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A Cramér–Rao Bound for Indoor Power Delay Profile
Based Ranging⋆

Fangqing Xiao1, Dirk Slock1

1Eurecom, Campus SophiaTech, 450 Route des Chappes, 06410 Biot, France

Abstract
Power Delay Profile (PDP) offers valuable insights into the propagation power fading of Line of Sight
(LoS) and Non Line of Sight (NLoS) paths, making it a potential resource for ranging estimation. Despite
its potential, the research on the lower bound of ranging error for PDP-based ranging is limited. This
paper addresses this gap by introducing the Cramér–Rao bound (CRB) for Power Delay Profile (PDP)
based ranging and Received Signal Strength Indicator (RSSI) based ranging, considering a specific indoor
channel fading model. Through extensive simulations and analysis, we demonstrate the superiority of
PDP-based ranging over RSSI-based ranging. Our findings contribute to a deeper understanding of the
potential benefits of PDP-based ranging techniques.
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1. Introduction

Ranging estimation plays a crucial role in localization for fifth-generation (5G) and beyond
5G (B5G) networks, finding applications in network planning, resource allocation, emergency
services, and location-based services (LBS) [1]. While Received Signal Strength Indicator (RSSI)
has been commonly used for ranging, the emergence of Wi-Fi and Orthogonal Frequency
Division Multiplexing (OFDM) technology has led researchers to explore the potential of Power
Delay Profile (PDP) for ranging estimation [2, 3, 4]. PDP provides more detailed information
about the channel, including the fading amplitudes of Light-of-Sight (LoS) and Non-Light-of-
Sight paths [5, 6].

While RSSI-based ranging offers an analytical approach for range estimation with minimal
calibration parameters, it provides limited information compared to the comprehensive range
details that can be extracted from the entire Channel Impulse Response (CIR). In order to
enhance RSSI-based ranging, researchers such as K. Wu et al. [7] have harnessed Channel State
Information (CSI) to develop a more precise propagation model. This approach has resulted in
improved accuracy when compared to traditional RSSI-based methods. It’s noteworthy that
certain studies [8] have undertaken an analysis of the CRB for CSI-based localization. In their
analysis, they preprocessed the CSI data to obtain the average intensity of CSI and delved into
establishing a relationship between this average intensity and distance. It’s worth mentioning
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that they solely focused on the first cluster but not other clusters, which typically contains
propagation distance information. In contrast, our proposed approach diverges from theirs.
We initiate range estimation by utilizing the Power Delay Profile (PDP) of identifiable multiple
paths.

Our approach to PDP-based ranging involves utilizing the fading information of LoS and
NLoS paths to estimate the LoS distance. The distance-dependent attenuation introduces
an upper bound mask on the PDP, further influenced by random effects such as shadowing
and reflection/diffraction. Therefore, building a statistical model that accounts for propagation
distance and PDP is essential. Over the years, various models have been proposed for microwave
signal propagation attenuation with respect to (w.r.t.) average power fading [9, 10, 11]. For
instance, the Saleh-Valenzuela model [10] presents received signal rays arriving in clusters
with independent uniform phases and independent Rayleigh amplitudes decaying exponentially
with cluster and ray delays. Additionally, the relationship between average power attenuation
and propagation distance has been studied in indoor and outdoor environments [12, 13, 14]. G.
Steinböck et al. [13] proposed an indoor model incorporating a delay power spectrum with a
primary component (early) following an inverse distance power law (𝑑−𝑛) and a reverberant
component (tail) decaying exponentially with distance for indoor environments. Based on these
models, multi-path fading coefficients are expected to be correlated with propagation distances,
with their magnitudes following a Rayleigh distribution whose variance depends on the LoS
distance plus NLoS delay distance.

In this paper, we analyze the theoretical performance of the PDP-based ranging approach
and the RSSI-based ranging approach using PDP with Saleh-Valenzuela model and the indoor
model proposed by G. Steinböck et al, considering random shadowing, reflection/diffraction
attenuation effects and the discrete nature of multipath. We derive the CRB for PDP-based
range estimation via joint parameters estimation and marginalized range estimation for indoor
environments. Furthermore, we present a novel CRB for range estimation based on RSSI by
analyzing each path’s fading under the selected propagation fading model rather than setting
them as fixed numbers. Through simulation, we preliminarily verify that PDP-based ranging has
better theoretical performance than RSSI-based ranging. This finding suggests that PDP-based
ranging is worth exploring in different application scenarios.

This paper is organized as follows: In Section II, we introduce the OFDM model and the
selected channel fading model. Sections III and IV delve into the joint parameters estimation
CRB and the marginalized ranging estimation CRB for PDP-based ranging, respectively. In
Section V, we derive the CRB of classical RSSI-based ranging. Section VI presents the simulation
experiments and analysis of the results. Finally, in Section VII, we make a conclusion.

2. System Model

2.1. OFDM Model

The OFDM model we are considering assumes an OFDM symbol length of 𝐿, consisting of
a Line-of-Sight (LoS) path and 𝐾 Non-Line-of-Sight (NLoS) propagation paths. This model
operates with a sampling period of 𝑇𝑠 and an OFDM symbol period of 𝑇0. One advantage the
OFDM model is the elimination of need for precise knowledge of the pulse shape, as it makes



use of pilot subcarriers within the pulse shape’s passband.
The received signal vector 𝑦 in the OFDM system can be expressed as:

𝑦 = 𝑋𝑇𝑎+ 𝑣 = 𝐻𝑎+ 𝑣, (1)

where the received signal vector 𝑦 ∈ 𝒞𝐿×1 is defined as:

𝑦 =

⎡⎢⎣𝑦[𝑠1]...
𝑦[𝑠𝐿]

⎤⎥⎦ ; (2)

The matrix 𝑋 ∈ 𝒞𝐿×𝐿 is filled with pilots and given by:

𝑋 =

⎡⎢⎢⎣
𝑋[𝑠1]𝑒

𝑗2𝜋𝑠1𝑇0
𝐿𝑇𝑠 · · · 0

...
. . .

...

0 · · · 𝑋[𝑠𝐿]𝑒
𝑗2𝜋𝑠𝐿𝑇0

𝐿𝑇𝑠

⎤⎥⎥⎦ ; (3)

The matrix 𝑇 ∈ 𝒞(𝐿×(𝐾+1)) includes pulse shape filtered delayed path responses and is shown
as:

𝑇 =

⎡⎢⎢⎣
𝑃 [𝑓𝑠1 ]𝑒

−𝑗2𝜋𝑠1𝜏0
𝐿𝑇𝑠 · · · 𝑃 [𝑓𝑠1 ]𝑒

−𝑗2𝜋𝑠1𝜏𝐾
𝐿𝑇𝑠

...
. . .

...

𝑃 [𝑓𝑠𝐿 ]𝑒
−𝑗2𝜋𝑠𝐿𝜏0

𝐿𝑇𝑠 · · · 𝑃 [𝑓𝑠𝐿 ]𝑒
−𝑗2𝜋𝑠1𝜏𝐾

𝐿𝑇𝑠

⎤⎥⎥⎦ , (4)

where 𝜏 and 𝑃 represent the propagation delay and the pulse shape, respectively.
The vector 𝑎 ∈ 𝒞(𝐾+1)×1 indicates the complex attenuation coefficient (amplitude 𝑚 ∈

𝒞(𝐾+1) and phase 𝜑 ∈ 𝒞(𝐾+1)) and is presented as:

𝑎 =

⎡⎢⎣𝑎0...
𝑎𝑘

⎤⎥⎦ =

⎡⎢⎣𝑚0𝑒
𝑗𝜑0

...
𝑚𝑘𝑒

𝑗𝜑𝑘

⎤⎥⎦ = 𝒟(e𝑗𝜑)𝑚 = 𝒟(𝑚)e𝑗𝜑, (5)

where 𝒟(*) represents an operation that converts a vector to a diagonal matrix. The vector
𝑣 ∈ 𝒞𝐿×1 is a complex Gaussian noise vector, and each element 𝑣𝑖 follows a distribution
𝒞𝒩 (0, 𝜎2

𝑣).
Firstly, we assume that each 𝜑𝑖 in 𝜑 is an independent and identically distributed (i.i.d.)

random variable drawn from a uniform distribution on the interval [0, 2𝜋).
Secondly, we consider the matrix 𝑋 to be known and 𝑇 to have been estimated prior to

ranging estimation. Additionally, we presume that the estimation error of 𝑇 is negligible, as
this paper does not focus on examining its bias impact.

Furthermore, we assume that the multipath scenario includes distinguishable LoS path and
NLoS paths. In this context, each delay 𝜏𝑖 between the 𝑖𝑡ℎ NLoS path and the LoS path is
measurable with negligible error. This assumption is grounded in the understanding that the
measurement of delays is considerably more accurate compared to the estimation of path
complex amplitudes.



Additionally, we assume that the majority of the system’s subcarriers are within the pulse
shape’s passband. In this region, the function𝑃 (𝑓) representing the pulse shape is approximately
equal to 1. This assumption simplifies the model by considering that most subcarriers experience
minimal distortion or attenuation within the passband.

2.2. Rayleigh Fading Amplitudes

According to the Saleh-Valenzuela model [5], by identifying the first ray of each cluster as the
LoS path and the remaining rays as NLoS paths, the probability density function of the fading
amplitude 𝑚𝑘 for the 𝑘-th path can be described by a Rayleigh distribution:

𝑓(𝑚𝑘|𝜎2
𝑑𝑘
) = 2𝑚𝑘

𝜎2
𝑑𝑘

e
− 𝑚2

𝑘
𝜎2
𝑑𝑘 , (6)

where 𝜎2
𝑑𝑘

represents the average power gain of the 𝑘-th path. It is evident that 𝜎2
𝑑𝑘

is associated
with the propagation distance 𝑑𝑘 of the 𝑘-th path.

2.3. LoS + Reverberating NLoS PDP Mode

According to the indoor model proposed by G. Steinböck et al. [6], the average power gain can
be decomposed into the primary LoS component and the NLoS reverberating component. The
gain of the LoS and NLoS paths at a distance 𝑑 is given by:

𝐺(𝑑) =

⎧⎨⎩ 𝐺0

(︁
𝑑ref
𝑑

)︁𝑛
; LoS,

𝐺0

(︁
𝑑ref
𝑑

)︁𝑛
+𝐺0,rev𝑇 e

−𝑑
𝑐𝑇 ; NLoS,

, (7)

where 𝐺0 represents the gain at an arbitrary reference distance 𝑑ref, 𝐺0,rev is the reference gain
of the reverberant component, 𝑇 is the reverberation time, 𝑐 is the speed of light, and 𝑛 is the
environment path gain exponent.

For localization estimation, we assume that the values of 𝐺0 and 𝐺0,rev at a reference distance
of 1 meter and the value of 𝑇 are known prior information. Therefore, for each path 𝑘 with a
distance 𝑑𝑘, the average expected gain 𝜎2

𝑑𝑘
can be expressed as:

𝜎2
𝑑𝑘

= 𝐺(𝑑𝑘) =

{︃
𝐺0𝑑

−𝑛
0 ; 𝑘 = 0,

𝐺0𝑑
−𝑛
𝑘 +𝐺1e

−𝑑𝑘
𝑐𝑇 ; 𝑘 ̸= 0,

(8)

where 𝐺1 represents 𝐺0,rev𝑇 . Furthermore, 𝜎2
𝑑𝑘

in (6) is a specific expression of 𝐺(𝑑𝑘). Addi-
tionally, for each NLoS path distance 𝑑𝑘, it can be represented as:

𝑑𝑘 = 𝑑0 + 𝑐𝜏𝑘, (9)

where 𝜏𝑘 is the delay time from the LoS path to the 𝑘-th NLoS path, and it is measurable with
negligible error as previously hypothesized.



3. Joint Range Estimation CRB for PDP-Based Ranging

To model the LoS path distance 𝑑0, we apply a Markov chain, disregarding any information about
𝑑0 in 𝜑 and 𝑇 . This means that we consider 𝑑0 to be independent of the complex attenuation
coefficients and the pulse shape filtered delayed path response.

By ignoring the information about 𝑑0 in 𝜑 and 𝑇 , we assume that the variations or dynamics
of 𝑑0 do not directly affect or depend on the complex attenuation coefficients or the pulse shape
filtered delayed path response. Instead, the evolution of 𝑑0 is modeled using a Markov chain,
where the future values of 𝑑0 only depend on its current state and not on its past states.

This simplification allows us to analyze the behavior of 𝑑0 using the theory and techniques
of Markov chains as

𝑑0 → 𝑎 → 𝑦. (10)

For the joint parameters estimation of 𝜃 = [𝑑0,𝑚,𝜑], we can express the Fisher Information
Matrix (FIM) as below:

𝐹𝐼𝑀 = 𝐸𝑦,𝑚,𝜑

[︁
−𝜕2 log 𝑓(𝑦,𝑚,𝜑|𝑑0)

𝜕𝜃𝜕𝜃⊺

]︁
= 𝐸𝑦,𝑚,𝜑

⎡⎣𝐽𝑑0𝑑0 𝐽𝑑0𝑚 𝐽𝑑0𝜑
𝐽𝑚𝑑0 𝐽𝑚𝑚 𝐽𝑚𝜑

𝐽𝜑𝑑0 𝐽𝜑𝑚 𝐽𝜑𝜑

⎤⎦ , (11)

where ⊺ is matrix transpose operator and the probability density function (pdf) 𝑓(𝑦,𝑚,𝜑|𝑑0)
can be expressed as follows:

𝑓(𝑦,𝑚,𝜑|𝑑0) = 𝑓(𝑦|𝑚,𝜑)𝑓(𝑚|𝑑0)𝑓(𝜑). (12)

Within the context of (12), it is possible to represent each pdf as follows:

𝑓(𝑦|𝑚,𝜑) =
1

𝜋𝐿𝜎2𝐿
𝑣

exp

(︂
−(𝑦 −𝐻𝒟(𝑚)e𝑗𝜑)𝐻(𝑦 −𝐻𝒟(𝑚)e𝑗𝜑)

𝜎2
𝑣

)︂
, (13)

𝑓(𝑚|𝑑0) =
𝑘=𝐾∏︁
𝑘=0

𝑓(𝑚𝑘|𝜎2
𝑑𝑘
(𝑑0)) =

𝑘=𝐾∏︁
𝑘=0

2𝑚𝑘

𝜎2
𝑑𝑘
(𝑑0)

e
− 𝑚2

𝑘
𝜎2
𝑑𝑘

(𝑑0) , (14)

𝑓(𝜑) =

𝑘=𝐾∏︁
𝑘=0

𝑓(𝜑𝑘) =

(︂
1

2𝜋

)︂𝐾+1

. (15)

where ()𝐻 denotes the conjugate transpose. Upon logarithmically processing (12), we obtain:

log 𝑓(𝑦,𝑚,𝜑|𝑑0) = log 𝑓(𝑦|𝑚,𝜑) + log 𝑓(𝑚|𝑑0) + log 𝑓(𝜑). (16)

Through the process of derivation, we can express each element inside (11) as follows:

𝐽𝑑0𝑑0 = −𝜕2 log 𝑓(𝑚|𝑑0)
𝜕𝑑20

, (17)

𝐽𝑑0𝑚 = 𝐽⊺
𝑚𝑑0

= −𝜕2 log 𝑓(𝑚|𝑑0)
𝜕𝑑0𝜕𝑚⊺ , (18)



𝐽𝑑0𝜑 = 𝐽⊺
𝜑𝑑0

= −𝜕2 log 𝑓(𝑦,𝑚,𝜑|𝑑0)
𝜕𝑑0𝜕𝜑

⊺ = 0, (19)

𝐽𝑚𝑚 = −𝜕2 log 𝑓(𝑦|𝑚,𝜑)

𝜕𝑚𝜕𝑚⊺ − 𝜕2 log 𝑓(𝑚|𝑑0)
𝜕𝑚𝜕𝑚⊺ , (20)

𝐽𝜑𝜑 = −𝜕2 log 𝑓(𝑦|𝑚,𝜑)

𝜕𝜑𝜕𝜑⊺ − 𝜕2 log 𝑓(𝜑)

𝜕𝜑𝜕𝜑⊺ , (21)

𝐽𝑚𝜑 = 𝐽⊺
𝜑𝑚 = −𝜕2 log 𝑓(𝑦|𝑚,𝜑)

𝜕𝑚𝜕𝜑⊺ . (22)

Utilizing Equation (11), we can calculate the CRB of 𝑑0 when performing joint parameters
estimation:

𝐶𝑅𝐵𝑑0 = {𝐸𝑦,𝑚,𝜑[𝐽𝑑0𝑑0 ]− 𝐸𝑦,𝑚,𝜑[𝐽𝑑0𝑚][𝐸𝑦,𝑚,𝜑[𝐽𝑚𝑚]]−1𝐸𝑦,𝑚,𝜑[𝐽𝑚𝑑0 ]}−1. (23)

The expectations w.r.t. 𝑚, 𝜑, and 𝑦 inside (23) can be expressed as follows:

𝐸𝑦,𝑚,𝜑𝐽𝑚𝑚 =
2

𝜎2
𝑣

𝑑𝑖𝑎𝑔(𝐻𝐻𝐻 +
1

2
𝐼), (24)

𝐸𝑦,𝑚,𝜑𝐽𝑑0𝑑0 = 𝐺0 𝑛
2 𝑑

−(𝑛+2)
0 +

𝐾∑︁
𝑘=1

⎛⎝𝑛𝐺0𝑑
−𝑛−1
𝑘 + 𝐺1

𝑐𝑇 e
−𝑑𝑘
𝑐𝑇

𝐺0𝑑
−𝑛
𝑘 +𝐺1e

−𝑑𝑘
𝑐𝑇

⎞⎠2

, (25)

𝐸𝑦,𝑚,𝜑𝐽𝑑0𝑚 = 𝐸𝑦,𝑚,𝜑𝐽
⊺
𝑚𝑑0

=

⎡⎢⎢⎣𝑛𝜋𝑑𝑛−2
2

0 𝐺
− 1

2
0 , · · · ,

√
𝜋

(︂
𝐺0 𝑛
𝑑𝑛+1
𝑘

+ 𝐺1 e
− 𝑑𝑘

𝑇 𝑐

𝑇 𝑐

)︂
(︁
𝐺1 e

− 𝑑𝑘
𝑇 𝑐 + 𝐺0

𝑑𝑛𝑘

)︁3/2 , · · ·

⎤⎥⎥⎦ , (26)

where 𝑑𝑖𝑎𝑔() is the operation of retaining the diagonal elements while setting all the non-
diagonal elements to 0 of the matrix and 𝐼 represents the identity matrix.

Having considered all the factors mentioned earlier, we can now proceed to calculate the
joint estimation CRB for the estimation of 𝑑0 w.r.t. PDP-based ranging:

𝐶𝑅𝐵𝑑0 =

[︂∑︀𝐾
𝑘=1

(︃
𝑛𝐺0𝑑

−𝑛−1
𝑘 +

𝐺1
𝑐𝑇

e
−𝑑𝑘
𝑐𝑇

𝐺0𝑑
−𝑛
𝑘 +𝐺1e

−𝑑𝑘
𝑐𝑇

)︃2

+𝐺0 𝑛
2 𝑑

−(𝑛+2)
0 − 𝜎2

𝑣𝜋𝑛
2𝑑

(𝑛−2)
0

2𝐺0

(︁∑︀𝐿
𝑙=1 |ℎ𝑙0|2 +

1
2

)︁−1

−𝜎2
𝑣𝜋
2

∑︀𝐾
𝑘=1

⎛⎝ 𝐺0 𝑛

𝑑𝑛+1
𝑘

+
𝐺1 e

− 𝑑𝑘
𝑇 𝑐

𝑇 𝑐

⎞⎠2

(︂
𝐺1 e

− 𝑑𝑘
𝑇 𝑐+

𝐺0
𝑑𝑛
𝑘

)︂3

(︁∑︀𝐿
𝑙=1 |ℎ𝑙𝑘|2 +

1
2

)︁−1
]︂−1

.

(27)

4. Marginalized Range Estimation CRB for PDP-Based Ranging

According to (6), the NLoS path complex attenuation coefficients 𝑎 ∈ 𝒞(𝐾+1)×1 that each
element 𝑎𝑘 is an i.i.d. complex zero-mean Gaussian random variable can be expressed as



follows:

𝑎 ∼ 𝒞𝒩 (0,𝐶𝑎𝑎), 𝐶𝑎𝑎 =

⎡⎢⎣𝜎
2
𝑑0

· · · 0
...

. . .
...

0 · · · 𝜎2
𝑑𝐾

⎤⎥⎦ . (28)

To estimate 𝑑0 directly and solely based on 𝑦 ∈ 𝒞𝐿×1, we can estabilish the pdf of 𝑦 given
𝜎2(𝑑0) ∈ ℛ(𝐾+1)×1 as follows:

𝑓(𝑦|𝜎2(𝑑0)) = 𝜋−𝐿(det(𝐶𝑦𝑦))
−1e−𝑦𝐻𝐶−1

𝑦𝑦𝑦, (29)

where
𝐶𝑦𝑦 = 𝐻𝐶𝑎𝑎𝐻

𝐻 + 𝜎2
𝑣𝐼, 𝜎2(𝑑0) = [𝜎2

𝑑0 · · · 𝜎2
𝑑𝐾

]⊺. (30)

To compute the FIM from the pdf 𝑓(𝑦|𝜎2(𝑑0)), which is Gaussian with zero mean and covariance
𝐶𝑦𝑦 , the FIM can be calculated as follows:

𝐽𝑑0𝑑0 = (
𝜕𝜎2(𝑑0)

𝜕𝑑0
)⊺𝐽𝜎2(𝑑0)𝜎2(𝑑0)(

𝜕𝜎2(𝑑0)

𝜕𝑑0
). (31)

For 𝐽𝜎2(𝑑0)𝜎2(𝑑0), its element 𝐽𝜎2(𝑑0)𝜎2(𝑑0)𝑖,𝑘 can be derived as:

𝐽𝜎2(𝑑0)𝜎2(𝑑0)𝑖,𝑘 = tr

{︃
𝐶𝑦𝑦

𝜕𝐶−1
𝑦𝑦

𝜕𝜎2
𝑑𝑖

𝐶𝑦𝑦

𝜕𝐶−1
𝑦𝑦

𝜕𝜎2
𝑑𝑘

}︃
= |𝑒𝑖𝐻𝐻𝐻𝐶−1

𝑦𝑦𝐻𝑒𝑘|2. (32)

where 𝑒𝑖 ∈ ℛ(𝐾+1)×1 is a column vector with the 𝑖-th element being 1 and all other elements
being 0. The trace operation, denoted by 𝑡𝑟(·), computes the sum of the diagonal elements of a
matrix. With these definitions, we can compute the FIM as follows:

𝐽𝜎2(𝑑0)𝜎2(𝑑0) = (𝐻𝐻𝐶−1
𝑦𝑦𝐻)⊙ (𝐻𝐻𝐶−1

𝑦𝑦𝐻)*, (33)

where ⊙ represents the Hadamard product (element-wise multiplication) and * denotes the
conjugate operation. And

𝜕𝜎2(𝑑0)

𝜕𝑑0
=

[︃
𝜕𝜎2

𝑑0

𝜕𝑑0
· · ·

𝜕𝜎2
𝑑𝐾

𝜕𝑑0

]︃⊺
, (34)

where 𝑘𝑡ℎ element can be presented as:

𝜕𝜎2
𝑑𝑘

𝜕𝑑0
=

{︃
−𝑛𝐺0𝑑

−𝑛−1
0 , 𝑘 = 0,

−𝑛𝐺0𝑑
−𝑛−1
𝑘 − 𝐺1

𝑐𝑇 e
−𝑑𝑘
𝑐𝑇 , 𝑘 ̸= 0.

(35)

In conclusion, with (27) (28) and (29), the marginalized CRB of 𝑑0 w.r.t. PDP-based ranging can
be calculated as follows:

𝐶𝑅𝐵𝑑0 =

[︂
(
𝜕𝜎2(𝑑0)

𝜕𝑑0
)⊺𝐽𝜎2(𝑑0)𝜎2(𝑑0)(

𝜕𝜎2(𝑑0)

𝜕𝑑0
)

]︂−1

. (36)



5. CRB FOR Classical RSSI-Based Ranging

In the case where all data subcarriers can be used and considering the channel model, the RSSI
can be measured from the squared Euclidean norm of the magnitude vector 𝑦. Taking into
account the law of large numbers, we can express ‖𝑦‖2 as:

‖𝑦‖2 = 𝐸𝑣‖𝑦‖2, (37)

which represents the sum of squared magnitudes of the individual subcarriers.
Utilizing the squared Euclidean norm, the RSSI measurement provides an aggregate measure

of the received signal strength across all the subcarriers, enabling an overall assessment of the
signal power.

Since we assume that most of the subcarriers used for transmission are within the passband
of the pulse slope where 𝑃 (𝑓) ≈ 1, 𝐸𝑣‖𝑦‖2 can be derived to:

𝐸𝑉 ‖𝑦‖2 = 𝛼‖𝑎‖2 + 𝛽 = (
∑︀𝐿

𝑖=1𝑋
2
𝑖 )‖𝑎‖2 + 𝐿𝜎2

𝑣 , (38)

where
‖𝑎‖2 =

∑︀𝐾
𝑘=0 |𝑎𝑘|2 =

∑︀𝐾
𝑘=0(𝑎

𝑟𝑒
𝑘

2 + 𝑎𝑖𝑚𝑘
2
). (39)

Using pilots to estimate the channel and perform interference cancellation, the complex attenu-
ation coefficient 𝑎𝑘 = 𝑎𝑟𝑒𝑘 + 𝑗𝑎𝑖𝑚𝑘 can be decomposed into its real part 𝑎𝑟𝑒𝑘 and imaginary part

𝑎𝑖𝑚𝑘 , both of which are Gaussian random variables. Specifically, we have 𝑎𝑟𝑒𝑘 ∼ 𝒩 (0,
𝜎2
𝑘
2 ) and

𝑎𝑖𝑚𝑘 ∼ 𝒩 (0,
𝜎2
𝑘
2 ).

For the LoS path (𝑘 = 0) and NLoS paths (𝑘 ̸= 0), the variances 𝜎2
𝑘 of the complex attenuation

coefficients can be given as follows:

• For the LoS path (𝑘 = 0):
𝜎2
0 = 𝐺0𝑑

−𝑛
0 ; (40)

• For the NLoS paths (𝑘 ̸= 0):

𝜎2
𝑘 = 𝐺0𝑑

−𝑛
𝑘 +𝐺1e

−𝑑𝑘
𝑐𝑇 , (41)

where 𝐺0 is the gain at an arbitrary reference distance 𝑑𝑟𝑒𝑓 , 𝐺1 is the reference gain of the
reverberant component, 𝑛 is the environment path gain exponent, 𝑐 is the speed of light, and 𝑇
is the reverberation time. The variables 𝑑0 and 𝑑𝑘 represent the distances of the LoS path and
NLoS paths, respectively.

Therefore, the real part 𝑎𝑟𝑒𝑘 and imaginary part 𝑎𝑖𝑚𝑘 of 𝑎𝑘 are Gaussian random variables with

variances 𝜎2
𝑘
2 , where 𝜎2

𝑘 is given by the expressions mentioned above. If we assume that the real
part 𝑎𝑟𝑒𝑘 and imaginary part 𝑎𝑖𝑚𝑘 of 𝑎𝑘 have the same variance 𝜎2

0 for all 𝑘, then the magnitude
squared ‖𝑎‖2 follows a Chi-squared distribution with 2(𝐾 + 1) degrees of freedom. The
probability density function (PDF) of the random variable 𝑧 = |𝑎|2 given 𝜎0 can be expressed
as:

𝑓(2𝐾+2)(𝑧|𝜎2
0) =

𝑧𝐾𝑒
− 𝑧

𝜎2
0

𝜎
2(𝐾+1)
0 Γ(𝐾 + 1)

, (42)



Parameter Value
SNR range from 10 dB to 60 dB, default 20 dB.
𝐿 30
𝑛 ranging from 2.0 to 2.5, default 2.0.
𝐾 random between 10 and 15.

𝑑0 (m) 20
distance of NLOS path (m) random between 1.1𝑑0 to 2.0𝑑0.

𝐺0 1
𝐺1 1

𝑇 (ns) 20

Table 1: Parameters setting

where Γ() is Gamma function and 𝑑𝑟𝑒𝑓 is chosen as 1 meter. Replacing 𝜎2
0 by a function of 𝑑0,

we can rewrite the pdf of the random variable 𝑧 = ‖𝑎‖2 as:

𝑓(2𝐾+2)(𝑧|𝑑0) =
𝑧𝐾𝑒

− 𝑧

𝐺0(
1
𝑑0

)𝑛(︁
(𝐺0(

1
𝑑0
)𝑛
)︁(𝐾+1)

Γ(𝐾 + 1)

. (43)

Additionally, it is easily to get:
𝐸𝑍(𝑧) = 𝜎2

0(𝐾 + 1). (44)

Then we can calculate CRB of estimating 𝑑0 from ‖𝑎‖2 w.r.t. classical RSSI-based ranging as

𝐶𝑅𝐵𝑑0 =
𝑑20

𝑛2(𝐾 + 1)
. (45)

6. Simulation Results

In this section, we utilize MATLAB to compute the CRB for PDP-based ranging using joint
parameter estimation and marginalized range estimation, as well as classical RSSI-based ranging.
Our simulations incorporate the indoor radio propagation model introduced in Section II,
which accounts for reverberating effects and path decay. The key parameters employed in the
simulations are outlined in Table 1.

To investigate the factors influencing localization error, we focus on two primary factors:
the Signal-to-Noise Ratio (SNR) of the channel and the path gain exponent. For each factor,
we keep all other parameters at their default values and conduct the simulation to observe the
behavior of the CRB.

The obtained performance results are presented in two figures. Figure 1 illustrates the
behavior of the square root of the CRB for PDP-based ranging as the SNR increases from 10
dB to 60 dB. As expected, the root of the CRB decreases with higher SNR, indicating improved
ranging accuracy due to the higher quality of the received signal. Notably, the performance
of PDP-based ranging surpasses that of RSSI-based ranging. Moreover, marginalized range
estimation demonstrates superior performance compared to joint estimation.



10 20 30 40 50 60

SNR of channel

0.5

1

1.5

2

2.5

3

3.5
R

o
o
t 
o
f 
C

R
B

Root of CRB of classical RSSI based ranging

Root of CRB of joint parameters estimation

Root of CRB of marginalized range estimation

Figure 1: Comparision under different SNR.

Figure 2 compares the CRBs of PDP-based ranging and RSSI-based ranging for various path
gain exponents. As the path gain exponent increases, indicating more complex propagation
environments, all CRBs decrease. However, PDP-based ranging exhibits better theoretical
performance than RSSI-based ranging across all path gain exponents. This suggests that PDP-
based ranging can deliver favorable performance even in complex environments, making it a
promising technique for localization applications. Furthermore, marginalized range estimation
outperforms joint estimation in terms of localization accuracy.

These findings highlight the advantages of PDP-based ranging and marginalized range
estimation, supporting their potential for accurate localization in diverse scenarios.

7. Concluding Remarks

In summary, this paper presents a comprehensive analysis of the Cramer-Rao Bound (CRB) for
PDP-based positioning using both joint estimation and marginalized range estimation, as well
as RSSI-based localization. The derived CRB takes into account the distance-dependent path
decay of both Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS) paths. The study investigates
the impact of various factors on the CRB, including the Signal-to-Noise Ratio (SNR) of the
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Figure 2: Comparision under different path gain exponent.

channel and the path gain exponent in different environments. The simulation results highlight
the superiority of PDP-based localization over RSSI-based localization, with PDP-based ranging
achieving better performance across different environments. Furthermore, the marginalized
range estimation approach demonstrates improved accuracy compared to joint estimation.
These findings contribute to the understanding of PDP-based localization and provide insights
into its potential for accurate positioning in real-world scenarios.
Acknowledgements This research is partially supported by the French-Germany project

5G-OPERA.
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