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Abstract

Problems from metric graph theory like Metric Dimension, Geodetic Set,
and Strong Metric Dimension have recently had a strong impact in pa-
rameterized complexity by being the first known problems in NP to admit
double-exponential lower bounds in the treewidth, and even in the vertex cover
number for the latter. We initiate the study of enumerating minimal solution
sets for these problems and show that they are also of great interest in enumer-
ation. Specifically, we show that enumerating minimal resolving sets in graphs
and minimal geodetic sets in split graphs are equivalent to enumerating min-
imal transversals in hypergraphs (denoted Trans-Enum), whose solvability
in total-polynomial time is one of the most important open problems in algo-
rithmic enumeration. This provides two new natural examples to a question
that emerged in recent works: for which vertex (or edge) set graph property
Π is the enumeration of minimal (or maximal) subsets satisfying Π equiva-
lent to Trans-Enum? As very few properties are known to fit within this
context—namely, those related to minimal domination—our results make sig-
nificant progress in characterizing such properties, and provide new angles to
approach Trans-Enum. In contrast, we observe that minimal strong resolving
sets can be enumerated with polynomial delay. Additionally, we consider cases
where our reductions do not apply, namely graphs with no long induced paths,
and show both positive and negative results related to the enumeration and
extension of partial solutions.
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1 Introduction
Metric graph theory is a central topic in mathematics and computer science that
is the subject of many books and articles, with far-reaching applications such as in
group theory [Gro87, Ago13], matroid theory [BCK18], learning theory [CCM+23,
CCMW22, CKP22, CCMR23], and computational biology [BD92]. Two very well-
studied metric graph problems that arise in the context of network design and
monitoring are the metric dimension [Sla75, HM76] and geodetic set [HLT93] prob-
lems. There is a rich literature concerning these problems and their variants, see,
e.g., [Sla87, KCL98, ST04, BHGLM08, BMM+20], with applications being found in
areas like network verification [BEE+06], chemistry [Joh93], and genomics [TL19].
In particular, the strong metric dimension problem [ST04] has begun to gather mo-
mentum. In this paper, we study the algorithmic enumeration of minimal solution
sets for the metric dimension, geodetic set, and strong metric dimension problems.

In the Metric Dimension problem, given a graph G and a positive inte-
ger k, the question is whether there exists a subset S ⊆ V (G) of at most k ver-
tices such that, for any pair of vertices u, v ∈ V (G), there exists a vertex w ∈ S
with dist(u,w) ̸= dist(v, w). A set of vertices S ⊆ V (G) that satisfies the lat-
ter property is known as a resolving set of G. This problem was shown to be
NP-complete in Garey and Johnson’s book [GJ79]. In the last decade, its com-
plexity was greatly refined, with it being proven to be NP-hard in, e.g., planar
graphs [DPSvL17], interval graphs of diameter 2 [FMN+17], (co-)bipartite graphs,
and split graphs [ELW15]. On the positive side, it is polynomial-time solvable in,
e.g., trees [Sla75], cographs [ELW15], outerplanar graphs [DPSvL17], and graphs of
bounded feedback edge number [Epp15]. Further, it is in FPT when parameterized
by the max leaf number [Epp15], the treelength plus maximum degree [BFGR17], the
distance to cluster (co-cluster, resp.) [GKM+23], the treedepth, and the clique-width
plus diameter [GHK+22]. In chordal graphs, it is also in FPT when parameter-
ized by the treewidth [BDP23]. In contrast, it is W[2]-hard parameterized by the
solution size k [HN13], W[1]-hard parameterized by the pathwidth plus maximum
degree [BP21] and the feedback vertex number plus pathwidth [GKM+23], and para-
NP-hard parameterized by the pathwidth alone [LP22].

In the Geodetic Set problem, given a graph G and a positive integer k, the
question is whether there exists a subset S ⊆ V (G) of at most k vertices such
that every vertex in G is on a shortest path between two vertices of S. A set
of vertices S ⊆ V (G) that satisfies the latter property is known as a geodetic set
of G. It is NP-complete in co-bipartite graphs [EEH+12], interval graphs [CDF+20],
and diameter-2 graphs [CFG+20], but polynomial-time solvable in well-partitioned
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chordal graphs [AJKL22], outerplanar graphs [Mez18], distance-hereditary graphs
[KN16], and proper interval graphs [EEH+12]. Also, it is W[1]-hard parameterized
by the solution size plus feedback vertex number plus pathwidth, but in FPT when
parameterized by the treedepth, the clique-width plus diameter, and the feedback
edge number [KK22]. It is also in FPT when parameterized by the treewidth in
chordal graphs [CDF+20].

In the Strong Metric Dimension problem, given a graph G and a positive
integer k, the question is whether there exists a subset S ⊆ V (G) of at most k
vertices such that, for any pair of vertices u, v ∈ V (G), there exists a vertex w ∈ S
with either u belonging to a shortest w–v path or v belonging to a shortest w–u
path. A set of vertices S ⊆ V (G) that satisfies the latter property is known as a
strong resolving set of G. There is a polynomial-time reduction from an instance
(G, k) of Strong Metric Dimension to an instance (G′, k) of Vertex Cover,
where V (G) = V (G′) and the edges of G′ connect pairs of vertices that are so-called
“mutually maximally distant” in G [OP07]. Due to its algorithmic implications, this
relationship was further studied in [DM17, KPRVY18].

Recently, the three above problems were shown to be important well beyond the
field of metric graph theory by being the first known problems in NP to admit condi-
tional double-exponential lower bounds in the treewidth, and even the vertex cover
number (vc) for Strong Metric Dimension [FGK+23]. Further, the authors
in [FGK+23] proved that, unless the ETH fails, all three problems do not admit
kernelization algorithms that output a kernel with 2o(vc) vertices. Such kerneliza-
tion lower bounds were priorly only known for two other problems [CPP16, CIK16].
Lastly, they provided matching upper bounds [FGK+23], and the lower bound tech-
nique they developed was used to obtain similar results for another NP-complete
problem [CCMR23].

Despite these problems being well-studied from an algorithmic complexity point
of view, they have yet to be studied from the perspective of enumeration. We remedy
this by initiating the study of enumerating minimal solution sets—the gold standard
for enumeration—for the following problems.

Minimal Resolving Sets Enumeration (MinResolving)
Input: A graph G.
Output: The set of (inclusion-wise) minimal resolving sets of G.

Minimal Strong Resolving Sets Enumeration (MinStrongResolving)
Input: A graph G.
Output: The set of (inclusion-wise) minimal strong resolving sets of G.
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Minimal Geodetic Sets Enumeration (MinGeodetic)
Input: A graph G.
Output: The set of (inclusion-wise) minimal geodetic sets of G.

In the same manner that these problems had a strong impact in parameterized
complexity [FGK+23], we show that they are also of great interest in enumeration.
Specifically, they relate to classical problems such as the enumeration of maximal
independent sets in graphs, which admits a polynomial-delay1 algorithm [TIAS77],
and the enumeration of minimal transversals in hypergraphs, whose solvability in
total-polynomial time is one of the most important open problems in algorithmic
enumeration [EG95, EMG08].

In the minimal transversals enumeration problem, denoted Trans-Enum and
also known as hypergraph dualization, given a hypergraph H, the goal is to list all
(inclusion-wise) minimal subsets of vertices that hit every edge of H. The best-
known algorithm for Trans-Enum runs in incremental quasi-polynomial time by
generating the ith minimal transversal of H in time N o(logN), where N = |H| +
i [FK96]. Ever since, a lot of effort has been made to solve the problem in total-
polynomial time in restricted cases.2 Notably, there are polynomial-delay algorithms
for β-acyclic hypergraphs [EG95] and hypergraphs of bounded degeneracy [EGM03]
or without small holes [KKP18], and incremental-polynomial-time algorithms for
bounded conformality hypergraphs [KBEG07] and geometric instances [ERR19].

Due to the inherent difficult nature of the problem, and since no substantial
progress has been made in the general case since [FK96], Trans-Enum has gained
the status of a “landmark problem” in terms of tractability, in between problems
admitting total-polynomial-time algorithms, and those for which the existence of
such algorithms is impossible unless P = NP. This has motivated the study of
particular cases of problems that are known to be at least as hard3 as Trans-Enum;
see, e.g., [EG95, KLMN14, CGK+19]. One of the most successful examples is the
case of minimal dominating sets enumeration, with many particular cases shown to
admit total-polynomial-time algorithms [KLMN14, KLM+15, GHK+18, BDH+20].
On the other hand, for problems that are notably harder than Trans-Enum and
for which the existence of total-sub-exponential-time algorithms is open, adapting
the algorithm of [FK96] as in [Elb09, Elb22], or using it as a subroutine as in [AN17,

1The different notions from enumeration complexity are defined in Section 2.
2A total-polynomial-time algorithm was claimed in [Wil23], but the proof has a major flaw

(Claim (4), Section 3) that, to the best of our knowledge, has not been corrected.
3An enumeration problem is at least as hard as another enumeration problem if a total-

polynomial-time algorithm for the first implies a total-polynomial-time algorithm for the second;
the problems are (polynomially) equivalent if the reverse direction also holds.
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DNV19, DN20] has also proved fruitful.
In light of these results, a line of research that emerged from [KLMN14] (see also,

e.g., [CKMU19, Str19]) consists of exploring the following question.

Question 1.1. For which vertex (or edge) set graph property Π is the enumeration
of minimal (or maximal) subsets satisfying Π equivalent to Trans-Enum?

We make progress on Question 1.1 by surprisingly proving that Trans-Enum is
equivalent to MinResolving (in general graphs) and MinGeodetic in split graphs.
Notably, this adds two natural problems to the short list of those known to have this
property. Curiously, this contrasts with MinStrongResolving that we show can
be solved with polynomial delay.

Interestingly, we in addition show that MinGeodetic is a particular case of
enumerating the minimal flats of the graphic matroid associated to Kn that are
transversals of a given n-hypergraph. To the best of our knowledge, the latter prob-
lem is open, and thus, this encloses MinGeodetic by two generation problems
whose complexity statuses are unsettled. Hence, disproving the equivalence between
MinGeodetic and Trans-Enum by, e.g., showing that the first problem does not
admit a total-polynomial-time algorithm unless P = NP,4 would imply that the
aforementioned variant of flats enumeration is intractable.

Finally, we observe that the difficulty of the problems we study is tightly related
to the maximum length of an induced path in the graph. This motivates the study
of these problems on graphs that do not contain long induced paths with the aim of
showing that it is not possible to get even more restricted graph classes for which
MinResolving and MinGeodetic restricted to these graph classes are at least
as hard as Trans-Enum. While enumerating minimal geodetic and resolving sets
is harder than Trans-Enum on P5 and P6-free graphs, respectively, we show that
they admit linear-delay algorithms in P4-free graphs using a variant of Courcelle’s
theorem for enumeration and clique-width [Cou09].

Concerning the difficulties and novelties of our techniques, our main results
are based on several reductions which—unlike classical NP-hardness reductions—
preserve as much as possible the set of solutions of the original instance. For exam-
ple, two main difficulties with our reduction from Trans-Enum to MinResolving
are to ensure that there are (1) at most a polynomial number of minimal resolving
sets that do not correspond to minimal transversals, and (2) only a few minimal
resolving sets corresponding to the same minimal transversal.

4As Trans-Enum is in QP and it is believed that NP ̸⊆ QP.
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2 Preliminaries
For a positive integer n, let [n] := {1, . . . , n}. We begin with definitions from enu-
meration complexity and refer the reader to [JYP88, Str19]. An algorithm runs in
total-polynomial time if it outputs every solution and stops in a time which is poly-
nomial in the size of the input plus the output. Moreover, if the algorithm outputs
the ith solution in a time which is polynomial in the size of the input plus i, then
it runs in incremental-polynomial time. An enumeration algorithm runs with poly-
nomial delay if before the first output, between consecutive outputs, and after the
last output it runs in a time which is polynomial in the size of the input. Clearly, an
algorithm running with polynomial delay runs in incremental-polynomial time, and
an incremental-polynomial-time algorithm runs in total-polynomial time.

For graphs and hypergraphs, see [Die12] and [Ber84] for definitions that are not
recalled below. A hypergraph H is a set of vertices V (H) together with a family of
edges E(H) ⊆ 2V (H). It is a graph when each of its edges has size precisely two, and
Sperner if no two distinct edges E,F ∈ H are such that E ⊆ F . A transversal of H
is a subset T ⊆ V (H) such that E ∩ T ̸= ∅ for all E ∈ E(H). It is minimal if it is
inclusion-wise minimal. The set of minimal transversals of H is denoted by Tr(H),
and the problem of listing Tr(H) (given H) by Trans-Enum.

Given a graph G and two vertices x, y, dist(x, y) is the length of a shortest x-y
path in G. Two vertices u, v are false twins if their open neighborhoods N(u) and
N(v) are equal, and twins if they are also adjacent. For k ∈ Z+, we call Pk an
induced subgraph of G isomorphic to a path on k vertices. We say that a vertex is
complete (anti-complete, resp.) to a subset S ⊆ V (G) if it is adjacent (non-adjacent,
resp.) to each vertex in S. For resolving sets, we say that a vertex x distinguishes a
pair a, b of vertices if dist(a, x) ̸= dist(b, x). For geodetic sets, we say that a pair x, y
of vertices covers a vertex v if v lies on an x–y shortest path. We say that a (strong)
resolving set (geodetic set, resp.) is minimal if it is inclusion-wise minimal.

Given a hypergraph H on vertex set {v1, . . . , vn} and edge set {E1, . . . , Em}, the
incidence bipartite graph of H is the bipartite graph with bipartition V = {v1, . . . , vn}
and H = {e1, . . . , em}, with an edge between vi ∈ V and ej ∈ H if vi belongs to Ej.
The non-incidence bipartite graph of H is the graph with the same vertices, but where
there is an edge between vi ∈ V and ej ∈ H if vi does not belong to Ej. Finally, the
(non-)incidence co-bipartite graph of H is the (non-)incidence bipartite graph of H
where V and H are completed into cliques. For illustrations of these constructions,
see the reductions in the next sections.
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3 Resolving sets
In this section, we prove that Trans-Enum and MinResolving are equivalent, and
that our reductions preserve polynomial delay. As for MinStrongResolving, we
show that it is equivalent to the enumeration of maximal independent sets in graphs,
and hence, that it admits a polynomial-delay algorithm.

We first deal with the reduction from MinResolving. It is clear from the def-
inition of distinguishing a pair of vertices that the resolving sets of a graph G are
exactly the transversals of the hypergraph H with the same vertex set and with an
edge Eab := {v ∈ V (G) : dist(a, v) ̸= dist(b, v)} for every pair a, b of distinct ver-
tices in G. Since H has n vertices and O(n2) edges, and as it can be constructed in
polynomial time in n, we derive the following.

Theorem 3.1. There is a polynomial-delay algorithm for MinResolving whenever
there is one for Trans-Enum.

Let us now deal with the reduction from Trans-Enum. Let H be a hypergraph
on vertex set {v1, . . . , vn} and edge set {E1, . . . , Em}. For convenience, in our proof,
we will furthermore assume that n and m are powers of 2 greater than 2, and that
no edge of H contains the full set of vertices. Note that these assumptions can be
conducted without loss of generality, in particular since it can be assumed that H is
Sperner and an edge containing the full set of vertices would imply it is the only edge
of H. We describe the construction of a graph on O(n+m) vertices and O(n2+m2)
edges whose set of minimal resolving sets can be partitioned into two families where
the first one has size O(nm2), and where the second roughly consists of O(nm) copies
of the minimal transversals of H. See Figure 1 for an illustration of the construction.

We start from the non-incidence co-bipartite graph of H with bipartition V :=
{v1, . . . , vn} and H := {e1, . . . , em}, to which we add a clique H ′ := {e′1, . . . , e′m}
that we make complete to V . Then V , H, and H ′ are cliques, vi is adjacent to every
e′ ∈ H ′, and it is adjacent to ej if and only if vi ̸∈ Ej. We construct two additional
sets U := {u1, u′1, . . . , ulogn+1, u

′
logn+1} and W := {w1, w

′
1, . . . , wlogm+1, w

′
logm+1} on

2 log n+ 2 and 2 logm+ 2 vertices, respectively. We complete U into a clique minus
each of the edges uiu′i, i ∈ [log n + 1], and add to W each of the edges wjw

′
j,

j ∈ [logm + 1]. For an integer j ∈ N, we shall note I(j) the set of indices (starting
from 1) of bits of value 1 in the binary representation of j. Then, we connect each vi,
i ∈ [n], to the vertices uk and u′k for every k ∈ I(i), and each of ej and e′j, j ∈ [m],
to the vertices wk and w′

k for every k ∈ I(j). Observe that, by the nature of the
binary coding, no element of V is complete or anti-complete to U , and the same can
be said for H ∪ H ′ and W . Note that this binary representation gadget is derived
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w3 w′
3

H

Figure 1: Illustration of the reduction from Trans-Enum to MinResolving
with H consisting of E1 = {v1, v2}, E2 = {v2, v3, v4}, E3 = {v3, v5}, and E4 =
{v4, v5, v6, v7, v8}. Dashed lines represent non-edges, and a bold line between two
sets of vertices A,B means that A is complete to B. For legibility, we do not show
the edges of G[U ], which is almost a clique, nor the edges of the cliques H, H ′, and V .
We only show the non-edges between V and H. We also do not fully represent some
of the edges incident to the vertices u′i and w′

j. The set of white vertices is one of
the O(nm) minimal resolving sets associated to the minimal transversal {v1, v3, v5}
of H. The set of square vertices is one of the O(nm2) minimal resolving sets not
associated with a minimal transversal.

from ideas used in, e.g., [GKM+22, FGK+23]. Finally, we connect every vertex of U
to every vertex of H ∪H ′, and connect every vertex of W to every vertex of V . This
concludes the construction of our graph G. We start with easy observations.

Lemma 3.2. Let S be a minimal resolving set of G. Then, S intersects each of
{ui, u′i} (i ∈ [log n+ 1]) and {wj, w

′
j} (j ∈ [logm+ 1]) on one vertex.

Proof. First, note that each of the sets {ui, u′i} (i ∈ [log n + 1]) and {wj, w
′
j} (j ∈

[logm + 1]) defines a distinct pair of (false or not) twin vertices in G. As two
(false or not) twins share the same distances to every other vertex in the graph, any
resolving set must intersect them in order to distinguish them, and it intersects them
on precisely one element whenever it is minimal.
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In the following, let us consider arbitrary

X ∈

{
{x1, . . . , xlogn+1} : (x1, . . . , xlogn+1) ∈

logn+1∏
i=1

{ui, u′i}

}
,

Y ∈

{
{y1, . . . , ylogm+1} : (y1, . . . , ylogm+1) ∈

logm+1∏
j=1

{wj, w
′
j}

}
,

and note Z the set of all possible unions Z := X∪Y . Note that there are 4nm possible
choices for Z, and that by Lemma 3.2, any minimal resolving set contains one such
Z as a subset. We characterize the pairs of vertices of G that are distinguished by
these sets.

Lemma 3.3. Let Z ∈ Z and let P be the set of all pairs {ej, e′j} with j ∈ [m]. Then,
Z distinguishes a pair a, b of distinct vertices if and only if (a, b) /∈ P .

Proof. We consider cases depending on the nature of each pair a, b of distinct vertices
in G to show that they are distinguished by Z. Clearly if one of a or b belongs to Z,
then the pair is distinguished. We thus assume a and b to be disjoint from Z in the
rest of the case analysis.

We first consider a ∈ U . Then, a ∈ {ui, u′i} for some i ∈ [log n + 1] and, by
assumption, a ̸∈ Z and a ̸= xi. Then, dist(a, xi) = 2, while dist(b, xi) = 1 for any
b in U or H ∪ H ′. If b belongs to V or W , then there is some yj ∈ Y such that
dist(b, yj) ≤ 1 and dist(a, yj) ≥ 2. Hence, the pair a, b is distinguished in this case.

We now consider a ∈ W . Then, a ∈ {wj, w
′
j} for some j ∈ [logm + 1] and,

by assumption, a ̸∈ Z and a ̸= yj. If b belongs to W , then dist(a, yj) = 1 and
dist(b, yj) ≥ 2. If b belongs to H∪H ′, then dist(a, xi) ≥ 2 and dist(b, xi) = 1 for some
xi ∈ X. The same holds when b belongs to V as every element v ∈ V is adjacent to
some xi by the nature of the binary coding between U and V . The case b ∈ U was
handled above. We conclude that the pair a, b is distinguished in this case.

Now assume that a ∈ V and b ∈ H ∪ H ′. Recall that, by the nature of the
binary coding between U and V , for each such a, there exists xi ∈ X such that
dist(a, xi) ≥ 2. As dist(b, xi) = 1, the pair a, b is distinguished by xi in this case.

We are left with {a, b} being a subset of V or H ∪ H ′. In each of these cases,
a and b have distinct adjacencies with respect to U or W as their indices within V
or H ∪ H ′ are distinct. In particular, this is true when a ∈ H and b ∈ H ′ or vice
versa since {a, b} /∈ P . Then, there exists z ∈ Z such that dist(a, z) ̸= dist(b, z), and
hence, the pair a, b is distinguished, concluding the case.
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If {a, b} ∈ P , then no vertex in Z distinguishes the pair a, b as U is complete to
H ∪ H ′, each vertex in W adjacent to ej is also adjacent to e′j for all j ∈ [m], and
each vertex in W is at distance at most 2 from each vertex in H ∪H ′.

Since by Lemma 3.2 every minimal resolving set contains a choice of Z as above,
we get that the non-trivial part of minimal resolving sets in G is dedicated to distin-
guishing pairs in P . We characterize these non-trivial parts in the following.

Lemma 3.4. If S is a minimal resolving set of G such that S ∩ (H ∪H ′) ̸= ∅, then
S = Z ∪ {e} for some Z ∈ Z and e ∈ H ∪H ′.

Proof. Recall that, by Lemma 3.2 there exists Z ∈ Z such that S∩(U ∪W ) = Z. By
Lemma 3.3, only pairs {a, b} ∈ P are not distinguished by Z. Since there is no edge
between H and H ′, and as these sets are cliques, picking e in any of these sets will
satisfy dist(a, e) ̸= dist(b, e). Hence, Z ∪ {e} is a resolving set for every e ∈ H ∪H ′,
and the lemma follows by minimality.

Lemma 3.5. If S is a minimal resolving set of G such that S ∩ (H ∪H ′) = ∅, then
S = Z ∪ T for some Z ∈ Z and some minimal transversal T of H.

Proof. Let {ej, e′j} ∈ P . As by assumption S ∩ (H ∪H ′) = ∅, then, by Lemma 3.2,
S = Z∪T for some T ⊆ V . Now, for v ∈ V to distinguish ej from e′j, it must be that
v is non-adjacent to ej since v is complete to H ′. By construction, we deduce that
v ∈ Ej in that case. Since by Lemma 3.3 every pair in P needs to be distinguished
by T , we derive that T is a transversal of H. The minimality of S implies that, for
every v ∈ V , there exists at least one pair in P that is distinguished by v but not by
T \ {v}. Hence, T is a minimal transversal of H.

Lemma 3.6. If T is a minimal transversal of H, then Z ∪ T is a minimal resolving
set of G for any Z ∈ Z.

Proof. Since T is a transversal of H, every pair of P is distinguished by a vertex of T .
By Lemmas 3.2 and 3.3, we conclude that Z ∪ T is a resolving set. It is minimal
by Lemma 3.2 and the fact that, for every vi ∈ T , there is some Ej in H such that
(T \ {vi})∩Ej = ∅, and hence, the pair {ej, e′j} is not distinguished by T \ {vi}, and
by Lemma 3.3 this pair is not distinguished by (Z ∪ T ) \ {vi}.

Note that, to every T ∈ Tr(H), there are 4nm corresponding distinct minimal
resolving sets in G obtained by extending T with every possible Z ∈ Z. We show that
our reduction still preserves polynomial delay at the cost of (potentially exponential)
space using a folklore trick on regularizing the outputs.
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Theorem 3.7. There is a polynomial-delay algorithm for Trans-Enum whenever
there is one for MinResolving.

Proof. Let A be an algorithm for MinResolving running with polynomial delay
f(n) for some function f : N → N, where n is the number of vertices in G. We first
describe an incremental-polynomial-time algorithm B for Trans-Enum generating
the ith solution in O(i · (nm2 · f(n))) time. We start by constructing G as above.
Clearly, this can be done in polynomial time in n +m. Then, we simulate A on G.
Each time A produces a set of the form S = Z ∪ T with |T | ≥ 2, we check whether
T has already been obtained before by keeping every such T in memory, and output
it as a solution for Trans-Enum if not. This concludes the description of B. Its
correctness follows from Lemmas 3.4, 3.5, and 3.6.

Let us analyze the complexity of B. By Lemma 3.4, A generates at most O(nm2)
solutions in total time O(nm2 · f(n)) before generating a first solution of the form
Z ∪ T with T ∈ Tr(H). Hence, the first solution of B is obtained in O(nm2 · f(n))
time, as required. Suppose now that B has produced i solutions T1, . . . , Ti ∈ Tr(H)
in O(i · (nm2 · f(n))) time. By Lemmas 3.4 and 3.5, when B produces the (i + 1)th

solution for Trans-Enum, the simulation of A has generated at most i·4nm+O(nm2)
solutions of the form Z ∪ {e} with e ∈ H ∪H ′ or Z ∪ T for T ∈ {T1, . . . , Ti}. This
takes O

(
(i ·4nm+nm2) ·f(n)

)
time by assumption, after which B produces the next

solution. Thus, in total, B has spent O(i · 4nm · f(n) + nm2 · f(n)) time outputting
the (i+ 1)th solution of Trans-Enum as desired.

In the incremental time of B, the dependence on i is linear. Using a folklore trick
on regularizing the delay of such algorithms (see, e.g., [CS23, Proposition 3]), we can
regularize algorithm B to polynomial-delay by keeping each new set T in a queue,
and pulling a new set from the queue every O(nm2 · f(n)) steps.

The space needed for the reduction of Theorem 3.7 to hold is potentially expo-
nential, as every obtained minimal transversal is stored in a queue. However, using
another folklore trick (see, e.g., [BDMN20, Section 3.3]) on checking whether solu-
tions have already been obtained by running the same algorithm on the same number
of steps minus one, the reduction could preserve incremental-polynomial time and
polynomial space at the cost of a worse dependence on the number of solutions. We
end this section by dealing with MinStrongResolving.

Theorem 3.8. MinStrongResolving can be solved with polynomial delay.

Proof. It is known that, given a graphG, another graphG′ such that the vertex covers
of G′ are exactly the strong resolving sets of G can be constructed in polynomial
time [OP07, Theorem 2.1]. Moreover, the size of G′ is polynomial in the size of
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G, namely it satisfies V (G′) = V (G). As the vertex covers of a graph are the
complements of its independent sets, we deduce a polynomial-delay algorithm for
MinStrongResolving by the algorithm of Tsukiyama et al. [TIAS77].

4 Geodetic sets
In this section, we prove that Trans-Enum and MinGeodetic on split graphs
are equivalent, and that our reductions preserve polynomial delay. As for the gen-
eral case, we show it to be a particular case of enumerating all the minimal flats
of the graphic matroid associated to Kn that are transversals of a given n-vertex
hypergraph, whose complexity status is unsettled to date.

We first deal with the reduction from Trans-Enum. Let H be a hypergraph
on vertex set {v1, . . . , vn} and edge set {E1, . . . , Em}. We furthermore assume that
n,m ≥ 1 and that no vertex of H appears in every edge. Note that these assumptions
can be conducted without loss of generality. In particular, if a vertex v appears
in every edge, then Tr(H) consists of {v} and the minimal transversals of H′ :=
{E \ {v} : E ∈ H}, and so, solving Trans-Enum on H is essentially equivalent to
solving it on H′, and thus, we can recursively remove such vertices.

We describe the construction of a split graph G on O(n+m) and O(n2m2) edges
whose set of minimal geodetic sets is partitioned into two families where the first has
size O(m) and the second is in bijection with the set of minimal transversals of H.
See Figure 2 for an illustration of the construction. We start from the non-incidence
bipartite graph of H with bipartition V := {v1, . . . , vn} and H := {e1, . . . , em}, to
which we add a set of vertices U := {u1, . . . , um} with uj only adjacent to ej for each
j ∈ [m]. We then complete U ∪V into a clique and add a vertex e∗ adjacent to every
vertex in V . Finally, we add a vertex u∗ adjacent to every vertex inG. This completes
the construction. We note that G is a split graph with clique K := U ∪ V ∪ {u∗}
and independent set I := H ∪ {e∗}.

Since u∗ is a universal vertex of G, the diameter of G is at most 2, and we may
reformulate x being on a shortest a–b path with a ̸= x ̸= b as x being the middle
vertex of a P3 in G (as an induced subgraph). We derive easy observations.

Lemma 4.1. The set I is contained in every geodetic set of G.

Proof. This holds since no vertex in I is the middle vertex of a P3 in G.

Lemma 4.2. Only the vertices in U are not covered by the pairs of vertices in I.

Proof. Clearly, all the vertices of I are self-covered. Recall that H is assumed to
contain at least one edge, and no vertex of H appears in every edge. Thus, if
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v1 v2 v3 v4 v5

e1 e4

v6u1 u2 u3 u4

H

VU

e2 e3 e∗
u∗

K

I

Figure 2: Illustration of the reduction from Trans-Enum to MinGeodetic with
H consisting of E1 = {v1, v2}, E2 = {v2, v3, v4}, E3 = {v3, v5}, and E4 = {v4, v5, v6}.
Dashed lines represent non-edges and the bold lines incident to u∗ and e∗ mean these
two vertices are complete to I and V , respectively. For legibility, we do not represent
the edges of the clique K. The square vertices belong to any geodetic set. The set
of white vertices is a minimal geodetic set obtained from the minimal transversal
{v1, v3, v5} of H.

x ∈ V ∪{u∗}, then there exists e ∈ H adjacent to x and the pair e, e∗ covers it. Now,
since no P3 having its endpoints in I contains a vertex of U , we conclude that only
the vertices in U are not covered by the pairs of vertices in I, as desired.

Lemma 4.3. The set I ∪ {u} is a minimal geodetic set of G for every u ∈ U .

Proof. This follows by Lemmas 4.1 and 4.2 by observing that, for any u′ ∈ U with
u′ ̸= u, we have a P3 eu

′u for e the unique neighbor of u′ in H.

We may now characterize minimal geodetic sets that are of interest as far as the
transversality of H is concerned.

Lemma 4.4. Let S be a minimal geodetic set of G such that S∩U = ∅. Then, S∩K
is a minimal transversal of H.

Proof. By Lemmas 4.1 and 4.2, we have that I ⊆ S, and that only the elements in
U are not covered by the pairs of vertices in I. Let T := S ∩K. Since S ∩U = ∅ and
u∗ is adjacent to every vertex in G, we derive that T ⊆ V . Now, in order to cover uj
(j ∈ [m]) it must be that a vertex from T is not adjacent to ej, as the only P3 having
uj as a middle vertex contains ej. Hence, T defines a transversal of H whenever the
pairs of vertices in T cover every such uj. If T was not minimal, then removing a
vertex v from T would still intersect every edge of H, which in turn would still cover
every u ∈ U , a contradiction.

Lemma 4.5. If T is a minimal transversal of H, then T ∪ I is a minimal geodetic
set of G.
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Proof. By Lemma 4.2, the pairs of vertices in I cover every vertex of G except for
those in U . Now, since T is a transversal, for every Ej ∈ H, there exists v ∈ T such
that v ∈ Ej, and it follows that v is not adjacent to ej and ejujv defines a P3. Thus,
every uj is covered and we conclude that S := T ∪ I is a geodetic set. Let us assume
that it is not minimal and let x ∈ S such that S \ {x} is still a geodetic set. Then,
for every uj (j ∈ [m]), there exists a pair ej, v with v ∈ S \ {x} such that ejujv
forms a P3. Hence, for every Ej ∈ H, there exists v ∈ T \ {x} such that v ∈ Ej, a
contradiction to the minimality of T .

Theorem 4.6. There is a polynomial-delay algorithm for Trans-Enum whenever
there is one for MinGeodetic on split graphs.

Proof. This is a consequence of the fact that the graph G can be constructed in
polynomial time in the size of H, has polynomial size, and that it contains m minimal
geodetic sets I ∪ {u} with u ∈ U . All the other minimal geodetic sets of G are of
the form I ∪ T where T is a minimal transversal of H. Hence, a polynomial-delay
algorithm for MinGeodetic would take at most m times its delay between two
consecutive minimal geodetic sets of the form I ∪ T .

We now argue that a polynomial-delay algorithm for Trans-Enum yields one for
MinGeodetic on split graphs. Let G be a split graph of bipartition (K, I) with K
the clique and I the independent set. Among all such partitions we consider one that
maximizes the size of I and we may furthermore assume that |I| ≥ 2, as otherwise
the instance is trivial. As in Lemma 4.1, let us first note that I ⊆ S for any geodetic
set S of G as the neighborhood of every vertex x ∈ I is a clique. By the maximality
of I, every vertex v ∈ K that is not covered by a pair of vertices in I has precisely
one neighbor u ∈ I and the set of vertices at distance two from u contains the full set
I as a subset. Indeed, if it was not the case, then v would be covered by the pair u,w,
where w ∈ I is a vertex at distance three from u. Thus, to cover v we must either
pick v or intersect K \ N(u) the non-neighborhood of u in K. We identify all such
vertices v1, . . . , vk and their only neighbors u1, . . . , uk in I to construct a hypergraph
H on vertex set K with an edge Ei = {K \N(ui)} ∪ {vi} for every i ∈ [k]. We note
that possibly ui = uj for distinct i, j ∈ [k], which is of no concern in the following.
Clearly, the construction can be achieved in polynomial time in the size of G, and
by the above remarks we obtain a bijection between the minimal transversals of H
and the minimal geodetic sets of G. This yields the next theorem.

Theorem 4.7. There is a polynomial-delay algorithm for MinGeodetic on split
graphs whenever there is one for Trans-Enum.
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We now end the section by showing that the general case of MinGeodetic
reduces to enumerating all the minimal flats of the graphic matroid associated to the
clique Kn that are transversals of a given n-vertex hypergraph.

Let us start with the construction. We consider a graph G and construct a
hypergraph H whose vertices are (unordered) pairs of distinct vertices of G, denoted
uv instead of {u, v} for convenience, and where every vertex v of G gives rise to an
edge Ev := {xy : v is on a shortest x–y path} in H. To avoid ambiguity, we shall
refer to the vertices of H as nodes, and use variables r, s, t for nodes in the following.
Then, H has O(n2) nodes and O(n) edges. Clearly, every transversal T of H induces
a geodetic set

⋃
t∈T t of G, as every Ev is hit by a pair of t in T , and that pair

covers v in G. Unfortunately, minimal transversals of H do not necessarily define
minimal geodetic sets of G in that way, and not every minimal geodetic set of G
defines a minimal transversal of H by considering all the pairs of elements contained
in it. Consider for example the graph G obtained from a triangle abc by adding a
pendent vertex d adjacent to c. Then, {a, b, d} is the only minimal geodetic set of
G, while {ab, ad, bd} is easily verified to be a transversal of H that is not minimal as
it contains the transversal {ad, bd} as a subset. On the other hand, {ac, bd} can be
checked to be a minimal transversal of H, while {a, b, c, d} is not a minimal geodetic
set of G. We nevertheless show that consistent sets that are transversals of H are in
bijection with the geodetic sets of G for an appropriate notion of consistency.

In the following, we call a subset U of nodes of H consistent if, whenever two
distinct nodes r, s ∈ U are such that r ∩ s ̸= ∅, then the unique other node t such
that r ∪ s = s ∪ t = r ∪ t is also part of U . As an example, a subset U containing
ab and bc but not ac is not consistent, while the set U = {ab, ad, bd} or the set of
all nodes of H are consistent. More generally, the family of all pairs of a given set is
consistent. The aforementioned correspondence is the following.

Theorem 4.8. There is a bijection between the minimal geodetic sets of G and the
minimal consistent subsets of nodes that are transversals of H.

Proof. Let S be a minimal geodetic set of G and consider the set T of all pairs of
vertices in S. Since every vertex v in G is covered by a pair of vertices in S, every
edge Ev in H is hit by a pair of T . As T is consistent by construction, we conclude
that it is a consistent transversal of H. Let us assume toward a contradiction that it
is not minimal with that property, and let T ′ be a minimal consistent proper subset
of T that is a transversal of H. Let S ′ be the union of all pairs in T ′. As T ′ ⊂ T and
both T and T ′ are consistent, S ′ ⊂ S. Then, by the minimality of S, there must be
a vertex v in G that is not covered by any pair of S ′. As T ′ is only constituted of
the pairs of elements in S ′, we conclude that Ev is not intersected by T ′, and hence,
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that it is not a transversal, a contradiction.
Let T be a minimal consistent transversal of H and consider the union S of all

pairs in T . Since every edge Ev in H is hit by a pair t in T , then each vertex v in G
is covered by a pair of vertices in S. Thus, S is a geodetic set of G. Let us assume
that it is not minimal and let x be such that S ′ := S \{x} is a geodetic set. Consider
the family T ′ of pairs of S ′. Since S ′ is a geodetic set, every edge Ev in H is hit by a
pair in T ′. However, by the construction of T ′ and as T is consistent, we derive that
T ′ ⊂ T , contradicting the minimality of T .

We now discuss the implications of Theorem 4.8. Observe that the consistency
of a subset of vertices of H as defined above may also be expressed as satisfying a
set of implications Σ := {r, s → t : r ∪ s = s ∪ t = r ∪ t} in the sense that any
subset containing the premise of an implication in Σ must contain its conclusion.
It is well known that consistent sets in that context are the closed sets of a lat-
tice [Bir40, Wil17]. In the particular case of the rules defined above, the lattice is in
fact known to be the lattice of flats (subsets of edges that are maximal with respect
to the size of their spanning trees) of the graphic matroid associated to the clique
on n vertices, or equivalently, to be the lattice of partitions of a finite n-element
set [Bir40]. Consequently, listing minimal consistent transversals in our context may
be reformulated as the enumeration of the minimal flats of the matroid associated to
the clique Kn that are transversals of H. To the best of our knowledge, no output-
quasi-polynomial-time algorithm is known for that problem. It should however be
noted that in the more general setting where Σ is allowed to contain any implications
with premises of size at most two, the enumeration is intractable as it generalizes
the dualization in lattices given by implicational bases of size at most two [DN20].

5 Graphs with no long induced paths
In the previous sections, we showed that MinResolving and MinGeodetic are
tough problems as they are at least as hard as Trans-Enum, arguably one of the
most challenging open problems in algorithmic enumeration to date. Furthermore,
these reductions hold for graphs with no long induced paths. Namely, it can be
easily checked that Theorem 3.7 holds for P6-free graphs, while Theorem 4.6 holds
for P5-free graphs. This motivates the study of these problems on instances that do
not contain long induced paths.

We show MinGeodetic and MinResolving to be tractable on P4-free graphs
using a variant of Courcelle’s theorem for enumeration and clique-width [Cou09].
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We assume the reader to be familiar with MSO logic and clique-width, and refer the
reader to [CE12] for an introduction.

Theorem 5.1. Both MinGeodetic and MinResolving restricted to P4-free graphs
admit linear-delay algorithms with a preprocessing using time O(n log n).

Proof. We argue that our theorem is a consequence of the meta-theorem from [Cou09,
Corollary 2] stating that:

• given a monadic second-order formula ϕ(X1, . . . , Xk), and

• a clique-expression of width p expressing a graph G,

we can enumerate in linear delay all the tuples (A1, . . . , Ak) ∈ V (G)k such that
G |= ϕ(A1, . . . , Ak) after a preprocessing using time O(n log n).

Note that, for each d ∈ N, there exists a first order formula ϕd(x, y) of size O(d2)
testing whether dist(x, y) = d by testing whether there exists a path of length d
between x and y and none of length at most d − 1. Hence, for every ∆ ∈ N, the
monadic second-order formula ψ(X) = ψ′(X) ∧ (∀X ′ ⊂ X ¬ψ′(X)), where

ψ′(X) := ∀y, z (y ̸= z) =⇒ ∃x ∈ X
∨

i∈{0,...,∆}

ϕi(x, y) ∧ ¬ϕi(x, z)

has size O(∆2), and, for any graph G whose connected components have diameter
at most ∆ and for every S ⊆ V (G), we have G |= ϕ(S) if and only if S is a minimal
resolving set of G. We obtain a similar monadic second-order formula for minimal
geodetic set by replacing ψ′(X) by the following:

∀y ∃x, z ∈ X
∨

i∈{0,...,∆}

ϕd(x, z) ∧ ϕd(x, y, z),

where ϕd(x, y, z) of size O(d) tests whether y is in a path of length d between x and
z. Hence, the meta-theorem from [Cou09, Corollary 2] leads to the next claim.

Claim 5.2. Given a clique-width expression of bounded width that defines a graph G
whose connected components have bounded diameter, we can solve MinGeodetic
and MinResolving with linear delay after a preprocessing using time O(n log n).

Now, we observe that P4-free graphs—a.k.a. cographs—have clique-width at most
2 [CO00], and that a clique-expression of width at most 2 can be computed in linear
time [CPS85]. Moreover, every connected component of a P4-free graph has diameter
at most 2. Hence, this theorem is a direct consequence of Claim 5.2.
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Interestingly, Theorem 5.1 outlines a dichotomy for MinGeodetic in the sense
that the problem is tractable for Pk-free graphs when k ≤ 4, and that it is harder
than Trans-Enum otherwise. This relates to similar behaviors and a line of research
that emerged in [BDH+20] on classifying forbidden induced subgraphs for which the
enumeration of minimal dominating sets is tractable or harder than Trans-Enum.

6 Perspectives for further research
We investigated a number of problems related to the metric dimension that connect to
problems of huge interest in algorithmic enumeration. Except for MinStrongRe-
solving that can be solved with polynomial delay on general graphs, we showed
that MinResolving is equivalent to Trans-Enum and that the same holds for
MinGeodetic when restricted to split graphs. Moreover, the general case of Min-
Geodetic may be seen as an intriguing variant of enumerating the flats of a matroid
for which the complexity status is unsettled.

The results presented in this work showed that the difficulty of MinResolving
and MinGeodetic is tightly related to the maximum length of an induced path in
the graph at hand. This motivates the study of these problems on Pk-free graphs for
small values of k. Except for MinGeodetic that we completely characterized with
respect to Trans-Enum, the case of MinResolving for k = 5 is yet to be classified.
While it would be interesting to extend our hardness result (with respect to Trans-
Enum) for MinResolving to P5-free graphs or even split or co-bipartite graphs, it is
challenging as our construction around the setsH andH ′ for the proof of Theorem 3.7
seems impossible to extend to these cases, and thus, a new idea is needed. We note
that the case of co-bipartite graphs is also open for MinGeodetic. For these graph
classes, we were not able to devise total-polynomial-time algorithms; we however
note that the extension problems for MinResolving and MinGeodetic are hard
on split and co-bipartite graphs, respectively, which suggests that the generation is
non-trivial in those cases, a point that is discussed in Appendix A.

Other open directions are to know whether MinGeodetic admits a total-quasi-
polynomial-time algorithm, or how it relates to problems known to be harder than
Trans-Enum that admit sub-exponential-time algorithms. Problems of interest
include the dualization of products of posets [Elb09] or the dualization in distributive
lattices [Elb22].

As for candidates for Question 1.1, it is open for minimal connected dominating
sets [KLMN14, CKMU19]. This case was however conjectured not to be equivalent
to Trans-Enum by Kanté at the 2015 Lorentz Workshop on enumeration algo-
rithms [BBHK15].

18



Acknowledgements. The second author is thankful to Arnaud Mary for pointing
out the flaw in the arXiv preprint [Wil23], and to Simon Vilmin for extensive discus-
sions on the links between minimal geodetic sets enumeration and the enumeration
of the flats of a matroid.

References
[Ago13] Ian Agol. The virtual Haken conjecture (with an appendix by Ian

Agol, Daniel Groves and Jason Manning). Documenta Mathematica,
18:1045–1087, 2013.

[AJKL22] Jungho Ahn, Lars Jaffke, O-joung Kwon, and Paloma T. Lima. Well-
partitioned chordal graphs. Discrete Mathematics, 345(10):112985,
2022.

[AN17] Kira V. Adaricheva and James B. Nation. Discovery of the D-basis in
binary tables based on hypergraph dualization. Theoretical Computer
Science, 658:307–315, 2017.

[BBHK15] Hans Bodlaender, Endre Boros, Pinar Heggernes, and Dieter Kratsch.
Open Problems of the Lorentz Workshop, "Enumeration Algorithms us-
ing Structure". 2015.

[BCK18] Hans-Jürgen Bandelt, Victor Chepoi, and Kolja Knauer. COMs: Com-
plexes of oriented matroids. J. Comb. Theory, Ser. A, 156:195–237,
2018.

[BD92] Hans-Jürgen Bandelt and Andreas W. M. Dress. Split decomposition:
A new and useful approach to phylogenetic analysis of distance data.
Molecular Phylogenetics and Evolution, 1(3):242–252, 1992.

[BDH+20] Marthe Bonamy, Oscar Defrain, Marc Heinrich, Michał Pilipczuk, and
Jean-Florent Raymond. Enumerating minimal dominating sets in Kt-
free and variants. ACM Transactions on Algorithms, 16(3):1–23, 2020.

[BDMN20] Marthe Bonamy, Oscar Defrain, Piotr Micek, and Lhouari Nourine.
Enumerating minimal dominating sets in the (in)comparability graphs
of bounded dimension posets. arXiv preprint arXiv:2004.07214, 2020.

19



[BDP23] Nicolas Bousquet, Quentin Deschamps, and Aline Parreau. Metric di-
mension parameterized by treewidth in chordal graphs. In Proceedings
of the 49th International Workshop on Graph-Theoretic Concepts in
Computer Science (WG 2023), volume 14093 of Lecture Notes in Com-
puter Science, pages 130–142, 2023.

[BEE+06] Zuzana Beerliova, Felix Eberhard, Thomas Erlebach, Alexander Hall,
Michael Hoffmann, Mat Mihal’ak, and L. Shankar Ram. Network dis-
covery and verification. IEEE J. Sel. Area Comm., 24(12):2168–2181,
2006.

[BEG04] Endre Boros, Khaled Elbassioni, and Vladimir Gurvich. Algorithms for
generating minimal blockers of perfect matchings in bipartite graphs
and related problems. In European Symposium on Algorithms (ESA
2004), pages 122–133. Springer, 2004.

[Ber84] Claude Berge. Hypergraphs: combinatorics of finite sets, volume 45.
Elsevier, 1984.

[BFGR17] Rémy Belmonte, Fedor V. Fomin, Petr A Golovach, and M. S. Ramanu-
jan. Metric dimension of bounded tree-length graphs. SIAM Journal
on Discrete Mathematics, 31(2):1217–1243, 2017.

[BGH98] Endre Boros, Vladimir Gurvich, and Peter L. Hammer. Dual subim-
plicants of positive boolean functions. Optimization Methods and Soft-
ware, 10(2):147–156, 1998.

[BHGLM08] Yael Ben-Haim, Sylvain Gravier, Antoine Lobstein, and Julien Mon-
cel. Adaptive identification in graphs. J. Comb. Theory, Ser. A,
115(7):1114–1126, 2008.

[Bir40] Garrett Birkhoff. Lattice theory, volume 25. American Mathematical
Soc., 1940.

[BLL+20] Caroline Brosse, Aurélie Lagoutte, Vincent Limouzy, Arnaud Mary,
and Lucas Pastor. Efficient enumeration of maximal split subgraphs
and sub-cographs and related classes. arXiv preprint arXiv:2007.01031,
2020.

[BMM+20] Julien Bensmail, Dorian Mazauric, Fionn Mc Inerney, Nicolas Nisse,
and Stéphane Pérennes. Sequential metric dimension. Algorithmica,
82(10):2867–2901, 2020.

20



[BP21] Édouard Bonnet and Nidhi Purohit. Metric dimension parameterized
by treewidth. Algorithmica, 83(8):2606–2633, 2021.

[CCM+23] Jérémie Chalopin, Victor Chepoi, Fionn Mc Inerney, Sébastien Ratel,
and Yann Vaxès. Sample compression schemes for balls in graphs. SIAM
Journal on Discrete Mathematics, 37(4):2585–2616, 2023.

[CCMR23] Jérémie Chalopin, Victor Chepoi, Fionn Mc Inerney, and Sébastien Ra-
tel. Non-clashing teaching maps for balls in graphs. Arxiv:2309.02876,
2023.

[CCMW22] Jérémie Chalopin, Victor Chepoi, Shay Moran, and Manfred K. War-
muth. Unlabeled sample compression schemes and corner peelings for
ample and maximum classes. Journal of Computer and System Sci-
ences, 127:1–28, 2022.

[CDF+20] Dibyayan Chakraborty, Sandip Das, Florent Foucaud, Harmender
Gahlawat, Dimitri Lajou, and Bodhayan Roy. Algorithms and complex-
ity for geodetic Sets on planar and chordal graphs. In 31st International
Symposium on Algorithms and Computation (ISAAC 2020), volume
181 of Leibniz International Proceedings in Informatics (LIPIcs), pages
7:1–7:15, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik.

[CE12] Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic
Second-Order Logic - A Language-Theoretic Approach, volume 138 of
Encyclopedia of mathematics and its applications. Cambridge Univer-
sity Press, 2012.

[CFG+20] Dibyayan Chakraborty, Florent Foucaud, Harmender Gahlawat,
Subir Kumar Ghosh, and Bodhayan Roy. Hardness and approxima-
tion for the geodetic set problem in some graph classes. In Proceedings
of the 6th International Conference on Algorithms and Discrete Ap-
plied Mathematics (CALDAM 2020), volume 12016 of Lecture Notes in
Computer Science, pages 102–115, Cham, 2020. Springer International
Publishing.

[CGK+19] Alessio Conte, Roberto Grossi, Mamadou M. Kanté, Andrea Marino,
Takeaki Uno, and Kunihiro Wasa. Listing induced steiner subgraphs as
a compact way to discover steiner trees in graphs. In 44th International

21



Symposium on Mathematical Foundations of Computer Science (MFCS
2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[CIK16] Sunil Chandran, Davis Issac, and Andreas Karrenbauer. On the pa-
rameterized complexity of biclique cover and partition. In 11th Inter-
national Symposium on Parameterized and Exact Computation (IPEC
2016), volume 63 of LIPIcs, pages 11:1–11:13. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2016.

[CKMU19] Alessio Conte, Mamadou M. Kanté, Andrea Marino, and Takeaki
Uno. Maximal irredundant set enumeration in bounded-degeneracy
and bounded-degree hypergraphs. In International Workshop on Com-
binatorial Algorithms (IWOCA 2019), pages 148–159. Springer, 2019.

[CKP22] Victor Chepoi, Kolja Knauer, and Manon Philibert. Ample completions
of oriented matroids and complexes of uniform oriented matroids. SIAM
Journal on Discrete Mathematics, 36(1):509–535, 2022.

[CO00] Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width
of graphs. Discrete Applied Mathematics, 101(1-3):77–114, 2000.

[Cou09] Bruno Courcelle. Linear delay enumeration and monadic second-order
logic. Discrete Applied Mathematics, 157(12):2675–2700, 2009.

[CPP16] Marek Cygan, Marcin Pilipczuk, and Michał Pilipczuk. Known algo-
rithms for edge clique cover are probably optimal. SIAM Journal on
Computing, 45(1):67–83, 2016.

[CPS85] Derek G. Corneil, Yehoshua Perl, and Lorna K. Stewart. A linear recog-
nition algorithm for cographs. SIAM Journal on Computing, 14(4):926–
934, 1985.

[CS23] Florent Capelli and Yann Strozecki. Geometric amortization of enu-
meration algorithms. In 40th International Symposium on Theoretical
Aspects of Computer Science (STACS 2023), volume 254 of LIPIcs,
pages 18:1–18:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2023.

[Die12] Reinhard Diestel. Graph Theory, volume 173 of Graduate texts in math-
ematics. Springer, 2012.

22



[DM17] Bhaskar DasGupta and Nasim Mobasheri. On optimal approximability
results for computing the strong metric dimension. Discrete Applied
Mathematics, 221:18–24, 2017.

[DN19] Oscar Defrain and Lhouari Nourine. Neighborhood inclusions for min-
imal dominating sets enumeration: Linear and polynomial delay al-
gorithms in P7-free and P8-free chordal graphs. In 30th International
Symposium on Algorithms and Computation (ISAAC 2019). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[DN20] Oscar Defrain and Lhouari Nourine. Dualization in lattices given by
implicational bases. Theoretical Computer Science, 814:169–176, 2020.

[DNV19] Oscar Defrain, Lhouari Nourine, and Simon Vilmin. Translating be-
tween the representations of a ranked convex geometry. arXiv preprint
arXiv:1907.09433, 2019.

[DPSvL17] Josep Díaz, Olli Pottonen, Maria Serna, and Erik Jan van Leeuwen.
Complexity of metric dimension on planar graphs. Journal of Computer
and System Sciences, 83(1):132–158, 2017.

[EEH+12] Tınaz Ekim, Aysel Erey, Pinar Heggernes, Pim van’t Hof, and Daniel
Meister. Computing minimum geodetic sets of proper interval graphs.
In Proceedings of the 10th Latin American Symposium on Theoretical
Informatics (LATIN 2012), volume 7256 of Lecture Notes in Computer
Science, pages 279–290. Springer, 2012.

[EG95] Thomas Eiter and Georg Gottlob. Identifying the minimal transversals
of a hypergraph and related problems. SIAM Journal on Computing,
24(6):1278–1304, 1995.

[EGM03] Thomas Eiter, Georg Gottlob, and Kazuhisa Makino. New results on
monotone dualization and generating hypergraph transversals. SIAM
Journal on Computing, 32(2):514–537, 2003.

[Elb09] Khaled M Elbassioni. Algorithms for dualization over products of par-
tially ordered sets. SIAM Journal on Discrete Mathematics, 23(1):487–
510, 2009.

[Elb22] Khaled Elbassioni. On dualization over distributive lattices. Dis-
crete Mathematics & Theoretical Computer Science, 24(Discrete Al-
gorithms), 2022.

23



[ELW15] Leah Epstein, Asaf Levin, and Gerhard J. Woeginger. The (weighted)
metric dimension of graphs: hard and easy cases. Algorithmica,
72(4):1130–1171, 2015.

[EMG08] Thomas Eiter, Kazuhisa Makino, and Georg Gottlob. Computational
aspects of monotone dualization: A brief survey. Discrete Applied Math-
ematics, 156(11):2035–2049, 2008.

[Epp15] David Eppstein. Metric dimension parameterized by max leaf number.
Journal of Graph Algorithms and Applications, 19(1):313–323, 2015.

[ERR19] Khaled Elbassioni, Imran Rauf, and Saurabh Ray. A global parallel
algorithm for enumerating minimal transversals of geometric hyper-
graphs. Theoretical Computer Science, 767:26–33, 2019.

[FGK+23] Florent Foucaud, Esther Galby, Liana Khazaliya, Shaohua Li, Fionn
Mc Inerney, Roohani Sharma, and Prafullkumar Tale. Tight (double)
exponential bounds for NP-complete problems: Treewidth and vertex
cover parameterizations. Arxiv:2307.08149, 2023.

[FK96] Michael L. Fredman and Leonid Khachiyan. On the complexity of du-
alization of monotone disjunctive normal forms. Journal of Algorithms,
21(3):618–628, 1996.

[FMN+17] Florent Foucaud, George B. Mertzios, Reza Naserasr, Aline Parreau,
and Petru Valicov. Identification, location-domination and metric di-
mension on interval and permutation graphs. ii. algorithms and com-
plexity. Algorithmica, 78:914–944, 2017.

[GHK+18] Petr A. Golovach, Pinar Heggernes, Mamadou M. Kanté, Dieter
Kratsch, Sigve H. Sæther, and Yngve Villanger. Output-polynomial
enumeration on graphs of bounded (local) linear MIM-width. Algorith-
mica, 80(2):714–741, 2018.

[GHK+22] Tatsuya Gima, Tesshu Hanaka, Masashi Kiyomi, Yasuaki Kobayashi,
and Yota Otachi. Exploring the gap between treedepth and vertex
cover through vertex integrity. Theoretical Computer Science, 918:60–
76, 2022.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

24



[GKM+22] Esther Galby, Liana Khazaliya, Fionn Mc Inerney, Roohani Sharma,
and Prafullkumar Tale. Metric dimension parameterized by feedback
vertex set and other structural parameters. In 47th International Sym-
posium on Mathematical Foundations of Computer Science (MFCS
2022), volume 241 of LIPIcs, pages 51:1–51:15, 2022.

[GKM+23] Esther Galby, Liana Khazaliya, Fionn Mc Inerney, Roohani Sharma,
and Prafullkumar Tale. Metric dimension parameterized by feedback
vertex set and other structural parameters. SIAM Journal on Discrete
Mathematics, 37(4):2241–2264, 2023.

[Gro87] Mikhael Gromov. Hyperbolic Groups, pages 75–263. Springer New York,
New York, NY, 1987.

[HLT93] Frank Harary, Emmanuel Loukakis, and Constantine Tsouros. The
geodetic number of a graph. Mathematical and Computer Modelling,
17(11):89–95, 1993.

[HM76] F. Harary and R. A. Melter. On the metric dimension of a graph. Ars
Combinatoria, 2:191–195, 1976.

[HN13] Sepp Hartung and André Nichterlein. On the parameterized and ap-
proximation hardness of metric dimension. In IEEE Conference on
Computational Complexity (CCC 2013), pages 266–276. IEEE, 2013.

[Joh93] Mark Johnson. Structure-activity maps for visualizing the graph vari-
ables arising in drug design. J. Biopharm. Statist., 3:203–236, 1993.

[JYP88] David S. Johnson, Mihalis Yannakakis, and Christos H. Papadimitriou.
On generating all maximal independent sets. Information Processing
Letters, 27(3):119–123, 1988.

[KBE+07] Leonid Khachiyan, Endre Boros, Khaled Elbassioni, Vladimir Gurvich,
and Kazuhisa Makino. Enumerating disjunctions and conjunctions of
paths and cuts in reliability theory. Discrete applied mathematics,
155(2):137–149, 2007.

[KBEG07] Leonid Khachiyan, Endre Boros, Khaled Elbassioni, and Vladimir
Gurvich. On the dualization of hypergraphs with bounded edge-
intersections and other related classes of hypergraphs. Theoretical Com-
puter Science, 382(2):139–150, 2007.

25



[KCL98] Mark G. Karpovsky, Krishnendu Chakrabarty, and Lev B. Levitin. On
a new class of codes for identifying vertices in graphs. IEEE Trans.
Information Theory, 44(2):599–611, 1998.

[KK22] Leon Kellerhals and Tomohiro Koana. Parameterized complexity of
geodetic set. Journal of Graph Algorithms and Applications, 26(4):401–
419, 2022.

[KKP18] Mamadou M. Kanté, Kaveh Khoshkhah, and Mozhgan Pourmorad-
nasseri. Enumerating minimal transversals of hypergraphs without
small holes. In 43rd International Symposium on Mathematical Foun-
dations of Computer Science (MFCS 2018). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2018.

[KLM+15] Mamadou M. Kanté, Vincent Limouzy, Arnaud Mary, Lhouari Nourine,
and Takeaki Uno. A polynomial delay algorithm for enumerating min-
imal dominating sets in chordal graphs. In International Workshop
on Graph-Theoretic Concepts in Computer Science (WG 2015), pages
138–153. Springer, 2015.

[KLMN14] Mamadou M. Kanté, Vincent Limouzy, Arnaud Mary, and Lhouari
Nourine. On the enumeration of minimal dominating sets and related
notions. SIAM Journal on Discrete Mathematics, 28(4):1916–1929,
2014.

[KN16] Mamadou M. Kanté and Lhouari Nourine. Polynomial time algorithms
for computing a minimum hull set in distance-hereditary and chordal
graphs. SIAM Journal on Discrete Mathematics, 30(1):311–326, 2016.

[KPRVY18] Dorota Kuziak, María Luz Puertas, Juan A Rodríguez-Velázquez, and
Ismael G Yero. Strong resolving graphs: The realization and the charac-
terization problems. Discrete Applied Mathematics, 236:270–287, 2018.

[LP22] Shaohua Li and Marcin Pilipczuk. Hardness of metric dimension in
graphs of constant treewidth. Algorithmica, 84(11):3110–3155, 2022.

[Mez18] Mauro Mezzini. Polynomial time algorithm for computing a mini-
mum geodetic set in outerplanar graphs. Theoretical Computer Science,
745:63–74, 2018.

26



[MS19] Arnaud Mary and Yann Strozecki. Efficient enumeration of solutions
produced by closure operations. Discret. Math. Theor. Comput. Sci.,
21(3), 2019.

[OP07] Ortrud R. Oellermann and Joel Peters-Fransen. The strong metric
dimension of graphs and digraphs. Discrete Applied Mathematics,
155(3):356–364, 2007.

[RT75] Ronald C. Read and Robert E. Tarjan. Bounds on backtrack algorithms
for listing cycles, paths, and spanning trees. Networks, 5(3):237–252,
1975.

[Sla75] Peter J. Slater. Leaves of trees. In Proceedings of the Sixth Southeastern
Conference on Combinatorics, Graph Theory, and Computing, pages
549–559. Congressus Numerantium, No. XIV. Utilitas Mathematica,
1975.

[Sla87] Peter J. Slater. Domination and location in acyclic graphs. Networks,
17(1):55–64, 1987.

[ST04] András Sebő and Eric Tannier. On metric generators of graphs. Math-
ematics of Operations Research, 29(2):383–393, 2004.

[Str19] Yann Strozecki. Enumeration complexity. Bulletin of EATCS, 1(129),
2019.

[TIAS77] Shuji Tsukiyama, Mikio Ide, Hiromu Ariyoshi, and Isao Shirakawa. A
new algorithm for generating all the maximal independent sets. SIAM
Journal on Computing, 6(3):505–517, 1977.

[TL19] Richard C. Tillquist and Manuel E. Lladser. Low-dimensional represen-
tation of genomic sequences. Journal of Mathematical Biology, 79:1–29,
2019.

[Wil17] Marcel Wild. The joy of implications, aka pure horn formulas: mainly
a survey. Theoretical Computer Science, 658:264–292, 2017.

[Wil23] Marcel Wild. Enumerating all minimal hitting sets in polynomial total
time. arXiv preprint arXiv:2303.07708, 2023.

27



A Extension for minimal geodetic sets
Usually when dealing with an enumeration problem Π that asks to list subsets of a
ground set {v1, . . . , vn}, a naive approach is to check whether the solutions of Π can
be constructed element by element, deciding at each step whether we include vi (i =
1, . . . , n) or not in the partial solution, in a way that each partial solution eventually
leads to a solution. This classical approach can be regarded as an efficient particular
case of the backtrack search technique [RT75], and is usually referred to as flashlight
search [BEG04, KBE+07, CS23] as it roughly amounts to looking ahead in the search
tree to see whether there are solutions, in order to explore relevant branches only. It
has proved to be successful for a wide variety of very structured problems or restricted
instances [BEG04, KBE+07, MS19, DN19]. Formally, a problem Π is known to
admit a polynomial-delay algorithm whenever the following problem, known as the
extension problem for Π, can be solved in polynomial time in the size of the input.

Extension Problem for Π (Ext-Π)
Input: Two disjoint subsets A,B of the ground set.
Question: Is there a solution S to Π such that A ⊆ S and S ∩B = ∅.

Most of the time, unfortunately, the extension problem is NP-hard. The case of
Ext-Trans-Enum makes no exception to this rule [BGH98], even for H being the
family of closed neighborhoods of restricted graph classes [KLM+15, BDH+20]. In
the following, we will show that the same applies to MinGeodetic for co-bipartite
graphs. This may suggest that generating minimal geodetic sets in that graph class
is non-trivial.

Let (H, A,B) be an instance of Ext-Trans-Enum, where H is a hypergraph
on vertex set {v1, . . . , vn} and edge set {E1, . . . , Em}, and A and B are two disjoint
subsets of vertices. We furthermore assume that n,m ≥ 1 and that V (H) is not a
minimal transversal of H. Note that these assumptions can be conducted without
loss of generality, as if V (H) is a minimal transversal, then it is the only one and
this can be checked in polynomial time. We describe the construction of a graph G
on O(n +m) vertices and O(n2 +m2) edges, and two sets A′, B′ ⊆ V (G) such that
there exists a minimal geodetic set S with A′ ⊆ S and S ∩B′ = ∅ if and only if there
exists a minimal transversal T of H such that A ⊆ T and T ∩B = ∅.

We start from the incidence co-bipartite graph of H with bipartition V :=
{v1, . . . , vn} and H := {e1, . . . , em}, to which we add three vertices a, b, c with a
complete to H, b complete to V and adjacent to a, and c complete to H ∪V and ad-
jacent to a. The obtained graph is co-bipartite with bipartition (H ∪{a, c}, V ∪{b}).
Then, we set A′ := A ∪ {a, b, c} and B′ := B ∪ H. Note that the diameter of G is
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Figure 3: Illustration of the reduction from Ext-Trans-Enum to Ext-
MinGeodetic with H consisting of E1 = {v1, v2}, E2 = {v2, v3, v4}, E3 = {v3, v5},
and E4 = {v4, v5, v6}. The bold line between c and V mean that c is complete to V .
For legibility, we do not represent the edges of the cliques V ∪ {b} and H ∪ {a, c}.

at most 2. Hence, and as in Section 4, we may reformulate x being on a shortest s–t
path in G with s ̸= x ̸= t as x being the middle vertex of a P3.

Lemma A.1. Let S be a minimal geodetic set containing A′ and avoiding B′. Then,
S ∩ V is a minimal transversal of H containing A and avoiding B.

Proof. We have that S = {a, b, c}∪T for some T ⊆ V satisfying A ⊆ T and T∩B = ∅.
Since the elements ej ∈ H may only be covered by pairs of the form a, v for some
v ∈ V with v ∈ Ej, we conclude that T is a transversal of H. Observe that T is
minimal because if T \ {vj} is a transversal of H for some vj ∈ T , then every vertex
in G is still covered by the pairs of vertices in S \ {vj} (this is proved in the next
lemma), which contradicts the minimality of S.

Lemma A.2. Let T be a minimal transversal of H containing A and avoiding B.
Then, T ∪ {a, b, c} is a minimal geodetic set of G containing A′ and avoiding B′.

Proof. Note that the pairs of vertices in {a, b, c} cover every vertex in V ∪ {a, b, c}.
Now, since T is a transversal, every ej ∈ H has a neighbor v ∈ V , and so, it is covered
by a, v. Hence, S := T ∪{a, b, c} is a geodetic set. We argue that it is minimal. Note
that b and c cannot be removed since by assumption V is not a minimal transversal,
and hence, there exists some v ∈ V \ T that has to be covered. Indeed, no other P3

than bvc has its endpoints not in H and v as its middle vertex. Similarly, a cannot
be removed as otherwise the vertices in H are not covered anymore. Suppose that
S \{v} is a geodetic set for some v ∈ V . Then, every ej ∈ H is covered by a pair a, w
with w ∈ T \ {v}. We conclude that T \ {v} is a transversal of H, which contradicts
the minimality of T .

We conclude to the following theorem by Lemmas A.1 and A.2.

Theorem A.3. The problem Ext-MinGeodetic is NP-hard on co-bipartite graphs.
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As a consequence, MinGeodetic should not admit a polynomial-delay algorithm
using the classical flashlight search approach. We however note that this does not rule
out the existence of a polynomial-delay algorithm for the problem as the extension
problem is known to be hard for maximal cliques [BLL+20], yet the problem admits
a polynomial-delay algorithm [TIAS77].

B Extension for minimal resolving sets
In the following, we will show that the extension problem is NP-hard for MinRe-
solving in split graphs. This may suggest that generating minimal resolving sets in
that graph class is non-trivial.

Let (H, A,B) be an instance of Ext-Trans-Enum, where H is a hypergraph on
vertex set {v1, . . . , vn} and edge set {E1, . . . , Em} with n,m ≥ 1, and A and B are
two disjoint subsets of vertices. Since adding a dummy vertex that is contained in
exactly one dummy hyperedge of size 1 simply ensures that any minimal transversal
of H contains that vertex and only this dummy hyperedge is hit by this dummy
vertex, we may furthermore assume that log(n+1) and log(m+1) are integers, and
Em consists only of vn with vn /∈ B. We describe the construction of a graph G on
O(n + m) vertices and O(n2 + m2 + nm) edges, and two sets A′, B′ ⊆ V (G) such
that there exists a minimal resolving set S with A′ ⊆ S and S ∩ B′ = ∅ if and only
if there exists a minimal transversal T of H such that A ⊆ T and T ∩B = ∅.

We start from the non-incidence bipartite graph of H with bipartition V :=
{v1, . . . , vn} andH := {e1, . . . , em}, to which we add a set of verticesH ′ := {e′1, . . . , e′m}
that we make complete to V . Moreover, we add four additional sets of vertices
U := {u1, . . . , ulog(n+1)}, U ′ := {u′1, . . . , u′log(n+1)}, U∗ := {u∗1, . . . , u∗n}, and W :=

{w1, . . . , wlog(m+1)}. For an integer j ∈ N, we shall note I(j) the set of indices (start-
ing from 1) of bits of value 1 in the binary representation of j. We connect each vi,
i ∈ {1, . . . , n}, to the vertices u′k for every k ∈ I(i), each of ej and e′j, j ∈ {1, . . . ,m},
to the vertices wk for every k ∈ I(j), and each u∗i , i ∈ {1, . . . , n}, to the vertices uk
for every k ∈ I(i). Observe that, by the nature of the binary coding, no element of
V is anti-complete to U ′, and the same can be said for H ∪H ′ and W , and U∗ and
U . For all ℓ ∈ {1, . . . , log(n+ 1)}, we also add an edge between uℓ and u′ℓ. Finally,
we add the necessary edges to make the vertices in U ′ ∪ U∗ ∪H ∪H ′ into a clique.
This concludes the construction of our graph G. The obtained graph is a split graph
with the vertices of U ′∪U∗∪H ∪H ′ inducing a clique, and the vertices of U ∪V ∪W
inducing an independent set. We set A′ := A∪U∪W and B′ := B∪U ′∪U∗∪H∪H ′.
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Figure 4: Illustration of the reduction from Ext-Trans-Enum to Ext-
MinResolving with H consisting of E1 = {v1, v2}, E2 = {v2, v3, v4}, E3 = {v3, v5},
and E4 = {v4, v5, v6, v7, v8}. The bold line represents the biclique between H ′ and
V . For legibility, we do not represent the edges of the cliques H ∪H ′ ∪ U ′ ∪ U∗.

Lemma B.1. Let P be the set of all pairs {ej, e′j} with j ∈ {1, . . . ,m − 1}. Then,
Z = U ∪W ∪ {vn} distinguishes a pair a, b of distinct vertices in G if and only if
{a, b} /∈ P .

Proof. Clearly, if one of a or b belongs to Z, then the pair is distinguished. We thus
assume a and b to be disjoint from Z in the rest of the case analysis. If a, b ∈ U ′, then
there exists a vertex u ∈ U such that dist(u, a) = 1 and dist(u, b) = 2, and hence, u
distinguishes the pair a, b. If a, b ∈ U∗ (a, b ∈ V , resp.), then since a and b do not
have the same binary encoding, there exists some vertex in U that is at distance 1
(2, resp.) from one of a and b and distance 2 (3, resp.) from the other, and hence, it
distinguishes the pair a, b. Analogously, if a, b ∈ H ∪H ′ and {a, b} /∈ P , then there
exists some vertex in W that distinguishes the pair a, b.

If a ∈ H ∪H and b ∈ V ∪ U ′ ∪ U∗, then there exists a vertex w ∈ W such that
dist(w, a) = 1 and dist(w, b) = 2, and hence, w distinguishes the pair a, b. If a ∈ U∗

and b ∈ U ′, then dist(vn, a) = 2 and dist(vn, b) = 1, and hence, vn distinguishes the
pair a, b. Lastly, if a ∈ U∗ and b ∈ V or a ∈ U ′ and b ∈ V , then there exists a vertex
u ∈ U such that dist(u, a) = 1 and dist(u, b) ≥ 2, and hence, u distinguishes the pair
a, b.

Finally, if {a, b} ∈ P , then no vertex in Z can distinguish the pair a, b since every
vertex in U is at distance 2 from both a and b, dist(vn, a) = dist(vn, b) = 1, each
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vertex in W that is adjacent to ej is also adjacent to e′j for all j ∈ {1, ...,m}, and
each vertex in W is at distance at most 2 from each vertex in H ∪H ′.

Lemma B.2. If S is a minimal resolving set containing A′ and avoiding B′, then
S ∩ V is a minimal transversal of H containing A and avoiding B.

Proof. Since S avoids B′, we have that S = U ∪W ∪ T for some T ⊆ V satisfying
A ⊆ T and T ∩ B = ∅. Since by the construction of G and Lemma B.1, among the
vertices in V (G) \B′ that may be in S, the pair ej, e′j can only be distinguished by a
vertex v ∈ S∩V with v ∈ Ej, we conclude that T is a transversal of H. It is minimal
as if every Ej ∈ H is still intersected by T \ {vj} for some vj ∈ T , then the pair
ej, e

′
j is still distinguished by a vertex in S \ {vj}, which contradicts the minimality

of S by Lemma B.1 and the fact that vj ̸= vn since vn is necessarily in any minimal
transversal of H.

Lemma B.3. If T is a minimal transversal of H containing A and avoiding B, then
T ∪ U ∪W is a minimal resolving set of G containing A′ and avoiding B′.

Proof. By construction, vn ∈ T . For P the set of all pairs {ej, e′j} with j ∈
{1, . . . ,m − 1}, by Lemma B.1, Z = U ∪ W ∪ {vn} distinguishes every pair a, b
of distinct vertices in G with {a, b} /∈ P . Now, since T is a transversal, for each
ej ∈ H, there exists a vertex v ∈ V such that dist(v, ej) = 2 and dist(v, e′j) = 1, and
so, v distinguishes the pair ej, e′j. Hence, S := T ∪ U ∪W is a resolving set. We
argue that it is minimal. Note that, for any vertex u ∈ U (w ∈ W , resp.), there exist
two vertices in U∗ (H ′, resp.) that are distinguished only by u (w, resp.) among
all the vertices in S (in particular, they only differ in exactly one bit in their binary
representation), and hence, no vertices from U (W , resp.) can be removed from S.
Suppose that S \ {v} is a resolving set for some v ∈ V . Then, every pair ej, e′j is
distinguished by a vertex in T \ {v} by Lemma B.1. We conclude that T \ {v} is a
transversal, which contradicts the minimality of T .

We conclude to the following theorem by Lemmas B.2 and B.3.

Theorem B.4. The problem Ext-MinResolving is NP-hard on split graphs.

As a consequence, MinResolving should not admit a polynomial-delay algo-
rithm using the classical flashlight search approach.
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