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Abstract—Timbre, encompassing an intricate set of acoustic cues,
is key to identify sound sources, and especially to discriminate mu-
sical instruments and playing styles. Psychoacoustic studies focusing
on timbre deploy massive efforts to explain human timbre perception.
To uncover the acoustic substrates of timbre perceived dissimilarity, a
recent work leveraged metric learning strategies on different perceptual
representations and performed a meta-analysis of seventeen dissimilarity
rated musical audio datasets. By learning salient patterns in very high-
dimensional representations, metric learning accounts for a reasonably
large part of the variance in human ratings. The present work shows
that combining the most recent deep audio embeddings with a metric
learning approach makes it possible to explain almost all the variance in
human dissimilarity ratings. Furthermore, the robustness of the learning
procedure against simulated human rating variability is thoroughly
investigated. Intensive numerical experiments support the explanatory
power and robustness against degraded dissimilarity ratings of the
learning metric strategy using deep embeddings.

Index Terms—Audio timbre perception, distance metric learning,
time/frequency analysis, scattering transform, spectrotemporal modula-
tions, deep neural networks, deep embeddings, robustness analysis.

I. INTRODUCTION

Context. Understanding the way humans extract information and
make judgments about their environment based on sounds still trigger
much interdisciplinary research at the frontier between digital audio
processing and psychoacoustics [1], [2]. In particular, the notion
of timbre, related to the perceived sound quality, emerges from an
intricate bundle of acoustic cues and provides important information
about the sources and mechanisms which produced the sounds. It
is hence key to recognizing complex sound sources, encountered,
e.g., in music. However, modeling timbre human perception is still a
burning question in cognitive neurosciences [3]–[7].
Related work. The historical approach to reveal the acoustic explana-
tory features of timbre perception uses multidimensional scaling [3],
[4], [8]–[12]. It relies on dissimilarity ratings, and consists in
representing audio samples in a low dimensional space, called the
timbre space, such that the distance between a pair of sounds reflects
their dissimilarity. Then, the uncovered latent dimensions of the
timbre space are correlated with psychophysic acoustic descriptors,
such as logarithm attack time and spectral centroid [13]. Despite
providing a broad understanding of the timbre acoustic correlates,
multidimensional scaling requires arbitrary choices and some ad-hoc
parameter-tuning, impairing its replicability [14]. Moreover, due to
their low descriptive power, standard acoustic features only partly
explains timbre perception [5].

Instead of correlating dimensions of timbre space with subjective
a priori crafted acoustic features, it has thus been proposed in [14] to
model human dissimilarity ratings with weighted distances, computed
on audio representations mimicking the primary auditory cortex. The
weights are learned by maximizing the correlation of the distance
with human ratings, so that they should fire on salient patterns

based on which the human dissimilarity judgment is made. One
major advantage of this metric learning strategy is that the hidden
acoustic features involved in timbre perception are inferred in a
fully data-driven manner through the learning process; it is thus
more objective than multidimensional scaling. Furthermore, it is more
flexible, and able to extract abstract acoustic features hidden in
high-dimensional representations, which could not be devised from
scratch. Though, while the high inter- and intra-subject variability
in dissimilarity rating tasks is documented [15], the metric learning
procedure of [14] is performed solely on averaged dissimilarity rat-
ings, impairing uncertainty quantification in the explained variances.
Furthermore, most learning procedures are highly sensitive to input
noise, mostly because of the optimization of a nonconvex criterion,
with numerous local minima [16]. The conclusions drawn from the
metrics learned according to [14] could hence change drastically if
applied to dissimilarity ratings collected at a different time or from
different participants.

Going a step further in complexity and abstraction, deep embed-
dings have recently shown impressive performance in standard audio
processing tasks [17]–[19]. These successes motivated the search for
acoustic features explaining human listening encoded in the structure
of trained deep neural networks, exploiting parallels with vision [2].
Recently, [1] demonstrated that the layer hierarchy of neural networks
trained on audio data, encodes psychoacoustic features of increasing
complexity involved in human listening.
Contributions and outline. First, the metric learning procedure
developed in [14] is revisited to correct and robustify the learning
scheme. Then, classical time–frequency and perceptually motivated
audio representations are compared to the most recent deep em-
beddings in terms of variance of the human ratings explained by
the learned metric. Finally, the robustness of the learning proce-
dure depending on the representation is assessed through intensive
numerical simulations. All audio representations considered in the
paper are presented in Sec. II, and the timbre datasets in Sec. III.
Sec. IV describes the metric learning framework and compares
the explained variance reached with the different representations.
Sec. V proposes a robustness assessment procedure and compares
the different embeddings through exhaustive numerical experiments.

II. MODELS OF HUMAN AUDIO TIMBRE PERCEPTION

A. Time–Frequency representations

Fourier based representations have long been considered to model
musical sounds. The Short-Time Fourier Transform (STFT) [20], is
thus considered as a baseline. Window and hop sizes of respectively
1024 and 512 bins are considered, leading to a feature dimension of
nSTFT = 513.

Depth of representation have been shown to improve modeling
performance [21], hence the joint time–frequency scattering [22]



is also considered. It consists of a two-step cascade of wavelets
and modulus operators. Quality factors for the wavelet operators are
determined according to the knowledge of time–frequency properties
of musical sounds. For the first order, the quality factor is 8, and,
for the second, the scale and rate quality factors are both equal to 2
leading to a larger feature dimension of nscattering = 2204.

B. Perceptual representations

Both the lowest and the highest-dimensional perceptually moti-
vated representations studied in [14] are considered.

The cochlea feature is computed with perceptually motived post-
processing of 128 constant-Q asymmetric bandpass filters equally
spaced on a logarithmic frequency–scale, leading to a feature dimen-
sion of ncochlea = 128.

The SpectroTemporal Modulation Frequency (STMF) representa-
tion can be seen as a series of spectrograms filtered according to
different rates and scales by the application of a two-dimensional
Fourier transform to the cochlear spectrogram. The second stage
of filtering aims at modeling the evidence of rate–scale sensitive
population of neurons in the early auditory cortex [23]. It results in
a two-dimensional array, also called the modulation power spectrum,
whose dimensions are i) spectral modulation (scale, for 11 cycles per
octave), and ii) temporal modulation (rate, for 22 frequencies). This
leads to a much higher-dimensional feature with nSTMF = 128×11×
22 = 30976. It worth noting that the scattering representation can
be considered as an idealized STMF representation.

C. Learned representations

Many learned embeddings are now available for representing audio.
The use of VGGish embeddings [24] are effective for general audio
processing [17] and still of widespread use. However recent empirical
evidence tends to demonstrate that deep embeddings learned on
domain-specific audio data lead to significant performance improve-
ment of the modeling quality [25].

Aiming at modeling musical timbre perception, this study thus
focuses on state-of-the-art embeddings largely trained on musical
data:
• EnCodec [26] with quantization removed, leading to a feature
EnCodec with dimension of nEnCodec = 128,

• CLAP [27], a feature CLAP with dimension of nCLAP = 1024,
• MERT [28].

The latter exposes thirteen different embeddings with contrasted
performance for various downstream tasks, concatenated into a
MERTCAT feature with nMERTCAT = 9984, and a learned weighted
average, yielding a MERTAV embedding with nMERTAV = 768.

All features are considered as averaged over time.

III. DATASETS

The seventeen datasets reanalyzed by [14], listed in Tab. I, are con-
sidered. Each is composed of audio samples, denoted {a1, . . . , a`}.
The number of sounds ` is comprised between eleven and twenty for
the datasets considered in this study. The datasets from [4], [5], [9],
[11] contain recorded instruments sounds, while the datasets of [3],
[8], [10], [12] are composed of resynthesized and simulated sounds.

Given a collection of audio samples, standard experiments in
psychoacoustics consists in asking the subjects to attribute to each
pair (ai, aj) a dissimilarity rating s{i,j} ∈ [0, 1], where s{i,j} = 0
accounts for exactly similar audio samples ai, aj , while s{i,j} = 1
corresponds to maximally different samples. For each dataset, the
dissimilarity ratings of all the unordered pairs {i, j} of distinct
elements are averaged over all participants and stored in a vector

s. As this annotation task requires significant cognitive efforts, it is
limited to small datasets of not more than twenty sounds [3]–[5], [7].

IV. METRIC LEARNING IN REPRESENTATION SPACES

Human dissimilarity ratings condense complex perceptual judg-
ments relying on intricate high-level audio characteristics. Therefore,
the decision-making process can hardy be fully modeled. Instead, to
capture the main features of timbre perception, human ratings are
fitted to a parametric distance through a learning procedure [14].
Then, provided the obtained fit is sufficiently good, the salient
patterns on which the learned weights fire can be considered as
relevant explanatory features for timbre perception.
Parametric distance in representation space. In the present paper,
following the general principles of metric learning [29], the dissimi-
larity ratings are fitted using a parametric distances of the form

dΨ
w (ai, aj)

2 =

nΨ∑
k=1

1

w2
k

(Ψ(ai)k −Ψ(aj)k)2 , (1)

where Ψ is a nΨ-dimensional audio representation, e.g., one of those
described in Sec. III, and w is an nΨ-dimensional vector of weights.
Reward function. Metric learning consists in selecting the weights
such that the distance fits the human dissimilarity ratings. The quality
of the fit is measured through the Pearson correlation

P(dΨ
w , s) =

∑
{i,j}

(
dΨ
w (ai, aj)

2 − µw

) (
s{i,j} − µs

)
σwσs

, (2)

where the sum runs over all unordered pairs of distincts sounds; µw

(resp. µs) denotes the empirical mean of dΨ
w (ai, aj)

2 (resp. s{i,j})
over all pairs of sounds; and σw (resp. σs) refers to the empirical
standard deviation. Using the squared distance in the Pearson corre-
lation instead of the distance itself simplifies the computations, but
does not impact the interpretation.

The Pearson correlation ranges from −1, corresponding to perfect
linear anticorrelation, to 1, in case of perfect linear correlation be-
tween the parametric distance and human ratings. Its main advantage
is that it is invariant under mean shifts and variance rescalings.
Learning framework. The learning task consists in maximizing the
reward function (2) over the training audio dataset, that is to find

w? ∈ Argmax
w∈RnΨ

P(dΨ
w , s). (3)

Although the learned weights depend on the representation, Ψ is
omitted in w? for the sake of readability of the learned distance
dΨ
w? . Performance are then quantified through the explained variance,

defined as the squared Pearson correlation. Large explained variance
corresponds to accurate modeling of the human ratings by the learned
metric, while values close to zero indicate poor fit. Achieving a good
fit ensures that audio samples with similar timbre are closed in terms
of the learned distance, and reciprocally, audio samples with different
timbres are far apart.

Datasets in psychoacoustics are mostly of very limited size: ` is
smaller than twenty for the datasets considered in the present study.
Hence, the reward function (7) is maximized over the entire dataset
of pairs of sounds. To rule out the risk of overfitting, [14, Methods &
Supplementary] performed an exhaustive leave-one-sound-out cross
validation confirming that the learning procedure is consistent.
Optimization. The Pearson correlation maximized in (7) being
differential in the learned weights, optimization is performed using
the limited memory Boyden-Fletcher-Golfarb-Shanno quasi-Newton
algorithm with box constraints [30]–[32]. This algorithm has three
major advantages : first, it is descent-step free, second, it is capable



STFT cochlea scattering STMF CLAP EnCodec MERTAV MERTCAT msubjects

Dimension nΨ 513 128 2204 30976 1024 128 768 9984

Grey1977 [8] 0.29 0.48 0.25 0.84 0.73 0.23 0.02 1.00 22
Grey1978 [3] 0.18 0.11 0.21 0.33 0.36 0.16 0.08 0.77 22
Iverson1993 Whole [9] 0.46 0.16 0.25 0.87 0.59 0.30 0.21 0.95 10
Iverson1993 Onset [9] 0.18 0.07 0.12 0.22 0.42 0.06 0.11 0.93 9
Iverson1993 Remainder [9] 0.16 0.03 0.02 0.27 0.39 0.16 0.07 0.87 9
McAdams1995 [10] 0.14 0.30 0.06 0.77 0.31 0.14 0.05 0.97 24
Lakatos2000 Harm [11] 0.31 0.19 0.16 0.85 0.74 0.31 0.08 0.98 34
Lakatos2000 Perc [11] 0.10 0.18 0.07 0.27 0.37 0.08 0.13 0.97 34
Lakatos2000 Comb [11] 0.16 0.13 0.19 0.33 0.50 0.07 0.13 0.94 34
Barthet2010 [12] 0.11 0.74 0.18 0.98 0.29 0.08 0.21 0.65 16
Patil2012 A3 [4] 0.79 0.62 0.75 0.97 0.97 0.55 0.46 1.00 20
Patil2012 DX4 [4] 0.85 0.66 0.81 0.99 0.94 0.72 0.18 1.00 20
Patil2012 GD4 [4] 0.85 0.46 0.76 0.95 0.98 0.65 0.74 1.00 20
Siedenburg2016 e2set1 [5] 0.40 0.62 0.31 0.95 0.76 0.23 0.11 1.00 24
Siedenburg2016 e2set2 [5] 0.60 0.73 0.35 0.99 0.59 0.46 0.07 1.00 24
Siedenburg2016 e2set3 [5] 0.33 0.10 0.40 0.53 0.92 0.23 0.35 1.00 24
Siedenburg2016 e3 [5] 0.26 0.07 0.32 0.46 0.90 0.18 0.18 1.00 24

Median 0.26 0.18 0.21 0.77 0.59 0.18 0.11 0.97 22
Interquartile range 0.27 0.44 0.19 0.62 0.45 0.19 0.12 0.06 4

TABLE I: Squared Pearson correlation between collected dissimilarity scores and learned metrics in different representation spaces.
Pearson correlation close to one (resp. zero) indicates very good (resp. very poor) fit. Best fits are emphasized in bold.

to optimize over variables of large dimension, and, finally, its con-
vergence is quadratic, and hence very fast, provided the initial point
is close enough to the optimum. The overall learning procedure has
been reimplemented end-to-end in order to augment and correct the
procedure of [14].2 First, in contrast to [14], in which the initialization
of the learning algorithm is random, the present work proposes a
deterministic warm initialization

w[0] ∈ Argmin
w∈RnΨ

∑
{i,j}

∣∣∣dΨ
w (ai, aj)

2 − s{i,j}

∣∣∣2 (4)

in order to robustify the learning process, to converge faster, and
toward a better local minimum. The initialization (4) is computed
using a nonnegative least squares solver [33]. Additionally, in the
codes1 accompanying [14], the terms corresponding to the derivatives
of the mean µw with respect to the weights are missing in the compu-
tation of the gradient of the Pearson correlation reward function (2).
This omission has been corrected in the proposed reimplementation.
In practice, the maximum number of iterations is set to 104, and
maximum number of line search steps at each iteration to 50. Weights
are forced to belong to lie between 1 and 1015. Tolerance on both the
reward function increments and projected gradient is set to 10−36 to
ensure high accuracy in the computation of the optimizer.
Numerical results. Following [14], the explained variance of human
ratings by the learned metrics is quantified through the squared
Pearson correlation, reported for the seventeen datasets and the eight
audio representations in Table I. First, the performance obtained using
the cochlea representation (second column) and, more significantly
using the STMF representation (fourth column), are larger by up
to 6% of explained variance compared to those reported in [14,
Table 1, columns 4 and 6], demonstrating that the learning algorithm
converges toward a better optimum when using the proposed warm
initialization (4), especially when the optimization is performed
in high dimension. Second, the MERTCAT representation-based
learned distance almost systematically achieves the largest explained
variance compared to all other representations, and often reaches
one, corresponding to a perfect fit. Quantitatively, on median across
the seventeen datasets, the learned distance using the MERTCAT

1https://github.com/EtienneTho/musical-timbre-studies

representation explains 97% of the variance in human rating,s against
77% for the STMF representation-based distance. It worth noting
that the MERTCAT representation, although concatenating thirteen
embeddings, is still three times smaller compared to the STMF
representation: nMERTCAT = 9984 while nSTMF = 30976. This results
in a significantly decrease of the complexity of the optimization
algorithm solving (7), which is reduced by a factor of almost ten.
It opens the way to learning over larger datasets, e.g., taking into
account all subject ratings instead of learning on ratings averaged
over the participants of the experiment. Data and codes to reproduce
the results of Tab. I have been made publicly available.2

V. ROBUSTNESS ANALYSIS

Dissimilarity ratings are prone to large fluctuations, both between
different subjects and for a given subject at different time and depend-
ing on the order in which the audio sample pairs are presented. The
analysis in [14] is performed on averaged dissimilarity ratings over
all the participants to the experiments. Consequently, the reported
performance are not accompanied with grounded confidence levels.
The present section proposes a framework to complete and extend
the study of [14] in two ways: i) by using randomly generated
degraded dissimilarity ratings it enables to quantify the robustness of
the learning procedure, and hence to support the consistency of the
explained variances obtained in Sec. IV on averaged human ratings,
ii) by comparing the robustness of the learned metrics depending on
the audio representation and on the degradation level.
Random degradation of human ratings. To assess the robustness
against variability of the dissimilarity ratings of the learning proce-
dure described in Sec. IV, degraded versions of the collected ratings
are considered. In order to mimic the large uncertainty surrounding
the annotation process, resulting in both inter- and intra-subject
variability, noisy ratings vectors are generated under the form

y
(δ)

{i,j} = min(1,max(0, s{i,j} + δ · ξ)), (5)

where ξ ∼ N (0, 1) are i.i.d. random perturbations; δ encodes the
level of degradation; and the min and max perform clipping, ensuring
that degraded ratings lie in [0, 1].

2https://github.com/bpascal-fr/timbre-metric-learning/

https://github.com/EtienneTho/musical-timbre-studies
https://github.com/bpascal-fr/timbre-metric-learning/
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(a) Curves log10 δ 7→ P(dΨ
wδ
, s)2.

Area (a.u.) Relative area −10 log10 (ASTMF/Ar) (dB)
STMF STFT cochlea scattering CLAP EnCodec MERTAV MERTCAT

Grey1977 [8] 1.09 -5.75 -1.44 -6.27 -1.06 -6.20 -15.48 -0.23
Grey1978 [3] 0.34 -2.69 -3.55 -2.17 0.20 -2.92 -5.99 3.66
Iverson1993 Whole [9] 1.12 -2.97 -7.24 -5.79 -2.45 -4.79 -6.58 -0.54
Iverson1993 Onset [9] 0.21 -0.99 -4.56 -2.51 2.89 -6.20 -2.18 6.28
Iverson1993 Remainder [9] 0.28 -2.21 -10.21 -10.61 1.69 -1.92 -5.84 4.70
McAdams1995 [10] 0.99 -8.01 -3.12 -12.26 -5.05 -8.15 -12.50 0.06
Lakatos2000 Harm [11] 1.17 -5.09 -6.71 -7.76 -1.54 -5.36 -11.26 -0.57
Lakatos2000 Perc [11] 0.34 -5.24 -1.28 -6.72 0.54 -5.15 -3.39 4.52
Lakatos2000 Comb [11] 0.41 -3.35 -3.51 -2.24 0.96 -6.94 -3.89 3.85
Barthet2010 [12] 1.30 -10.38 -0.10 -8.04 -6.14 -11.67 -7.66 -2.98
Patil2012 A3 [4] 1.15 -1.35 -1.63 -1.19 -0.82 -2.71 -3.45 -0.46
Patil2012 DX4 [4] 1.08 -0.49 -0.83 -1.10 -0.30 -0.81 -7.50 -0.26
Patil2012 GD4 [4] 0.97 -0.23 -2.23 -0.58 0.32 -1.07 -0.42 0.35
Siedenburg2016 e2set1 [5] 1.12 -3.96 -1.29 -5.21 -1.61 -6.55 -9.60 -0.28
Siedenburg2016 e2set2 [5] 1.13 -2.30 -0.48 -4.55 -3.12 -2.91 -11.49 -0.61
Siedenburg2016 e2set3 [5] 0.54 -1.60 -6.80 -0.76 2.90 -3.39 -1.09 2.99
Siedenburg2016 e3 [5] 0.48 -2.33 -8.74 -1.22 2.73 -4.51 -3.46 3.16

Mean 0.72 -3.10 -3.35 -4.16 -0.52 -4.28 -5.88 1.24
Standard deviation 0.40 2.61 2.98 3.47 2.39 2.75 4.21 2.39

(b) (Relative) Area under the curve log10 δ 7→ P(dΨ
wδ
, s)2, with weights wδ learned according to Eq. (7).

Fig. 1: Robustness of the learning procedure against degraded ratings. (a) Explained variance of the human ratings by the metric learned
on synthetic degraded ratings for several levels of noise with error bars computed on 5 realizations of the degraded ratings. The vertical
dashed line indicates the typical standard deviation of human ratings δ given in Eq. (6). (b) First column: area under the explained variance
curve for a learned metric using the STMF representation, to be used as a reference; second to fifth columns: ratio, expressed in decibels,
between the reference area of first column and the area under the explained variance curve for each of the seven remaining representations.
The higher the ratio, the more robust the learning procedure using this representation. All quantities are averaged over 5 realizations of the
noisy ratings. Relative area of 0 dB corresponds to exactly the same robustness as STMF.

Experimental setup. The exact same setup is applied to each of
the seventeen datasets. Nine levels of degradation are considered,
logarithmically distributed between 0.1 and 10. For each level of
degradation, five independent realizations of the noisy ratings are
generated. For reference, the vertical dashed line in Fig. 1a indicates
the typical standard deviation of human ratings reported in [15]

δ = 0.1×√msubjects (6)

where msubjects denotes the number of participants to the study,
provided in Tab. I, rightmost column. Then, for each of the eight
representations, each degradation level, and each realization, the
learning framework described in Sec. IV is applied to learn weights
from noisy ratings

wδ ∈ Argmax
w∈RnΨ

P(dΨ
w , y

(δ)). (7)

Performance metrics. For very low noise level, the metric learned
from degraded ratings dΨ

wδ is expected to be very close to the metric
learned from original ratings dΨ

w? , and hence to achieve similar
explained variance of human ratings. As the noise level increases,
the training ratings gets more and more degraded, and the explained
variance should decrease. To illustrate the performance drop off in-
duced by training on noisy ratings, the curves log10 δ 7→ P(dΨ

wδ , s)
2

are displayed in Fig. 1a for two datasets. The quality of the learned
metric and the robustness to learning from degraded ratings are jointly
evaluated through the area under the explained variance curve. This
area is comprise between 0 and 2, and its maximal value is reached
if and only if the explained variance saturates at one whatever the
noise level, corresponding to perfect fit of the learned metric to human
ratings and perfect robustness. On the contrary, it equals zero if and
only if the learned metrics explains absolutely nothing about neither
human nor degraded ratings. The area for the STMF is used as a

reference. To emphasize improvements and degradations compared to
this state-of-the-art representation [14], the robustness of the learning
procedure relying on the other representations is quantified relatively
to this reference though the log relative area expressed in decibels.
Numerical results. Fig 1a shows that, for the two example datasets,
the explained variance curves, corresponding to the eight representa-
tions, are all monotonously decreasing as the noise level increases.
For both Lakatos2000 Harm [11] and Siedenburg2016 e2set1 [5],
as soon as the degradation level remains smaller than the expected
human variability (6), the metric learned on the MERTCAT represen-
tation yields better explained variance and is more robust compared to
metric learning on the STMF representation. On the contrary, for high
degradation levels, the explained variance is decreasing slower for
STMF-based than for MERTCAT-based metrics. Similar conclusions
are consistently observed for all other datasets.3

Positive log relative areas in Tab. 1b indicates higher robustness to
degraded ratings compared to the reference STMF. On average, the
MERTCAT deep embedding leads to higher robustness than all other
representations. Interestingly, while being far smaller dimensional,
CLAP achieves the third best robustness on average, just after the
very high-dimensional reference STMF, corresponding to zero log
relative area by definition.

VI. CONCLUSION AND PERSPECTIVES

Leveraging the metric learning framework designed in [14], the
present meta-analysis demonstrates, through an exhaustive com-
parison of the most recent deep embeddings with classical time–
frequency representations and perceptually motivated audio represen-
tations informed by the physiology of the human auditory cortex,
the impressive ability of deep neural networks trained on music

3https://github.com/bpascal-fr/timbre-metric-learning/figures

https://github.com/bpascal-fr/timbre-metric-learning/figures


datasets to encode the acoustic substrates of timbre perception.
To uncover the salient patterns in audio representations explaining
timbre dissimilarity, a corrected and augmented version of the metric
learning procedure from [14] has been devised and implemented,4

leading to a quantitative comparison of explained variances across
eights audio representations and seventeen historical datasets. As a
second major and original contribution, a framework to assess the
robustness of the metric learning procedure against inter- and intra-
subject variability in the human ratings dataset is proposed. This
framework permits to quantify the superiority of deep embeddings in
terms of both explained variance and robustness to degraded ratings.

Deep learning representations, especially CLAP and MERTCAT,
are very promising for addressing a wealth of open questions in
auditory cognitive neuroscience, beyond timbre perception. The un-
derstanding of speech [34], environmental sounds [35] listening, and
even animal bioacoustics [36], [37], draws very appealing lines of
research leveraging the high explanatory power and robustness of
deep representations-based metric learning.
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