
HAL Id: hal-04502334
https://hal.science/hal-04502334v2

Submitted on 15 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Controllable virtual network service over a
multiadministrative multi-domain network

Stanislas Pedebearn, Slim Abdellatif, Pascal Berthou, Dariusz Nogalski,
Dallal Belabed

To cite this version:
Stanislas Pedebearn, Slim Abdellatif, Pascal Berthou, Dariusz Nogalski, Dallal Belabed. Control-
lable virtual network service over a multiadministrative multi-domain network. 27th IEEE Interna-
tional Symposium On Real-Time Distributed Computing (ISORC 2024), May 2024, Carthage, Tunis,
Tunisia. à paraître. �hal-04502334v2�

https://hal.science/hal-04502334v2
https://hal.archives-ouvertes.fr

Controllable virtual network service over a
multi-administrative multi-domain network
Stanislas Pedebearn

LAAS-CNRS, Universite de Toulouse
CNRS, UPS, Toulouse, France

spedebearn@laas.fr

Slim Abdellatif
LAAS-CNRS, Universite de Toulouse

CNRS, UPS, Toulouse, France
slim@laas.fr

Pascal Berthou
LAAS-CNRS, Universite de Toulouse

CNRS, UPS, Toulouse, France
berthou@laas.fr

Dariusz Nogalski
Military Communication Institute

Zegrze,Poland
dariusz.nogalski@wil.waw.pl

Dallal Belabed
Airbus Defence and Space

Issy-les-Moulineaux, France
dallal.belabed@airbus.com

Abstract—In this paper, we propose a controllable virtual
network service that can be provided on a multi-administrative
multi-domain network, and whose behaviour can be programmed
and customized according to user needs. A resource allocation
algorithm is proposed to compute the resources, from different
domains, that are needed to support the virtual network with
the required QoS (Quality of Service) and capabilities. An
implementation of the service on an OpenFlow-enabled multi-
domain network is described. The service is then applied in the
context of coalition military network to show its benefits and
potential.

Index Terms—virtual network embedding, SDN, slicing, multi-
administrative multi-domain networks, QoS

I. INTRODUCTION

Among the benefits brought by SDN, network
softwarization and network virtualization is the ability
to enable a variety of services that better meet current
and forthcoming user needs. Since the advent of SDN
and thanks to the flow-based forwarding promoted by
SDN and OpenFlow, many connectivity services with
various QoS guarantees, possibly set up on-demand and
adjusted dynamically, were investigated and implemented in
operational networks (e.g., [1] [2] [3]). In addition, services
that go beyond providing connectivity by including network
capabilities/functions were also extensively investigated (i.e.
service chaining/VNF chaining, e.g., [4]).

Another kind of service that is not intended for a predefined
packet flow is providing a virtual network to support all the
traffic exchanged between connecting user networks, with
some predefined performance. Such virtual network is the
interconnection of virtual nodes, hosted on physical network
nodes, via virtual links established on top of the network
infrastructure. It is not new and was considered for some
time now, especially in a single domain context (in datacenter
and cloud environements with the concept of Network as
A Service (NAAS) [5]). Also, it is a way of implementing
network slicing [6]. This work proposes an End-to-End

(E2E) multi-domain service, which provides to the user a
fully controllable (programmable) virtual network that spans
multiple domains. This network is composed of virtual nodes
optimally scattered throughout the multi-domain network and
connected with virtual links that, in turn, can span multiple
domains. A network controller is also part of the service as
well as its connecting links to the virtual nodes (see Fig.1).
More precisely, the idea is to provide a virtual network,
whose behavior can be programmed and adjusted at will.
One typical example of the service is an OpenFlow based
multi-domain virtual network with its OpenFlow controller
and OpenFlow virtual switches. Depending on the network
control applications running on the controller, different
behaviors or traffic management policies can be programmed
on the virtual network. They can even change over time
to meet evolving needs. Also, thanks to OpenFlow, virtual
nodes support a finer-grained packet forwarding than what
conventional network nodes can do (which typically apply
destination-based forwarding).

The proposed service may be useful in the context of
coalition networks. For instance, in case of federated military
networks where ally nations connect and share some of their
network infrastructure to build a multi-domain Federated
Mission Network (FMN) [7]. We assume that nations share
the same mission goals and trust each other. On top of such
multi-domain federated network, setting up specific E2E
multi-domain virtual networks (with comprehensive control
on how traffic should flow via the virtual network) is very
beneficial for a nation (or a group a nations) involved in
a mission. The nation(s) can precisely control the assigned
resources (from multiple nations) to effectively support and
adapt to the changing and diverse network traffic exchanged
during the military mission. All nations advertise their
resources which can be used for the E2E purpose. The
requesting nation (i.e., service owner) solicits the advertised
resources and then coordinates setup, modification and
decommission of the service (life-cycle on the federated

level). This coordination entity asks participating nations to
provide the resources (e.g., link with required bandwidth
and delay), but it is up to each nation (responsible for the
segment) to manage the physical resources of the segment
on the national level. From the mission goals perspective,
it might be reasonable to split the role of service owner
(service lifecycle) from the role of service user that operates
the virtual network. The former guarantees the lifecycle
efficiency (e.g., time to setup/modify the service) as entity
being topologically close to each nation. The latter one is
the entity ultimately responsible for command and control
of the network, e.g. the operational HQ of the international
troops (or one of its subordinate entities, not necessarily the
same as service owner). Such entity would be responsible
for programming the service usage (steer the set of traffic
paths within the virtual network) applying different policies
e.g. re-program already embedded paths when priority traffic
comes into play (e.g., urgent medical evacuation, important
intelligence data from a drone etc.) drop or reschedule low
priority traffic.

In this paper, we investigate the advantages of such a
service, we propose an ILP formulation for the embedding
of our proposed service in a multi-domain context. We also
propose a prototype implementation of the service on a
heterogeneous platform that combines network emulators and
physical SDN/OpenFlow switches and describe its operation
by enforcing a basic traffic management policy.

This paper is organized as follows. Section II describes
the proposed service and the considered multi-domain
substrate network. Section III proceeds with the mathematical
formulation of the embedding of the proposed service on the
considered substrate network model. Section IV describes the
implementation of the service and demonstrates its operation.
Section V highlights its benefits and some of its applications
and positions our work with respect to the state of the
art. Section VI concludes the paper and draws up some
perspectives of this work.

: Virtual node : Internal Network node

Domain 1 (SI) Domain 2 Domain 3

Multi-administrative

Multi-domain network
C

VN1

VN2

VN3

VN1

VN2

VN3

Controllable Multi-domain

virtual network

: Edge/Border node : Edge node able host virtual nodes

User-3

Network

User-1

Network

User-2

Network

Fig. 1. Illustration of the proposed service.

VN1

User-3

Network

User-2

Network

VN2

VN3

C
Network control app A

Network control app B
…

Controllable Multi-domain

virtual network

User-1

Network

App C

: Control network

: Data network

: Management link

Fig. 2. Service components.

II. CONSIDERED SERVICE AND MUTI-DOMAIN SUBSTRATE
NETWORK

A. Proposed service

The programmable virtual network service that we are
proposing is classically composed of three different parts
(depicted in Fig.2):

• The data network in charge of conveying user traffic
that is exchanged between connecting user hosts. It is
composed of a set of virtual nodes that can be hosted
on different physical nodes located at different domains,
and a set of virtual links connecting in one hand virtual
nodes to each other and user hosts to the virtual network.
Each virtual link is characterized by a bandwidth and
delay requirement. Virtual nodes are characterized with
a maximum packet switching rate and a forwarding table
size.

• The control network, which is composed of the vir-
tual network controller (which can be hosted on any
server/datacentre from any domain) and the virtual links
that connect the controller to all virtual nodes. It is in
charge of conveying control and monitoring information
that enable virtual network programmability. If we con-
sider again the case of an OpenFlow based virtual net-
work, this control network supports all OpenFlow traffic.
Virtual control links are characterized with a bandwidth
and delay requirements. In turn, the virtual network con-
troller has processing (CPU) resource requirements. The
needed resources (control link bandwidth and processing)
are derived from the network control applications that
state the virtual network behaviour.

• Optionally, a management network/links may also be
part of the service in order to allow interactions with
the controller from remote locations. In other words,
the virtual network controller and some network control
applications can be executed on separate servers (in
user premisses). Again, some bandwidth and processing
resource requirements are typically expressed.

B. Considered multi-domain substrate network

When embedding an end-to-end multi-domain service with
some Quality of Service (QoS) guarantees, the initiating
domain must solicit multiple domains to support portions
of the service. In order to identify the appropriate portions
(exhibiting the appropriate performance guarantees), combine

them to compose the requested service, the initiating
domain relies on the aggregated topologies exposed by other
domains (i.e., compact portray of the network topology
with the available resources of each domain). In a multi-
administrative multi-domain context, domains restrict the
topology information that they disclose to other domains.
For instance, when dealing with multi-domain connectivity
services with QoS on a multi-administrative multi-domain
network, the aggregated topology that domains expose to
the others is usually limited to border nodes (Edge nodes
connected to other domains) fully or partially connected
to each other with abstract links. Some QoS/performance
information are attached to these latter, typically maximum
and available capacity, maximum transfer delay, maximum
packet loss rate, etc. Some cost information can also be used
to enforce some policy-based decisions.

To embed the proposed service, domains need to expose
more than border nodes and abstract links. Indeed, they need
to reveal some nodes that are able to host virtual nodes, the
type of virtual nodes that they can host and the available
capacity, which is used to assess whether sufficient resources
are available to support new virtual nodes instances. Also,
some compute nodes (with the available computing resources)
need to be disclosed in order to be considered as a potential
host for the virtual network controller and eventually some
network control applications.

As network slicing is gaining momentum, some domains may
also support multiple domain-level slices (each providing
predefined types of domain-level services) that can be exposed
and made available to other domains in order to compose
their end-to-end multi-domain services. In such cases, slices
can also to be disclosed as part of the aggregated topology
of a domain with the characterization of the type of services
provided by the slice and the available capacity. In this work,
we focus on transport slices, i.e., slices providing connectivity
with some predefined QoS between exposed nodes. One
example of such a slice is a Low-latency slice, which
interconnects a set of nodes exposed by the domain with a
transfer delay of a couple of tenths of milliseconds. Another
example is a slice providing efficient point-to-multipoint
transmission services between a set of nodes exposed by the
domain.

Lastly, in this work, domains can also expose non-border
nodes, which allow them to abstract/compact some of their
infrastructure topology constructs. As shown in [8], the
inclusion of these abstracted non-edge nodes allows more
precise multi-domain abstractions, leading to significant
improvement of service demand admissibility and decent
decrease of service demand admission delays, and network
and computing overhead.

Fig.3 sums up the different constructs that a domain can
use to build its aggregated topology that it wants to disclose to
other domains. Obviously, domains have sovereignty on which

10Mbps; 2ms

Max throughput: 2

Type: Low Latency

Delay: 50ms3

1

2

100Mbps; 2ms

A1

Low latency
Slice1Gbps; 10ms

Capacity: 100 compute units

Virtual solutions: OpenFlow, IP

: Abstract non border node: Edge/Border node : Domain level slice : Abstract compute node

: Edge node able to host virtual nodes

Fig. 3. Illustration of topology abstraction components.

constructs they want to use and on the aggregated topology
they want to expose, and also, on how they map the resources
attached to the exposed topology to the physical resources at
the domain level. They even have sovereignty on the multi-
domain substrate network that they derive from the aggregated
topologies exposed by domains (by applying some filtering on
advertised topologies), which is used for embedding the virtual
network service demands.

III. MATHEMATICAL FORMULATION

This section describes the mathematical formulation that
we propose to solve the online resource allocation problem
of the controllable multi-domain virtual networks on top of
the substrate multi-domain network described in the previous
section. The output of the allocation is the assignment of
the physical nodes that will host each virtual node and each
controller, as well as the set of data paths that will support
each node-to-node logical link and each controller-to-node
logical link. We assume that path-splitting is not allowed
to support all above-cited logical links. Without any loss of
generality, we assume that one single controller is in use,
and virtual nodes cannot be hosted on the same physical
node. Also, the objective of the resource allocation is to
distribute fairly network traffic and use efficiently network
resources exposed by all domains. The proposed resource
allocation method can be easily adjusted and extended to
consider different options and integrate additional constraints
regarding the placement of nodes and the controller(s).

Below, the substrate network and virtual network demand
models are described. Then, the variables and problem
constraints are listed. Lastly, the considered objective function
is defined.

A. Multi-domain substrate Network model

The multi-domain substrate model is the interconnection
of the aggregated topologies exposed by all domains. It is
modeled as a unidirectional graph G = (N,A) where N
is the set of vertices, which correspond to exposed nodes.
A ⊆ N × N is the set of edges (i.e. the set of exposed
abstract links) connecting exposed nodes to each other.
N = Nt∪Nc∪Ns, where Nt, Nc, Ns are the set of transport
nodes (border network nodes and also abstracted non-border

nodes), compute nodes and slice nodes. Indeed, domain level
slices are also modeled as nodes; they are connected to the
nodes that either send to or receive packets from the slice.
The performance of the service (delay, etc.) provided by the
slice is reported on the corresponding input edges.

To each node i ∈ Nt, is associated available switching
capacity TEi, which is the current available number of entries
of its forwarding table. The maximum size of node i flow
table is denoted by TEmax

i . In addition, node i is characterized
by a maximum forwarding rate FRmax

i , which in fact reflects
the amount of node i switching capacity (resources) that
a domain reserves to other domains (expressed in terms
of the maximum overall (whatever the incoming interface)
number of packets that the node i forwards, on behalf of
the federation, per unit of time). The remaining switching
capacity at time of arrival of a new demand is FRi. Similarly,
for each slice i ∈ Ns, we respectively denote as FRmax

i

and FRi the maximum and remaining capacity (in terms of
packet rate) that the slice can handle. Last, for each link
(i, j) ∈ A, we respectively denote by γmax

ij , γij , and lij as the
maximum capacity of the link as initially made available by
the corresponding domain to the other domains (i.e. before
any resource assignment), the available capacity of (i, j) at
time of service demand arrival, and the max packet transfer
delay along the link.

We denote as Nv ⊆ Nt ∪ Nc the set of substrate nodes that
are able to host virtual nodes. A substrate node i ∈ Nv can
either be a transport node or also, a compute node since many
network nodes (OpenFlow switches, etc.) can be implemented
in software running on servers. Without losing generality, we
assume that network controllers can only be run on compute
nodes, and that all compute nodes (i.e., in Nc) are able to
host any network controller. It is worth noting that, without
loss of generality, in this formulation, we are considering that
network controllers are supported by the resources available
at the multi-domain network (and not user premises).

Any compute node and any transport node i ∈ Nv that
is capable of hosting a virtual node is characterized by an
available and maximum node capacity, respectively denoted
as γi and γmax

i expressed in compute units. Last, the set of
types of supported virtual nodes/networks (i.e., OpenFlow, IP
router, Ethernet bridges, etc.) is denoted as Fvnet. Each type
tp ∈ Fvnet is characterized by a unitary resource cost γ(tp,unit),
which specifies the amount of resources (in compute units)
needed per units of kbps of traffic. The set of substrate nodes
that support virtual nodes of type tp is denoted as Ntp.

B. Demand model

Each demand is composed of a set of multi-domain virtual
networks D. Each virtual network k ∈ D of type tpk is a
unidirectional graph Gk = (V k, Ek) where:

• The type tpk of virtual network k can be OpenFlow,
IP, Ethernet bridge, etc. Without losing generality, we

assume here that virtual network k is composed of
homogeneous nodes, i.e., all of the same type.

• V k is the set of virtual nodes composing virtual network
k as well as the network controller (denoted as ctlk).
∀v ∈ V k − {ctlk}, virtual node v is of type tpk.

• ctlk’s computing resources requirements γ(k,clt) ex-
pressed in compute units. The user can even express in
the demand, the set of compute nodes that are allowed
to host the network controller, denoted as Nk

ctl ⊆ Nc.
γ(k,clt) is specific to each virtual network and typically
depends on the number of nodes under the control of
the network controller and from the network Operating
System (Network OS) services that the controller imple-
ments and to a lesser extent from the network control
applications that control the virtual network.

• Ek ⊆ V k ×V k the set of virtual links connecting virtual
nodes to each other and the network controller to virtual
nodes. Each virtual link (v, v′) ∈ Ek has a bandwidth
requirement of bk,(v,v

′), and a maximum transfer delay
of Lk,(v,v′).

• A maximum packet size of pk.

C. Resource-related assignment variables

The output of the resource allocation algorithm is the set
of substrate nodes that will host each virtual node of each
virtual network request k ∈ D (with the required resources)
and, also, the set of data paths (routes with the bandwidth
allocations at each supporting substrate link and the number
of forwarding table entries at each crossed node) that will
support each virtual link composing virtual network k (i.e.,
those connecting virtual nodes but also those that will transport
control traffic between the network controller and the nodes).
Hence, we distinguish the following variables:

• zk,vi : is a Boolean variable, which specifies whether
virtual node v ∈ V k is embedded in the substrate node
i ∈ Nv , i.e., zk,vi = 1, if node i hosts virtual node v, 0
otherwise. Also, we denote as zk,ctli the binary variable
that indicates whether node i ∈ Nc hosts the controller;

• ϕ
k,(v,v′)
(i,j) : represents the bandwidth assigned to the packets

of virtual link (v, v′) ∈ Ek that are flowing from node v
to node v′ at link (i, j) ∈ A;

• x
k,(v,v′)
(i,j) : is a Boolean variable which reflects whether the

flow of packets of virtual link (v, v′) ∈ Ek is supported
by the substrate link (i, j) ∈ A (i.e., x

k,(v,v′)
(i,j) = 0

if ϕ
k,(v,v′)
(i,j) = 0; 1 otherwise. These variables will be

constrained to prevent any flow-splitting, i.e., one single
data-path is used to support virtual link (v, v′);

• TEk,(v,v′)
i : specifies the number of entries that are in-

stalled in node i ∈ Nt forwarding table to support virtual
link (v, v′). Many options can be considered to express
switching resource consumption and integrated in the
mathematical formulation. Without losing generality, we
consider that the number of table entries needed by virtual
link (v, v′) equals one entry if at least one node i port is
either receiving or sending traffic from (v, v′).

Thus, TEk,(v,v′)
i is a Boolean variable derived as follows:

∀k ∈ D,∀i ∈ Nt,∀(v, v′) ∈ Vk,∀(j, i) ∈ A :

x
k,(v,v′)
(j,i) ≤ TEk,(v,v′)

i (1a)

x
k,(v,v′)
(i,j) ≤ TEk,(v,v′)

i (1b)

TEk,(v,v′)
i ≤

∑
(j,i)∈A

x
k,(v,v′)
(j,i) +

∑
(i,j)∈A

x
k,(v,v′)
(i,j) (1c)

D. Problem Constraints

The constraints related to the placement of virtual nodes
v ∈ V k are described in inequalities 2 to 6b. Equations 2 force
nodes from virtual network k to be only placed on substrate
nodes that support virtual node type tpk. Same logic holds
for the network controller in equations 3. Equations 4 ensure
the placement of each virtual node on one substrate node.
Equation 5 does the same for network controllers.

∀k ∈ D,∀v ∈ V k − {ctlk},∀i ∈ Nv −Ntpk : zk,vi = 0 (2)

∀k ∈ D,∀i ∈ Nc −Nk
ctl : z

k,ctl
i = 0 (3)

∀k ∈ D,∀v ∈ V k − {ctlk} :
∑
i∈Nv

zk,vi = 1 (4)

∀k ∈ D :
∑
i∈Nc

zk,ctli = 1 (5)

Inequalities 6a and 6b constrain the placement of the vertices
of a virtual link. Different options can be specified and easily

expressed. One option is to force their placement on different
domains, or even to constrain their placement on a specific
domain. The constraint that we consider below is to force
their placement on different substrate nodes.

∀k ∈ D,∀(v, v′) ∈ Ek with v and v′ ̸= ctlk,∀i ∈ Nv:

zk,vi + zk,v
′

i ≤ 1 (6a)

∀k ∈ D,∀i ∈ N : ∑
v∈Vk

zk,vi ≤ 1 (6b)

Note that the previous constraints allow the embedding of the
network controller and a virtual node on the same compute
node. Of course, this can be easily prevented by including ctlk

to inequalities 6a. Another option is to force the placement
of all virtual nodes on different substrate nodes (6b). The
constraints related to bandwidth allocations are described in
equations 7a to 10b. Equations 7a represent the usual flow
conservation constraints related to virtual link (v, v′) ∈ Ek

that connects two virtual nodes. Equation 7b states that

no bandwidth allocation is possible on links connected to
compute nodes that do not support virtual nodes. Equations
8a and 8b are the flow conservation constraints that concern
the virtual links between the controller and associated virtual
nodes.

Equations 9 and inequalities 10a, 10b ensure that path
splitting is not used to support virtual links. Equation 9
connects ϕ

k,(v,v′)
(i,j) and x

k,(v,v′)
(i,j) . Clearly, since path splitting

is disabled, the two variables are equivalent and one of them
can be removed. This said, both variables are kept for the
sake of clarity and generality and, more specifically, to easily
derive the variant of this method that allows path splitting.

∀k ∈ D,∀(v, v′) ∈ Ek with v ̸= ctlk, v′ ̸= ctlk,∀i ∈ Ns ∪Nt ∪Nv :∑
(i,j)∈A

ϕ
k,(v,v′)
(i,j) −

∑
(j,i)∈A

ϕ
k,(v,v′)
(j,i) =

{
bk,(v,v

′) · (zk,vi − zk,v
′

i) for i ∈ Nv

0 for i ∈ Ns ∪NT −Nv

(7a)

∀k ∈ D,∀(v, v′) ∈ Ek with v ̸= ctlk, v′ ̸= ctlk,∀i ∈ Nc −N ′
v,∀(i, j) ∈ A,∀(j, i) ∈ A : ϕ

k,(v,v′)
(i,j) = ϕ

k,(v,v′)
(j,i) = 0 (7b)

∀k ∈ D,∀(ctlk, v′) ∈ Ek,∀i ∈ N :

∑
(i,j)∈A

ϕ
k,(ctl,v′)
(i,j) −

∑
(j,i)∈A

ϕ
k,(ctl,v′)
(j,i) =

bk,(ctl,v

′) · (zk,ctli − zk,v
′

i) ∀i ∈ Nv ∩Nc

−bk,(ctl,v
′) · zk,v

′

i ∀i ∈ Nv −Nc

bk,(ctl,v
′) · zk,ctli ∀i ∈ Nc −Nv

0, ∀i ∈ Ns ∪Nt −Nv −Nc

(8a)

∑
(i,j)∈A

ϕ
k,(v,ctl)
(i,j) −

∑
(j,i)∈A

ϕ
k,(v,ctl)
(j,i) =

bk,(v,ctl) · (zk,vi − zk,ctli) ∀i ∈ Nv ∩Nc

−bk,(v,ctl) · zk,ctli , ∀i ∈ Nc −Nv

bk,(v,ctl) · zk,vi ∀i ∈ Nv −Nc

0 ∀i ∈ Ns ∪Nt −Nv −Nc

(8b)

∀k ∈ D,∀(v, v′) ∈ Ek,∀(i, j) ∈ A :

ϕ
k,(v,v′)
(i,j) = bk,(v,v

′) · xk,(v,v′)
(i,j) (9)

∀k ∈ D,∀(v, v′) ∈ Ek∑
(i,j)∈A

x
k,(v,v′)
(i,j) ≤ 1 (10a)

∑
(j,i)∈A

x
k,(v,v′)
(j,i) ≤ 1 (10b)

In addition to inequalities 7, inequality 11 explicitly
connects the placement of a virtual network element with the
placement of the virtual links to which it belongs.

∀k ∈ D,∀v ∈ V k,∀i ∈ Nv:

zk,vi ≤
∑

(v,v′)∈Ek

∑
(i,j)∈A

x
k,(v,v′)
(i,j) +

∑
(v′,v)∈Ek

∑
(j,i)∈A

x
k,(v′,v)
(j,i)

(11)
The following inequalities ensure that the resource assigned

to demand D does not exceed the remaining resources at
the substrate network, namely substrate links, nodes, slices,
and compute nodes. Inequalities 12 ensure that the bandwidth
assigned to all virtual links from all virtual networks of D
does not exceed the remaining bandwidth on each substrate
network’s link.

∀(i, j) ∈ A :
∑
k∈D

∑
(v,v′)∈Ek

ϕ
k,(v,v′)
(i,j) ≤ γi,j (12)

Inequalities 13 ensure that bandwidth allocations assigned
to all virtual links respect substrate nodes’ and exposed slice’s
remaining forwarding capacities.

∀i ∈ Nt ∪Ns :
∑
k∈D

∑
(v,v′)∈Ek

∑
(j,i)∈A

ϕ
k,(v,v′)
(j,i) ≤ FRi (13)

The constraints 14 ensure that the flow table entries needed
by the virtual links composing the demand D remain below
the remaining forwarding table size. As a variant to this
formulation, if virtual nodes have a requirement of, let’s say,
TEk,v , then such a requirement can be easily integrated into
inequalities 14 by adding for nodes i ∈ Nv the required table
size

∑
k∈D

∑
i∈Nv

zk,vi · TEk,v .

∀i ∈ Nt :
∑
k∈D

∑
(v,v′)∈Ek

TE
k,(v,v′)
i ≤ TEi (14)

Inequality 15 ensures that the remaining computing
capacity in compute nodes and transport nodes suffices
to support assigned virtual nodes and eventually network
controllers. The first sum computes the resources consumed
by the virtual node v. It adds the bandwidth from all virtual
links that end at v weighted by the unitary resource cost (i.e.
γtpk,unit). Indeed, as stated above, the resources consumed
by a virtual node are proportional to the rate of incoming
traffic. Referring to inequalities 2, if a node ∀i ∈ Nc − Nv ,

z
(k,v)
i = 0, this first term is zeroed. The second term concerns

compute nodes that can host network controllers (refer to
equality (3)) and adds the amount of resources that controllers
consume.

∀i ∈ Nv ∪Nc :∑
k∈D

∑
v∈V k−{ctlk}

∑
(v′,v)∈Ek

v′∈V k−{ctlk}

zk,vi · bk,(v
′,v) · γtpk,unit

+
∑
k∈D

zk,ctli · γk,clt
i ≤ γi

(15)

Inequality 16 ensures that the maximum latency associated
with each virtual link is met. As path-splitting is disabled, the
transfer delay that a packet experiences is the accumulation
of the delays experienced at each hop. Each hop, through
either a transport node or a slice node, induces a packet
transmission time bounded by pk

b(k,(v,v′)) for packets belonging
to virtual link (v, v′), and switching and propagation delays
bounded by latency l(i,j) for any link (i, j) ∈ At ∪As, where
At (resp. As) are the sets of edges in A whose one end is
either a transport node or a slice node. The latency constraints
are as follows.

∀k ∈ D,∀(v, v′) ∈ Ek :∑
(i,j)∈At∪As

x
k,(v,v′)
(i,j)

(
pk

bk,(v,v′)
+ l(i,j)

)
≤ Lk,(v,v′) (16)

E. Objective function

Different objective functions can be adopted with
this formulation. Basically, the set of variables used
in this formulation allows expressing different ways of
efficiently using the substrate network resources and also
effectively spreading the assigned resources to improve
the admissibility/acceptance of forthcoming requests. One
option is to minimize the highest link/node utilization rate
of the substrate network. Another option is to minimize a
utilization threshold that applies to all substrate network
elements. Another criterion is to minimize the number
of active elements (compute nodes, transport nodes and
even active links). Of course, all these objectives can be
expressed with this formulation. Below, the objective function
of equation (17) is only focused on minimizing the node
and link resources that are needed to support the request
D. Four terms compose the objective function. The first
aim at minimizing the average utilization of the network
substrate’s links while the second aims to minimize the
average utilization of substrate nodes’ forwarding table size.
The objective of the last two terms is to minimize the average
computing resource utilization that is used to support virtual
nodes and network controllers on the substrate network’s
nodes. Other similar sub-objectives can also be added,
especially those related to the packet forwarding capacity of
transport and slice substrate nodes.

α1 ·
1

|A′′|
·
∑

(i,j)∈A

 1

γmax
(i,j)

·

γmax
(i,j) − γ(i,j) +

∑
k∈D

∑
(v,v′)∈Ek

ϕ
k,(v,v′)
(i,j)

+ α2 ·

1

|Nt|
·
∑
i∈Nt

 1

TEmax
i

·

TEmax
i − TEi +

∑
k∈D

∑
(v,v′)∈Ek

TEk,(v,v′)
i

+ α3 ·

1

|Nv|
·
∑
i∈Nv

 1

γmax
i

·

γmax
i − γi +

∑
k∈D

∑
v∈V k−{ctrlk}

zk,vi · bk,(v
′,v) · γtpk,unit

+ α4 ·

1

|Nc|
·
∑
i∈Nc

(
1

γmax
i

·

(
γmax
i − γi +

∑
k∈D

zk,ctli · γk,clt

))
(17)

IV. SERVICE IMPLEMENTATION AND RESULTS

A. Considered use case and objectives

We consider federated military networks to showcase our
proposed service. In these networks, ally nations connect and
share some of their network infrastructure to build a multi-
domain Federated Mission Network (FMN) that spans a large
region with points of presence at the theater of operation
but also at very remote headquarters, command posts or data
centers. The goal is to leverage on this multi-domain FMN to
provide the end-to-end multi-domain communication services
needed during the coalition military missions. The end-to-end
service provided on a such network is standard IP connectivity
between end-points. Also, a crucial aspect is to efficiently use
the resources provided by nations and maximize the support of
the end-to-end services needed for the mission. In this context,
the service that we are proposing allows a nation to deploy
and operate wide-area virtual networks whose nodes can be
located at very remote locations and provided by different
nations. Since the requesting nation is granted full control
to its virtual networks, it can enforce its own policies (QoS,
security, etc.) regardless of the policies used by the other
nations that contribute to the provision of the virtual network.
Moreover, these policies can be changed over time depending
on the mission’s needs. Also, each virtual network can be
programmed to provide customized and novel services (not
only IP). This is particularly the case when provisioning an
OpenFlow-based Virtual network, which allows a flow-based
forwarding at the level of the virtual network (as opposed
to standard IP destination-based forwarding). The objectives
of the implementation are twofold. First, to show the feasi-
bility of provisioning an OpenFlow-based multi-domain vir-
tual network on an OpenFlow-enabled multi-domain substrate
network. Second, demonstrate the operation of the proposed
service by enforcing an ad-hoc QoS policy and highlight some
of its benefits.

B. Implemented prototype

The network platform is composed of three domains
belonging to three different nations. Fig.4 describes the
considered multi-domain substrate network combining the

aggregated topologies exposed by the three domains. For
simplicity, we assume that the exposed topologies resume
to domain-level topologies. This avoids dealing with the
topology aggregation policy of each domain. Hence, it
avoids the need of having a domain-level resource allocation
since the embedding that we propose at the multi-domain
(i.e., aggregated) level embeds the virtual network by
considering all domain-level resources (and not an abstraction
of these). Each domain is an OpenFlow-based network
with one domain-level OpenFlow controller and a couple of
OpenFlow switches. OpenFlow traffic between the controller
and the switches are exchanged in “in-band” mode by
assigning a dedicated VLAN and installing the appropriate
OpenFlow rules at each switch. This is part of the domain
network initialisation. Most switches are emulated OVS
(OpenVswitch) switches with the Containernet emulation
tool [9]. These are depicted in green in the figure. Some
others are PICA8 p3295 physical switches that, in turn,
implement a hardware-optimized version of OVS. We assume
that only the physical switches can host OpenFlow virtual
switches. A Compute node (server or datacentre abstraction)
is also exposed by domain 3. From a network management
perspective, each domain has a “Service Orchestrator” (SO) in
charge of orchestrating the provisioning of the multi-domain
services initiated by the domain. When solicited by other

1v

5v

2v 3v

4v

1P

Domain 1

C

SO

v P

1v 2v

4v

3v1P

C

SO

1P1v

3v

2v

C

SO

Domain 2

Domain 3

User-1

Network

User-2

Network

User-3

Network

SO

C

: Emulated OpenFlow switch : Physical OpenFlow switch : Deployed on a dedicated computer

: Service Orchestrator

: Network Controller

2P

: Compute node

Fig. 4. Network set-up.

domains, it also contributes to the provisioning of some
portions of their accepted services [10]. For simplicity, the
management traffic exchanged between the SOs is supported
“out-of-band” via a dedicated management network. Each
domain has a dedicated computer to run its Containernet
network emulation tool, the Ryu controller and the Service
Orchestrator.

The resource allocation algorithm was implemented on
the Cplex solver. It is executed by the “Service Orchestrator”
of the initiating domain upon the arrival of the service
demand. Under the above-cited assumption, when the demand
is accepted, the algorithm outputs all the required resources
(related links, switches, compute nodes from all crossed
domains) for each virtual network. The SO launches the
service deployment stage by requesting the deployment of
virtual nodes, virtual links, and controllers. On its domain, it
instructs its physical switches to instantiate one or multiple
virtual nodes, its compute nodes to instantiate a controller, and
its domain’s OpenFlow controller to generate the appropriate
OpenFlow rules to set up some portions of virtual links.
Also, it instructs other SOs to provision the needed resources
(virtual nodes, portions of virtual links, etc.) on the domain
they belong to.

For simplicity, each virtual data link is assigned a unique
VLAN identifier within a domain. To provision a virtual link,
OpenFlow rules that match this VLAN identifier are installed
on the switches along its path. If the virtual link crosses
another domain, the VLAN identifier is rewritten accordingly.
Virtual control links are assigned one VLAN identifier, their
deployment on the substrate network relies on OpenFlow rules
that jointly match the VLAN-ID and the IP addresses of the
controller and virtual nodes and transport layer information,
i.e., TCP protocol and port numbers. Clearly, this solution is
not scalable with the number of virtual links and can only be
considered for prototyping. A more effective solution is to
rely on MPLS (Multi-protocol label Switching) labels or even
on appropriately formatted MAC addresses. Regarding virtual
OpenFlow node instantiation, they take place at the physical
OpenFlow (OF) switches. A first OF bridge is instantiated,
and all the physical links to which the physical switch is
connected to are attached to it. We denote this switch as
OF-sw. The instantiation of a virtual OF node is realized by
instantiating a new OF bridge. We denote this virtual node

iP

vP
: Emulated OpenFlow switch

for virtual network service

: Physical OpenFlow switch

iv

Physical links
Patch ports

End of virtual control link End of virtual data link 2

End of virtual data link 1

Fig. 5. Virtual node implementation.

VN1

User-3

Network

User-2

Network

VN2

VN3

NetworkControl.app : Control network

: Data network

: Management link

MissionDemo.app

Monitoring.app

C

User-1

Network

Monitor.app

Fig. 6. Service request with control application.

as OF-vnode. As shown in Fig.5, OF-vnode is connected
to OF-sw via multiple “patch” ports: One “patch” port per
virtual data link and one “patch” port for the control link that
conveys OpenFlow traffic to its controller. As each virtual
link is identified with a specific VLAN, “patch” ports are
attached to the corresponding VLAN, and OpenFlow rules
based on the appropriate VLAN-ID are installed on OF-sw
to route the data and control traffic to the right virtual node.

C. Results Overview

1) Service request provisioning: We consider below a
service request composed of one OF-based virtual network
described in Fig.6. This latter specifies a topology that
represents the expected virtual network with some QoS
requirements (bandwidth, latency, etc.). In our case, we are
deploying a virtual network composed of 3 OpenFlow virtual
switches and one network controller. Three user networks
are reachable from this virtual network. A management link
connects the user 1 network to the controller. The controller
runs two control applications. The first, described below,
programs the forwarding of the virtual network according to
user needs. The second is a monitoring application reporting
the state of the virtual network to a control center located
in user1 network. Fig.7 describes the resources computed
by the resource allocation algorithm and assigned to the
requested service across the multi-domain network. The data
network component of the virtual network is as follows. The
virtual nodes were placed on three different physical switches
(right-hand side) as enforced by the embedding algorithm.
The embedding virtual data links are depicted in blue. The
controller of the virtual network is placed on the unique
compute node belonging to domain 3. The data path assigned
to the three virtual control links, which also compose the
control component of the virtual network, are depicted in
green. Last, the embedding of the management link that
connects the controller to user1’s network is depicted in red.

2) Virtual network operation: To show the operation
of this service, the requested service is deployed with
a dedicated control application. The control application
demonstrates the ability to enforce any ad-hoc QoS policy
on the virtual network. This policy is a basic representation
of the policies used in military networks. Two levels of
priority are considered: one for video streams and one for

1v

5v

2v 3v

4v

1P

Domain 1

v P

1v 2v

4v

3v1P

1P1v

3v

2v

Domain 2

Domain 3

User-1

Network

User-2

Network

User-3

Network

C

: Emulated OpenFlow switch : Physical OpenFlow switch : Deployed on a dedicated computer

: Network Controller

User-3

Network

User-2

Network

VN3

C

Controllable Multi-domain

virtual network

User-1

Network VN1

VN2

2P

: Data network resource allocation : Controller network resource allocation

: Management link resource allocation : Compute node

Fig. 7. Provisioned resources.

low-priority data streams. The QoS policy implemented in the
control application ensures that at any moment a high-priority
flow (video stream) has precedence on data streams on any
network resource. When a new video stream is launched, if
resources are available (not used by already admitted video
flows), the control application programs the virtual switches
to route the video stream. In order to protect the resources
assigned to the new video stream, when possible, some
existing low-priority streams may be rerouted along longer
and less efficient paths. If such paths are not available, they
are interrupted, i.e., traffic is filtered/dropped at the network
entrance. Fig.8 highlights the control application workflow.

The following scenario is played to illustrate the enforcement
of the QoS policy on the deployed virtual network. First, a
data stream is detected from user2 to user1 and reported to
the network controller, which assigns to the flow the shortest
path (Fig.9, step 1). A video stream is set from user2 to user1,
the controller detects a resource constraint violation on the
shortest path. Then it assigns the shortest path to the newly

Install new flow rules

on shortest path

Update installed low

priority flows rules

Is shortest path already in use ?

no yes

Is the new flow priority higher ?

Is longest paths already in use ?

Install flow rules on a

longest path

Install drop rules with

a timeout

no yes

no yes

Unknown flow reported

to the controller

Compute all path

information

Fig. 8. Control application generic behavior.

arrived video flow and reroutes the data stream on the longer
path via the upper part of the network via virtual switch
2 (Fig.9, step 2). A video stream and a low-priority data
stream are then set from user3 to user1, no more free paths
are available, the controller decides to assign the shortest
path to the video stream and to block low-priority streams
(Fig.9, step 3). When the first video stream stops, the network
controller detects it and re-assigns the data paths to the data
streams. This first data stream restarts on the shortest path
and the second gets assigned the long path (Fig.9, step 4).
When the second video stops, the controller detects it and
the second data stream is redirected to the shortest path. All
of the logic is coded in the network control application run
at the controller.

V. DISCUSSION AND RELATED WORK

The service proposed in this paper offers to the user the
opportunity to have a dedicated network that span multiple
administrative domains that it can fully manage and fully
control in order to provide customized multi-domain services.
This network is composed of virtual nodes optimally scattered
throughout the multi-domain network. When using Openflow,
virtual nodes support a finer-grained packet forwarding
than what an IP router can do. Sophisticated, homogeneous
and dynamic traffic management policies can be enforced
on the virtual network even if virtual nodes are hosted in
different domains. Also, different control applications can be
executed by the controller over time, allowing the user to
adjust the forwarding policy according to its current needs.
Naturally, many such virtual networks can be provisioned
at the same time through the multi-domain network. They
can be requested on demand and, possibly, deployed in the
time scale of minutes rather than days.We have shown that
our proposal can be useful in a FMN context. We also think
similar interest exists in the civilian context since service
providers usually have privileged partners; their respective
domains may enable such service for their own use or for
their clients.

This service assumes that, based on network/device
virtualization, domains will “logically” share their network
devices with other domains and provide them with some
decent programming capabilities on these virtualized devices.

VN1

VN2

VN3

C

U1

Drop

U2

U3

VN1

VN2

VN3

C

U1

U2

U3

Controllable Multi-domain

virtual network

VN1

VN2

VN3

C

U1

U2

U3

VN1

VN2

VN3

C

U1

U2

U3

3

2

4

1

: Low priority data : Video stream

1

2

3

4

Fig. 9. Main steps of the considered scenario.

This is much more demanding and committing than providing
“best-effort” IP transit, as in the current multi-domain
networks, and puts a lot of security and performance
commitments/requirements on the hypervisor in charge of
device virtualization.

As mentioned above virtual link and virtual network
embedding have been extensively researched for more than
a decade as shown in [11] [12]. Different variants of the
algorithms were proposed by considering various resources,
resource cost, optimization criteria and resolution methods.
With the advent of network slicing and VNF service chaining,
some recent research has also considered the context of
multi-administrative multi-domain networks. Toumi et al. [13]
adopt centralized framework, solve multi-objective (latency,
bandwidth, cost) placement of multi-domain SFCs with use
of Physical Programming optimization. Such service however
promotes a fixed packet flow behavior (defined via SFC
order) as opposed to controllable service proposed by us. The
complex multi-domain multi-stratum architecture (Taleb et
al. [14]) concentrates only on the coarse-grained slice setup
and modification (scale up/down VNF resources, use VNF
in another domain etc.) and does not address fined-grained
slice programmability by the slice tenant the way as we
propose. To the best of our knowledge, the peculiarities of
our proposed method are as follows. First, the consideration
of the three components of the virtual network: data, control
and management components. Also, our algorithm considers
the switching resources: forwarding table size as well as
the forwarding rate. Last, it takes into account domain-level
network slices.

In conclusion, in this work we go beyond current works (e.g.,
[11] [12]) and discuss the architecture of fully controllable
multi-domain virtual network. We do not only focus on
embedding the virtual links/networks to satisfy QoS (with
the proposed LP formulation) but assume programmability
of such embedded service via dedicated controller. The
placement of such SDN controller is a decision parameter
in our model. Our approach promotes more flexibility and
fined-grained policies compared to previous works.

VI. CONCLUSION

A controllable virtual network deployed on a multi-
administrative multi-domain network offers interesting oppor-
tunities. The ability to enforce homogeneous and dynamic
traffic management policies on the virtual network even if the
virtual nodes are hosted by different domains. The ability to
leverage the virtual network to provide customized and novel
end-to-end service on top of a multi-domain network. In this
paper, we have proposed a resource allocation algorithm for
such service. We have also described a prototype implemen-
tation on top of an SDN enabled multi-domain network and
elaborated on its benefits. Some perspectives to this work are
as follows. To consider the case of dynamic virtual network
with a changing topology or QoS requirements. Another point

is how to derive the virtual network topology and performance
requirements from high-level user intents.

ACKNOWLEDGMENT

This work was supported by the European Defense Agency
(EDA) project No B 1520 IAP4 GP” Software Defined Tactical
and Theatre Network (Softanet)”.

REFERENCES

[1] R. Bruschi, F. Davoli, P. Lago, A. Lombardo, C. Lombardo, C. Rametta,
and G. Schembra, “An SDN/NFV Platform for Personal Cloud Services,”
IEEE Transactions on Network and Service Management, vol. PP, pp.
1–1, Oct. 2017.

[2] R. Alvizu, G. Maier, S. Troia, V. M. Nguyen, and A. Pattavina, “SDN-
based network orchestration for new dynamic Enterprise Networking
services,” in 2017 19th International Conference on Transparent Optical
Networks (ICTON), Jul. 2017, pp. 1–4, iSSN: 2161-2064.

[3] Z. Dai, X. Wang, B. Yi, M. Huang, and Z. Li, “An SDN-Based Self-
adaptive Resource Allocation Mechanism for Service Customization,”
in Wireless Algorithms, Systems, and Applications, ser. Lecture Notes in
Computer Science, Z. Liu, F. Wu, and S. K. Das, Eds. Cham: Springer
International Publishing, 2021, pp. 192–199.

[4] M. T. Beck and J. F. Botero, “Scalable and coordinated
allocation of service function chains,” Computer Communications,
vol. 102, pp. 78–88, Apr. 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0140366416303577

[5] A. Boubendir, E. Bertin, and N. Simoni, “Flexibility and dynamicity
for open network-as-a-service: From VNF and architecture modeling
to deployment,” in NOMS 2018 - 2018 IEEE/IFIP Network Operations
and Management Symposium, Apr. 2018, pp. 1–6, iSSN: 2374-9709.
[Online]. Available: https://ieeexplore.ieee.org/document/8406135

[6] L. U. Khan, I. Yaqoob, N. H. Tran, Z. Han, and C. S. Hong,
“Network Slicing: Recent Advances, Taxonomy, Requirements, and
Open Research Challenges,” IEEE Access, vol. 8, pp. 36 009–
36 028, 2020, conference Name: IEEE Access. [Online]. Available:
https://ieeexplore.ieee.org/document/9003208

[7] G. Hallingstad and S. Oudkerk, “Protected core networking: an
architectural approach to secure and flexible communications,” IEEE
Communications Magazine, vol. 46, no. 11, pp. 35–41, Nov.
2008, conference Name: IEEE Communications Magazine. [Online].
Available: https://ieeexplore.ieee.org/document/4689242

[8] S. Pédebéarn, S. Abdellatif, P. Berthou, D. Nogalski, and
D. Belabed, “Virtual Link Embedding in Collaborative Sliced
Multi-Administrative Multi-Domain Networks,” Apr. 2024. [Online].
Available: https://laas.hal.science/hal-04502307

[9] “containernet/containernet,” Mar. 2024, original-
date: 2016-10-14T11:55:30Z. [Online]. Available:
https://github.com/containernet/containernet

[10] N. Sousa, D. Perez, R. Rosa, M. Santos, and C. Esteve Rothenberg,
“Network Service Orchestration: A Survey,” Computer Communications,
vol. 142, Mar. 2018.

[11] H. Cao, S. Wu, Y. Hu, Y. Liu, and L. Yang, “A survey
of embedding algorithm for virtual network embedding,” China
Communications, vol. 16, no. 12, pp. 1–33, Dec. 2019,
conference Name: China Communications. [Online]. Available:
https://ieeexplore.ieee.org/document/8968720

[12] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach,
“Virtual Network Embedding: A Survey,” IEEE Communications
Surveys & Tutorials, vol. 15, no. 4, pp. 1888–1906, 2013, conference
Name: IEEE Communications Surveys & Tutorials. [Online]. Available:
https://ieeexplore.ieee.org/document/6463372

[13] N. Toumi, O. Bernier, D.-E. Meddour, and A. Ksentini, “On
Using Physical Programming for Multi-Domain SFC Placement
With Limited Visibility,” IEEE Transactions on Cloud Computing,
vol. 10, no. 4, pp. 2787–2803, Oct. 2022, conference Name:
IEEE Transactions on Cloud Computing. [Online]. Available:
https://ieeexplore.ieee.org/document/9305231

[14] T. Taleb, I. Afolabi, K. Samdanis, and F. Z. Yousaf, “On Multi-
Domain Network Slicing Orchestration Architecture and Federated
Resource Control,” IEEE Network, vol. 33, no. 5, pp. 242–252,
Sep. 2019, conference Name: IEEE Network. [Online]. Available:
https://ieeexplore.ieee.org/document/8758980

