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1 INTRODUCTION 

FERUM (Finite Element Reliability Using Matlab) 
is a general purpose structural reliability code whose 
first developments started in 1999 at UC Berkeley 
(Der Kiureghian et al. 2006). This code consists of 
an open-source Matlab® toolbox, featuring various 
structural reliability methods. As opposed to com-
mercial structural reliability codes, see e.g. reference 
(Pellissetti & Schuëller 2006) for a review in 2006, 
the main objective of FERUM is to provide students 
with a tool immediately comprehensible and easy to 
use and researchers with a tool very accessible 
which they may develop for research purposes. The 
scripting language of Matlab is perfect for such ob-
jectives, as it allows users to give commands in a 
very flexible way, either in an interactive mode or in 
a batch mode through input files. 

FERUM was created under Prof. A. Der Ki-
ureghian’s leadership and was managed by T. Hau-
kaas at UCB until 2003. It benefited from a prior ex-
perience with CalRel structural reliability code, 
which features all the methods implemented in the 
last version of FERUM. It also benefited from the 
works of many researchers at UCB, who made valu-
able contributions in the last available version. Ver-
sion 3.1 is the last release and all necessary Matlab 

m-files can be downloaded at the following address: 
http://www.ce.berkeley.edu/FERUM/. Since 2003, 
this code is no longer officially maintained. 

The objective of this paper is to review changes 
brought to FERUM since 2001 by the first author 
and other individuals at IFMA. As previously 
achieved in the past, the main intention is to provide 
students and researchers with a developer-friendly 
computational platform which facilitates learning 
methods and serves as a basis for collaborative re-
search works. FERUM should still be viewed as a 
development platform for testing new methods and 
applying them to various challenging engineering 
problems, either represented by basic analytical 
models or more elaborated numerical models, 
through proper user-defined interfaces. 

The main architecture of FERUM was preserved 
in general, see Section 2 for more details. In order to 
improve its efficiency in terms of computational 
time, all algorithms have been revisited to extend 
FERUM capabilities to distributed computing. For 
example, in its new version, FERUM makes Monte 
Carlo Simulations (MCS) much faster thanks to 
limit-state functions defined in a vectorized form or 
real distributed computing, according that a proper 
interface is defined for sending multiple jobs to a 
multi-processor computer platform. 
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Section 2 clearly states the framework of struc-
tural reliability and presents some details on the ar-
chitecture and main features of this new release of 
FERUM (version 4.0). Next sections are then dedi-
cated to methods implemented in FERUM 4.0, ap-
proximation methods such as FORM and SORM in 
Section 3, simulation methods in Section 4, Sensitiv-
ity Analysis (SA) in Section 5 and Reliability-Based 
Design Optimization (RBDO) in Section 6. Exam-
ples demonstrating advantages and common pitfalls 
of various methods are given all along the text, to il-
lustrate the potential applications of FERUM. 

2 PROBLEM DEFINITION AND STRUCTURE 
OF FERUM 

This section briefly presents the general formulation 
of time-invariant structural reliability problems. In 
addition to some brief details about theoretical con-
cepts, this section highlights how these concepts are 
translated to FERUM structure. This includes for in-
stance the stochastic model, the transformation to 
standard normal variates, limit-state functions and 
more generally other aspects regarding computa-
tional issues. It is important here to recall that the 
main structure of input data in FERUM is preserved 
compared to version 3.1 (same Matlab structure 
variables: probdata, analysisopt, gfundata, femodel, 
randomfield and system). Changes brought to 
FERUM are applied in core m-functions and within 
the fields of the existing structure variables. Simi-
larly to version 3.1, results are stored in structure va-
riables with the following syntax: results keyword 
appended to the name of the method applied, such as 
e.g. formresults, sormresults, etc. 

2.1 Time invariant structural reliability 
We consider here only time invariant structural reli-
ability problems, see e.g. (Ditlevsen & Madsen 
2007). The probability w.r.t. an undesired or unsafe 
state is expressed in terms of a n-dimensional vector 
X of random variables with continuous joint density 
function fX(x, θf), where θf stands for a vector of dis-
tribution parameters. Failure is defined in terms of a 
limit-state function g(x, θg) where x is a realization 
of the random vector X and θg denotes a vector of 
deterministic limit-state function parameters. We 
will restrict here the analysis to component reliabil-
ity with a single g function, but this function may 
represent multiple failure modes in subset simulation 
in Section 4.3, without lack of generality. This limit-
state function divides the random variable space in a 
safety domain, g(x) > 0, and a failure domain, 
g(x) ≤ 0. The probability of failure therefore reads: 
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2.2 Probability distributions and transformation to 
standard normal space 

The joint density function fX(x, θf) is often unknown 
and replaced by its Nataf counterpart completely de-
fined by specifying marginal distributions and the 
Gaussian correlation structure between random vari-
ables (Liu & Der Kiureghian 1986). This Nataf joint 
distribution is completely specified by variables 
probdata.marg and probdata.correlation in FERUM 
input files. FERUM has a rich library of probability 
distribution models, including extreme value distri-
butions and a truncated normal distribution. These 
distributions can be specified through either their 
statistical moments or parameters. 

The structural reliability problem expressed in the 
original space of random variables x in Equation (1) 
is commonly transformed to a standard normal space 
u, where U becomes an independent standard nor-
mal vector. For a Nataf joint distribution, physical 
random variables X are transformed to correlated 
standard normal variables Z, whose correlation 
structure obeys the following integral equation: 
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where μi and σi respectively stand for the mean and 
standard deviation of the ith component of X, and 
ϕ2(•,•,ρ) is the 2D standard normal probability den-
sity function (pdf) with correlation coefficient ρ. 

Independent standard normal variables U are then 
obtained from Z variables such as follows: 

1
0
−=u L z  (3) 

where L0 is the lower-triangular Cholesky decom-
position of R0  = [ρ0 ij] matrix, such that L0L0

T = R0. 
Previous version of FERUM was based on for-

mulae taken from reference (Liu & Der Kiureghian 
1986), most of them obtained by least-squared fit-
ting and therefore approximate. FERUM 4.0 is now 
based on accurate solutions obtained by 2D numeri-
cal Gauss integration of Equation (2). A particular 
attention is paid to strongly correlated random vari-
ables, where the number of integration points along 
each dimension in zizj-space must be selected care-
fully, for accurate ρ0ij values. 

2.3 Definition of limit-state functions 
As in the previous version, the limit-state function is 
defined through structure variable gfundata of the 
input file and called through the file named gfun.m. 
Various strategies are now offered in FERUM 4.0. 
The limit-state function can either be a simple ex-
pression directly written in the input file or a Matlab 
function. For both cases, gfun.m calls another func-



tion called gfunbasic.m. Another interesting option 
offered in FERUM 4.0 is that the limit-state function 
can be defined through a user-provided Matlab func-
tion, which calls a third-party software, such as a Fi-
nite Element code. Such merging of FERUM with 
problem-specific external codes was made in various 
applications, such as probabilistic buckling (Dub-
ourg et al. 2009) and crack propagation (Nespurek et 
al. 2006). For controlling such external codes, extra 
variables are provided to FERUM through the struc-
ture variable femodel and the user must create an ap-
plication-specific function. One more option avail-
able in FERUM 4.0 is that it takes advantage of 
gradients w.r.t. all or part of basic variables, when 
available from third-party software. This proves to 
be very useful when limit-state functions involve 
very computationally demanding numerical models, 
as it avoids tedious estimations by finite differences. 

2.4 Vectorized / distributed computing 
A major change brought to FERUM 4.0 is that calls 
to the limit-state function g can be evaluated in a 
distributive manner, as opposed to the sequential 
manner of the previous version. Every algorithm 
implemented in FERUM was revisited, so as to send 
multiple calls to g, whenever possible. 

If one thinks of FE-based MCS on a multiproces-
sor computer, the strategy consists in sending calls 
to the FE code in batches, the number of jobs in each 
batch being equal to the number of available CPUs. 
This strategy is known as distributed computing, see 
e.g. examples of applications in (Nespurek et al. 
2006, Dubourg et al. 2009). The number of jobs sent 
simultaneously is tuned through the variable analy-
sisopt.block_size. Such an option is available in 
FERUM, assuming that the user has a suitable com-
puter platform and all the necessary tools to create, 
send and post-process multiple jobs (scripting lan-
guage such as Perl, queuing systems such as 
OpenPBS on Linux, job schedulers, …). The func-
tion in charge of the job allocation is obviously ap-
plication-specific and is called by gfun.m. 

Based on the same developments of FERUM al-
gorithms, it is also possible to send multiple calls to 
a user-defined Matlab limit-state function written in 
a vectorized manner. Vectorized calculations, in the 
Matlab sense, eliminate the need to cycle through 
nested loops and thus run much faster because of the 
way Matlab handles vectors internally. The principle 
is similar to distributed computing, the difference 
being that the multiprocessor computer is virtually 
replaced by a single computer which can handle a 
number of runs simultaneously (this maximum 
number being directly dependent on the memory 
available on the computer). Here again, the maxi-
mum number of runs sent simultaneously is con-
trolled through analysisopt.block_size variable. 

For illustration purpose, on an Intel T7800 
2.6GHz dual core CPU with 4Gb RAM, a MCS 
takes 31 min with 1.5⋅109 samples for a basic  
g = r – s problem, where R and S are normal random 
variables, in a vectorized manner (FERUM 4.0), as 
opposed to 6 days 15 hours in the sequential manner 
(FERUM 3.1). 

2.5 Random fields, system reliability 
Structure variables created for random field prob-
lems by B. Sudret and for system reliability analysis 
by J. Song are still compatible with the new version 
of FERUM, though not tested extensively. An illus-
tration of the use of random fields can be found in 
(Dubourg et al. 2009). 

3 RELIABILITY: APPROXIMATE METHODS 

This section briefly presents approximate methods 
implemented in FERUM 4.0, namely FORM and 
SORM. It also details some improvements brought 
to FORM sensitivities. 

3.1 FORM 
First Order Reliability Method (FORM) aims at 

using a first order approximation of the limit-state 
function in the standard space at the so-called Most 
Probable Point (MPP) of failure P* (or design 
point), which is the limit-state surface closest point 
to the origin. Finding the coordinates u* of the MPP 
consists in solving the following constrained optimi-
zation problem: 

( )( ) ( ){ }* arg min 0g x G= = =u u u u  (4) 

Once the MPP P* is obtained, the Hasofer and 
Lind reliability index β is computed as β = αTu* 
where α = –∇ u G(u*) / ||∇ u G(u*)|| is the negative 
normalized gradient vector at the MPP P*. It repre-
sents the distance from the origin to the MPP in the 
standard space. The first-order approximation of the 
failure probability is then given by pf1 = Φ(–β), 
where Φ(•) is the standard normal cdf. 

As in FERUM 3.1, the new version is based on 
the iHLRF algorithm, see (Zhang & Der Kiureghian 
1994) for further details. In order to take advantage 
of distributed computing, g-calls required for gradi-
ent evaluations by finite differences at a specific 
point of the standard space are sent in a single batch. 
The same technique is applied to step size evaluation 
with Armijo rule, where all corresponding g-calls 
are sent simultaneously. 

Search for multiple MPPs such as described in 
(Der Kiureghian & Dakessian 1998) is also imple-
mented in FERUM 4.0. Figure 1 illustrates the use 



of this method, applied to a parabolic limit-state 
function (Der Kiureghian & Dakessian 1998): 

( ) ( ) ( )2
1 2 2 1,g g x x b x x eκ= = − − −x  (5) 

where b = 5, κ = 0.5 and e = 0.1. Both variables x1 
and x2 are independent and identically distributed 
(i.i.d.) standard normal random variables. 

This problem is characterized by two MPPs at 
similar distances from the origin and basic FORM 
algorithm results are therefore not valid. Results in 
Figure 1 are obtained with parameter values recom-
mended in (Der Kiureghian & Dakessian 1998), i.e. 
γ = 1.1, δ = 0.75 and ε = 0.5. 
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Figure 1 . Parabolic limit-state function: FORM with search for 
multiple design points. 

3.2 FORM sensitivities and importance measures 
In addition to the reliability index β and the MPP 
coordinates coming from a FORM analysis, the user 
may use FERUM 4.0 to calculate the sensitivities of 
β (or of the failure probability pf) to distribution pa-
rameters θf or to limit-state function parameters θg. 

For instance, the sensitivity of β w.r.t. θf reads: 
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The Jacobian of the transformation is obtained by 
differentiating Equation (3) w.r.t. θf parameters: 
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In FERUM 4.0, sensitivities w.r.t. distributions 
parameters θf are evaluated based on both terms of 
Equation (7), as opposed to FERUM 3.1 which only 
uses the first term. Sensitivities to correlation are 
based on the second term of this expression only, as 
the first one vanishes (Bourinet & Lemaire 2008). 
Sensitivities are evaluated numerically with the 
same integration scheme as the one used for obtain-
ing R0 matrix and it is required to differentiate the 
Cholesky decomposition algorithm in a step-by-step 
manner. Examples of application are given in refer-
ence (Bourinet & Lemaire 2008). 

3.3 SORM 
As in the previous version, FERUM offers two ways 
for computing a second order approximation of the 
failure probability. The first method consists in de-
termining the principal curvatures and directions, by 
solving an eigenproblem involving the Hessian of 
the limit-state function. The Hessian is computed by 
finite differences, the perturbations being set in the 
standard normal space. All calls to the limit-state 
function corresponding to perturbated points are po-
tentially sent simultaneously, as being all independ-
ent from each other. The second method consists in 
approximating the limit-state function by a piece-
wise paraboloid surface (Der Kiureghian et al. 
1987). This approximate surface must be tangent to 
the limit-state at the design point and coincides with 
the limit-state at two points on each axis selected on 
both sides of the origin. It is built iteratively, with a 
limited number of iterations and all calls to the limit-
state function, at each iteration, are potentially sent 
simultaneously as well. This second approach is ad-
vantageous for slightly-noisy limit-state functions 
(e.g. involving a FE code), for problem with a large 
number of random variables or when the computa-
tion of curvatures turns out to be problematic. In 
both methods, the SORM approximation of the fail-
ure probability pf2 is computed with Breitung or 
Tvedt formulae, as in FERUM 3.1. 

An example is taken from reference (Der Ki-
ureghian & De Stefano 1990) to illustrate SORM 
application. A two d.o.f. primary-secondary system 
with uncertain damped oscillators is considered un-
der a white-noise base excitation. This problem is 
characterized by a highly nonlinear limit-state 
around a single design point. The limit-state function 
is given in Equation (8) and the basic random vari-
ables of this problem are gathered in Table 1. 
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With iHLRF acceptance tolerances e1 = 10−3 and 
e2 = 5⋅10−3 (Zhang & Der Kiureghian 1995), FORM 
takes 294 iterations to converge (2646 calls to the 
limit-state function). This FORM analysis is based 
on a step size with a fixed value of 0.025, since con-
vergence cannot be obtained using Armijo rule. 
FORM result is pf1 = 3.86⋅10−5. Based on 44 extra 
calls, SORM results with curvature fitting (first 
method) are obtained and we find pf2 = 4.15⋅10−6 



(improved Breitung formula). For comparison pur-
pose, the failure probability obtained by averaging 
the results of 500 subset simulations (see Section 
4.3), each of them using 300000 limit-state function 
evaluations per subset step, gives a reference value 
pf = 4.18⋅10−6. This proves here that SORM is rather 
suitable for such a problem with a single MPP. 
Table 1. Stochastic model 

variable distribution mean c.o.v. 
mp  1.5 0.1 
ms 

lognormal 0.01 0.1 
kp 1 0.2 
ks 

lognormal 0.01 0.2 
ζp 0.05 0.4 
ζs 

lognormal 0.02 0.5 
Fs lognormal 24.5 0.1 
S0 lognormal 100 0.1  

4 RELIABILITY: SIMULATION METHODS 

This section briefly presents simulation methods im-
plemented in FERUM 4.0: well-known simulation 
methods such as crude Monte Carlo Simulation 
(MCS) and Importance Sampling (IS), Directional 
Simulation (DS) and a variance reduction technique 
known as Subset Simulation (SS). 

4.1 Monte Carlo Simulation / Importance Sampling 
Equation (1) is rewritten as follows: 
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where Dfx represents the integration domain of joint 
pdf fX(x), I(•) is an indicator function which equals 1 
if g(x) ≤ 0, and 0 otherwise, and Efx[•] denotes the 
mathematical expectation w.r.t. joint pdf fX(x). 

The expectation in Equation (9) is estimated in a 
statistical sense for MCS. The u-space is randomly 
sampled with N independent samples uj, j = 1, …, N. 
These N samples are then transformed to the x-space 
xj = x(uj) and an unbiased estimate of pf is finally ob-
tained from the sample mean of qj = I(xj). Note that a 
standard deviation is also obtained for this sample, 
providing useful information regarding the accuracy 
of the estimated value of pf. It must be stressed out 
here that MCS requires a high computational effort 
(large N) for small failure probabilities and a number 
of variance reduction techniques have been proposed 
in the past to lower this computational effort. 

One of these variance reduction techniques is 
known as Importance Sampling (IS). Equation (1) is 
rewritten now in the following form: 
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where h is called a sampling density. For IS analysis, 
it is usual to take h(x) = h(x(u)) = ϕn(u–u*) where ϕn 
is the n-dimensional standard normal pdf and u* is 
the vector of MPP coordinates coming from a previ-
ous FORM analysis. Note that pf is now obtained 
from the sample mean of qj = I(xj) fX(xj) / h(xj). 

FERUM 4.0 features both methods and calls to 
the limit-state function are sent in a distributed man-
ner, the maximum number of jobs sent being ad-
justed by the variable analysisopt.block_size. 

4.2 Directional Simulation 
The n-dimensional normal vector U is expressed as 
U = RA, R ≥ 0, where R2 is a chi-square distributed 
random variable with n degrees of freedom (d.o.f.), 
independent of the random unit vector A, which is 
uniformly distributed on the n-dimensional unit 
sphere Ωn. The failure probability pf can be written 
as follows, conditioning on A = a (Bjerager 1988): 
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where fA(a) is the uniform density of A on the unit 
sphere. 

Practically, a sequence of N random direction 
vectors aj = uj/||uj||, j = 1, …, N, is generated first, 
then rj = { r | G(raj) = 0 } are found iteratively and pf 
is finally estimated from the following expression: 
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where χn
2 is the chi-square cdf with n d.o.f. 

In FERUM 4.0, a slightly modified version of this 
algorithm is proposed. Instead of generating random 
directions on the unit sphere, it is proposed to divide 
it into N evenly distributed points, in a deterministic 
manner, in order to gain an improved accuracy at a 
given computational cost. Intersections with the 
limit-state function along each direction are found in 
a distributive manner, based on a vectorized version 
of fzero.m Matlab function. It is worth noting that 
DS looses efficiency as the number of random vari-
ables n increases. 

Table 2 shows the results obtained on the exam-
ple of reference (Der Kiureghian & Dakessian 1998) 
presented in Section 3.1. These results must be com-
pared to a reference value of 3.0158⋅10−3, obtained 
by averaging the results of 500 subset simulations, 
each of them using 200000 limit-state function 
evaluations per subset step. Results appear to be 
fairly good for small numbers of directions N. 
Table 2. Directional Simulation results 

N Ncall pf 
10 101 2.9648⋅10−3 
20 201 3.0162⋅10−3 
50 551 3.0163⋅10−3 

100 1101 3.0163⋅10−3 



4.3 Subset Simulation 
Starting from the premise that the failure event 
F = { g(x) ≤ 0 } is a rare event, S.-K. Au and J.L. 
Beck (Au & Beck 2001) proposed to estimate P(F) 
by means of more frequent intermediate conditional 
failure events {Fi}i = 1..m (called subsets) so that 
F1 ⊃ F2 ⊃ ... ⊃ Fm = F. The m-sequence of interme-
diate conditional failure events is selected so that 
Fi = { g(x) ≤ yi }, where yi’s are decreasing values of 
the limit state function and ym = 0. As a result, the 
failure probability pf = P(F) is expressed as a prod-
uct of the following m conditional probabilities: 
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Each subset event Fi (and the related threshold 
value yi) is determined so that its corresponding con-
ditional probability equals a sufficiently large value 
α, in order to be efficiently estimated with a small 
number of simulations (in practice  α ≈ 0.1-0.2). The 
first threshold y1 is obtained by a crude MCS, so that 
P(F1) ≈ α. For further thresholds, new sampling 
points corresponding to {Fi | Fi–1} conditional events 
are obtained from Markov Chains Monte Carlo 
(MCMC), based on a modified Metropolis-Hastings 
algorithm, see Figure 2 for illustration of main steps. 
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Figure 2 . Main steps of Subset Simulation algorithm. 

Figure 3 shows how the coefficient of variation 
(c.o.v.) of the failure probability of subset simula-
tions varies in terms of the number of simulations 
per subset step Ns, on the two d.o.f. primary-
secondary system presented at Section 3.3. For each 
Ns value, the c.o.v. is estimated empirically by repli-
cate applications of subset simulations (here, 500 
times). For comparison purpose, Figure 3 also gives 
a lower (respectively upper) bound estimate, which 

assumes uncorrelated (respectively fully correlated) 
conditional probability estimates (Au & Beck 2001). 
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Figure 3 . Two d.o.f. primary-secondary system: Subset results. 

5 GLOBAL SENSITIVITY ANALYSIS 

Global sensitivity analysis aims at quantifying the 
impact of the variability in each (or group of) input 
variates on the variability of the output of a model in 
apportioning the output model variance to the vari-
ance in the input variates. Sobol’ indices (Sobol 
1993) are the most usual global sensitivity measures. 
They can be evaluated in FERUM 4.0. 

We consider here a model given by: 

1 2( ) ( , , ..., )nY g g X X X= =X  (14) 

where X = (X1, X2, ..., Xn) is a vector of n independ-
ent random input variates, g is a deterministic model 
and Y is a scalar random output. 

In order to determine the importance of each in-
put variate, we consider how the variance of the out-
put Y decreases when variate Xi is fixed to a given xi

* 
value: 

( )| i iV Y X x∗=  (15) 

where V(•) denotes the variance function. 
Since xi

* value is unknown, we take the expecta-
tion of Equation (15) and, by virtue of the law of to-
tal variance, we can write: 

[ ]( ) ( ) ( )| |i iV E Y X V Y E V Y X= − ⎡ ⎤⎣ ⎦  (16) 

The global sensitivity index of the first order is 
defined as follows, for i =1, …, n: 

[ ]( )
( )

| i i
i

V E Y X VS
V Y V

= =  (17) 

Indices of higher orders are defined in a similar 
manner, e.g. for the second order: 

( )
( )

| ,i j i j ij
ij

V E Y X X V V V
S

V Y V

⎡ ⎤ − −⎣ ⎦= =  (18) 

First order indices inform about the influence of 
each variate taken alone whereas higher order indi-
ces account for possible influences between various 

(a) (b) 

(c) (d) 



parameters. Total sensitivity indices are also usually 
introduced. They express the total sensitivity of Y 
variance to Xi input, including all interactions that 
involve Xi: 

iT k
i k

S S
⊂

=∑  (19) 

where i ⊂ k denotes the set of indices containing i. 
From a computational viewpoint, Sobol’ indices 

can be assessed using Crude Monte Carlo (CMC) or 
Quasi-Monte Carlo (QMC) simulations. This latter 
technique is based on low-discrepancy sequences, 
which usually outperform CMC simulations in terms 
of accuracy, at a given computational cost. Both 
CMC and QMC methods are implemented in 
FERUM 4.0. Another available option consists in 
building a Support Vector surrogate function, by re-
gression on a sample set of well-chosen points. This 
option based on statistical learning theory proves to 
be a rather cost efficient technique for evaluating 
sensitivities of models of moderate complexity. 

For illustration, Sobol’ indices are evaluated on 
the following example taken from reference (Nie & 
Ellingwood 2004). The model is given by: 

( ) ( )
( )
( )

1 2 3

2 2 2
1 2 3 1 2 2 3 3 1

1 2 3

, ,

2 2 2 2

3 3

g g x x x

x x x x x x x x x

x x x

= =

− + + − − −

− + + +

x

 (20) 

where xi, i = 1, 2, 3, are i.i.d. standard normal ran-
dom variables. 

Sobol’s indices obtained by QMC simulations are 
given in Table 3. This model is sensitive to interac-
tions between variables, since second order indices 
are not equal to zero. It is worth noting that, in this 
specific example, indices obtained from a SVR sur-
rogate based on a set of 100 points are as accurate as 
those estimated by QMC with 20000 points. 
Table 3. Sobol’ indices computed with 20000 simulation points 
using Quasi-Monte Carlo (QMC) simulation method 
1st order mean stdv  2nd order mean stdv 

S1 0.1499 0.0147  S12 0.1826 0.0192 
S2 0.1453 0.0124  S13 0.1866 0.0179 
S3 0.1494 0.0130  S23 0.1866 0.0143 

3rd order mean stdv  Total mean stdv 
S123 ≈0 0.0146  ST1 0.5186 0.0132 

    ST2 0.5141 0.0139 
    ST3 0.5222 0.0121 

6 RELIBIALITY-BASED OPTIMIZATION 

FERUM 4.0 now offers Reliability-Based Optimiza-
tion (RBO) capabilities. The problem of interest 
reads, in its most basic and general formulation: 

( ) ( ) ( )
( ) ( )

1 1

t

, , 0
min s.t.

, , 0
q

q

f f
c

f β β
−⎧ ≤⎪

⎨ = − ≤⎪⎩θ

θ θ
θ

x θ x θ
…

 (21) 

where: 
- θ stands for the design variables of the problem, 

either purely deterministic variables θg or distri-
bution parameters θf, 

- c(θ) is the cost function to be minimized, 
- f1(θ)…fq–1(θ) is a vector of deterministic con-

straints over the design variables θ, 
- fq(x, θ) is the reliability constraint enforcing the 

respect of the design rule referred to as the limit-
state function and considering the uncertainty to 
which some of the model parameters x are sub-
jected to. βt is the targeted safety index. 

One way to answer the problem in Equation (21) 
consists in a brute-force outer optimization loop over 
the reliability evaluation, here termed “nested bi-
level approach”. This might be computational ex-
pensive in the case of simulation-based methods 
such as MCS and DS, as addressed in (Royset & Po-
lak 2004) and (Royset & Polak 2007) respectively. 
However, if based on FORM, this brute-force 
method gives a solution within a reasonable amount 
of calls to the limit-state function. 

The outer optimization loop makes use of the Po-
lak-He optimization algorithm (Polak 1997) and re-
quires the gradients of both cost and constraints 
functions, which themselves require the gradient of 
the reliability index w.r.t. design variables θ. 

Previous RBO applications of the Polak-He algo-
rithm showed that its rate of convergence highly de-
pends on the order of magnitude of design parame-
ters, cost and constraints functions. In FERUM 4.0, 
all these values are normalized at each Polak-He it-
eration, thus improving and ensuring convergence, 
whatever the initial scaling of the problem in Equa-
tion (21). Convergence to an optimum is assumed to 
be obtained when the cost function has reached a 
stable value and all the constraints are satisfied, i.e. 
f1(θ)…fq(θ) ≤ 0. 

For illustration purpose, RBO is applied to a 
spherical tank under internal pressure p. Failure is 
defined when the von Mises stress exceeds the yield 
strength σy of the elastic constitutive material. Vari-
ables r0 and r1 denoting the internal and external ra-
dii respectively, the limit-state function thus reads: 

( ) ( )
3

1
y 0 1 y 3 3

1 0

3, , ,
2
p rg g p r r

r r
σ σ= = −

−
x  (22) 

The proposed optimization problem enunciates: 

( )
( ) ( ) ( )

( )

0 1

3 3
0 1 sphere 0 1 1 0,

0 0 1

1 t 0 1

4min , ,
3

40 0 ( ) 0 ( )
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150 0 ( ) , 0 ( )

r r
c r r V r r r r

r i r r iii
r ii r r iv

π

β β

= = −

− ≤ − ≤⎧⎪
⎨ − ≤ − ≤⎪⎩

 (23) 

The internal pressure p and the yield strength σy 
are considered as statistically independent lognormal 
random variables with means and standard devia-
tions equal to (130 MPa, 8 MPa) and (300 MPa, 



20 MPa) respectively, whereas the design variables 
r0 and r1 are supposed to be deterministic. The initial 
design set as well as the RBO results for various re-
liability targets βt are provided in Table 4. The last 
column example (βt = 5) exhibits an exponential in-
crease of the cost function w.r.t. iterations (it is 
worth noting that the initial cost is amplified by a 
factor greater than 700 after 7 iterations). This ex-
ample demonstrates the ability of the RBO algorithm 
to adapt itself very rapidly to fulfill the reliability 
constraint, which is not reachable here. This exam-
ple is in fact characterized by an upper bound reli-
ability index βmax ≈ 4.7494, which corresponds to 
the limit-state function in Equation (22) when r1 
tends toward infinity. From results in Table 4, it is 
observed that the deterministic constraints are not 
always accurately satisfied. This is due to the re-
scaling procedure used at each Polak-He iteration. 
Table 4. RBO results 

βt Initial 3.28* 2.0 5.0 5.0** 
Niter – 7 7 7 7 
β 3.2761 3.2804 2.0003 4.5878 4.7484 

c / c0 1 0.5154 0.2588 4.4117 729.33 
r0 (mm) 50 40.05 40.01 38.47 39.35 
r1 (mm) 100 80.17 66.23 157.64 860.97 
NFORM 1 29 29 101 42 
Ncall 30 907 898 3949 1648 

*: iso-reliability optimization   **: constraint (ii) released 

The proposed RBO algorithm is part of FERUM 
4.0 and it uses all distributed features of FORM. It 
also allows optimization w.r.t. distribution parame-
ters θf, e.g. mean values of r0 and r1, if the two radii 
are considered as random variables too. 

7 CONCLUSION 

This paper briefly presents new features available in 
FERUM 4.0. For more details on each method, the 
reader may refer to more comprehensive papers ref-
erenced in the text. The objectives of this new ver-
sion are similar to those of the previous one: provid-
ing students and researchers with a very flexible 
tool, which facilitates learning and developing new 
techniques for research purposes. The Matlab source 
files of this new version are downloadable both at 
IFMA (www.ifma.fr/FERUM/) and UC Berkeley 
(www.ce.berkeley.edu/FERUM/). 
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