groups.

Methods

Participants

Participants were recruited from the fifth data freeze of the 
GENFI study including sites in the UK, Canada, Sweden, 
Netherlands, Belgium, Spain, France, Portugal, Italy and 
Germany with eight different languages. Ethical approval 
was obtained for the study and all participants provided 
informed written consent. As well as the 30-item version 
of the Boston Naming Test in their preferred language [14], 
all participants underwent a standardised GENFI clinical 
assessment including a medical history, physical examina-
tion, the Mini-Mental State Examination (MMSE), and the 

Clinical Dementia Rating Scale (CDR) with National Alz-
heimer’s Coordinating Centre (NACC) FTD-specific mod-
ules (CDR plus NACC FTLD). The CDR plus NACC FTLD 
provides both a summed score (CDR plus NACC FTLD sum 
of boxes) and a global score, where 0 is asymptomatic, 0.5 is 
prodromal, 1 is mildly symptomatic, 2 is moderately symp-
tomatic and 3 is severely symptomatic, with the last three 
scores also being combined to create a 1 + or ‘fully symp-
tomatic’ group [15].

747 GENFI participants completed the BNT and were 
included in the present study: 248 mutation-negative car-
riers (controls), 212 C9orf72 expansion carriers, 201 GRN 
mutation carriers, and 86 MAPT mutation carriers. Mutation 
carriers were further divided into three groups according to 
their CDR plus NACC FTLD global score. Within the symp-
tomatic mutation carrier groups, 101 met the diagnostic cri-
teria for behavioural variant FTD (bvFTD: 54 C9orf72, 26 
GRN and 21 MAPT), 20 primary progressive aphasia (PPA: 
3 C9orf72, 16 GRN and 1 MAPT) and 14 amyotrophic lateral 
sclerosis with or without FTD (14 C9orf72). Demographic 
data for the groups are described in Table 1.

Magnetic Resonance Imaging (MRI)

Participants underwent volumetric T1-weighted magnetic 
resonance imaging (MRI) according to the harmonized 
GENFI imaging protocol on a 3T scanner, with only muta-
tion carriers included in the neural correlate imaging analy-
sis. From a total of 499 mutation carriers included in the 
naming study, 94 were excluded from the imaging analysis 
due to either imaging not being performed or not passing 
quality control. 405 scans were included: Siemens Trio 3T 
(n = 111), Siemens Skyra 3T (n = 64), Siemens Prisma 3T 
(n = 91), Philips Achieva 3T (n = 135) and GE 3T (n = 4).

BNT statistical analysis

Statistical analyses were performed using STATA version 
16.0 (Texas, USA). The significance level was set at p < 0.05 
across all comparisons. We compared group demographic 
data with linear regression except for sex which was com-
pared using chi-square tests.

BNT scores in controls were assessed by calculating 
cumulative frequency (and therefore percentile scores), 
as well as investigating the effect of sex (Mann–Whitney 
U test), age (Spearman’s rank correlation), and education 
(Spearman’s rank correlation).

BNT scores in the mutation carrier groups were com-
pared to each other and to controls using a bootstrapped 
linear mixed effects model (2000 repetitions) (due to non-
normality). The model was adjusted for age, sex, educa-
tion, language and family clustering with 95% bootstrapped 
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confidence intervals. Post hoc pairwise comparisons were 
used to assess differences in group performance.

Structural brain imaging analysis

Voxel-based morphometric (VBM) analysis was performed 
using Statistical Parametric Mapping (SPM) 12 software, 
version 7219 (www. fil. ion. ucl. ac. uk/ spm), running under 
Matlab R2014b (Mathworks, USA). The T1-weighted 
images were normalized and segmented into grey matter 
(GM), white matter (WM) and cerebrospinal fluid (CSF) 
probability maps, using standard procedures and the fast-
diffeomorphic image registration algorithm (DARTEL) 
[16]. GM segmentations were affine-transformed into the 
Montreal Neurological Institute (MNI) space, modulated and 
smoothed using a Gaussian kernel with 6 mm full width, 
at half maximum, before analysis. Finally, a customised 
explicit brain mask was applied based on an optimised voxel 
threshold intensity criterion [17]. All segmentations were 
visually checked at each stage. Total intracranial volume was 
calculated using SPM [18].

The relationship of BNT score with GM density in the 
three mutation carrier groups was explored using a flex-
ible factorial regression model. A main effect of BNT was 
included in the model and genetic group was included as an 
interaction. Age, sex, TIV and scanner type were included as 
covariates in the initial model with a further model addition-
ally including disease severity as measured by the CDR plus 
NACC FTLD sum of boxes. All comparisons were adjusted 
for multiple comparisons by applying a Family-Wise Error 
correction set at p < 0.05. An uncorrected threshold of 
p < 0.001 was used if no results were found after correcting 

for multiple comparisons. An empirically determined cluster 
size threshold was also applied (23 for the initial model, and 
62 for the further model).

Results

Demographic data

Differences between groups were seen in age, sex and years 
of education (Table 1). Compared with controls, all symp-
tomatic groups (p < 0.001) as well as prodromal C9orf72 
(p = 0.033) and GRN (p = 0.010) mutation carriers were sig-
nificantly older, whilst asymptomatic MAPT mutation car-
riers were significantly younger than controls (p = 0.001). 
Within each genetic group, all symptomatic groups were 
significantly older than the prodromal groups (p < 0.003) 
who were significantly older than the asymptomatic groups 
(p < 0.033) apart from in MAPT mutations carriers where 
no difference in age was observed between prodromal and 
asymptomatic groups. There were significantly more males 
than females in the symptomatic C9orf72 (p = 0.001) and 
MAPT (p = 0.027) mutation carriers compared with the 
control group. With genetic groups, there were significantly 
more males than females in the symptomatic C9orf72 muta-
tion carriers compared with the prodromal (p = 0.011) and 
asymptomatic (p = 0.003) groups. There were also more 
males than females in the symptomatic MAPT mutation 
carriers compared to the prodromal (p = 0.023) and asymp-
tomatic (p = 0.030) groups. In terms of years of education, 
symptomatic GRN and C9orf72 mutation carriers had sig-
nificantly fewer years of education than controls (p < 0.001, 

Table 1  Demographic data 
showing the number of 
participants as well as the age, 
sex (percentage males) and 
education of each group.

CDR plus NACC FTLD sum of boxes (SOB) score is shown as well as the Mini-Mental State Examination 
(MMSE) and Boston Naming Test. Scores are shown as means (standard deviations)

N Age % Male Education CDR plus NACC 
FTLD SOB

MMSE BNT

Controls 248 44.9 (12.7) 43.2 14.4 (3.2) 0.0 (0.0) 29.3 (1.1) 27.8 (1.9)
C9orf72
 0 110 44.2 (11.7) 41.8 14.3 (3.0) 0.0 (0.0) 29.2 (1.1) 27.3 (3.1)
 0.5 36 49.3 (11.4) 38.9 14.1 (2.5) 1.2 (0.8) 28.6 (2.0) 27.5 (3.4)
 1 + 66 62.1 (8.6) 65.2 13.2 (3.7) 10.7 (5.4) 24.0 (5.8) 20.6 (7.6)

GRN
 0 128 45.8 (12.2) 35.2 14.7 (3.4) 0.0 (0.0) 29.4 (0.9) 27.9 (1.9)
 0.5 30 51.7 (13.4) 50.0 14.0 (4.0) 1.0 (0.8) 28.4 (2.4) 26.7 (3.7)
 1 + 43 63.5 (7.9) 51.2 11.9 (3.3) 8.6 (5.4) 21.3 (6.1) 21.2 (6.5)

MAPT
 0 48 39.3 (10.5) 39.6 14.4 (3.6) 0.0 (0.0) 29.5 (0.8) 27.6 (2.1)
 0.5 14 45.7 (12.6) 28.6 13.5 (2.4) 1.1 (0.8) 28.2 (2.3) 25.7 (3.9)
 1 + 24 57.3 (10.2) 66.7 13.7 (3.9) 9.3 (5.5) 23.7 (6.7) 17.0 (8.0)

http://www.fil.ion.ucl.ac.uk/spm
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p < 0.05). Within genetic groups, symptomatic GRN muta-
tion carriers had fewer years of education compared with 
the other two groups (p < 0.05) and symptomatic C9orf72 
mutation carriers had significantly fewer years of education 
than the asymptomatic group (p < 0.05).

BNT scores in controls

Calculation of cumulative frequency in controls revealed a 
5th percentile cut-off score at 24 (Supplementary Table S1). 
BNT scores did not correlate with age (rho = −  0.04, 
p = 0.53), and there was no significant effect of sex on BNT 
score (U = − 10,590, p = 0.72) (Supplementary Table S2). 
However, there was a weak positive correlation with educa-
tion (rho = 0.28, p < 0.001).

BNT scores in genetic groups

All three fully symptomatic mutation carrier groups per-
formed significantly worse than controls on the BNT (all 
p =  < 0.001) (Fig. 1, Table 1, Supplementary Table S3). 
Asymptomatic and prodromal MAPT mutation carriers also 
performed significantly worse than controls (p = 0.012 and 
0.011 respectively) but neither of the GRN or C9orf72 pre-
symptomatic groups performed significantly worse than 
controls on the task.

Within genetic groups, the fully symptomatic groups per-
formed worse than both the prodromal and asymptomatic 
groups in MAPT, GRN and C9orf72 mutation carriers (all 
p =  < 0.001). Additionally, the GRN prodromal group scored 
significantly worse than the asymptomatic group (p = 0.018).

Between genetic groups at the same disease stage, 
symptomatic MAPT mutation carriers performed signifi-
cantly worse than symptomatic GRN and C9orf72 muta-
tion carriers (p = 0.007 and 0.034 respectively). Prodromal 
MAPT mutation carriers performed significantly worse 
than prodromal C9orf72 mutation carriers (p = 0.020), 
whilst both asymptomatic MAPT and C9orf72 mutation 
carriers performed significantly worse than asymptomatic 
GRN carriers (p = 0.003, p = 0.048 respectively).

Neuroanatomical correlates of BNT score

The initial VBM analysis model revealed partially over-
lapping neural correlates of naming in the three genetic 
groups (Figs. 2, 3, Supplementary Table S4). In MAPT 
mutation carriers, the anterior and medial temporal 
regions were implicated bilaterally as were the bilateral 
anterior insular cortices. In C9orf72 mutation carriers, the 
anterior temporal structures were also bilaterally involved. 
However, more widespread correlates of naming were seen 
in this group, particularly affecting the left hemisphere, in 
frontal (inferior, middle and superior) and insular cortices 
as well as the caudate. In GRN mutation carriers, cor-
relates were only found within the left hemisphere, but 
were more distributed than the other two groups, affect-
ing frontal (including premotor and supplementary motor 
cortices), anterior and lateral temporal, anterior parietal 
and striatal regions.

Adjusting for disease severity found very similar results 
in the additional VBM analysis model, although at an 
uncorrected p < 0.001 threshold, with no results found 

Fig. 1  Mean scores and stand-
ard error on the BNT for each 
group. Significantly worse per-
formance compared with con-
trols is shown with a star in the 
bar. Only differences between 
disease groups and controls, and 
within each genetic group are 
shown on the graph. Additional 
between genetic group differ-
ences were seen between MAPT 
1 + and both GRN and C9orf72 
1 + , between MAPT 0.5 and 
C9orf72 0.5, and between both 
MAPT 0 and C9orf72 0 and 
GRN 0
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when correcting for multiple comparisons (Supplementary 
Fig. S1 and Supplementary Table S5): similar neural cor-
relates were seen in each group although with more focal 
left anterior temporal lobe involvement for the C9orf72 
mutation carriers in this analysis.

Discussion

In this study, we found that all genetic groups per-
formed significantly worse on the BNT than controls 
when people were fully symptomatic, but only in the 
MAPT mutation group was naming ability impaired pre-
symptomatically, being abnormal in both prodromal and 
asymptomatic mutation carriers. This highlights that 
naming performance is significantly impaired in peo-
ple with genetic FTD, particularly in those with MAPT 

mutations, consistent with the previous literature [3–5, 
11]. However, here we demonstrate very early naming 
change in the MAPT genetic group, and with overlap-
ping but distinct neural correlates across the genetic 
groups: bilateral anterior temporal and anterior insula 
regions in MAPT mutation carriers, with similar tem-
poral lobe involvement as well as more widespread left 
hemisphere atrophy in C9orf72 mutation carriers, and 
only distributed left hemisphere correlates in GRN muta-
tion carriers.

The results in MAPT mutation carriers are consistent with 
previous work, where more severe deficits are seen on nam-
ing tasks cross-sectionally and the most decline over time is 
seen compared with both C9orf72 and GRN mutation car-
riers [4, 19]. We also found that both MAPT asymptomatic 
and prodromal groups performed significantly worse than 
controls. This finding has not been reported in the literature 

Fig. 2  Neural correlates of 
naming in C9orf72, MAPT and 
GRN mutation carriers. Results 
are shown on a study-specific 
T1-weighted MRI template in 
MNI space and at p < 0.05 for 
Family-Wise error. Colour bars 
represent T-values

Fig. 3  Overlapping neural correlates of naming across the three 
genetic groups. Comparative results are shown on a study-specific 
T1-weighted MRI template in MNI space and at p < 0.05 for Family-

Wise error. The C9orf72 group are shown in green, the GRN group 
are shown in red and the MAPT group are shown in yellow
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but is in keeping with previous work showing that MAPT 
mutation carriers have naming deficits before a formal diag-
nosis of FTD [4, 20]. Our study provides further evidence 
for subtle cognitive changes at a pre-symptomatic stage. 
Clinical trials for MAPT mutation carriers should consider 
using naming tasks such as the BNT as a marker for patient 
selection and outcome measure.

In MAPT mutation carriers, focal atrophy within the bilat-
eral anterior and medial temporal lobes was associated with 
BNT score. The anterior temporal lobe has often been asso-
ciated with semantic memory, particularly in studies which 
show that this region is specifically atrophied and hypometa-
bolic in people with the semantic variant of PPA compared 
with those with Alzheimer’s disease [21]. Symptomatic and 
late pre-symptomatic MAPT mutation carriers are signifi-
cantly impaired compared to controls on semantic memory 
tasks, with performance correlating strongly with bilateral 
temporal lobe volume [22]. Moreover, semantic deficits are 
suggested to occur with greater frequency in MAPT mutation 
carriers than in GRN or C9orf72 mutation carriers [3–5]. 
Thus, a core semantic deficit has been put forward as the 
defective mechanism underlying MAPT mutation carriers’ 
anomia, and our imaging results appear in line with such 
claims. Moreover, in view of the extremely symmetrical neu-
roanatomical correlates with the BNT, it appears that both 
verbal and visual semantics are equally likely to be related 
to MAPT mutation carriers’ poor BNT score.

In C9orf72 and GRN mutation carriers, reduced grey 
matter volume in the anterior temporal structures was also 
related to BNT performance. In the C9orf72 group, these 
extended to include bilateral hippocampi, whilst in the 
GRN group, these were left hemisphere only. In a recent 
study of a large cohort of patients, semantic deficits were 
also found in both C9orf72 and GRN mutation carriers [22]. 
Thus, semantic memory deficits are likely to underlie at least 
part of BNT performance. However, our results show that in 
both C9orf72 and GRN mutation carriers, neuroanatomical 
correlates of BNT score were more widespread throughout 
the left hemisphere. Indeed, in C9orf72 mutation carriers, 
left-predominant frontal regions and the left caudate were 
implicated, whilst in GRN mutation carriers, left frontal and 
striatal areas as well as the lateral temporal and parietal cor-
tices were also involved. These findings are consistent with 
previous studies which have identified different regions to 
be related to anomia according to the likely linguistic sub-
domain affecting naming ability. Whilst anterior temporal 
regions have been found to correlate with naming deficits 
when semantic impairment is present, such as in the seman-
tic variant of PPA [9, 10, 23], frontal lobe regions may be 
involved when there is impairment of word generation and 
motor aspects of speech and language, such as in the non-
fluent variant of PPA. These include the inferior frontal lobe, 
opercular and anterior insula [24–26], as was seen here in 

both GRN and C9orf72 mutation carriers. In GRN mutation 
carriers alone, more lateral temporal and anterior parietal 
regions were involved. In the lateral temporal cortex, the 
superior temporal sulcus was particularly implicated, an 
area shown to enable audiovisual integration, leading to 
its implication in semantic processing [27], whilst in the 
anterior parietal region, classically affected in the logopenic 
variant of PPA, the angular gyrus was mainly involved, an 
area usually thought to be associated with semantic process-
ing for both auditory and visual stimuli as well as being 
involved in concept retrieval and conceptual integration [28]. 
Finally, the C9orf72 genetic group showed bilateral frontal 
involvement, albeit left-lateralised. Previous studies show 
that executive processes can also be involved in naming, as 
can be seen in people with bvFTD [3, 9], and it may be that 
this is playing a role here.

A limitation of the present study is that the nature of 
incorrect answers on the BNT were not recorded. Error 
analysis could reveal the contributing processes, for example 
according to whether the participant gives the superordinate 
name, a wrong name or no name [29, 30]. Distinct error pat-
terns can be seen as a function of left versus right and ante-
rior versus posterior temporal lobe atrophy [9]. Our genetic 
groups showed left/right as well as anterior/posterior differ-
ences which could therefore lead to contrasting error pat-
terns. Thus, future work could examine the nature of naming 
errors to explore whether such patterns differ across genetic 
groups and correspond to the different anatomical corre-
lates identified. An alternative way to distinguish between 
the underlying cognitive processes could be to examine the 
inter-relationship with other linguistic measures. However, 
specific language tasks were limited in the GENFI neuropsy-
chological battery.

The strength of this study’s results comes from the use 
of a large cohort of people with genetic FTD, which ena-
bled gene-specific analyses, compared to control group of 
mutation-negative family members. We were therefore able 
to find pre-symptomatic naming deficits in MAPT mutation 
carriers and reveal different levels of performance in nam-
ing, between the three genetic groups. Different processes 
underlying naming in each genetic group are suggested by 
the diverse brain regions which appeared related to naming 
performance.

Conclusion

Overall, our findings are consistent with the hypothesis 
that large‐scale neural network degeneration underlies the 
impairment of naming ability in genetic FTD, but with dif-
ferent contributory regions in each genetic form. This study 
highlights the potential use of a simple naming task as an 
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outcome measure for international clinical trials in pre-
symptomatic MAPT mutation carriers, and in helping dif-
ferential diagnosis and severity staging by understanding 
the sources of naming difficulty.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00415- 022- 11068-0.
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