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bi-materials
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aCNRS, Université de Lorraine, Arts et Métiers, LEM3, F-57000 Metz, France

Abstract

In this study, expressions for the interior stress fields of a spherical inclusion

with uniform eigenstrain embedded in an anisotropic bi-material featuring a

planar interface are derived. These expressions involve surface integrals of the

imaginary term of the first derivative of the Green tensor in an anisotropic

bi-material which are well-suited for standard numerical integrations. Spe-

cific formulations are provided for cases where the inclusion belongs to either

the same material or both materials. Additionally, expressions are presented

for the equivalent Eshelby tensor. The interior stress fields and variations

in elastic strain energy are computed using cubic elastic constants of Cu.

Various inclusion positions relative to the interface, eigenstrain forms, and

crystallographic orientations are considered. For instances involving dilata-

tional eigenstrain, the elastic strain energy variation with the inclusion’s

position may exhibit multiple extrema. The global minimum and maximum

consistently occur when the inclusion spans both materials. In the context of

symmetrical tilt boundaries, energy variations are perfectly symmetric, with

a global minimum on the interface that decreases with the tilt angle. The
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significance of the observed energy variations for defects segregation is quan-

titatively assessed by comparing them with the interaction energy between

an eigenstrain and a grain boundary stress field.

Keywords: Inclusions, Interface, Anisotropic elasticity, Green function,

Image force

1. Introduction

The study of elastic fields generated by inclusions within an elastic ma-

trix stands as a cornerstone in micromechanics, significantly influencing the

development of advanced multi-components alloys (Mura, 1987; Zhou, 2013;

Barnett and Cai, 2018). An inclusion is associated with an eigenstrain, rep-

resenting the stress-free strain the inclusion would have if removed from the

encompassing matrix (Mura, 1987; Barnett and Cai, 2018). Inclusions are

generally considered in an infinite homogeneous medium as in the pioneering

work of Eshelby (1957). However, many works also focus on inclusion prob-

lems within finite spaces (e.g., (Eshelby, 1954, 1961; Kinoshita and Mura,

1984; Li et al., 2007)) and half-spaces (e.g., (Mindlin and Cheng, 1950; Chiu,

1978; Seo and Mura, 1979; Pan and Yang, 2001; Jiang and Pan, 2004)), neces-

sitating the introduction of ‘image’ terms, i.e. terms that should be added to

the elastic fields of the infinite medium in order to satisfy the boundary condi-

tions at outer surfaces. Despite this extensive exploration, limited attention

is given to inclusions in bi-materials, which also demand consideration of

‘image’ terms. Existing studies typically focus on dissimilar isotropic elastic

solids (Bacon, 1972; Gladwell, 1999; Selvadurai, 2000; Franciosi and Charles,

2016) and/or plane or anti-plane problems (Zhang and Chou, 1985; Ru, 2001;

Ru et al., 2001; Wang et al., 2007). In particular, to the best of the author’s

knowledge, the variations of stresses within a 3D inclusion in an anisotropic

bi-material and the variation of elastic strain energy with the inclusion’s

position have never been shown and analyzed. Yet, the 3D problem of an

inclusion embedded in an anisotropic bi-material holds potential significance
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in various applications, such as assessing the strength of laminated materials

with reinforcements or better understanding the segregation at interfaces of

defects like solute atoms, vacancies, precipitates (oxydes, carbides, etc.) or

voids. In particular, solute atom segregation to grain boundaries markedly

influences material properties, including grain boundary energy, mobility and

cohesion (Dingreville and Berbenni, 2016). Solute atoms can be treated as

spherical misfitting inclusions with purely dilatational eigenstrain (White

and Coghlan, 1977; Cai et al., 2014; Dingreville and Berbenni, 2016). Point

defects like vacancies and solute atoms (in substitution or in insertion) can

also be modeled as a distribution of point-forces, i.e. like a force multipole

that mimics the forces imposed on the atoms surrounding the defects (Siems,

1968; Bacon et al., 1980; Balluffi, 2016; Clouet et al., 2018). While this rep-

resentation is actually only valid outside the defect, it becomes particularly

relevant when considering the interaction energy with an external strain field.

For instance, it is demonstrated that representing the defect with the first

moment of the point force distribution, known as the elastic dipole, is equiv-

alent to considering a uniform eigenstrain within a small inclusion but only

in regions far from the inclusion (Clouet et al., 2018). The elastic dipole

tensor can also be related to the displacement dipole tensor, which quanti-

fies the strength of the point defect (Lazar, 2017). In the latter approach,

the point defect is modeled with a three-dimensional Dirac δ-singularity in

the eigenstrain tensor such that only average stress values can be defined

at the defect position due to the Dirac core (Lazar, 2017). Consequently,

the representation of a defect with a dipole tensor cannot capture the full

complexity of the interaction energy between a defect and an interface, as

the interior stress fields of an inclusion within a bi-material are necessarily

non-uniform (see, e.g., (Seo and Mura, 1979; Wang et al., 2007)), whereas a

finite inclusion may also spans both materials.

The current study deals with the issue of an inclusion of finite size em-

bedded in a bi-material considering linear heterogeneous anisotropic elastic-
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ity (see Fig.1). As explained, the interface introduces modifications to the

elastic fields within and surrounding the inclusion compared to the infinite

medium. The gradient of the change in elastic strain energy associated with

the defect manifests as a force on the defect itself, known as an image force.

This configurational force, exhibiting either an attractive or repulsive na-

ture, depends on the defect’s position relative to the interface. It is known

that a softer material will attract the defect (whether it is a dislocation or

a point defect), while a harder one will repel it. This is rooted in the fact

that the elastic distortions induced by the defect yield lower contributions to

the elastic strain energy when situated within the softer material. However,

the scenario becomes more intricate when considering a grain boundary that

separates two crystals of the same material but with different orientations.

In addition, the details of how the elastic strain energy varies as the inclusion

is continuously displaced from one material to another remain unexplored.

The stress fields and elastic strain energy variations for an inclusion within

a bi-material can be effectively computed using the anisotropic elastic Green

functions in a bi-material with a planar interface, as developed by Pan and

Yuan (2000), and combining them with the Green’s function formulation for

the inclusion stress fields (Mura, 1987). The expression of the anisotropic

elastic Green functions in a bi-material were derived via the Stroh formal-

ism (Stroh, 1958, 1962) and the 2D Fourier transform method. They encom-

pass the full-space Green’s tensor and an additional complementary part.

The latter can be efficiently computed through a regular line-integral over

the range [0, π], amenable to standard numerical integration methods (Pan

and Yuan, 2000; Chu et al., 2011, 2012).

The paper is organized as follows. Section 2 presents the theoretical

framework. The expressions of the stress field due to a distribution of

eigenstrains in a general (i.e. homogeneous or heterogeneous) infinite elastic

medium are first introduced. Then, particular expressions of the stress fields

are derived considering a uniform eigenstrain within a spherical inclusion in
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a bi-material, whether it belongs to a single material or spans both mate-

rials (see Fig.1). The latter configuration might provide insights into the

impact of elastic heterogeneity when a large defect, such as a precipitate,

is within a grain boundary, or when a small defect, such as a solute atom,

is in the transition area between the bulk crystal and the grain boundary.

Furthermore, the expression for the elastic strain energy is provided, along

with simplifications emerging from the assumption of cubic elasticity and

dilatational eigenstrain. In Section 3, a convergence study is undertaken re-

garding the numerical integrations involved in the computation of the elastic

strain energy. Additionally, a comparative analysis with the known stresses

and energy variations in an isotropic half-space is performed, ensuring the

robustness of the numerical implementation. Moving on to Section 4, the

results in terms of interior stress fields profiles and variations in elastic strain

energy are shown assuming cubic elastic constants of Cu. Various inclusion

positions relative to the interface, diverse forms of eigenstrain, and distinct

crystallographic orientations are explored. Section 5 engages in a thorough

discussion of these results, with a specific focus on quantitatively assessing

the significance of the image effect. This assessment is made through com-

parisons with the interaction energy between an eigenstrain and an external

stress field, such as the one arising from a grain boundary. Summarizing

remarks follow in Section 6.

Throughout the paper, bold letters are used for vectors, tensors and ma-

trices. The superscript T denotes the transpose of a matrix and an overbar

the conjugate of a complex function. The Einstein convention over repeated

indices is used. i denotes the imaginary unit.

2. Theoretical framework

We consider an infinite general (i.e. homogeneous or heterogeneous) elas-

tic medium of volume V and a distribution of eigenstrains ε∗. In the absence

of body force, the displacement vector u follows the Navier equation
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Figure 1: Infinite bi-material made of material (1) characterized by elasticity tensor C(1)

in the region x3 > 0 and of material (2) characterized by C(2) in the region x3 < 0. On
the left, the spherical inclusion with a uniform eigenstrain ε∗ belongs only to material (2).
On the right, the inclusion spans the two materials.

Cijkl(x)
∂2uk(x)

∂xl∂xj

= Cijkl(x)
∂ε∗kl(x)

∂xj

(1)

where C is the fourth-rank tensor of anisotropic elastic constants that

possesses the symmetries Cijkl = Cklij = Cjikl = Cijlk. x denotes a particular

point of V and the indices refer to a rectangular Cartesian frame (e1, e2, e3).

The elastic Green tensor G of the Navier equation is defined by (Barnett,

1972; Mura, 1987; Lazar, 2016, 2017)

Cijkl(x)
∂2Gkm

∂xl∂xj

(x,y) + δimδ(x− y) = 0 (2)

δim is the Kronecker delta tensor and δ(x − y) is the three-dimensional

Dirac delta function. The Green’s function Gij(x,y) represents the elastic

displacement in the ei direction at point x induced by a unit force in the ej

direction applied at point y (Mura, 1987; Barnett, 1972). For a distribution

of eigenstrains, it satisfies the equation (Mura, 1987)

ui(x) = −
∫
V

Gij(x,y)Cjlmn(y)
∂ε∗mn(y)

∂yl
dy (3)

where the term −Cjlmn(y)
∂ε∗mn(y)

∂yl
represents a fictitious body force in
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the ej direction. By integration by parts and assuming the boundary terms

vanish, we have (Mura, 1987)

ui(x) =

∫
V

Cjlmnε
∗
mn(y)

∂Gij(x,y)

∂yl
dy (4)

Hence, from Hooke’s law, the stress field due to a distribution of eigen-

strains in a general infinite elastic medium may be expressed as

σpq(x) = Cpqim(x)

(∫
V

Cjkln(y)ε
∗
ln(y)

∂2Gij

∂yk∂xm

(x,y)dy − ε∗im(x)

)
(5)

2.1. Homogeneous medium

For an infinite homogeneous body, we introduce G∞ as the full-space

anisotropic elastic Green tensor. We have then
∂G∞

ij

∂yl
(x,y) = −

∂G∞
ij

∂xl

(x,y)

(Mura, 1987), and thus the more classical expression of the stress field for a

distribution of eigenstrains is retrieved

σpq(x) = −Cpqim

(∫
V

Cjklnε
∗
ln(y)

∂2G∞
ij

∂xk∂xm

(x,y)dy + ε∗im(x)

)
(6)

2.2. Bi-material

We know consider an infinite bi-material made of material (1) charac-

terized by elasticity tensor C(1) in the region x3 > 0 and of material (2)

characterized by C(2) in the region x3 < 0. The two materials are thus

separated by a planar interface whose normal is along e3. The latter is as-

sumed perfectly bonded. From Eq. 5, the stress field due to a distribution of

eigenstrains can be written as

σpq(x) = Cpqim(x)

(∫
V

Cjkln(y)ε
∗
ln(y)

∂2GBi
ij

∂yk∂xm

(x,y)dy − ε∗im(x)

)
(7)
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where GBi is the 3D anisotropic elastic Green tensor which was derived

by Pan and Yuan (2000). For such a bi-material, it is noteworthy that the

derivative relationship is lost,
∂GBi

ij

∂yl
(x,y) ̸= −

∂GBi
ij

∂xl

(x,y), as well as the

symmetry relations, GBi
ij (x,y) ̸= GBi

ji (x,y) (Chu et al., 2012).

In the present work, we write GBi as the sum of a full-space term and

an imaginary term GIm as follows

GBi
ij (x,y) =

{
G

∞(1)
ij (x,y) +GIm

ij (x,y) if x3 > 0

G
∞(2)
ij (x,y) +GIm

ij (x,y) if x3 < 0
(8)

The expressions of GIm depend on the signs of x3 and y3 (Pan and Yuan,

2000; Chu et al., 2011, 2012). They are explicitly given in the Appendix B.

2.2.1. Uniform eigenstrain within a spherical inclusion belonging to a same

material

In the following, the problem is further restricted to the issue of a uniform

eigenstrain ε∗ within a spherical inclusion of radius R and volume V I . If the

whole inclusion completely belongs to a same material, then the stress field

inside the spherical inclusion writes

σpq(x) = Cpqim(x)

(
Cjkln(x)ε

∗
ln

(
Eijkm(x) +

∫
V I

∂2GIm
ij

∂yk∂xm

(x,y)dy

)
− ε∗im

)
(9)

where the fourth-rank tensor E is defined as (Kröner, 1990; Lazar, 2016)

Eijkm(x) =


E

(1)
ijkm = −

∫
V I

∂2G
∞(1)
ij

∂xk∂xm

(x,y)dy if x3 > 0

E
(2)
ijkm = −

∫
V I

∂G
∞(2)
ij

∂2xk∂xm

(x,y)dy if x3 < 0

(10)

E is related to the Dirac δ(x−y)-term of the second derivative of the full-
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space Green tensor (Lazar, 2016). It can be computed almost instantaneously

via an integral over the unit sphere (Kneer, 1965; Lazar, 2016) (see details

in the Appendix A).

Using Gauss’s theorem, the volume integral term is reduced to a surface

integral

σpq(x) = Cpqim(x)

(
Cjkln(x)ε

∗
ln

(
Eijkm(x) +

∫
∂V I

∂GIm
ij

∂xm

(x,y)nkdy

)
− ε∗im

)
(11)

∂V I denotes the surface of the spherical inclusion and n its external unit

normal. It must be underlined that the introduction of the tensor E and

its computation from Eq. A.4 is essential from a numerical point of view.

Otherwise, the numerical satisfaction with a good accuracy of Eq. 10 is very

slow to achieve.

From Eq. 11, one may also define the Eshelby tensor for a spherical in-

clusion in a bi-material, SEsh,Bi(x), although being non-uniform. The latter

should connect the total strain with the eigenstrain, εim(x) = SEsh,Bi
imln (x)ε∗ln

and should possess the symmetries SEsh,Bi
imln = SEsh,Bi

miln = SEsh,Bi
imnl . Hence, we

might define

SEsh,Bi
imln (x) =

1

2
Cjkln(x) (Eijkm(x) + Emjki(x))

+
1

2
Cjkln(x)

(∫
∂V I

∂GIm
ij

∂xm

(x,y)nkdy +

∫
∂V I

∂GIm
mj

∂xi

(x,y)nkdy

)
(12)

The second term is zero for a homogeneous material as it is only re-

lated to the imaginary parts of the Green tensor. Hence, the first term

corresponds indeed to the expression of the Eshelby tensor for a spherical

inclusion in an anisotropic homogeneous medium as can be found in (Lazar,

2016). In homogenization theory, the Eshelby tensor in a homogeneous
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medium is more classically given as SEsh,∞
imln = P∞

imjkCjkln where P∞
imjk =

1

2

∫
V I

(
Γ∞
imjk(x,y) + Γ∞

imkj(x,y)
)
dy. P∞ is the Hill’s polarization tensor (Hill,

1965) and Γ∞ is the modified Green function (Kröner, 1990). For a spherical

inclusion, we have P∞
imjk =

1

4
(Eijkm + Emjki + Eikjm + Emkji). For the anal-

ogy, it is therefore interesting to re-write the Eshelby tensor for a spherical

inclusion in a bi-material as

SEsh,Bi
imln (x) = PBi

imjk(x)Cjkln(x) (13)

whith

PBi
imjk(x) = P∞

imjk(x) + P Im
imjk(x) (14)

and

P Im
imjk(x) =

1

4

∫
∂V I

∂GIm
ij

∂xm

(x,y)nkdy +
1

4

∫
∂V I

∂GIm
mj

∂xi

(x,y)nkdy

+
1

4

∫
∂V I

∂GIm
ik

∂xm

(x,y)njdy +
1

4

∫
∂V I

∂GIm
mk

∂xi

(x,y)njdy

(15)

It is noteworthy that P∞(x) is uniform within a same material whereas

P Im(x) is not.

2.2.2. Uniform eigenstrain within a spherical inclusion spanning the two ma-

terials

If the inclusion spans the two materials, i.e. the center of the spherical

inclusion is such that y3 − R ≤ 0 and y3 + R ≥ 0, the elasticity tensor

cannot be taken out of the integral. However, one can write C(y) = C(2) +(
C(1) −C(2)

)
H (y3) whereH (y3) is the Heaviside step function. For x3 < 0,

the following equation is thus obtained for the stress field inside the inclusion
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σpq(x) = C
(2)
pqimε

∗
lnC

(2)
jkln

∫
V I

∂2GBi
ij

∂yk∂xm

(x,y)dy

+ C
(2)
pqimε

∗
ln

(
C

(1)
jkln − C

(2)
jkln

)∫
V I(1)

∂2GBi
ij

∂yk∂xm

(x,y)dy − C
(2)
pqimε

∗
im

(16)

where V I(1) is the volume of the inclusion located in material (1). Using

Eq. 8 and Gauss’s theorem, we have then

σpq(x) = C
(2)
pqimC

(2)
jklnε

∗
ln

(
E

(2)
ijkm +

∫
∂V I

∂GIm
ij

∂xm

(x,y)nkdy

)

+ C
(2)
pqim

(
C

(1)
jkln − C

(2)
jkln

)
ε∗ln

∫
∂V I(1)

∂GBi
ij

∂xm

(x,y)nkdy − C
(2)
pqimε

∗
im

(17)

It must be underlined that the surface area ∂V I(1) represents the part

of ∂V I that belongs to material (1) plus the intersection disk between the

spherical inclusion and the plane y3 = 0. In this case, the Eshelby tensor for

a spherical inclusion in a bi-material, SEsh,Bi, reads

SEsh,Bi
imln =

1

2
C

(2)
jkln

(
E

(2)
ijkm + E

(2)
mjki

)
+

1

2
C

(2)
jkln

(∫
∂V I

∂GIm
ij

∂xm

(x,y)nkdy +

∫
∂V I

∂GIm
mj

∂xi

(x,y)nkdy

)

+
1

2

(
C

(1)
jkln − C

(2)
jkln

)(∫
∂V I(1)

∂GBi
ij

∂xm

(x,y)nkdy +

∫
∂V I(1)

∂GBi
mj

∂xi

(x,y)nkdy

)
(18)

For x3 > 0, the same procedure leads to
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σpq(x) = C
(1)
pqimC

(1)
jklnε

∗
ln

(
E

(1)
ijkm +

∫
∂V I

∂GIm
ij

∂xm

(x,y)nkdy

)

+ C
(1)
pqim

(
C

(2)
jkln − C

(1)
jkln

)
ε∗ln

∫
∂V I(2)

∂GBi
ij

∂xm

(x,y)nkdy − C
(1)
pqimε

∗
im

(19)

SEsh,Bi
imln =

1

2
C

(1)
jkln

(
E

(1)
ijkm + E

(1)
mjki

)
+

1

2
C

(1)
jkln

(∫
∂V I

∂GIm
ij

∂xm

(x,y)nkdy +

∫
∂V I

∂GIm
mj

∂xi

(x,y)nkdy

)

+
1

2

(
C

(2)
jkln − C

(1)
jkln

)(∫
∂V I(2)

∂GBi
ij

∂xm

(x,y)nkdy +

∫
∂V I(2)

∂GBi
mj

∂xi

(x,y)nkdy

)
(20)

2.2.3. Cubic elasticity and dilatational eigenstrain

In the case of cubic elasticity and for a dilatational eigenstrain of the form

ε∗ =

 δ∗ 0 0

0 δ∗ 0

0 0 δ∗

 (21)

it is noteworthy that
(
C

(2)
jkln − C

(1)
jkln

)
ε∗ln = 0 ∀j,∀k. Hence, Eqs. 17 and

19 reduce seemingly to Eq. 11, namely, for x3 < 0

σpq(x) = C
(2)
pqim

(
C

(2)
jklnε

∗
ln

(
E

(2)
ijkm +

∫
∂V I

∂GIm
ij

∂xm

(x,y)nkdy

)
− ε∗im

)
(22)

and for x3 > 0
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σpq(x) = C
(1)
pqim

(
C

(1)
jklnε

∗
ln

(
E

(1)
ijkm +

∫
∂V I

∂GIm
ij

∂xm

(x,y)nkdy

)
− ε∗im

)
(23)

However, at the difference of Eq. 11, the computation of GIm involves

the use of full-space terms (see Eqs. B.14 and B.20) when the inclusion spans

the two materials, which has consequences on the numerical integration speed

(see further Section 3.1). Finally, it can be noticed that the stress components

σpq scale directly with δ∗ in this case.

2.3. Elastic strain energy

The elastic strain energy is defined as

W e =
1

2

∫
V

σij(x)ε
e
ij(x)dx (24)

where εe is the elastic strain tensor. When eigenstrains are prescribed

in V I and in the absence of any external force and surface constraint, W e

writes (Mura, 1987; Berbenni et al., 2008)

W e = −1

2

∫
V I

σij(x)ε
∗
ij(x)dx (25)

For a uniform dilatational eigenstrain of the form of Eq. 21 (ε∗ij = δ∗δij),

W e scales thus with δ∗2 since σij scales also with δ∗ (see Eqs. 22-23).

3. Numerical implementation

The numerical integrations over [0, π] involved in the calculation of Eijkm

and
∂GIm

ij

∂xm

are performed with the function integral of the software MATLAB

R2022a. They are used in conjunction with the eig function to solve the Stroh

eigenrelation (Eq. B.7). The numerical integrations over ∂V I , ∂V I(1), ∂V I(2)

and V I are obtained from a Gauss-Legendre quadrature method Abramowitz
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Figure 2: Relative error made on the computation of the elastic strain energy (Eq. 25) as
a function of NS for different values of NE for an inclusion centered at y3 = −1.1R. The
reference value is considered at NS = 52 and NE = 10.

and Stegun (1968); von Winckel (2004). The order of the Legendre polyno-

mials are denoted NS for integrals over surfaces to compute the stresses

(NS × NS integration points) and NE for integrals over volumes to get the

elastic strain energy (NE ×NE ×NE integration points).

3.1. Convergence study

For the convergence study, a uniform dilatational eigenstrain of the form

of Eq. 21 with δ∗ = 0.1 is considered along with cubic elastic constants of Cu,

C11 = 170GPa, C12 = 124GPa, C44 = 75GPa, a spherical inclusion’s radius

R =
a0
√
2

4
with the lattice parameter a0 = 0.361 49 nm and crystallographic

orientations corresponding to ‘Orientation A’ in Table 1.

Figure 2 shows the relative error made on the computation of the elas-

tic strain energy (Eq. 25) as a function of NS for an inclusion centered at

y3 = −1.1R and values of NE ranging from 6 to 10. In this case, the compu-

tations of the stresses involves Eq. 11 since the inclusion completely belongs

to material (2). It is seen then that a rapid convergence is obtained. A very

high accuracy is achieved for NS > 20 with relative errors less than 5 ∗ 10−6.
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Figure 3: Relative error made on the computation of the elastic strain energy (Eq. 25) as
a function of NS for different values of NE for an inclusion centered at y3 = −0.5R (left)
and at y3 = 0 (right). The reference values are considered at NS = 100 and NE = 10.

Figure 3 shows then the relative error made on the computation of the

elastic strain energy (Eq. 25) for an inclusion centered at y3 = −0.5R and

at y3 = 0. In this case, the computations of the stresses involves Eqs. 22

and 23 since the inclusion spans to the two materials. Numerically, the main

difference with Eq. 11 lies in the computation of GIm which involves the use

of full-space terms (see Eqs. B.14 and B.20) only when the inclusion spans the

two materials. Hence, surface integrals of first derivative of full-space Green

tensors must be computed over the part of ∂V I that belongs to material (1) or

(2) and this increases considerably the time needed to achieve an acceptable

numerical precision. The convergence is thus much more difficult. However,

for NS > 60, the relative error remains below 10−3 which is acceptable. In

both Figures 2 and 3, it can be observed that increasing the value of NE

above 6 has only a marginal effect. Therefore, it is pointless to increase NE

if the stresses within the inclusion are not evaluated with enough accuracy.

3.2. Comparison with known solutions in an isotropic half-space

Seo and Mura (1979) have solved the problem of an ellipsoidal inclusion

15



Figure 4: Comparison of energy variation towards a free surface for a spherical inclusion
with a uniform dilatational eigenstrain ε∗ij = 0.1δij . The solution of Seo and Mura (1979) is
computed from Eq. 26 whereas the solution corresponding to the current work is obtained
from Eqs. 25, 22, 27 and 28. µ = 23GPa, ν = 0.4218 and R = 0.1278 nm.

with a uniform dilatational eigenstrain of the form of Eq. 21 located in an

isotropic half-space (see also (Mura, 1987)). With our notations, the elastic

strain energy for a sphere reads in this case

W e = 2µ
1 + ν

1− ν
δ∗2V I

(
1− 1 + ν

6

(
R

y3

)3
)

(26)

where ν is the Poisson coefficient and µ the shear modulus. y3 stands for

the position of the inclusion center and y3 = 0 corresponds to the free surface.

This analytical solution can serve as a reference to check the correctness of

the numerical implementation performed in this work. However, in isotropic

media, the Stroh eigenvalues which are solutions of Eq. B.7 are not distinct

(Bacon et al., 1980). This problem can be circumvented by considering the

Stroh integral formalism (Bacon et al., 1980) in which such degeneracies

never appear. An alternative approximate approach, that is nevertheless
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quite satisfactory from the numerical point of view, is to compute C44 as

C44 = 1.0001
C11 − C12

2
(27)

In the same way, anisotropic Green’s function for half-space do exist (Bar-

nett and Lothe, 1975; Pan and Yuan, 2000). However, for the present purpose

of checking the equations implementation, it was chosen to simply set

C(2) = 10−10C(1) (28)

Hence, the comparison was made using Eqs. 25, 22, 27 and 28 on one

side and Eq. 26 with µ = (C11 − C12) /2 and ν = C12/ (2 (C12 + µ)) on the

other side. The same values as for the convergence study (Section 3.1) were

considered for C11, C12, δ
∗ and R. Figure 4 displays the elastic strain energy

variation with the distance to the free surface for the two solutions. A perfect

numerical match is obtained. It is noteworthy that the energy variation scales

as

(
R

y3

)3

and that the energy always decreases when approaching the free

surface meaning that the free surface attracts the inclusion.

Seo and Mura (1979) have also obtained the solutions for the stresses

which are equivalent to the results of Mindlin and Cheng (1950) in the case

of a sphere. Figure 5 shows the comparisons between the explicit solutions of

Mindlin and Cheng (1950) and the current work for the stress distributions

along e3 within a spherical inclusion at y3 = R in an isotropic half-space.

Again, a perfect numerical match is obtained. It is noteworthy that the

σ33 exhibits a non-monotonous behavior with a maximum value inside the

inclusion.
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Figure 5: Comparison of stress distributions along e3 (x1 = x2 = 0) within a spherical
inclusion with a uniform dilatational eigenstrain ε∗ij = 0.1δij located at y3 = R. The
solutions of Mindlin and Cheng (1950) are given explicitly in their paper whereas the
solutions corresponding to the current work are obtained from Eqs. 22, 27 and 28. µ =
23GPa, ν = 0.4218 and R = 0.1278 nm.

4. Results

4.1. Interior stress fields

4.1.1. Dilatational eigenstrain

Considering the same parameters as for the convergence study (Sec-

tion 3.1), i.e. a spherical inclusion with a uniform dilatational eigenstrain

of the form of Eq. 21 with δ∗ = 0.1, cubic elastic constants of Cu and ‘Orien-

tation A’ of Table 1, the stresses within the inclusion for different positions

of the inclusion with respect to the interface were computed using Eqs. 22

and 23. The order of the Legendre polynomials was set to NS = 30 when the

inclusion belongs to a same material and to NS = 100 when the inclusion

spans the two materials. Figures 6, 7, 8 and 9 show the variations along

e3 of the stress components which are not negligible for the particular crys-

tallographic orientations considered. ‘Orientation A’ is supposed to provide
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strong contrast between the two materials since the directions [111] and [001],

respectively the strongest and the weakest direction for the directional Young

modulus (Richeton, 2019), are facing each other along e3.
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Figure 6: Variation of σ11 along e3 (x1 = x2 = 0) for a dilatational eigenstrain ε∗ij = 0.1δij .
Different positions (y1 = y2 = 0, y3) of the inclusion center are considered on both sides
of the interface. The dashed line represents the solution in the homogeneous medium.

The first observation is that the stresses are not uniform within the inclu-

sion at the difference of the well-known Eshelby’s result of uniform stresses

for ellipsoidal inclusions with uniform eigenstrain in homogeneous media (Es-

helby, 1957). Besides, it is noteworthy that for a dilatational eigenstrain, due

to the cubic symmetry, we have
(
E

(2)
jkln − E

(1)
jkln

)
ε∗ln = 0 ∀j,∀k, in addition to(

C
(2)
jkln − C

(1)
jkln

)
ε∗ln = 0 ∀j,∀k (see Section 2.2.3). Hence, the stress solutions

in a homogeneous medium (see Eqs. 22 or 23 with GIm = 0) do not depend

on the crystallographic orientation. They are the same considering mate-

rial (2) or material (1) as the reference homogeneous medium. Therefore

the stress variations cannot be interpreted as smooth transitions from given

values in material (2) to different values in material (1). The effect of the

imaginary termGIm is much more complex. It is also important to underline

that the stress variations are homothetic with respect to the inclusion radius
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Figure 7: Variation of σ22 along e3 (x1 = x2 = 0) for a dilatational eigenstrain ε∗ij = 0.1δij .
Different positions (y1 = y2 = 0, y3) of the inclusion center are considered on both sides
of the interface. The dashed line represents the solution in the homogeneous medium.
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Figure 8: Variation of σ33 along e3 (x1 = x2 = 0) for a dilatational eigenstrain ε∗ij = 0.1δij .
Different positions (y1 = y2 = 0, y3) of the inclusion center are considered on both sides
of the interface. The dashed line represents the solution in the homogeneous medium.

R.

As it can be expected, when the inclusion belongs to an unique material,

the further away from the interface, the more important is the deviation
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Figure 9: Variation of σ23 along e3 (x1 = x2 = 0) for a dilatational eigenstrain ε∗ij = 0.1δij .
Different positions (y1 = y2 = 0, y3) of the inclusion center are considered on both sides
of the interface. The dashed line represents the solution in the homogeneous medium.

from the homogeneous reference solution. This deviation is asymmetric as it

is much more pronounced on the side of the interface. Nevertheless, it should

be noticed that the stress variations are not necessarily monotonous, see e.g.,

σ11 and σ22 at y3 = 1.1R and σ23 at y3 = −1.1R. The non-monotony of some

interior stress components was already noticed in isotropic half-spaces (Seo

and Mura, 1979) and in 2D dissimilar isotropic bi-materials (Wang et al.,

2007). The stress variations can be significant close to the interface (i.e.,

for y3 = ±1.1R) with stress differences greater than 600MPa and relative

variations greater than 5%. However, it seems that these stress differences

rapidly decrease as one moves away from the interface as can be noticed

from the relative small departures of the Eshelby’s homogeneous solutions at

y3 = ±2R.

When the inclusion spans the two materials, it can be checked that the

tractions continuity is well respected (see σ33 and σ23). It can be also observed

that the stress jumps for σ11 and σ22 are more important at y3 = ±0.5R than

at y3 = 0. There is also clear departures from the reference homogeneous
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Figure 10: Variation of σ11, σ22 and σ33 along e1 (x2 = 0, x3 = y3) for a dilatational
eigenstrain ε∗ij = 0.1δij . Different positions (y1 = y2 = 0, y3) of the inclusion center are
considered on both sides of the interface. The dashed line represents the solution in the
homogeneous medium.

stress solutions, even at y3 = 0, showing that there is no compensation of

the imaginary term contributions. Stress variations are never monotonous

and are much more disturbed than when the inclusion belongs to a same

material. Stress differences within the inclusion can also be very high, e.g.,

approaching 1GPa for σ22 at y3 = 0.5R.

For illustration purposes, variations of stresses along e1 through the cen-

ter of the spherical inclusion are also shown in Figures 10 and 11 at y3 = ±2R

and y3 = ±1.1R. In this case too, the stresses are non homogeneous although

the distance from the interface does not change. For the particular ‘Orien-

tation A’ considered, the stress variations are either symmetric for σ11, σ22,

σ33 and σ23 or anti-symmetric for σ31 and σ12. As expected, the variations

are much more pronounced at y3 = ±1.1R than at y3 = ±2R. They are also

globally weaker than along e3, which makes sense since the distance from

the interface is fixed.
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Figure 11: Variation of σ23, σ31 and σ12 along e1 (x2 = 0, x3 = y3) for a dilatational
eigenstrain (Eq. 21 with δ = 0.1). Different positions (y1 = y2 = 0, y3) of the inclusion
center are considered on both sides of the interface. The dashed line represents the solution
in the homogeneous medium (i.e., y3 = ∞).
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Figure 12: Variation of σ12 along e3 (x1 = x2 = 0) for a shear eigenstrain (Eq. 29).
Different positions (y1 = y2 = 0, y3) of the inclusion center are considered on both sides
of the interface. The dashed and dotted lines represent the solutions in the homogeneous
media.
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Figure 13: Variation of σ31 along e3 (x1 = x2 = 0) for a shear eigenstrain (Eq. 29).
Different positions (y1 = y2 = 0, y3) of the inclusion center are considered on both sides
of the interface. The dashed and dotted lines represent the solutions in the homogeneous
media.

4.1.2. Shear eigenstrain

Still considering the cubic elastic constants of Cu and ‘Orientation A’ of

Table 1, a spherical inclusion with a uniform shear eigenstrain of the form of

Eq. 29 below is now assumed.

ε∗ =

 0 0.1 0

0.1 0 0

0 0 0

 (29)

It is noteworthy that, in this case, the homogeneous reference solutions

are different between materials (1) and (2). Figures 12 and 13 show the

variations along e3 of σ12 and σ31 (i.e., the two components which are not

negligible for the particular crystallographic orientations considered). Same

general remarks as for the dilatational eigenstrain hold: non-homogeneous

stresses and not necessarily monotonous variations are observed, as well as

a rapid decrease of the departure from the homogeneous solution when one

moves away from the interface. When the inclusion spans the two materials,
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the continuity of σ31 is well respected while the stress jumps displayed by σ12

are very high with a jump greater than 2.5GPa at y3 = 0.5R. σ31 exhibits

very strong stress gradients which seem to be controlled by the difference

between the homogeneous reference solutions of materials (1) and (2).

4.2. Variation of elastic strain energy

The variation of the elastic strain energy (Eq. 25) with respect to the

position of the inclusion center from one side to the other side of the interface

are computed for the different crystallographic orientations considered in

Table 1 and different uniform eigenstrains (dilatational (Eq. 21) and shear

(Eq. 29)).

While in ‘Orientation A’, the two extreme directions for the directional

Young modulus, [111] and [001], are facing each other along e3, i.e., in a

normal way to the interface, these two directions are facing each other along

e1, i.e., in a parallel way to the interface, in ‘Orientation B’. ‘Orientation

A’ and ‘Orientation B’ have the same misorientation angle of 56.6˚. In

‘Orientation C’ the direction [111] is along e3 in material (1) and along

e1 in material (2). ‘Orientation C’ yields a misorientation angle of 42.8˚.

In addition, crystallographic orientations corresponding to symmetrical pure

tilt boundaries composed of an infinite array of edge dislocations are also

considered (Hirth and Lothe, 1982). In the initial configuration, the Burgers

vectors
[
111
]
is along e3 while the dislocation line direction [112] is along

e2. Starting from this orientation, the stiffness tensors are rotated by −θ/2

and θ/2 around e2 in materials (2) and (1), respectively, where θ is the tilt

or misorientation angle (Hirth and Lothe, 1982). Two cases are computed,

θ = 11.5˚ and θ = 19.1˚ which correspond approximately to h/b = 5 and

h/b = 3, respectively, with b the Burgers vector magnitude and h the spacing

between dislocations in the periodic wall.

For these applications, the order of the Legendre polynomials was set to

NE = 6 for integrals over volumes. For integral over surfaces, the order was

set to NS = 20 when the inclusion belongs to a same material. When the
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inclusion spans the two materials, NS = 60 was used for ‘Orientations A, B

and C’ (Table 1) and NS = 100 for the two symmetrical tilt boundaries as

the energy variation is much weaker in these cases and thus required a higher

numerical precision.

Material (1) Material (2) Misorientation angle

Orientation A
[111] ∥ e3 [001] ∥ e3 56.6˚[
112
]
∥ e2 [010] ∥ e2

Orientation B
[111] ∥ e1 [100] ∥ e1 56.6˚[
112
]
∥ e2 [010] ∥ e2

Orientation C
[111] ∥ e3 [111] ∥ e1 42.8˚[
112
]
∥ e2

[
112
]
∥ e2

Table 1: Different crystallographic orientations considered for the two materials.

4.2.1. Dilatational eigenstrain

For a uniform dilatational eigenstrain of the form of Eq. 21,W e scales with

δ∗2 as explained in Section 2.3 and for cubic elasticity, as for the stresses,

the energy in a homogeneous medium does not depend on the particular

crystallographic orientation. Moreover, if the stress variations are homoth-

etic with respect to the inclusion radius R, the elastic strain energy scales

with the inclusion volume (cf. Eq. 25). For these reasons, Fig. 14 displays

the relative energy variation for the five orientations considered with respect

to the homogeneous reference energy. The quantitative aspect of the vari-

ation will be discussed later in Section 5. Since the energy should go back

to the same value in each material, energy variations are necessarily non-

homogeneous as shown by Fig. 14. There are however three to four local

extrema depending on the orientation considered. The variations are really

significant only within the range −1.5R < y3 < 1.5R. In the range where

the inclusion belongs to a single material (i.e., y3 < −R or y3 > R), it can

be conjectured that the departure from the homogeneous reference energy,

i.e. the decrease of the imaginary term, probably follows the same scaling
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Figure 14: Relative energy variation with respect to the homogeneous reference energy
for a dilatational eigenstrain (Eq. 21) when the position of the inclusion center (y3) is
displaced from one side to the other side of the interface. On the left, comparison between
the three orientations of Table 1. On the right, comparison between the two symmetrical
tilt boundaries (θ being the tilt angle).

of

(
R

y3

)3

(cf. Eq. 26) as the imaginary term in an isotropic half-space (Seo

and Mura, 1979; Mura, 1987).

For the symmetrical tilt boundaries, the variations are perfectly symmet-

ric with a global minimum at y3 = 0 that decreases with the tilt angle. For

the orientations of Table 1, a rapid transition is observed, around y3 = 0,

from the global minimum on one side of the interface to the global maximum

on the other side of the interface. It is noteworthy that the global minimum

and maximum always correspond to configurations where the inclusion spans

the two materials. ‘Orientations A’ exhibits the lowest minimum, followed

by ‘Orientations B’ and ‘Orientations C’, which agrees with the supposed

elastic contrast for a dilatation displayed by these orientations.

4.2.2. Shear eigenstrain

For the shear eigenstrain of Eq. 29, the energy in a homogeneous medium

depends on the particular crystallographic orientation. It is however identical

27



-3 -2 -1 0 1 2 3

y
3
 / R

22

24

26

28

30

32

34

36

E
n

e
rg

y
 (

m
e

V
)

[001] || e
3
 , [111] || e

3

[001] || e
3
 , [111] || e

1

[111] || e
1
 , [111] || e

3

-3 -2 -1 0 1 2 3

y
3
 / R

23.5

23.55

23.6

23.65

23.7

 = 11.5°

 = 19.1°

Figure 15: Energy variation for the shear eigenstrain of Eq. 29 when the position of the
inclusion center (y3) is displaced from one side to the other side of the interface. On
the left, comparison between the three orientations of Table 1. On the right, comparison
between the two symmetrical tilt boundaries (θ being the tilt angle).

in materials (1) and (2) when the latter refer to the orientations on both side

of a symmetrical tilt boundary. Therefore, for ‘Orientations A, B and C’,

the energy variation does not go through an extremum value. There is a

smooth transition from the reference homogeneous energy in one material

to the reference homogeneous energy in the other material over the range

−1.5R < y3 < 1.5R (see Fig.15). For the symmetrical tilt boundaries, the

energy variations are perfectly symmetric and go through a single minimum

at y3 = 0 that decreases with the tilt angle (see Fig.15).

5. Discussion

It should be first pointed out that the developed computational frame-

work is quite general. It allows to consider any kind of linear elasticity in

each material. Hence, it can be applied to isotropic or anisotropic dissim-

ilar materials (e.g., Cu-Ag) and is not restricted to crystalline materials.

The shape of the eigenstrain tensor is also free. It can thus accounts for a
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Figure 16: On the left, maximum energy variation due to image effect with respect to δ∗

considering a dilatational eigenstrain ε∗ij = δ∗δij and the three orientations of Table 1, as
well as the two symmetrical tilt boundaries defined by their tilt angle θ. These variations
are compared to the interaction energy (cf. Eq.31) between the same eigenstrain and an
external stress field defined by the value of its trace, σext

kk = 1GPa. On the right is plotted
the equivalent value of σext

kk such that the maximum energy variation due to the image
effect equals the interaction energy between the dilatational eigenstrain and σext

kk .

thermal dilatation, a plastic strain or stands for an inhomogeneity through

the equivalent inclusion method. In particular, the dilatational eigenstrain

tensor considered in Eq. 21 was shown to be well-suited for modeling the

effects of vacancies or solute atoms in substitution in cubic lattices (White

and Coghlan, 1977; Cai et al., 2014; Dingreville and Berbenni, 2016; Clouet

et al., 2018) although their size fall in the atomic scale with radius typically

in the range of 0.1 nm to 0.2 nm. In the context of an inclusion represent-

ing a solute atom, interior stress variations have therefore no clear physical

meaning but the latter are however needed to compute accurately the elastic

strain energy through Eq. 25. Indeed, as seen from Eq. 24, the elastic strain

energy depends physically almost exclusively on the exterior elastic fields. It

is thus assumed to be well predicted by the continuum linear elastic theory.

Besides, examining the segregation of vacancies or solute atoms toward grain

boundaries requires considering various other important factors. First, the
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interaction with the stress field resulting from the grain boundary should be

taken into account as well. Two primary contributions are typically associ-

ated with this interaction (White and Coghlan, 1977; Clouet et al., 2018): a

size effect linked to the dilatation considered in the eigenstrain and a modulus

effect stemming from the fact that the presence of solutes alters the elastic

constants of the material. Secondly, grain boundaries possess small, albeit

finite, width (of the order of the nanometer), unlike the sharp interface exam-

ined in this study. Therefore, it is certainly worthwhile to consider a specific

elastic stiffness tensor over the grain boundary width, as done in previous

studies (Chen et al., 2019, 2020, 2021). For the symmetrical tilt boundaries,

a smooth transition from C(2) to C(1) is nevertheless rather expected at the

scale of a few nanometers. Additionally, elasticity may be nonlinear within

certain regions of the grain boundary. Thus, the configuration where the in-

clusion spans the two materials does not reflect a direct reality but it might

provide insights into the impact of elastic heterogeneity when the defect is

within the grain boundary, especially as the defect size becomes comparable

to the grain boundary size, as with large precipitates. In the case of solute

atoms which are typically much smaller than the grain boundary width, the

configuration where the inclusion spans the two materials may rather reflect

a situation where the solute is in the transition area between the bulk crystal

and the grain boundary.

Furthermore, it might be valuable to quantitatively compare the image ef-

fect felt by a dilatation center in heterogeneous anisotropic elasticity (Fig. 14)

to the typical size effect associated with the interaction energy between a

dilatation center and a grain boundary stress field. The latter can be deter-

mined from the general elastic interaction energy between an eigenstrain ε∗

distributed in V I and an external stress field σext (such as the one arising

from a grain boundary), as given by (Mura, 1987)

W int = −
∫
V I

σext
ij (x)ε∗ij(x)dx (30)

30



Considering that the volume V I is sufficiently small to disregard varia-

tions of the external stress field within it, we can write for a uniform dilata-

tional eigenstrain of the form ε∗ij = δ∗δij

W int = −V Iδ∗σext
kk (31)

Figure 16 displays on the left the maximum energy variation per unit

volume due to the image effect with respect to δ∗ considering the three ori-

entations of Table 1 and the two symmetrical tilt boundaries. These vari-

ations are directly inferred from Fig. 14. They are then compared to the

interaction energy per unit volume computed from Eq. 31 between the same

dilatational eigenstrain and an external stress field with a trace value of

1GPa. As anticipated, the image effect scales with δ∗2, while the interaction

energy with a stress field scales linearly with δ∗. In the current scenario with

σext
kk = 1GPa, the image effect becomes predominant for ‘Orientations A and

B’ when δ∗ > 0.1. To quantitatively evaluate the significance of the image

effect, Figure 16 then presents, on the right, the equivalent value of σext
kk such

that the maximum energy variation due to the image effect equals the in-

teraction energy between the dilatational eigenstrain and σext
kk according to

Eq. 31 . These σext
kk values scale therefore linearly with δ∗. While these values

remain very low for the symmetrical tilt boundaries, they can be comparable

to typical values of grain boundary stress fields (Dingreville and Berbenni,

2016) for the other orientations considered (cf. Table 1). Furthermore, Fig-

ure 16 emphasizes that the larger the dilatation of the inclusion, the more

likely the image effect is to be significant compared to the interaction energy

with a stress field (Eq. 31) due to the different scaling. Another distinc-

tion should be pointed out. The image effect remains indeed the same at a

given distance from the interface. On the contrary, the interaction energy

varies with the grain boundary stress field (Eq. 31), thus exhibiting strong

variations along the grain boundary that range from negative to positive

values (White and Coghlan, 1977; Dingreville and Berbenni, 2016).
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In addition to the dilatation value, several other factors influence the sig-

nificance of the image effect, such as the degree of elastic anisotropy and the

extent of elastic heterogeneity. Elastic heterogeneity can be associated with

misorientations between grains but also to the presence of different phases

(heterophase interfaces) or to materials of different kinds as in composites.

The present results were obtained for Cu, which has a relatively high Zener

ratio with A =
2C44

C11 − C12

= 3.26. However, the full space of cubic ori-

entations was not investigated in this study and other orientations might

provide larger image effects. Besides, certain cubic materials can exhibit

much higher values of A, like lithium metal with A ≈ 8 (Aspinall et al.,

2022), a crucial component in batteries, or some shape memory alloys like

CuAlBe with A ≈ 13 (Rios-Jara et al., 1991). Nevertheless, the image effect

is expected to increase asymptotically with A since the maximum image ef-

fect should occur in presence of free or rigid surfaces as it was computed for

dislocations (Chen et al., 2021).

The exploration of non-cubic elasticity could be intriguing also. First,

in a homogeneous medium, the energy due to a dilatational eigenstrain will

depend on the specific crystallographic orientation. Second, the dilatational

eigenstrain tensor used to simulate the role of point defects as dilatation cen-

ters should not be considered isotropic, as in Eq. 21, but should be anisotropic

with the same or lower symmetry as the host lattice (Nye, 1957; Balluffi,

2016). In other words, the solute atoms should be viewed as anisotropic

centers of dilatation (Cochardt et al., 1955; Siems, 1968; Clouet et al., 2018).

Finally, it may be worth underlying that the image effect might impact

interface motion. Indeed, when an interface, such as a grain boundary, starts

moving in presence of a distribution of defects (solutes, precipitates or va-

cancies), the elastic strain energy will be altered because it depends on the

relative distance of the defects to the interface in heterogeneous elasticity.

Hence, the elastic strain energy can increase or decrease and thus can ei-

ther promote or hinder interface motion. The significance of such an image
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effect on interface motion was previously studied for distributions of disloca-

tions (Richeton et al., 2020), providing insights into the connection between

interface motion and crystallographic disorientations.

6. Conclusions

In this work, expressions of the interior stress fields of a spherical in-

clusion with a uniform eigenstrain embedded in an anisotropic bi-material

are derived. They involve surface integrals of the imaginary term of the

first derivative of the Green tensor in an anisotropic bi-material with a pla-

nar interface. The latter can be computed via the Stroh formalism from a

regular line-integral over [0, π] as proposed by Pan and Yuan (2000). The

entire expression is thus amenable to standard numerical integrations such

as Gauss-Legendre quadrature methods. Specific expressions are provided

based on whether the inclusion belongs to the same or the two materials.

Additionally, expressions for the equivalent Eshelby tensor are presented. It

is noteworthy that straightforward derivations from Eq. 5 allow for expres-

sions of both external and internal stress fields for inclusions of any shape

with non-uniform eigenstrain in anisotropic bi-materials. However, the ex-

ploration of efficient numerical integration methods for these cases remains

an avenue for future investigation.

The stress fields within the spherical inclusion, along with the elastic

strain energy, are then computed, taking into account the cubic elastic con-

stants of Cu. Various inclusion positions relative to the interface, different

forms of eigenstrain (dilatational (Eq.21) and pure shear (Eq.29)), and dif-

ferent crystallographic orientations are considered. The following key con-

clusions emerge:

• In a bi-material, the stresses within the inclusion are non-homogeneous,

and their variations are not necessarily monotonous even when the inclu-

sion belongs to a same material. A rapid decrease in the imaginary term

is observed as one moves away from the interface.
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• With a dilatational eigenstrain, the variation of elastic strain energy can

exhibit several extrema. The global minimum and maximum consistently

correspond to configurations where the inclusion spans the two materials.

• For symmetrical tilt boundaries, energy variations are perfectly symmetric

for both dilatational and shear eigenstrains, exhibiting a global minimum

located on the interface that decreases with the tilt angle.

• The variations of energy are really significant only within the range−1.5R <

y3 < 1.5R (R being the radius of the inclusion and y3 the position of the

inclusion center relative to the interface). Once the inclusion belongs to

a same material, the decrease of the imaginary term probably follows the

same scaling of

(
R

y3

)3

(cf. Eq. 26) as the imaginary term in an isotropic

half-space (Bacon, 1972; Seo and Mura, 1979; Mura, 1987).

• The significance of the image effect related to the described energy vari-

ations is quantitatively assessed from comparisons with the interaction

energy between a dilatational eigenstrain (ε∗ij = δ∗δij) and an external

stress field (Eq. 31). The image effect remains almost insignificant for

the symmetrical tilt boundaries studied but can be comparable to typical

interaction energy values for the other orientations considered (cf. Ta-

ble 1). Moreover, the bigger the dilatation of the inclusion, the higher the

probability that the image effect is significant due to the different scaling

(respectively, as δ∗2 for the image effect and as δ∗ for the interaction energy

with a stress field).
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Appendix A. Full-space Green tensor

The full-space anisotropic Green tensor can be computed as (Barnett,

1972; Lazar, 2016)

G∞
ij (x,y) =

1

8π2|x− y|

∫ 2π

0

(nCn)−1
ij dϕ (A.1)

where n is a unit-vector perpendicular to x−y and (nCn)ij = nkCikjlnl.

Appendix A.1. First derivative of the full-space Green tensor

The first derivative of the full-space anisotropic Green tensor can be eval-

uated as (Barnett, 1972; Lazar, 2016)

∂G∞
ij

∂xk

(x,y) = − 1

8π2|x− y|2

∫ 2π

0

(
τk (nCn)−1

ij − nkFij

)
dϕ (A.2)

where τ =
x− y

|x− y|
is a unit-vector and Fij = (nCn)−1

ip

[
(nCτ)pq + (τCn)pq

]
(nCn)−1

qj .

Appendix A.2. Second derivative of the full-space Green tensor

The second derivative of the full-space anisotropic Green tensor can be

obtained as the sum of a singular term and a
1

|x− y|3
term (Kröner, 1990;

Lazar, 2016)

∂2G∞
ij

∂xk∂xm

(x,y) = −δ(x− y)Eijkm +
1

|x− y|3
Hijkm (A.3)

The tensor E is given as (Lazar, 2016)

Eijkm =
1

4π

∫ π

0

∫ 2π

0

nmnk (nCn)−1
ij sin θ dθ dϕ (A.4)
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where n is here the external unit normal of the unit sphere, i.e. n =

[sin θ cosϕ, sin θ sinϕ, cos θ]. The tensor H is not needed for the present

work. Its expression can be found in (Barnett, 1972; Lazar, 2016).

Appendix B. Imaginary part of the anisotropic bi-material Green

tensor

The purpose of this appendix is to explain briefly the general approach

of Pan and Yuan (2000) to obtain the anisotropic elastic Green tensor in a

bi-material and to provide the equations needed to perform the numerical

calculations. All the details can be found in (Pan and Yuan, 2000).

A full-space bi-material is considered where the region x3 > 0 is occupied

by material (1) and the region x3 < 0 by material (2). A point force is

applied at (y1, y2, y3). To find the displacement vector u and thus the Green

function tensor GBi, a two-dimensional Fourier transform is applied

ũk(ξ1, ξ2, x3) =

∫ +∞

−∞

∫ +∞

−∞
uk(x1, x2, x3)e

i(x1ξ1+x2ξ2)dx1dx2 (B.1)

In the Fourier transformed domain and in the absence of body force, the

equilibrium equation then writes in each material

Ciαkβξαξβũk + i(Ciαk3 + Ci3kα)ξαũk,3 − Ci3k3ũk,33 = 0 (B.2)

where α, β = 1, 2. Writing ξ = [ξ1, ξ2, 0] = ηn, a general solution of

Eq. B.2 can be expressed as

ũk(ξ1, ξ2, x3) = a exp(−ipηx3) (B.3)

where p and a satisfy the Stroh eigenrelation (Stroh, 1958, 1962) for the

oblique plane spanned by n = [cos θ, sin θ, 0]T and m = [0, 0, 1]T
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[
Q+ p

(
R+RT

)
+ p2T

]
a = 0 (B.4)

with

Qik = Cijksnjns , Rik = Cijksnjms , Tik = Cijksmjms (B.5)

Denoting pi and ai (i = 1, 2, ..., 6) the eigenvalues and the associated

eigenvectors, respectively, we let

Im(pi) > 0 , pi+3 = pi , ai+3 = ai (i = 1, 2, 3)

A = [a1,a2,a3] , B = [b1, b2, b3] with bi =
(
RT + piT

)
ai

(B.6)

where there is no summation over the repeated index i in Eq. B.6. From

a practical perspective, the eigenvalues and the eigenvectors are actually

computed from the following standard eigenrelation which is a rewriting of

Eqs. B.4 and B.6 (Ting, 1992)[
N1 N2

N3 NT
1

][
a

b

]
= p

[
a

b

]
(B.7)

N1 = −T−1RT , N2 = −T−1 , N3 = RT−1RT −Q (B.8)

Moreover, the eigenvectors are normalized according to the relation (Pan

and Yuan, 2000)

bTi aj + aT
i bj = δij (B.9)

Finally, a useful quantity that will appear in the analysis is the tensor M

defined by

M = −iBA−1 (B.10)

37



The general solution in the transformed domain is obtained as the super-

position of the six eigensolutions. The unknown quantities are determined

from continuity relations at the plane x3 = y3 where the point force is ap-

plied and from the continuity of the displacement and traction vectors at the

interface x3 = 0 (Pan and Yuan, 2000). Then, the solution in the physical

domain, GBi, is derived by applying the inverse Fourier transform in the

polar coordinate (Pan and Yuan, 2000). In the present work, GBi is written

as the sum of a full-space term and an imaginary term GIm. The full-space

homogeneous Green tensor is explicitly given by Eq. A.1 but it is noteworthy

that it can also be expressed via the present Stroh formalism. The numerical

computation is however a little bit longer due to the fact that an eigenprob-

lem must be solved for each value of θ used in the line integral numerical

approximation. This observation remains true for the computation of GBi.

The final expressions ofGIm are finally given below. If x3 > 0 and y3 ≥ 0,

we have (Pan and Yuan, 2000; Chu et al., 2012)

GIm(x,y) =
1

2π2

∫ π

0

A1G
(11)
u AT

1 dθ (B.11)

with

(
G(11)

u

)
ij
=

(G11)ij

−pi
(1)x3 + p

(1)
j y3 − (x1 − y1) cos θ − (x2 − y2) sin θ

(B.12)

G11 = −A1
−1 (

M1 +M2

)−1
(M1 −M2)A1 (B.13)

where A1, M1 and p
(1)
i are obtained by solving the Stroh eigenrelation

(Eq. B.7) in material (1), while A2, M2 and p
(2)
i are obtained by solving the

Stroh eigenrelation (Eq. B.7) in material (2).

If x3 < 0 and y3 > 0, we have (Pan and Yuan, 2000; Chu et al., 2012)
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GIm(x,y) = − 1

2π2

∫ π

0

A2G
(21)
u AT

1 dθ −G∞2(x,y) (B.14)

(
G(21)

u

)
ij
=

(G21)ij

−pi
(2)x3 + p

(1)
j y3 − (x1 − y1) cos θ − (x2 − y2) sin θ

(B.15)

G21 = A−1
2

(
M1 +M2

)−1 (
M1 +M1

)
A1 (B.16)

If x3 < 0 and y3 ≤ 0, we have (Pan and Yuan, 2000; Chu et al., 2012)

GIm(x,y) = − 1

2π2

∫ π

0

A2G
(22)
u A2

T
dθ (B.17)

(
G(22)

u

)
ij
=

(G22)ij

−p
(2)
i x3 + pj

(1)y3 − (x1 − y1) cos θ − (x2 − y2) sin θ
(B.18)

G22 = A−1
2

(
M1 +M2

)−1 (
M1 −M2

)
A2 (B.19)

If x3 > 0 and y3 < 0, we have (Pan and Yuan, 2000; Chu et al., 2012)

GIm(x,y) =
1

2π2

∫ π

0

A1G
(12)
u A2

T
dθ −G∞1(x,y) (B.20)

(
G(12)

u

)
ij
=

(G12)ij

−pi
(1)x3 + pj

(2)y3 − (x1 − y1) cos θ − (x2 − y2) sin θ
(B.21)

G12 = A1
−1 (

M1 +M2

)−1 (
M2 +M2

)
A2 (B.22)
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Appendix B.1. First derivatives of the imaginary part of the anisotropic bi-

material Green tensor

The first derivatives of GIm are obtained by straightforward derivations.

Therefore, they are written explicitly only for the case x3 > 0 and y3 ≥ 0.

∂GIm
ij

∂xk

(x,y) =
1

2π2

∫ π

0

(A1)im

(
∂G

(11)
u

)
mn

∂xk

(
AT

1

)
nj

dθ (B.23)

∂
(
G

(11)
u

)
ij

∂x1

=
cos θ (G11)ij(

−pi
(1)x3 + p

(1)
j y3 − (x1 − y1) cos θ − (x2 − y2) sin θ

)2
(B.24)

∂
(
G

(11)
u

)
ij

∂x2

=
sin θ (G11)ij(

−pi
(1)x3 + p

(1)
j y3 − (x1 − y1) cos θ − (x2 − y2) sin θ

)2
(B.25)

∂
(
G

(11)
u

)
ij

∂x3

=
pi

(1) (G11)ij(
−pi

(1)x3 + p
(1)
j y3 − (x1 − y1) cos θ − (x2 − y2) sin θ

)2
(B.26)
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