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Abstract — 

In this paper, we propose a controllable virtual network service 
that can be provided on a multi-administrative multi-domain 
network. A resource allocation algorithm is proposed to 
compute the resources from different domains that are needed 
to support the virtual network with the required QoS. An 
implementation of the service on an OpenFlow enabled multi-
domain network is described. The service is then applied in the 
context of coalition military network to show its benefits and 
potential.  

Keywords — virtual network embedding, SDN, multi-
administrative multi-domain networks, slicing, QoS 

I. INTRODUCTION  
Among the benefits brought by SDN, network 

softwarization and network virtualization is the ability to 
enable a variety of services that better meet current and 
forthcoming user needs. Since the advent of SDN and thanks 
to the flow-based forwarding promoted by SDN and 
OpenFlow, many connectivity services with various QoS 
guarantees, possibly set up on-demand and adjusted 
dynamically, were investigated and implemented in 
operational networks. In addition, services that go beyond 
providing connectivity by including network 
capabilities/functions were also extensively investigated (i.e. 
Service chaining/VNF chaining [7]).  Another kind of service 
that is not intended for a predefined packet flow is providing 
a virtual network to support all the traffic exchanged between 
connecting hosts, with some predefined performance. Such 
virtual network is the interconnection of virtual nodes (hosted 
on physical network nodes) via virtual links established on top 
of the network infrastructure.  It is not new and was considered 
for some time now, especially in a single domain context (a 
datacenter with the concept of Network as A Service (NAAS) 
[3]). Also, it is a way of implement network slicing [4].   

This work proposes an end-to-end multi-domain service, 
which provides to the user a fully controllable/programmable 
virtual network that spans multiple domains. This network is 
composed of virtual nodes optimally scattered throughout the 
multi-domain network and connected with virtual links that, 
in turn, can span multiple domains. A network 
controller/manager is also part of the service as well as its 
connecting links to the virtual nodes (see Figure 1).  Indeed, 
the idea is to provide a virtual network, whose behavior can 
be programmed and adjusted at will. One typical example of 
the service is an OpenFlow based multi-domain virtual 
network with its OpenFlow controller. Depending on the 
network control applications running on the controller, 
different behaviors or management policies can be 

programmed on the virtual network. They can even change 
over time. Also, thanks to OpenFlow, virtual nodes support a 
finer-grained packet forwarding than what a conventional 
network nodes can do (which typically apply destination 
based forwarding).  

In this paper, we investigate the advantages of such a 
service, we propose an ILP formulation for the embedding of 
our proposed service in a multi-domain context. We also 
propose a prototype implementation of the service on a 
heterogeneous platform that combines network emulators and 
physical SDN/OpenFlow switches and describe its operation 
by enforcing a basic traffic management policy.  

 

 
Figure 1. Illustration of the proposed service 

 

This paper is organized as follows. Section II describes the 
proposed service and the considered multi-domain substrate 
network. Section III proceeds with the mathematical 
formulation of the embedding of the proposed service on the 
considered substrate network model.  Section IV describes the 
implementation of the service and demonstrates its operation. 
Section V highlights its benefits and some of its applications 
and discusses the related work from literature. Section VI 
concludes the paper and draws up some perspectives of this 
work.   

II. CONSIDERED SERVICE AND MUTI-DOMAIN SUBSTRATE 
NETWORK 

A. Proposed service 
The programmable virtual network service that we are 
proposing is classically composed of three different parts 
(presented with different colors in Figure 2 : 
- the data network in charge of conveying user traffic that 

is exchanged between connecting user hosts. It is 
composed of a set of virtual nodes that can be hosted on 
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different physical nodes located at different domains, 
and a set of virtual links connecting in one hand virtual 
nodes to each other and user hosts to the virtual network. 
Each virtual link is characterized by a bandwidth and 
delay requirement. Virtual nodes are characterized with 
a maximum packet switching rate and a forwarding table 
size.    

- The control network, which is composed of the virtual 
network controller (which can be hosted on any 
server/datacentre from any domain) and the virtual links 
that connect the controller to all virtual nodes. It is in 
charge of conveying control and monitoring information 
that enable virtual network programmability. If we 
consider again the case of an OpenFlow based virtual 
network, this control network supports all OpenFlow 
traffic. 
 Virtual control links are characterized with a bandwidth 
and delay requirements. In turn, the virtual network 
controller has processing (CPU) resource requirements 
expressed in terms. The needed resources (control link 
bandwidth & processing) are derived from the network 
control applications that state the virtual network 
behaviour.   

- Optionally, a management network/links may also be 
part of the service in order to allow interactions with the 
controller from remote locations. In other words, the 
virtual network controller and some network control 
applications can be executed on separate servers (in user 
premisses).  Again, some bandwidth and processing 
resource requirements are typically expressed. 

 
FIGURE 2. SERVICE COMPONENTS 

B. Considered multi-domain substrate network 
 
When embedding an end-to-end multi-domain service with 
some Quality of Service (QoS) guarantees, the initiating 
domain must solicit multiple domains to support portions of 
the service. In order to identify the appropriate portions 
(exhibiting the appropriate performance guarantees), 
combine them to compose the requested service, the initiating 
domain relies on the aggregated topologies exposed by other 
domains (i.e., compact portray of the network topology with 
the available resources of each domain). In a multi-
administrative multi-domain context, domains restrict the 
topology information that they disclose to other domains. For 
instance, when dealing with multi-domain connectivity 
services with QoS on a multi-administrative multi-domain 
network, the aggregated topology that domains expose to the 
others is limited to border nodes (nodes connected to other 
domains) fully or partially connected to each other with 
abstract links. Some QoS/performance information are 

attached to these latter, typically maximum and available 
capacity, maximum transfer delay, maximum packet loss 
rate, etc. Some cost information can also be used to enforce 
some policy-based decisions. 
 
To embed the proposed service, domains need to expose more 
than border nodes and abstract links. Indeed, they need to 
reveal some nodes that are able to host virtual nodes, the type 
of virtual nodes that they can host and the available capacity, 
which is used to assess whether sufficient resources are 
available to support new virtual nodes instances. Also, some 
compute nodes (with the available computing resources) need 
to be disclosed in order to be considered as a potential host 
for the virtual network controller and eventually some 
network control applications.  
As network slicing is gaining momentum, some domains may 
support multiple domain-level slices (each providing 
predefined types of domain-level services) that can be 
exposed and made available to other domains in order to 
compose their end-to-end multi-domain services.  In such 
cases, slices can also to be disclosed as part of the aggregated 
topology of a domain with the characterization of the type of 
services provided by the slice and the available capacity. In 
this work, we focus on transport slices, i.e., slices providing 
connectivity with some predefined QoS between exposed 
nodes. One example of such a slice is a Low-latency slice, 
which interconnects a set of nodes exposed by the domain 
with a transfer delay of a couple of tenths of milliseconds. 
Another example is a slice providing efficient point-to-
multipoint transmission services between a set of nodes 
exposed by the domain.   
Lastly, in this work, domains can also expose non-border 
nodes, which allow them to abstract/compact some of their 
infrastructure topology constructs. As shown in [5], the 
inclusion of these abstracted non-edge nodes (that we call 
transport nodes) allows more precise multi-domain 
abstractions, leading to significant improvement of service 
demand admissibility and decent decrease of service demand 
admission delays, and network and computing overhead. 
 

 
FIGURE 3. ILLUSTRATION OF TOPOLOGY ABSTRACTION COMPONENTS  

Figure 3 sums up the different constructs that can be used by 
a domain to build its aggregated topology that it wants to 
disclose to other domains. Obviously, domains have 
sovereignty on which construct they want to use and on the 
aggregated topology they want to expose, and also, on how 
they map the resources attached to the exposed topology to the 
physical resources at the domain level. They even have 
sovereignty on the multi-domain substrate network that they 
derive from the aggregated topologies exposed by domains, 



which is used for embedding the virtual network service 
demands. 

III. MATHEMATICAL FORMULATION 
This section describes the mathematical formulation that we 
propose to solve the online resource allocation problem of the 
controllable multi-domain virtual networks on top of the 
substrate multi-domain network described in the previous 
section. The output of the allocation is the assignment of the 
physical nodes that will host each virtual node and each 
controller, as well as the set of data paths that will support each 
node-to-node logical link and each controller-to-node logical 
link. We assume that path-splitting is not allowed to support 
all above-cited logical links. Without any loss of generality, 
we assume that one single controller is in use, and virtual 
nodes cannot be hosted on the same physical node. Also, the 
objective of the resource allocation is to distribute fairly 
network traffic and use efficiently network resources exposed 
by all domains. The proposed resource allocation method can 
be easily adjusted and extended to consider different options 
and integrate additional constraints regarding the placement of 
nodes and the controller(s). 

Below, the substrate network and virtual network demand 
models are described. Then, the variables and problem 
constraints are listed. Lastly, the considered objective function 
is defined. 

A. Multi-domain substrate Network model  
The multi-domain substrate model is the interconnection of 
the aggregated topologies exposed by all domains. It is 
modeled as a unidirectional graph 𝐺 = (𝑁, 𝐴) where	𝑁	is the 
set of vertices, which correspond to exposed nodes. A⊆
𝑁	 × 𝑁 is the set of edges (i.e. the set of exposed abstract 
links) connecting exposed nodes to each other. 𝑁 = 𝑁! ∪
𝑁" ∪ 𝑁# , where 𝑁! , 𝑁" , 𝑁#  are the set of transport nodes 
(border nodes and also abstracted non-border nodes), 
computes nodes and slice nodes. Indeed, domain level slices 
are also modeled as nodes; they are connected to the nodes 
that either send to or receive packets from the slice. The 
performance of the service (delay, etc.) provided by the slice 
is reported on the corresponding edge.   
 
To each node 𝑖 ∈ 𝑁! , is associated available switching 
capacity 𝑇𝐸$, which is the current available number of entries 
of its forwarding table. The maximum size of node 𝑖 flow 
table is denoted by 𝑇𝐸$%&' . In addition, node 𝑖  is 
characterized by a maximum forwarding rate 𝐹𝑅$%&', which 
in fact reflects the amount of node i switching capacity 
(resources) that a domain reserves to other domains 
(expressed in terms of the maximum overall (whatever the 
incoming interface) number of packets that the node 𝑖  
forwards, on behalf of the federation, per unit of time). The 
remaining switching capacity at time of arrival of a new 
demand is 𝐹𝑅$ . Similarly, for each slice 𝑖 ∈ 𝑁# , we 
respectively denote as 𝐹𝑅$%&'  and 𝐹𝑅$ 	 the maximum and 
remaining capacity (in terms of packet rate) that the slice can 
handle. Last, for each link (𝑖, 𝑗) ∈ 𝐴, we respectively denote 
by 𝛾$,)%&', 𝛾$) and 𝑙$,) 	as the maximum capacity of the link as 
initially made available by the corresponding domain to the 
other domains (i.e. before any resource assignment), the 
available capacity of (𝑖, 𝑗) at time of service demand arrival 
and the max packet transfer delay along the link. 

 
We denote as 𝑁* ⊆ 𝑁! ∪ 𝑁" the set of substrate nodes that are 
able to host virtual nodes. A substrate node i ∈ 𝑁* can either 
be a transport node or also, a compute node since many 
network nodes (Openflow switch, etc.) can be implemented 
in software running on servers. Without loss of generality, we 
assume that network controllers can only be run on compute 
nodes, and that all compute nodes (i.e. 𝑁" ) can host any 
network controller. It is worth to note that, without loss of 
generality, in this formulation, we are considering that 
network controllers are supported by the resources available 
at the multi-domain network (and not user premises). Also, 
we assume that any controller can be hosted by any compute 
node. 
Any compute node and any transport node 𝑖 ∈ 𝑁*  that is 
capable of hosting a virtual node is characterized by an 
available and maximum node capacity, respectively denoted 
as 𝛾$ and 𝛾$%&' expressed in compute units. Last, the set of 
types of supported virtual nodes/networks (i.e. Openflow, IP 
router, Ethernet bridges, etc.) is denoted as 𝐹*+,!. Each type 
𝑡𝑝	 ∈ 𝐹*+,!  is characterized by a unitary resource cost 
𝛾!-,.+$!, which specifies the amount of resources (in compute 
units) needed per units of kbps of traffic. The set of substrate 
nodes that support virtual nodes of type 𝑡𝑝 is denoted as 𝑁!-. 

B. Demand Model 
 

Each demand is composed of a set of multi-domain virtual 
networks 𝐷 . Each virtual network 𝑘 ∈ 𝐷  of type 𝑡𝑝/  is a 
unidirectional graph 𝐺/ = (𝑉/ , 𝐸/) where: 
• The type 𝑡𝑝/ of virtual network 𝑘, can be OpenFlow, IP, 

Ethernet bridge, etc. Without losing generality, we 
assume here that virtual network 𝑘  is composed of 
homogeneous nodes, i.e. all of the same type.  

• 𝑉/ is the set of virtual nodes composing virtual network 
𝑘  as well as the network controller (denoted as 𝑐𝑡𝑙/ ). 
∀	𝑣 ∈ 𝑉/ − {𝑐𝑡𝑙/}, 𝑣 is of type 𝑡𝑝/. 

• 𝑐𝑡𝑙/ ’s computing resources requirements 𝛾/,"0! 
expressed in compute units. The user can even express in 
the demand, the set of compute nodes that are allowed to 
host the network controller. It denoted as 𝑁"!0/ ⊆
𝑁" .		𝛾/,"0!is specific to each virtual network and typically 
depend from the number of nodes under the control of 
the network controller and from the network Operating 
System (Network OS) services that the controller 
implements and to a less extent from the network control 
applications that control the virtual network.   

•  𝐸/ ⊆ 𝑉/ 	× 𝑉/ the set of virtual links connecting virtual 
nodes to each other and the network controller to virtual 
nodes. Each virtual link  (𝑣, 𝑣′) ∈ 𝐸/has a bandwidth 
requirement of 𝑏/,(*,*2), and a maximum transfer delay of 
L/,(*,*2)  

• a maximum packet size of p/. 

C. Resource-related assignment variables 
 
The output of the resource allocation algorithm is the set of 
substrate nodes that will host each virtual node of each virtual 
network request 𝑘 ∈ 𝐷  (with the required resources) and, 
also, the set of data paths (routes with the bandwidth 
allocations at each supporting substrate link and the number 



of forwarding table entries at each crossed node) that will 
support each virtual link composing virtual network 𝑘 (i.e. 
those connecting virtual nodes but also those that will 
transport control traffic between the network controller and 
the nodes). Hence, we distinguish the following variables: 
 

• 𝑧$
/,*: is a Boolean variable, which specifies whether 

virtual node 𝑣	 ∈ 𝑉/ is embedded in the substrate 
node 𝑖	 ∈ 𝑁* , i.e. 𝑧$

/,* = 1, if node 𝑖  hosts virtual 
node 𝑣 , 0 otherwise. Also, we denote as 𝑧$

/,"!0 the 
binary variable that indicates whether node  𝑖 ∈ 𝑁" 
hosts the controller; 

• 𝜙$,)
/,(*,*2): represents the bandwidth assigned to the 

packets of virtual link	(𝑣, 𝑣2) ∈ 𝐸/ that are flowing 
from node 𝑣 to node 𝑣′ at link (𝑖, 𝑗) ∈ 𝐴; 

•  𝑥$,)
/,(*,*2)	 : is a Boolean variable which reflects 

whether the flow of packets of virtual link (𝑣, 𝑣2) ∈
𝐸/  is supported by the substrate link (𝑖, 𝑗) ∈
𝐴	 (i.e., 	𝑥$,)

/,(*,*2) = 0		if	𝜙$,)
/,(*,*2) = 0 ; 1 otherwise. 

These variables will be constrained to prevent any 
flow-splitting, i.e. one single data-path is used to 
support virtual link (𝑣, 𝑣2); 

• 𝑇𝐸$
/,(*,*2)	: specifies the number of entries that are 

installed in node 𝑖 ∈ 𝑁! forwarding table to support 
virtual link (𝑣, 𝑣′). Many options can be considered 
to express switching resource consumption and 
integrated in the mathematical formulation. Without 
losing generality, we consider that the number of 
table entries needed by virtual link (𝑣, 𝑣2)	equals 
one entry if at least one node 𝑖  port is either 
receiving or sending traffic from (𝑣, 𝑣′) . Thus,  
𝑇𝐸$

/,(*,*2)	is a Boolean variable derived as follow: 
 
∀𝑖 ∈ 𝑁! , ∀(𝑗, 𝑖) ∈ 𝐴 ∶ 𝑥),$

/,(*,*2) ≤ 𝑇𝐸$
/,(*,*2)												(	1. 𝑎) 

 
∀𝑖 ∈ 𝑁! , ∀(𝑖, 𝑗) ∈ 𝐴 ∶ 𝑥$,)

/,(*,*2) ≤ 𝑇𝐸$
/,(*,*2)												(	1. 𝑏) 

 
∀𝑖 ∈ 𝑁! ,																																																																													(	1. 𝑐) 

	𝑇𝐸$
/,(*,*2) ≤ P 𝑥),$

/,4*,*!5

(),$)∈7

+	 P 𝑥$,)
/,(*,*2)

($,))∈7

 

D. Problem Constraints 
The constraints related to the placement of virtual nodes 

𝑣 ∈ 𝑉/ are described in inequalities 1 to 6. Equations 2 force 
nodes from virtual network 𝑘 to be only placed on substrate 
nodes that support virtual node type 𝑡𝑝/. Same logic holds for 
the network controller in equations 3. Equations 4 ensure the 
placement of each virtual node on one substrate node. 
Equation 5 does the same for network controllers.  

∀𝑘 ∈ 𝐷, ∀𝑣 ∈ 𝑉/ − {𝑐𝑡𝑙/}, ∀𝑖 ∈ 𝑁* −𝑁!-" ∶ 		 𝑧$
/,* = 0		(2) 

∀𝑘 ∈ 𝐷, ∀𝑖 ∈ 𝑁" −𝑁"!0/ ∶ 				 𝑧$
/,"!0 = 0																		(3) 

∀𝑘 ∈ 𝐷, ∀𝑣 ∈ 𝑉/ − {𝑐𝑡𝑙/} 	 ∶ 				 P 𝑧$
/,*

$∈8#

= 1											(4) 

∀𝑘 ∈ 𝐷	 ∶ 				 P 𝑧$
/,"!0

$∈8$

= 1																		(5) 

Inequalities 6 constrain the placement of the vertices of a 
virtual link. Different options can be specified and easily 
expressed. One option is to force their placement on different 
domains, or even to constrain their placement on specific 
domain. The constraint that we consider below is to force their 
placement on different substrate nodes. 

∀𝑘 ∈ 𝐷, ∀(𝑣, 𝑣2) ∈ 𝐸/	𝑤𝑖𝑡ℎ	𝑣 ≠ 𝑐𝑡𝑙/ , 𝑣2 ≠ 𝑐𝑡𝑙/ , ∀𝑖 ∈ 𝑁* ∶	 

			𝑧$
/,* + 𝑧$

/,*2 ≤ 1			(𝑒𝑞	6) 

Note that, the previous constraints allow the embedding 
the network controller and a virtual node on the same compute 
node. Of course, this can be easily prevented by including 
𝑐𝑡𝑙/to inequalities 6. 

The constraints related to bandwidth allocations are 
described in equations 7 to 10. Equations 7 represent the usual 
flow conservation constraints related to virtual link (𝑣, 𝑣2) ∈
𝐸/ that connects two virtual nodes. 

∀𝑘 ∈ 𝐷, ∀(𝑣, 𝑣2) ∈ 𝐸/	𝑤𝑖𝑡ℎ	𝑣 ≠ 𝑐𝑡𝑙/ , 𝑣2 ≠ 𝑐𝑡𝑙/ , 

∀𝑖	 ∈ 𝑁# ∪ 𝑁! ∪ 𝑁*:																												 

P 𝜙$,)
/,(*,*2)

										($,))∈7

−	 P 𝜙),$
/,4*,*!5

(),$)∈7

																														(7. 𝑎) 	

= ^𝑏
/,4*,*!5. _𝑧$

/,* − 𝑧$
/,*′`, ∀𝑖	 ∈ 𝑁*	

0, ∀𝑖	 ∈ 𝑁# ∪ 𝑁: −𝑁*
a							 

The next equations state that no bandwidth allocation is 
possible on links connected to compute nodes that do not 
support virtual nodes.  

∀𝑘 ∈ 𝐷, ∀(𝑣, 𝑣2) ∈ 𝐸/	𝑤𝑖𝑡ℎ	𝑣 ≠ 𝑐𝑡𝑙/	𝑎𝑛𝑑	𝑣2 ≠ 𝑐𝑡𝑙/ ,			 

∀𝑖	 ∈ 𝑁" −𝑁*, ∀(𝑖, 𝑗) ∈ 𝐴, ∀(𝑗, 𝑖) ∈ 𝐴: 

𝜙$,)
/,(*,*2) = 𝜙),$

/,4*,*!5 = 0							  (7.b) 

Equations 8 is the flow conservation constraints that 
concern the virtual links between the controller and associated 
virtual nodes. 

∀𝑘 ∈ 𝐷, ∀(𝑐𝑡𝑙/ , 𝑣′) ∈ 𝐸/		, ∀𝑖	 ∈ 𝑁:																												 

P 𝜙$,)
/,4"!0,*!5

($,))∈7

−	 P 𝜙),$
/,4"!0,*!5

(),$)∈7

	 = 

⎩
⎪
⎨

⎪
⎧		𝑏

/,4"!0,*!5. _𝑧$
/,"!0 − 𝑧$

/,*′`, ∀𝑖	 ∈ 𝑁* ∩ 𝑁"	

−𝑏/,4"!0,*!5. 𝑧$
/,*2	, ∀𝑖	 ∈ 𝑁* −𝑁"

𝑏/,4"!0,*!5. 𝑧$
/,"!0 , ∀𝑖	 ∈ 𝑁" −𝑁*

0,								∀𝑖	 ∈ 𝑁# ∪ 𝑁: −𝑁* −𝑁"

	(8𝑎) 

∀𝑘 ∈ 𝐷, ∀(𝑣, 𝑐𝑡𝑙) ∈ 𝐸/		, ∀𝑖	 ∈ 𝑁:																												 

P 𝜙$,)
/,(*,"!0)

($,))∈7

−	 P 𝜙),$
/,(*,"!0)

(),$)∈7

	 = 

																	

⎩
⎪
⎨

⎪
⎧𝑏

/,(*,"!0). _𝑧$
/,* − 𝑧$

/,"!0`, ∀𝑖	 ∈ 𝑁* ∩ 𝑁"	
−𝑏/,(*,"!0). 𝑧$

/,"!0 , ∀𝑖	 ∈ 𝑁" −𝑁-
𝑏/,(*,"!0). 𝑧$

/,*, ∀𝑖	 ∈ 𝑁* −𝑁"
0,								∀𝑖	 ∈ 𝑁# ∪ 𝑁: −𝑁* −𝑁"

(8𝑏) 

Equations 9 and inequalities 10 ensure that path splitting 
is not used to support virtual links. Equation 9 connects 
𝜙$,)
/,4*,*!5 and 𝑥$,)

/,4*,*!5. Clearly, since path splitting is disabled, 



the two variables are equivalent and one of them can be 
removed. This said, both variables are kept for the sake of 
clarity and generality and, more specifically, to easily derive 
the variant of this method that allows path splitting.  

∀𝑘 ∈ 𝐷, ∀(𝑣, 𝑣2) ∈ 𝐸/ , ∀(𝑖, 𝑗) ∈ 𝐴:										 

𝜙$,)
/,4*,*!5 =		 𝑏/,4*,*!5. 𝑥$,)

/,4*,*!5									(9) 

∀𝑘 ∈ 𝐷, ∀(𝑣, 𝑣2) ∈ 𝐸/:	 

P 𝑥$,)
/,4*,*!5 ≤ 1																						(10𝑎)

($,))∈7

 

P 𝑥),$
/,4*,*!5 ≤ 1

(),$)∈7

																							(10. 𝑏) 

Inequalities 11 explicitly connect the placement of a virtual 
network element with the placement of the virtual links to 
which it belongs.   

∀𝑘 ∈ 𝐷, ∀(𝑣, 𝑣2) ∈ 𝐸/ , ∀𝑖 ∈ 𝑁*, ∀(𝑖, 𝑗) ∈ 𝐴: 

𝑧$
/,* ≥ 𝑥$,)

/,4*,*!5																							(11. 𝑎) 

∀𝑘 ∈ 𝐷, ∀(𝑣′, 𝑣) ∈ 𝐸/ , ∀𝑖 ∈ 𝑁*, ∀(𝑗, 𝑖) ∈ 𝐴: 

𝑧$
/,* ≥ 𝑥),$

/,4*!,*5																								(11. 𝑏) 

∀𝑘 ∈ 𝐷, ∀𝑣 ∈ 𝑉/ , ∀𝑖 ∈ 𝑁*:	 

𝑧$
/,* ≤ P P 𝑥$,)

/,4*,*!5

($,))∈7(*,*!)∈;"
	

+	 P P 𝑥),$
/,4*!,*5

(),$)∈7(*!,*)∈;"
														(11. 𝑐) 

The following inequalities ensure that the resource assigned to 
demand 𝐷 do not exceed the remaining resources at the 
substrate network, namely substrate links, nodes, slices, and 
compute nodes. 

Inequalities 12 ensure that the bandwidth assigned to all 
virtual links from all virtual networks of 𝐷 does not exceed 
the remaining bandwidth on each substrate network’s link.  

∀(𝑖, 𝑗) ∈ 𝐴:			P P 𝜙$,)
/,(*,*2)

(*,*2)∈;"/∈<

≤	𝛾$) 																											(12) 

 

Inequalities 13 ensure that bandwidth allocations assigned to 
all virtual links respect substrate nodes’ and exposed slice’s 
remaining forwarding capacities  

∀𝑖 ∈ 𝑁! ∪ 𝑁# ∶ 	P P P 𝜙),$
/,(*,*2)

(),$)∈7(*,*2)∈;"/∈<

≤	𝐹𝑅$ 		(13)		 

 

The constraints 14 ensure that the flow table entries needed by 
the virtual links composing the demand D remain below the 
remaining forwarding table size. As a variant to this 
formulation, if virtual nodes have as requirement a forwarding 
table size of, let’s say, 𝑇𝐸/,*, then such requirement can be 
easily integrated in inequalities 14 by adding for nodes 𝑖 ∈ 𝑁* 
the required table size ∑ ∑ 𝑧$

/,*. 𝑇𝐸/,*	$∈8*/∈< . 

∀𝑖 ∈ 𝑁! :	P P 𝑇𝐸$
/,(*,*2)

(*,*2)∈;"/∈<

≤	𝑇𝐸$																			(14)		 

Inequalities 15 ensure that the remaining computing capacity 
in compute nodes and transport nodes suffices to support 
assigned virtual nodes and eventually network controllers. 
The first sum computes the resources consumed by the virtual 
node 𝑣. It adds the bandwidth from all virtual links that end at 
𝑣	 weighted by the unitary resource cost (i.e. 𝛾!-",.+$! ). 
Indeed, as stated above the resources consumed by a virtual 
node is proportional to the rate of incoming traffic. Referring 
to inequalities (2), if a node ∀𝑖 ∈ 𝑁𝑐 − 𝑁*, 	𝑧$

/,* = 0	 , this 
first term is zeroed. 

∀𝑖 ∈ 𝑁* ∪ 𝑁𝑐:	 

P P P 𝑧$
/,*

(*!,*)∈;"

*!∈=">?"!0"@

. 𝑏/,4*!,*5. 𝛾!-",.+$!

*∈=">?"!0"@/∈<

+P𝑧$
/,"!0 .

/∈<

𝜁/,"0! 					≤ 	 𝛾$ 													(15)		 

 

The second term concern compute nodes that can host 
network controllers (refer to equalities (3)) and adds the 
amount of resources that controllers consume. 

Inequalities 16 ensure that the maximum latency 
associated to each virtual link is met. As path-splitting is 
disabled, the transfer delay that a packet experiences is the 
accumulation of the delays experienced at each hop. Each hop, 
through either a transport node or slice node, induces a packet 
transmission time, bounded by -"

A",(#,#!)
 for packets belonging 

to virtual link (𝑣, 𝑣′) and switching and propagation delays 
bounded by latency 𝑙$,)  for any link (𝑖, 𝑗) ∈ 𝐴! ∪ 𝐴# , where 
𝐴!	(resp. 𝐴#) are the set of edges in 𝐴 whose one of their end 
is either a transport node or a slice node. The latency 
constraints are- as follows. 

∀𝑘 ∈ 𝐷, ∀(𝑣, 𝑣2) ∈ 𝐸/ ∶ 

	 P 𝑥$,)
/,(*,*2). n

𝑝/

𝑏/,(*,*2) + 𝑙$,)o
($,))∈7(∪7)

			≤ 	 		𝐿/,(*,*2)					(16)		 

E. Objective function 
 

Different objective functions can be adopted with this 
formulation. Basically, the set of variables used in this 
formulation allow expressing different ways of efficiently 
using the substrate network resources and also effectively 
spreading the assigned resources in order to improve the 
admissibility/acceptance of forthcoming requests. One option 
is to minimize the highest link/node utilization rate of the 
substrate network. Another option is to minimizing a 
utilization threshold that apply to all substrate network 
elements. Another criterion is to minimize the number of 
active elements (compute nodes, transport nodes and even 
active links). Of course, all these objectives can be expressed 
with this formulation. Below, the objective function of 
equation (17) is only focused on minimizing the node and link 
resources that are needed to support the request D.  Four terms 
are composing the objective function. The first aim at 
minimizing the average utilization of network substrate’s 
links while the second aim to minimize the average utilization 



of substrate nodes’ forwarding table size. The objective of the 
last two terms is to minimize the average computing resources 
utilization that are used to support virtual nodes and network 
controllers on substrate network’s nodes. Other similar sub-
objectives can also be added, especially those related to the 
packet forwarding capacity of transport and slice substrate 
nodes.      

Minimize  
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IV. SERVICE IMPLEMENTATION & RESULTS 

A. Considered use case & objectives 
We consider federated military networks [1] to showcase our 
proposed service.  In these networks ally nations connect and 
share some of their network infrastructure to build a multi-
domain Federated Mission Network (FMN) that span a large 
region with points of presence at the theater of operation but 
also at very remote headquarters or command posts or 
datacenters.  The goal is to leverage on this multi-domain 
FMN to provide the end-to-end multi-domain 
communication services needed during the coalition military 
missions [1]. The end-to-end service provided on such 
network is standard IP connectivity between end-points. 
Also, a crucial aspect is to efficiently use the resources 
provided by nations and maximize the support of the end-to-
end services needed for the mission.  
In this context, the service that we are proposing allows a 
nation to deploy and operate wide area virtual networks 
whose nodes can be located at very remote locations and 

provided by different nations. Since the requesting nation is 
granted full control to its virtual networks, it can enforce its 
own policies (QoS, security, etc.) regardless of the policies 
used by the other nations that contribute to the provision of 
the virtual network. Moreover, these policies can be changed 
over time depending on mission’s needs. Also, each virtual 
network can be programmed to provide customized and novel 
services (not only IP). This is particularly the case when 
provisioning an OpenFlow based Virtual network, which 
allows a flow-based forwarding at the level of the virtual 
network (as opposed to standard IP destination-based 
forwarding).  
The objectives of the implementation are twofold. First, to 
show the feasibility of provisioning an OpenFlow-based 
multi-domain virtual network on an OpenFlow-enabled 
multi-domain substrate network. Second, demonstrate the 
operation of the proposed service by enforcing an ad-hoc QoS 
policy and highlight some of its benefits. 

B.  Implemented prototype   
 

The network platform is composed of three domains 
belonging to three different nations. Figure 4 describes the 
considered multi-domain substrate network combining the 
aggregated topologies exposed by the three domains. For 
simplicity, we assume that the exposed topologies resume to 
domain level topologies. This avoids dealing with the 
topology aggregation policy of each domain. Hence, it avoids 
the need of having a domain level resource allocation since 
the embedding that we propose at the multi-domain (i.e., 
aggregated) level embeds the virtual network by considering 
all domain-level resources (and not an abstraction of these). 
Each domain is an OpenFlow-based network with one 
domain level OpenFlow controller and a couple of OpenFlow 
switches. OpenFlow traffic between the controller and the 
switches are exchanged in “in-band” mode by assigning a 
dedicated VLAN and installing the appropriate OpenFlow 
rules at each switch. This is part of the domain network 
initialisation. Most switches are emulated OVS 
(OpenVswitch) switches with the Containernet emulation 
toolbelow[6]. These are depicted in green in the figure. Some 
others are PICA8 p3295 physical switches that, in turn, 
implement a hardware optimized version of OVS. We assume 
that only the physical switches have the capability to host 
OpenFlow virtual switches. A datacentre is also exposed by 
domain 3. From a network management perspective, , each 
domain has a “Service Orchestrator” (SO) in charge of 
orchestrating the provisioning of the multi-domain services 
initiated by the domain. When solicited by other domains, it 
also contributes to the provisioning of some portions of their 
accepted services [8]. For simplicity, the management traffic 
exchanged between the SOs is supported “out-of-band” via a 
dedicated management network. Each domain has a 
dedicated computer to run its Containernet network 
emulation tool, the Ryu controller and the Service 
Orchestrator. 
 
The resource allocation algorithm was implemented on the 
Cplex solver. It is executed by the “Service Orchestrator” of 
the initiating domain upon the arrival of the service demand. 
Under the above-cited assumption, when the demand is 
accepted, the algorithm outputs all the required resources 



(related links, switches, compute nodes from all crossed 
domains) for each virtual network. The SO launches the 
service deployment stage by requesting the deployment of 
virtual nodes, virtual links, and controllers. On its domain, it 
may instruct its physical switches to instantiate one or 
multiple virtual nodes, its compute nodes to instantiate a 
controller, and its domain’s OpenFlow controller to generate 
the appropriate OpenFlow rules to set-up some portions of 
virtual links. Also, it may instruct other SOs to provision the 
needed resources (virtual nodes, portions virtual links, etc.) 
on the domain they belong to.  
 

 
FIGURE 4 NETWORK SET-UP 

For simplicity, each virtual link is assigned a unique VLAN 
identifier within a domain. To provision a virtual link, 
OpenFlow rules that match this VLAN identifier are installed 
on the switches along its path. If the virtual link crosses 
another domain, the VLAN identifier is rewritten 
accordingly. Clearly, this solution is not scalable with the 
number of virtual links and can only be considered for 
prototyping. A more effective solution is to rely on MPLS 
(Multi-protocol label Switching) labels or even on 
appropriately formatted MAC addresses. 
 
Regarding virtual OpenFlow node instantiation, they take 
place at the physical OpenFlow (OF) switches, which in fact 
implement OVS. A first OF bridge is instantiated, and all the 
physical links to which the physical switch is connected to 
are attached to it. We denote this switch as OF-sw. The 
instantiation of a virtual OF node is realized by instantiating 
a new OF bridge. We denote this virtual node as OF-vnode. 
As shown in Figure 5, OF-vnode is connected to OF-sw via 
multiple “patch” ports: One “patch” port per virtual data link 
and one “patch” port for the control link that conveys 
OpenFlow traffic to its controller. As each virtual links is 
identified with a specific VLAN, “patch” ports are attached 
to their VLAN and OpenFlow rules based on the  appropriate 
VLAN-ID are installed on OF-sw to route the data and 
control traffic to the right virtual node. 

 

FIGURE 5 VIRTUAL NODE IMPLEMENTATION 

C. Results Overview 
1) Service request provisioning  

 
We consider below a service request composed of one OF-
based virtual network presented in Figure 6. This latter 
specifies a topology which represents the expected virtual 
network with some QoS requirements (bandwidth, latency, 
etc.). In our case, we are deploying a virtual network 
composed of 3 OpenFlow virtual switches and one network 
controller. Three user networks are reachable from this 
virtual network. 

 
 

Figure 6 service request 
 
Figure 7 describes the resources computed by the resource 
allocation algorithm and assigned to the requested service 
across the multi-domain network. The data network 
component of the virtual network is as follows. The virtual 
nodes were placed on three different physical switches (right-
hand side) as enforced by the embedding algorithm. The 
embedding virtual data links is depicted in blue. The 
controller of the virtual network is placed on the unique 
compute node belonging to domain 3. The three virtual 
control links, which also compose the control component of 
the virtual network, are depicted in green. Last, the 
embedding of the management link that connect the 
controller to user1’s network is depicted in red. 
 

 
FIGURE 7 PROVISIONED RESOURCES  

 
2) Virtual network operation 

 



To show the operation of this service, the virtual network of 
Figure 8 is requested and deployed with a dedicated control 
application. The control application demonstrates the ability 
to enforce any ad-hoc QoS policy on the virtual network. This 
policy is a basic representation of the policies used in military 
networks. Two levels of priorities are considered: one for 
video streams and one for low-priority data streams. The QoS 
policy implemented in the control application ensures that at 
any moment a high priority flow (video stream) has 
precedence on data streams on any network resource. When 
a new video stream is launched, if resources are available (not 
used by already admitted video flows), the control application 
programs the virtual switches to route the video stream. In 
order to protect the resources assigned to the new video 
stream, when possible, some existing data streams may be 
rerouted along longer and less efficient paths. If such paths 
are not available, the data stream is interrupted, i.e., its traffic 
is filtered/dropped at network entrance. Figure 9 highlights 
the control application workflow. 
 

 
Figure 8 - Service request with control application 
 
 

 
 
Figure 9: Demonstration dedicated control application 
working flow 
 
The following scenario, played to illustrates the enforcement 
of the QoS policy on the deployed virtual network. First a 
data stream is detected from user2 to user1 and reported to 
the network controller, which assigns to the flow the shortest 
path (Figure 10, pin 1). A video stream is set from user2 to 
user1, the controller detects a resource constraint violation on 
the shortest path. Then it assigns the shortest path to the 
newly arrived video flow and reroute the data stream on the 
longer path via the upper part of the network via virtual 
switch 2 (Figure 10, pin 2). A video stream is the set from 
user3 to user1, no more free paths are available, the controller 
decides to assign the shortest path to the video stream and to 
drop the data stream (Figure 10, pin 3). When, the second 
video stream stops, the network controller detects it and re-
assigns the data-path to the data stream. This latter restarts on 
the long path. When, the first video stops, the controller 

detects it and the data stream is redirected to the shortest path. 
All of the logic is coded in the network control application 
run at the controller.   
 

 
Figure 10: Main steps of the considered scenario 
 

V. DISCUSSION  
 

The service proposed in this paper offers to the user the 
opportunity to have a dedicated network that span multiple 
administrative domains that it can fully manage and fully 
control in order to provide customized multi-domain 
services.  This network is composed of virtual nodes 
optimally scattered throughout the multi-domain network. 
When using Openflow, virtual nodes support a finer-grained 
packet forwarding than what an IP router can do. 
Sophisticated, homogeneous and dynamic traffic 
management policies can be enforced on the virtual network 
even if virtual nodes are hosted in different domains. Also, 
different control applications can be executed by the 
controller over time, allowing the user to adjust the 
forwarding policy according to its current needs. Naturally, 
many such virtual networks can be provisioned at the same 
time through the multi-domain network. They can be 
requested on demand and, possibly, deployed in the time 
scale of minutes rather than days.  
We have shown that our proposal can be useful in a FMN 
context. We also think similar interest exists in the civilian 
context since service providers usually have privileged 
partners; their respective domains may enable such service 
for their own use or for their clients. 
 
This service assumes that, based on network/device 
virtualization, domains will “logically" share their network 
devices with other domains and provide them with some 
decent programming capabilities on these virtualized devices. 
This is much more demanding and committing than providing 
“best-effort” IP transit, as in the current multi-domain 
networks, and puts a lot of security and performance 
commitments/requirements on the hypervisor in charge of 
device virtualization. 
 
Virtual network embedding has been extensively researched 
for more than a decade [9],[10],[11]. Different variants of the 
algorithms were proposed by considering various resources, 
resource cost and optimization criteria. To the best of our 
knowledge, the peculiarities of our proposed variant are as 
follows. First, the consideration of the three components of the 
virtual network: data, control and management components. 
Also, our algorithm considers the switching resources: 
forwarding table size as well as the forwarding rate. Last, it 
takes into account domain-level network slices.   

VI. CONCLUSION 
A controllable virtual network deployed on a multi-
administrative multi-domain network offers interesting 
opportunities. The ability to enforce homogeneous and 
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dynamic traffic management policies on the virtual network 
even if the virtual nodes are hosted by different domains.  The 
ability to leverage the virtual network to provide customized 
and novel end-to-end service on top of a multi-domain 
network. In this paper, we have proposed a resource allocation 
algorithm for such service. We have also described a 
prototype implementation on top of an SDN enabled multi-
domain network and elaborated on its benefits. 

Some perspectives to this work are as follows. To consider the 
case of dynamic virtual network with a changing topology or 
QoS requirements. Another point is how to derive the virtual 
network topology and performance requirements from high-
level user intents.   
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