
HAL Id: hal-04502313
https://hal.science/hal-04502313

Submitted on 23 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Review of Recent Features and Improvements Added
to FERUM Software

Jean-Marc Bourinet, Cécile Mattrand, Vincent Dubourg

To cite this version:
Jean-Marc Bourinet, Cécile Mattrand, Vincent Dubourg. A Review of Recent Features and Improve-
ments Added to FERUM Software. ICOSSAR 2009 : International Conference on Structural Safety
and Reliability, Sep 2009, Osaka, Japan. �hal-04502313�

https://hal.science/hal-04502313
https://hal.archives-ouvertes.fr

1 INTRODUCTION

FERUM (Finite Element Reliability Using Matlab)
is a general purpose structural reliability code whose
first developments started in 1999 at UC Berkeley
(Der Kiureghian et al. 2006). This code consists of
an open-source Matlab® toolbox, featuring various
structural reliability methods. As opposed to com-
mercial structural reliability codes, see e.g. reference
(Pellissetti & Schuëller 2006) for a review in 2006,
the main objective of FERUM is to provide students
with a tool immediately comprehensible and easy to
use and researchers with a tool very accessible
which they may develop for research purposes. The
scripting language of Matlab is perfect for such ob-
jectives, as it allows users to give commands in a
very flexible way, either in an interactive mode or in
a batch mode through input files.

FERUM was created under Prof. A. Der Ki-
ureghian’s leadership and was managed by T. Hau-
kaas at UCB until 2003. It benefited from a prior ex-
perience with CalRel structural reliability code,
which features all the methods implemented in the
last version of FERUM. It also benefited from the
works of many researchers at UCB, who made valu-
able contributions in the last available version. Ver-
sion 3.1 is the last release and all necessary Matlab

m-files can be downloaded at the following address:
http://www.ce.berkeley.edu/FERUM/. Since 2003,
this code is no longer officially maintained.

The objective of this paper is to review changes
brought to FERUM since 2001 by the first author
and other individuals at IFMA. As previously
achieved in the past, the main intention is to provide
students and researchers with a developer-friendly
computational platform which facilitates learning
methods and serves as a basis for collaborative re-
search works. FERUM should still be viewed as a
development platform for testing new methods and
applying them to various challenging engineering
problems, either represented by basic analytical
models or more elaborated numerical models,
through proper user-defined interfaces.

The main architecture of FERUM was preserved
in general, see Section 2 for more details. In order to
improve its efficiency in terms of computational
time, all algorithms have been revisited to extend
FERUM capabilities to distributed computing. For
example, in its new version, FERUM makes Monte
Carlo Simulations (MCS) much faster thanks to
limit-state functions defined in a vectorized form or
real distributed computing, according that a proper
interface is defined for sending multiple jobs to a
multi-processor computer platform.

A Review of Recent Features and Improvements
Added to FERUM Software

J.-M. Bourinet, C. Mattrand, V. Dubourg
IFMA & Université Blaise Pascal, Laboratoire de Mécanique et Ingénieries
Campus des Cézeaux, BP265, F-63175 Aubière Cedex, France

Keywords: reliability, reliability sensitivities, simulation, reliability-based optimization, FERUM

ABSTRACT: The development of FERUM (Finite Element Reliability Using Matlab) as an open-source
Matlab® toolbox was initiated in 1999 under A. Der Kiureghian’s leadership at the University of California at
Berkeley (UCB). This general purpose structural reliability code was developed and maintained by T. Hau-
kaas, with the contributions of many researchers at UCB. The present paper aims at presenting the main fea-
tures and capabilities of a new version of this open-source code based on the main contribution of the first au-
thor and the help of a few Ph.D. students at the Institut Français de Mécanique Avancée (IFMA) in Clermont-
Ferrand, France. The main concepts of FERUM are preserved and this paper lists the major changes operated
in this code. Available algorithms are briefly presented and, for some of them, they are applied on reference
examples for illustration purposes. This new version offers improved capabilities including simulation-based
technique (subset simulation), sensitivity analysis (Sobol’s indices) and a Reliability-Based Optimization al-
gorithm. Beyond the new methods implemented in this code, this paper put some emphasis on the new archi-
tecture of the code, which now allow distributed computing, either virtually through vectorized calculations
within Matlab or for real with multi-processor computers.

Section 2 clearly states the framework of struc-
tural reliability and presents some details on the ar-
chitecture and main features of this new release of
FERUM (version 4.0). Next sections are then dedi-
cated to methods implemented in FERUM 4.0, ap-
proximation methods such as FORM and SORM in
Section 3, simulation methods in Section 4, Sensitiv-
ity Analysis (SA) in Section 5 and Reliability-Based
Design Optimization (RBDO) in Section 6. Exam-
ples demonstrating advantages and common pitfalls
of various methods are given all along the text, to il-
lustrate the potential applications of FERUM.

2 PROBLEM DEFINITION AND STRUCTURE
OF FERUM

This section briefly presents the general formulation
of time-invariant structural reliability problems. In
addition to some brief details about theoretical con-
cepts, this section highlights how these concepts are
translated to FERUM structure. This includes for in-
stance the stochastic model, the transformation to
standard normal variates, limit-state functions and
more generally other aspects regarding computa-
tional issues. It is important here to recall that the
main structure of input data in FERUM is preserved
compared to version 3.1 (same Matlab structure
variables: probdata, analysisopt, gfundata, femodel,
randomfield and system). Changes brought to
FERUM are applied in core m-functions and within
the fields of the existing structure variables. Simi-
larly to version 3.1, results are stored in structure va-
riables with the following syntax: results keyword
appended to the name of the method applied, such as
e.g. formresults, sormresults, etc.

2.1 Time invariant structural reliability
We consider here only time invariant structural reli-
ability problems, see e.g. (Ditlevsen & Madsen
2007). The probability w.r.t. an undesired or unsafe
state is expressed in terms of a n-dimensional vector
X of random variables with continuous joint density
function fX(x, θf), where θf stands for a vector of dis-
tribution parameters. Failure is defined in terms of a
limit-state function g(x, θg) where x is a realization
of the random vector X and θg denotes a vector of
deterministic limit-state function parameters. We
will restrict here the analysis to component reliabil-
ity with a single g function, but this function may
represent multiple failure modes in subset simulation
in Section 4.3, without lack of generality. This limit-
state function divides the random variable space in a
safety domain, g(x) > 0, and a failure domain,
g(x) ≤ 0. The probability of failure therefore reads:

()
(), 0

, d
g

f f
g

p f
≤

= ∫ X
x θ

x θ x (1)

2.2 Probability distributions and transformation to
standard normal space

The joint density function fX(x, θf) is often unknown
and replaced by its Nataf counterpart completely de-
fined by specifying marginal distributions and the
Gaussian correlation structure between random vari-
ables (Liu & Der Kiureghian 1986). This Nataf joint
distribution is completely specified by variables
probdata.marg and probdata.correlation in FERUM
input files. FERUM has a rich library of probability
distribution models, including extreme value distri-
butions and a truncated normal distribution. These
distributions can be specified through either their
statistical moments or parameters.

The structural reliability problem expressed in the
original space of random variables x in Equation (1)
is commonly transformed to a standard normal space
u, where U becomes an independent standard nor-
mal vector. For a Nataf joint distribution, physical
random variables X are transformed to correlated
standard normal variables Z, whose correlation
structure obeys the following integral equation:

()2 0, , d d

j ji i
ij

i j

i j ij i j

xx

z z z z

μμρ
σ σ

ϕ ρ

+∞ +∞

−∞ −∞

⎛ ⎞−⎛ ⎞−
= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∫ ∫ …

…

 (2)

where μi and σi respectively stand for the mean and
standard deviation of the ith component of X, and
ϕ2(•,•,ρ) is the 2D standard normal probability den-
sity function (pdf) with correlation coefficient ρ.

Independent standard normal variables U are then
obtained from Z variables such as follows:

1
0
−=u L z (3)

where L0 is the lower-triangular Cholesky decom-
position of R0 = [ρ0 ij] matrix, such that L0L0

T = R0.
Previous version of FERUM was based on for-

mulae taken from reference (Liu & Der Kiureghian
1986), most of them obtained by least-squared fit-
ting and therefore approximate. FERUM 4.0 is now
based on accurate solutions obtained by 2D numeri-
cal Gauss integration of Equation (2). A particular
attention is paid to strongly correlated random vari-
ables, where the number of integration points along
each dimension in zizj-space must be selected care-
fully, for accurate ρ0ij values.

2.3 Definition of limit-state functions
As in the previous version, the limit-state function is
defined through structure variable gfundata of the
input file and called through the file named gfun.m.
Various strategies are now offered in FERUM 4.0.
The limit-state function can either be a simple ex-
pression directly written in the input file or a Matlab
function. For both cases, gfun.m calls another func-

tion called gfunbasic.m. Another interesting option
offered in FERUM 4.0 is that the limit-state function
can be defined through a user-provided Matlab func-
tion, which calls a third-party software, such as a Fi-
nite Element code. Such merging of FERUM with
problem-specific external codes was made in various
applications, such as probabilistic buckling (Dub-
ourg et al. 2009) and crack propagation (Nespurek et
al. 2006). For controlling such external codes, extra
variables are provided to FERUM through the struc-
ture variable femodel and the user must create an ap-
plication-specific function. One more option avail-
able in FERUM 4.0 is that it takes advantage of
gradients w.r.t. all or part of basic variables, when
available from third-party software. This proves to
be very useful when limit-state functions involve
very computationally demanding numerical models,
as it avoids tedious estimations by finite differences.

2.4 Vectorized / distributed computing
A major change brought to FERUM 4.0 is that calls
to the limit-state function g can be evaluated in a
distributive manner, as opposed to the sequential
manner of the previous version. Every algorithm
implemented in FERUM was revisited, so as to send
multiple calls to g, whenever possible.

If one thinks of FE-based MCS on a multiproces-
sor computer, the strategy consists in sending calls
to the FE code in batches, the number of jobs in each
batch being equal to the number of available CPUs.
This strategy is known as distributed computing, see
e.g. examples of applications in (Nespurek et al.
2006, Dubourg et al. 2009). The number of jobs sent
simultaneously is tuned through the variable analy-
sisopt.block_size. Such an option is available in
FERUM, assuming that the user has a suitable com-
puter platform and all the necessary tools to create,
send and post-process multiple jobs (scripting lan-
guage such as Perl, queuing systems such as
OpenPBS on Linux, job schedulers, …). The func-
tion in charge of the job allocation is obviously ap-
plication-specific and is called by gfun.m.

Based on the same developments of FERUM al-
gorithms, it is also possible to send multiple calls to
a user-defined Matlab limit-state function written in
a vectorized manner. Vectorized calculations, in the
Matlab sense, eliminate the need to cycle through
nested loops and thus run much faster because of the
way Matlab handles vectors internally. The principle
is similar to distributed computing, the difference
being that the multiprocessor computer is virtually
replaced by a single computer which can handle a
number of runs simultaneously (this maximum
number being directly dependent on the memory
available on the computer). Here again, the maxi-
mum number of runs sent simultaneously is con-
trolled through analysisopt.block_size variable.

For illustration purpose, on an Intel T7800
2.6GHz dual core CPU with 4Gb RAM, a MCS
takes 31 min with 1.5⋅109 samples for a basic
g = r – s problem, where R and S are normal random
variables, in a vectorized manner (FERUM 4.0), as
opposed to 6 days 15 hours in the sequential manner
(FERUM 3.1).

2.5 Random fields, system reliability
Structure variables created for random field prob-
lems by B. Sudret and for system reliability analysis
by J. Song are still compatible with the new version
of FERUM, though not tested extensively. An illus-
tration of the use of random fields can be found in
(Dubourg et al. 2009).

3 RELIABILITY: APPROXIMATE METHODS

This section briefly presents approximate methods
implemented in FERUM 4.0, namely FORM and
SORM. It also details some improvements brought
to FORM sensitivities.

3.1 FORM
First Order Reliability Method (FORM) aims at

using a first order approximation of the limit-state
function in the standard space at the so-called Most
Probable Point (MPP) of failure P* (or design
point), which is the limit-state surface closest point
to the origin. Finding the coordinates u* of the MPP
consists in solving the following constrained optimi-
zation problem:

()() (){ }* arg min 0g x G= = =u u u u (4)

Once the MPP P* is obtained, the Hasofer and
Lind reliability index β is computed as β = αTu*
where α = –∇ u G(u*) / ||∇ u G(u*)|| is the negative
normalized gradient vector at the MPP P*. It repre-
sents the distance from the origin to the MPP in the
standard space. The first-order approximation of the
failure probability is then given by pf1 = Φ(–β),
where Φ(•) is the standard normal cdf.

As in FERUM 3.1, the new version is based on
the iHLRF algorithm, see (Zhang & Der Kiureghian
1994) for further details. In order to take advantage
of distributed computing, g-calls required for gradi-
ent evaluations by finite differences at a specific
point of the standard space are sent in a single batch.
The same technique is applied to step size evaluation
with Armijo rule, where all corresponding g-calls
are sent simultaneously.

Search for multiple MPPs such as described in
(Der Kiureghian & Dakessian 1998) is also imple-
mented in FERUM 4.0. Figure 1 illustrates the use

of this method, applied to a parabolic limit-state
function (Der Kiureghian & Dakessian 1998):

() () ()2
1 2 2 1,g g x x b x x eκ= = − − −x (5)

where b = 5, κ = 0.5 and e = 0.1. Both variables x1
and x2 are independent and identically distributed
(i.i.d.) standard normal random variables.

This problem is characterized by two MPPs at
similar distances from the origin and basic FORM
algorithm results are therefore not valid. Results in
Figure 1 are obtained with parameter values recom-
mended in (Der Kiureghian & Dakessian 1998), i.e.
γ = 1.1, δ = 0.75 and ε = 0.5.

−4 −2 0 2 4

−4

−2

0

2

4

x1

x2

U−space

−4 −2 0 2 4

−4

−2

0

2

4

x1

x2

U−space

Figure 1 . Parabolic limit-state function: FORM with search for
multiple design points.

3.2 FORM sensitivities and importance measures
In addition to the reliability index β and the MPP
coordinates coming from a FORM analysis, the user
may use FERUM 4.0 to calculate the sensitivities of
β (or of the failure probability pf) to distribution pa-
rameters θf or to limit-state function parameters θg.

For instance, the sensitivity of β w.r.t. θf reads:

()T

*, *,
f f fβ∇ =θ u θJ x θ α (6)

where ()*, *
*,

f f i f ju θ⎡ ⎤= ∂ ∂⎣ ⎦u θ x
J x θ

The Jacobian of the transformation is obtained by
differentiating Equation (3) w.r.t. θf parameters:

1
1 0

0
f f fθ θ θ

−
−∂ ∂ ∂

= +
∂ ∂ ∂

u z LL z (7)

In FERUM 4.0, sensitivities w.r.t. distributions
parameters θf are evaluated based on both terms of
Equation (7), as opposed to FERUM 3.1 which only
uses the first term. Sensitivities to correlation are
based on the second term of this expression only, as
the first one vanishes (Bourinet & Lemaire 2008).
Sensitivities are evaluated numerically with the
same integration scheme as the one used for obtain-
ing R0 matrix and it is required to differentiate the
Cholesky decomposition algorithm in a step-by-step
manner. Examples of application are given in refer-
ence (Bourinet & Lemaire 2008).

3.3 SORM
As in the previous version, FERUM offers two ways
for computing a second order approximation of the
failure probability. The first method consists in de-
termining the principal curvatures and directions, by
solving an eigenproblem involving the Hessian of
the limit-state function. The Hessian is computed by
finite differences, the perturbations being set in the
standard normal space. All calls to the limit-state
function corresponding to perturbated points are po-
tentially sent simultaneously, as being all independ-
ent from each other. The second method consists in
approximating the limit-state function by a piece-
wise paraboloid surface (Der Kiureghian et al.
1987). This approximate surface must be tangent to
the limit-state at the design point and coincides with
the limit-state at two points on each axis selected on
both sides of the origin. It is built iteratively, with a
limited number of iterations and all calls to the limit-
state function, at each iteration, are potentially sent
simultaneously as well. This second approach is ad-
vantageous for slightly-noisy limit-state functions
(e.g. involving a FE code), for problem with a large
number of random variables or when the computa-
tion of curvatures turns out to be problematic. In
both methods, the SORM approximation of the fail-
ure probability pf2 is computed with Breitung or
Tvedt formulae, as in FERUM 3.1.

An example is taken from reference (Der Ki-
ureghian & De Stefano 1990) to illustrate SORM
application. A two d.o.f. primary-secondary system
with uncertain damped oscillators is considered un-
der a white-noise base excitation. This problem is
characterized by a highly nonlinear limit-state
around a single design point. The limit-state function
is given in Equation (8) and the basic random vari-
ables of this problem are gathered in Table 1.

()

()
()

0
3

3 3

42 2 2

3
4

44

s s
s s

p p s s pa s

a ap s a a

Sg F k π
ζ ω

ζ ω ζ ω ωζ ζ
ζ ωζ ζ ζ θ γζ

= − ×

+

+ +

x …

…

 (8)

where () ()
()

, ,
2 , 2

,

p p p s s s

a p s a p s

s p p s a

k m k m

m m

ω ω

ω ω ω ζ ζ ζ
γ θ ω ω ω

⎧ = =
⎪

= + = +⎨
⎪ = = −⎩

With iHLRF acceptance tolerances e1 = 10−3 and
e2 = 5⋅10−3 (Zhang & Der Kiureghian 1995), FORM
takes 294 iterations to converge (2646 calls to the
limit-state function). This FORM analysis is based
on a step size with a fixed value of 0.025, since con-
vergence cannot be obtained using Armijo rule.
FORM result is pf1 = 3.86⋅10−5. Based on 44 extra
calls, SORM results with curvature fitting (first
method) are obtained and we find pf2 = 4.15⋅10−6

(improved Breitung formula). For comparison pur-
pose, the failure probability obtained by averaging
the results of 500 subset simulations (see Section
4.3), each of them using 300000 limit-state function
evaluations per subset step, gives a reference value
pf = 4.18⋅10−6. This proves here that SORM is rather
suitable for such a problem with a single MPP.
Table 1. Stochastic model

variable distribution mean c.o.v.
mp 1.5 0.1
ms

lognormal 0.01 0.1
kp 1 0.2
ks

lognormal 0.01 0.2
ζp 0.05 0.4
ζs

lognormal 0.02 0.5
Fs lognormal 24.5 0.1
S0 lognormal 100 0.1

4 RELIABILITY: SIMULATION METHODS

This section briefly presents simulation methods im-
plemented in FERUM 4.0: well-known simulation
methods such as crude Monte Carlo Simulation
(MCS) and Importance Sampling (IS), Directional
Simulation (DS) and a variance reduction technique
known as Subset Simulation (SS).

4.1 Monte Carlo Simulation / Importance Sampling
Equation (1) is rewritten as follows:

() () ()d
f

f f
D

p I f E I= = ⎡ ⎤⎣ ⎦∫ X

X

Xx x x X (9)

where Dfx represents the integration domain of joint
pdf fX(x), I(•) is an indicator function which equals 1
if g(x) ≤ 0, and 0 otherwise, and Efx[•] denotes the
mathematical expectation w.r.t. joint pdf fX(x).

The expectation in Equation (9) is estimated in a
statistical sense for MCS. The u-space is randomly
sampled with N independent samples uj, j = 1, …, N.
These N samples are then transformed to the x-space
xj = x(uj) and an unbiased estimate of pf is finally ob-
tained from the sample mean of qj = I(xj). Note that a
standard deviation is also obtained for this sample,
providing useful information regarding the accuracy
of the estimated value of pf. It must be stressed out
here that MCS requires a high computational effort
(large N) for small failure probabilities and a number
of variance reduction techniques have been proposed
in the past to lower this computational effort.

One of these variance reduction techniques is
known as Importance Sampling (IS). Equation (1) is
rewritten now in the following form:

() ()
() () () ()

()
d

h

f h
D

f f
p I h E I

h h
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

∫ X Xx X
x x x X

x X
 (10)

where h is called a sampling density. For IS analysis,
it is usual to take h(x) = h(x(u)) = ϕn(u–u*) where ϕn
is the n-dimensional standard normal pdf and u* is
the vector of MPP coordinates coming from a previ-
ous FORM analysis. Note that pf is now obtained
from the sample mean of qj = I(xj) fX(xj) / h(xj).

FERUM 4.0 features both methods and calls to
the limit-state function are sent in a distributed man-
ner, the maximum number of jobs sent being ad-
justed by the variable analysisopt.block_size.

4.2 Directional Simulation
The n-dimensional normal vector U is expressed as
U = RA, R ≥ 0, where R2 is a chi-square distributed
random variable with n degrees of freedom (d.o.f.),
independent of the random unit vector A, which is
uniformly distributed on the n-dimensional unit
sphere Ωn. The failure probability pf can be written
as follows, conditioning on A = a (Bjerager 1988):

() ()0 | d
n

fp P G R f
∈Ω

= ≤ =⎡ ⎤⎣ ⎦∫ A
a

A A a a a (11)

where fA(a) is the uniform density of A on the unit
sphere.

Practically, a sequence of N random direction
vectors aj = uj/||uj||, j = 1, …, N, is generated first,
then rj = { r | G(raj) = 0 } are found iteratively and pf
is finally estimated from the following expression:

()2 2

1

1ˆ 1
N

f n j
j

p r
N

χ
=

⎡ ⎤= −⎣ ⎦∑ (12)

where χn
2 is the chi-square cdf with n d.o.f.

In FERUM 4.0, a slightly modified version of this
algorithm is proposed. Instead of generating random
directions on the unit sphere, it is proposed to divide
it into N evenly distributed points, in a deterministic
manner, in order to gain an improved accuracy at a
given computational cost. Intersections with the
limit-state function along each direction are found in
a distributive manner, based on a vectorized version
of fzero.m Matlab function. It is worth noting that
DS looses efficiency as the number of random vari-
ables n increases.

Table 2 shows the results obtained on the exam-
ple of reference (Der Kiureghian & Dakessian 1998)
presented in Section 3.1. These results must be com-
pared to a reference value of 3.0158⋅10−3, obtained
by averaging the results of 500 subset simulations,
each of them using 200000 limit-state function
evaluations per subset step. Results appear to be
fairly good for small numbers of directions N.
Table 2. Directional Simulation results

N Ncall pf
10 101 2.9648⋅10−3
20 201 3.0162⋅10−3
50 551 3.0163⋅10−3

100 1101 3.0163⋅10−3

4.3 Subset Simulation
Starting from the premise that the failure event
F = { g(x) ≤ 0 } is a rare event, S.-K. Au and J.L.
Beck (Au & Beck 2001) proposed to estimate P(F)
by means of more frequent intermediate conditional
failure events {Fi}i = 1..m (called subsets) so that
F1 ⊃ F2 ⊃ ... ⊃ Fm = F. The m-sequence of interme-
diate conditional failure events is selected so that
Fi = { g(x) ≤ yi }, where yi’s are decreasing values of
the limit state function and ym = 0. As a result, the
failure probability pf = P(F) is expressed as a prod-
uct of the following m conditional probabilities:

() () () ()

() ()
1 1

1 1
2

f m m m m

m

i i
i

p P F P F P F F P F

P F P F F

− −

−
=

= = =

= = ∏…
 (13)

Each subset event Fi (and the related threshold
value yi) is determined so that its corresponding con-
ditional probability equals a sufficiently large value
α, in order to be efficiently estimated with a small
number of simulations (in practice α ≈ 0.1-0.2). The
first threshold y1 is obtained by a crude MCS, so that
P(F1) ≈ α. For further thresholds, new sampling
points corresponding to {Fi | Fi–1} conditional events
are obtained from Markov Chains Monte Carlo
(MCMC), based on a modified Metropolis-Hastings
algorithm, see Figure 2 for illustration of main steps.

−5 0 5
−5

0

5

u
1

u 2

First threshold y
1

Unknown
limit−state

−5 0 5
−5

0

5

u
1

u 2

Unknown
limit−state

First threshold y
1

−5 0 5
−5

0

5

u
1

u 2

Unknown
limit−state

Second threshold y
2

−5 0 5
−5

0

5

u
1

u 2

Unknown
limit−state

Last threshold y
m

=y
3
=0

Figure 2 . Main steps of Subset Simulation algorithm.

Figure 3 shows how the coefficient of variation
(c.o.v.) of the failure probability of subset simula-
tions varies in terms of the number of simulations
per subset step Ns, on the two d.o.f. primary-
secondary system presented at Section 3.3. For each
Ns value, the c.o.v. is estimated empirically by repli-
cate applications of subset simulations (here, 500
times). For comparison purpose, Figure 3 also gives
a lower (respectively upper) bound estimate, which

assumes uncorrelated (respectively fully correlated)
conditional probability estimates (Au & Beck 2001).

10
2

10
3

10
4

10
5

10
6

10
−2

10
−1

10
0

N
s
 / step

δ p f

empirical
lower bound est.
upper bound est.

Figure 3 . Two d.o.f. primary-secondary system: Subset results.

5 GLOBAL SENSITIVITY ANALYSIS

Global sensitivity analysis aims at quantifying the
impact of the variability in each (or group of) input
variates on the variability of the output of a model in
apportioning the output model variance to the vari-
ance in the input variates. Sobol’ indices (Sobol
1993) are the most usual global sensitivity measures.
They can be evaluated in FERUM 4.0.

We consider here a model given by:

1 2() (, , ...,)nY g g X X X= =X (14)

where X = (X1, X2, ..., Xn) is a vector of n independ-
ent random input variates, g is a deterministic model
and Y is a scalar random output.

In order to determine the importance of each in-
put variate, we consider how the variance of the out-
put Y decreases when variate Xi is fixed to a given xi

*
value:

()| i iV Y X x∗= (15)

where V(•) denotes the variance function.
Since xi

* value is unknown, we take the expecta-
tion of Equation (15) and, by virtue of the law of to-
tal variance, we can write:

[]() () ()| |i iV E Y X V Y E V Y X= − ⎡ ⎤⎣ ⎦ (16)

The global sensitivity index of the first order is
defined as follows, for i =1, …, n:

[]()
()

| i i
i

V E Y X VS
V Y V

= = (17)

Indices of higher orders are defined in a similar
manner, e.g. for the second order:

()
()

| ,i j i j ij
ij

V E Y X X V V V
S

V Y V

⎡ ⎤ − −⎣ ⎦= = (18)

First order indices inform about the influence of
each variate taken alone whereas higher order indi-
ces account for possible influences between various

(a) (b)

(c) (d)

parameters. Total sensitivity indices are also usually
introduced. They express the total sensitivity of Y
variance to Xi input, including all interactions that
involve Xi:

iT k
i k

S S
⊂

=∑ (19)

where i ⊂ k denotes the set of indices containing i.
From a computational viewpoint, Sobol’ indices

can be assessed using Crude Monte Carlo (CMC) or
Quasi-Monte Carlo (QMC) simulations. This latter
technique is based on low-discrepancy sequences,
which usually outperform CMC simulations in terms
of accuracy, at a given computational cost. Both
CMC and QMC methods are implemented in
FERUM 4.0. Another available option consists in
building a Support Vector surrogate function, by re-
gression on a sample set of well-chosen points. This
option based on statistical learning theory proves to
be a rather cost efficient technique for evaluating
sensitivities of models of moderate complexity.

For illustration, Sobol’ indices are evaluated on
the following example taken from reference (Nie &
Ellingwood 2004). The model is given by:

() ()
()
()

1 2 3

2 2 2
1 2 3 1 2 2 3 3 1

1 2 3

, ,

2 2 2 2

3 3

g g x x x

x x x x x x x x x

x x x

= =

− + + − − −

− + + +

x

 (20)

where xi, i = 1, 2, 3, are i.i.d. standard normal ran-
dom variables.

Sobol’s indices obtained by QMC simulations are
given in Table 3. This model is sensitive to interac-
tions between variables, since second order indices
are not equal to zero. It is worth noting that, in this
specific example, indices obtained from a SVR sur-
rogate based on a set of 100 points are as accurate as
those estimated by QMC with 20000 points.
Table 3. Sobol’ indices computed with 20000 simulation points
using Quasi-Monte Carlo (QMC) simulation method
1st order mean stdv 2nd order mean stdv

S1 0.1499 0.0147 S12 0.1826 0.0192
S2 0.1453 0.0124 S13 0.1866 0.0179
S3 0.1494 0.0130 S23 0.1866 0.0143

3rd order mean stdv Total mean stdv
S123 ≈0 0.0146 ST1 0.5186 0.0132

 ST2 0.5141 0.0139
 ST3 0.5222 0.0121

6 RELIBIALITY-BASED OPTIMIZATION

FERUM 4.0 now offers Reliability-Based Optimiza-
tion (RBO) capabilities. The problem of interest
reads, in its most basic and general formulation:

() () ()
() ()

1 1

t

, , 0
min s.t.

, , 0
q

q

f f
c

f β β
−⎧ ≤⎪

⎨ = − ≤⎪⎩θ

θ θ
θ

x θ x θ
…

 (21)

where:
- θ stands for the design variables of the problem,

either purely deterministic variables θg or distri-
bution parameters θf,

- c(θ) is the cost function to be minimized,
- f1(θ)…fq–1(θ) is a vector of deterministic con-

straints over the design variables θ,
- fq(x, θ) is the reliability constraint enforcing the

respect of the design rule referred to as the limit-
state function and considering the uncertainty to
which some of the model parameters x are sub-
jected to. βt is the targeted safety index.

One way to answer the problem in Equation (21)
consists in a brute-force outer optimization loop over
the reliability evaluation, here termed “nested bi-
level approach”. This might be computational ex-
pensive in the case of simulation-based methods
such as MCS and DS, as addressed in (Royset & Po-
lak 2004) and (Royset & Polak 2007) respectively.
However, if based on FORM, this brute-force
method gives a solution within a reasonable amount
of calls to the limit-state function.

The outer optimization loop makes use of the Po-
lak-He optimization algorithm (Polak 1997) and re-
quires the gradients of both cost and constraints
functions, which themselves require the gradient of
the reliability index w.r.t. design variables θ.

Previous RBO applications of the Polak-He algo-
rithm showed that its rate of convergence highly de-
pends on the order of magnitude of design parame-
ters, cost and constraints functions. In FERUM 4.0,
all these values are normalized at each Polak-He it-
eration, thus improving and ensuring convergence,
whatever the initial scaling of the problem in Equa-
tion (21). Convergence to an optimum is assumed to
be obtained when the cost function has reached a
stable value and all the constraints are satisfied, i.e.
f1(θ)…fq(θ) ≤ 0.

For illustration purpose, RBO is applied to a
spherical tank under internal pressure p. Failure is
defined when the von Mises stress exceeds the yield
strength σy of the elastic constitutive material. Vari-
ables r0 and r1 denoting the internal and external ra-
dii respectively, the limit-state function thus reads:

() ()
3

1
y 0 1 y 3 3

1 0

3, , ,
2
p rg g p r r

r r
σ σ= = −

−
x (22)

The proposed optimization problem enunciates:

()
() () ()

()

0 1

3 3
0 1 sphere 0 1 1 0,

0 0 1

1 t 0 1

4min , ,
3

40 0 () 0 ()
s.t.

150 0 () , 0 ()

r r
c r r V r r r r

r i r r iii
r ii r r iv

π

β β

= = −

− ≤ − ≤⎧⎪
⎨ − ≤ − ≤⎪⎩

 (23)

The internal pressure p and the yield strength σy
are considered as statistically independent lognormal
random variables with means and standard devia-
tions equal to (130 MPa, 8 MPa) and (300 MPa,

20 MPa) respectively, whereas the design variables
r0 and r1 are supposed to be deterministic. The initial
design set as well as the RBO results for various re-
liability targets βt are provided in Table 4. The last
column example (βt = 5) exhibits an exponential in-
crease of the cost function w.r.t. iterations (it is
worth noting that the initial cost is amplified by a
factor greater than 700 after 7 iterations). This ex-
ample demonstrates the ability of the RBO algorithm
to adapt itself very rapidly to fulfill the reliability
constraint, which is not reachable here. This exam-
ple is in fact characterized by an upper bound reli-
ability index βmax ≈ 4.7494, which corresponds to
the limit-state function in Equation (22) when r1
tends toward infinity. From results in Table 4, it is
observed that the deterministic constraints are not
always accurately satisfied. This is due to the re-
scaling procedure used at each Polak-He iteration.
Table 4. RBO results

βt Initial 3.28* 2.0 5.0 5.0**
Niter – 7 7 7 7
β 3.2761 3.2804 2.0003 4.5878 4.7484

c / c0 1 0.5154 0.2588 4.4117 729.33
r0 (mm) 50 40.05 40.01 38.47 39.35
r1 (mm) 100 80.17 66.23 157.64 860.97
NFORM 1 29 29 101 42
Ncall 30 907 898 3949 1648

*: iso-reliability optimization **: constraint (ii) released

The proposed RBO algorithm is part of FERUM
4.0 and it uses all distributed features of FORM. It
also allows optimization w.r.t. distribution parame-
ters θf, e.g. mean values of r0 and r1, if the two radii
are considered as random variables too.

7 CONCLUSION

This paper briefly presents new features available in
FERUM 4.0. For more details on each method, the
reader may refer to more comprehensive papers ref-
erenced in the text. The objectives of this new ver-
sion are similar to those of the previous one: provid-
ing students and researchers with a very flexible
tool, which facilitates learning and developing new
techniques for research purposes. The Matlab source
files of this new version are downloadable both at
IFMA (www.ifma.fr/FERUM/) and UC Berkeley
(www.ce.berkeley.edu/FERUM/).

8 ACKNOWLEDGEMENTS

The development of this code has benefited from the
work of many individuals. The first author wants to
gratefully acknowledge Prof. A. Der Kiureghian for
inspiring him such developments which started in
2001, all the researchers at UCB who made contri-
butions to previous versions of FERUM and for-
mer/current IFMA/LaMI Ph.D. students who con-
tributed to this new version.

REFERENCES

Au, S.-K. & Beck, J.L. 2001. Estimation of small failure prob-
abilities in high dimension by subsets simulations. Prob-
abilistic Engineering Mechanics 16(4): 263-277.

Bjerager, P. 1988. Probability integration by directional simu-
lation. Journal of Engineering Mechanics 114(8): 1285-
1302.

Bourinet, J.-M. & Lemaire, M. 2008. FORM sensitivities to
correlation: Application to fatigue crack propagation based
on Virkler data. In P.K Das (ed), Proc. of the 4th Interna-
tional ASRANet Colloquium, Athens, Greece, June 25-27,
2008.

Der Kiureghian, A., Lin, H.-Z. & Hwang, S.-J. 1987. Second-
order reliability approximations. Journal of Engineering
Mechanics 113(8): 1208-1225.

Der Kiureghian, A. & De Stefano, M. 1990. An efficient algo-
rithm for second-order reliability analysis, report no.
UCB/SEMM-90/20. Report No. UCB/SEMM-90/20, De-
partment of Civil and Environmental Engineering, Univer-
sity of California, Berkeley.

Der Kiureghian, A. & Dakessian, T. 1998. Multiple design
points in first and second-order reliability, Structural Safety
20(1): 37-49.

Der Kiureghian, A. & Haukaas, T. & Fujimura, K. 2006. Struc-
tural reliability software at the University of California,
Berkeley. Structural Safety 28(1-2): 44-67.

Ditlevsen, O. & Madsen, H.O. 2007. Structural reliability
methods. Internet edition 2.3.7.

Dubourg, V., Noirfalise C., Bourinet, J.-M. & Fogli, M. 2009.
FE-based reliability analysis of the buckling of shells with
random shape, material and thickness imperfections. Proc.
of ICOSSAR 2009, Osaka, Japan, September 13-17, 2009.

Liu, P.-L. & Der Kiureghian, A. 1986. Multi-variate distribu-
tion models with prescribed marginals and covariance,
Probabilistic Engineering Mechanics 1(2): 105-112.

Nespurek, L., Bourinet, J.-M., Gravouil, A. & Lemaire, M.
2006. Some approaches to improve the computational effi-
ciency of the reliability analysis of complex crack propaga-
tion problems. In P.K Das (ed), Proc. of the 3rd Interna-
tional ASRANet Colloquium, Glasgow, U.K., July 10-12,
2006.

Nie, J. & Ellingwood, B.R. 2004. A new directional simulation
method for system reliability, part II: application of neural
networks. Probabilistic Engineering Mechanics 19: 437-
447.

Pellissetti, M.F. & Schuëller, G.I. 2006. On general purpose
software in structural reliability - An overview. Structural
Safety 28: 3-16.

Polak, E. 1997. Optimization: Algorithms and Consistent Ap-
proximations. Springer-Verlag New York Inc.

Royset, J.O. & Polak, E. 2004. Reliability-based optimal de-
sign using sample average approximations. Probabilistic
Engineering Mechanics 19(4): 331-343.

Royset, J.O. & Polak, E. 2007. Extensions of stochastic opti-
mization results to problems with system failure probability
functions, Journal of Optimization Theory and its Applica-
tion 132(2): 1-18.

Sobol’, I.M. 1993. Sensitivity estimates for nonlinear mathe-
matical models. Mathematical Modelling and Computa-
tional Experiments 1: 407- 414.

Zhang, Y. & Der Kiureghian, A. 1994. Two improved algo-
rithms for reliability analysis. In R. Rackwitz, G. Augusti &
A. Borri (eds), Reliability and Optimization of Structural
Systems; Proc. of the 6th IFIP WG 7.5 Working Conf. on
Reliability and Optimisation of Structural Systems, 1994:
297-304.

