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Abstract

The fundamental result of Li, Long, and Srinivasan [LLS01] on approximations of set systems has
become a key tool across several communities such as learning theory, algorithms, computational
geometry, combinatorics and data analysis.

The goal of this paper is to give a modular, self-contained, intuitive proof of this result for finite
set systems. The only ingredient we assume is the standard Chernoff’s concentration bound. This
makes the proof accessible to a wider audience, readers not familiar with techniques from statistical
learning theory, and makes it possible to be covered in a single self-contained lecture in a geometry,
algorithms or combinatorics course.
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1 Introduction

Given a finite set system (X,F), our goal is to construct a small set A ⊆ X such that each set of F is
‘well-approximated’ by A. Research on such approximations started in the 1950s, with random sampling
being the key tool for showing their existence. A breakthrough in the study of approximations dates back
to 1971 when Vapnik and Chervonenkis studied set systems with finite VC-dimension [VC71]. The VC-
dimension of (X,F), denoted by VC-dim(X,F), is the size of the largest Y ⊆ X for which F|Y = 2Y ,
where F|Y = {Y ∩ S : S ∈ F}. Since then, the notion of approximations has become a fundamental
structure across several communities—learning theory, statistics, combinatorics and algorithms.

Relative (ε, δ)-approximations. Given a set system (X,F) with n = |X| and parameters 0 < ε, δ < 1,
a set A of size t is a relative (ε, δ)-approximation for (X,F) if for all S ∈ F ,∣∣∣∣ |S|n − |A ∩ S|t

∣∣∣∣ ≤ δ ·max

{
|S|
n
, ε

}
, or equivalently, |A ∩ S| = |S| t

n
± δtmax

{
|S|
n
, ε

}
.

A basic upper-bound on sizes of relative (ε, δ)-approximations follows immediately from Chernoff’s bound,
which we first recall (see [AS12]).
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Theorem A (Chernoff’s bound). Let X be a set of n elements and A be a uniform random sample
of X of size t. Then for any S ⊆ X and η > 0,

Pr

[
|A ∩ S| /∈

(
|S|t
n
− η, |S|t

n
+ η

)]
≤ 2 exp

(
− η2n

2|S|t+ ηn

)
.

In particular, setting η = δtmax
{
|S|
n , ε

}
, a uniform random sample A of size t fails to be a relative

(ε, δ)-approximation for a fixed S ∈ F with probability at most 2 exp
(
− εδ

2 t
3

)
.

Theorem A together with the union bound gives the following trivial upper-bound on relative (ε, δ)-
approximation sizes for any finite set system.

Theorem 1. Let (X,F) be a finite set system and 0 < ε, δ, γ < 1 be given parameters. Then a uniform

random sample A ⊆ X of size at least 3
εδ2 ln 2|F|

γ is a relative (ε, δ)-approximation for F with probability
at least 1− γ.

This note addresses the following influential result of Li, Long, and Srinivasan [LLS01], described as ‘the
pinnacle of a long sequence of papers’ in [HP11, Section 7.4].1

Theorem 2 ([LLS01]). There exists an absolute constant c ≥ 1 such that the following holds. Let (X,F)

be a set system such that |F|Y | ≤ (e|Y |/d)
d

for all Y ⊆ X with |Y | ≥ d, and let 0 < δ, ε, γ < 1 be given
parameters. Then a uniform random sample A ⊆ X of size

c

εδ2
·
(
d ln

1

ε
+ ln

1

γ

)
is a relative (ε, δ)-approximation for (X,F) with probability at least 1− γ.

Remark. As VC-dim (X,F) ≤ d implies that |F|Y | ≤ (e|Y |/d)
d

for any Y ⊆ X [Sau72, She72], The-
orem 2 also applies to set systems with VC-dim (X,F) ≤ d. This bound is asymptotically tight, and
immediately implies many other approximation bounds such as ε-approximations (Vapnik and Chervo-
nenkis [VC71], Talagrand [Tal94]), sensitive ε-approximations (Brönnimann et al. [BCM93]), and ε-nets
(Haussler and Welzl [HW87], Komlós et al. [KPW92]).

The original proof of Theorem 2 uses two techniques:

Symmetrization. To prove that a random sample A satisfies the required properties, one takes another
random sample G, sometimes called a ‘ghost sample’. Properties of A are then proven by comparing
it with G. Note that G is not used in the algorithm or its construction—it is solely a method of
analysis, a ‘thought experiment’ of sorts.

Chaining. The idea is to analyse the interaction of the sets in F with a random sample by partitioning
each S ∈ F into a logarithmic number of smaller sets, each belonging to a distinct ‘level’. The
number of sets increase with increasing level while the size of each set decreases. The overall sum
turns out to be a geometric series, which then gives the optimal bounds [KT59, Tal16].

What makes the proof of Theorem 2 in [LLS01] difficult is that it combines chaining and symmetrization
intricately. All the tail bounds are stated in their ‘symmetrized’ forms and symmetrization is carried
through the entire proof. It is not an easy proof to explain to undergraduate or even graduate students in
computer science, as it is difficult to see what is really going on in terms of the significance and intuition
of these two ideas. In fact, even the proofs of simpler statements involving just symmetrization, as given
in textbooks2—e.g., see [KV94, DGL96, Mat99, Cha00, Mat02, AB09, HP11, AS12]—often come with
the caveat that the idea is ingenious but difficult to understand intuitively (e.g., “one might be tempted
to believe that it works by some magic” [Mat02, Section 10.2]).

1The original result was stated using the notion of (ε, δ)-samples, but they are asymptotically equivalent: an (ε, δ)-sample
is a relative (ε, 4δ)-approximation and a relative (ε, δ)-approximation is an (ε, δ)-sample; see [HS11].

2Also used in teaching; to pick two arbitrary examples, see here for an example from the perspective of statistics/learning
and here from the algorithmic side.

https://web.stanford.edu/class/cs229t/2015
https://www.ti.inf.ethz.ch/ew/courses/CG12/index.html


Our Results.

This work is an attempt to improve this state of affairs. We show that in fact one can separate the
roles of chaining and symmetrization, giving two separate statements which together immediately imply
Theorem 2. The role of symmetrization is to get a bound on relative (ε, δ)-approximations that is
independent of |F|:

Theorem 3. There exists an absolute constant c1 such that the following holds. Let (X,F) be a

set system such that |F|Y | ≤ (e|Y |/d)
d

for all Y ⊆ X, |Y | ≥ d, and let 0 < δ, ε, γ < 1 be given
parameters. Then a uniform random sample A ⊆ X of size at least

c1
εδ2
·
(
d ln

1

εδ
+ ln

1

γ

)
is a relative (ε, δ)-approximation for (X,F) with probability at least 1− γ.

Remark: Theorem 3 is well-known; for completeness we give a proof in the appendix. In fact, sym-
metrization is not really necessary for finite set systems3 and can be replaced by a more intuitive argument
that makes it obvious, pedagogically, why the bound is independent of |F|.

On the other hand, the role of chaining is to get rid of logarithmic factors that arise when applying union
bound, by more carefully analyzing the failure probability for a collection of events. The key observation
is that Chernoff’s bound for a set S ∈ F improves as the size of S decreases. One can take advantage of
this by partitioning each S ∈ F into a logarithmic number of smaller sets, each belonging to a distinct
level, such that the levels strike a proper balance—the number of sets (arising from partitioning every
S ∈ F) increase each level, but their size across levels decreases geometrically. This way one gets an
improved bound by applying the union bound separately to sets of different levels.

The resulting bound is captured in the next statement:

Theorem 4. There exists an absolute constant c2 such that the following holds. Let (X,F) be a

set system such that |F|Y | ≤ (e|Y |/d)
d

for all Y ⊆ X, |Y | ≥ d, and let 0 < δ, ε, γ < 1 be given
parameters. Then a uniform random sample A ⊆ X of size at least

c2 max

{
1

εδ
ln
|F|
γ
,

1

εδ2
ln

(
1

εdγ

)}
is a relative (ε, δ)-approximation for (X,F) with probability at least 1− γ.

The proof of this is given in Section 2.

The above two statements immediately imply a proof of Theorem 2: given (X,F), apply Theorem 3 to

get a relative (ε, δ3 )-approximation A1 ⊆ X of F , of size O
(

1
εδ2 ln 1

εdδdγ

)
. Now apply Theorem 4 to F|A1

to get a relative (ε, δ3 )-approximation A2 ⊆ A1 of F|A1
, of size

O

max

 1

εδ
ln

(
e

dεδ2 ln 1
εdδdγ

)d
γ

,
1

εδ2
ln

(
1

εdγ

)
 = O

(
1

εδ2
·
(
d ln

1

ε
+ ln

1

γ

))
.

Thus A2 is a relative (ε, δ)-approximation of F of the required size.

3This is typically the case in its use in algorithms, computational geometry, combinatorics. The infinite case can usually
be reduced to the finite case by a sufficiently fine grid, see [MWW93].



2 Proof of Theorem 4

Let n = |X| and t = |A|. We use the following consequence of Theorem 3 (though better bounds
exist [Hau95]):

Lemma 5. There is an absolute constant c3 such that the following holds. Let α ≥ 2 and let P ⊆ F
be an α-packing of F ; that is, for any S, S′ ∈ P, the symmetric difference of S and S′, denoted by

∆(S, S′), has size at least α. Then |P| ≤
(
c3n
α

)2d
.

Proof. Let G = {∆ (S, S′) : S, S′ ∈ P}. By Theorem 3 there exists a relative (αn ,
1
2 )-approximation

A′ for G of size 4c1dn
2

α2 . Then A′ ∩ S 6= A′ ∩ S′ for any S, S′ ∈ P since

|∆ (S, S′) ∩A′| ≥ |∆ (S, S′)| |A′|
n

− |A
′|

2
·max

{
|∆ (S, S′)|

n
,
α

n

}
=

1

2
· |∆ (S, S′)| |A′|

n
> 0,

and so |P| = |P|A′ | ≤
(

4ec1n
2

α2

)d
≤
(

4
√
c1n
α

)2d
.

Set k =
⌈
log 1

δ

⌉
and for i ∈ [0, k], let Pi be a maximal εn

2i -packing of F and set Pk+1 = F . For any
S ∈ Pi+1 \ Pi there exists a set FS ∈ Pi such that |∆(S, FS)| < εn

2i . Define

Ai = {S \ FS : S ∈ Pi+1 \ Pi} and Bi = {FS \ S : S ∈ Pi+1 \ Pi} .

Lemma 5 implies that

|Ai|, |Bi| ≤ |Pi+1| ≤
(
c3 · 2i

ε

)2d

.

Claim 6. Let εi =
√

(i+ 1)/2i ε. With probability 1 − γ, A is simultaneously (i) a relative (ε, δ)-
approximation for Ak ∪Bk, and (ii) a relative (εi, δ)-approximation for Ai ∪Bi for all i ∈ [0, k− 1], and
(iii) a relative (ε, δ)-approximation for P0.

Proof. (i) Each set in Ak ∪ Bk has size less than εn
2k
≤ εnδ and so Theorem A with η = δtε implies that,

for a large-enough value of c2, this fails with probability at most

|F| · 2 exp

(
− δ2t2ε2 · n

2εnδ · t+ δtε · n

)
= |F| · 2 exp

(
−δεt

3

)
≤ γ

3
.

(ii) For a fixed S ∈ Ai∪Bi, as |S| ≤ εn
2i ≤ εin, applying Theorem A with η = δtεi implies that the failure

probability for S is at most

2 exp

(
− δ2t2ε2in

2|S|t+δεitn

)
≤ 2 exp

(
− δ2tε2(i+1)/2i

2ε/2i+δε
√

(i+1)/2i

)
≤ 2 exp

(
−εδ

2t(i+1)

3

)
.

Thus the overall probability failure, for a large-enough value of c2, is at most

k−1∑
i=0

|Ai ∪ Bi| · 2 exp

(
−εδ

2t(i+1)

3

)
≤
k−1∑
i=0

2

(
c3 · 2i

ε

)2d

2
(
εdγ
)c2(i+1)/3 ≤ γ

∞∑
i=1

1

5i
≤ γ

3
.

(iii) Theorem 1 implies that this failure probability is at most γ
3 if t ≥ 3

εδ2 ln
2( c3ε )

2d

(γ/3) .

Observe that for any set S ∈ F , there exists a set Sk ∈ Pk, with Ak = S \Sk ∈ Ak and Bk = Sk \S ∈ Bk,
such that S = (Sk \Bk) ∪ Ak. Similarly, one can express Sk in terms of Sk−1 ∈ Pk−1, Ak−1 ∈ Ak−1,



Bk−1 ∈ Bk−1 and so on until we reach S0 ∈ P0. Thus using Claim 6, with probability at least 1− γ,∣∣∣∣ |S|n − |A ∩ S|t

∣∣∣∣ =

∣∣∣∣ |Sk|n − |Bk|
n

+
|Ak|
n
−
(
|A ∩ Sk|

t
− |A ∩Bk|

t
+
|A ∩Ak|

t

)∣∣∣∣
(i)

≤
∣∣∣∣ |Sk|n − |A ∩ Sk|

t

∣∣∣∣+ δmax

{
ε,
|Ak|
n

}
+ δmax

{
ε,
|Bk|
n

}
=

∣∣∣∣ |Sk|n − |A ∩ Sk|
t

∣∣∣∣+ 2δε ≤ · · ·

(ii)

≤
∣∣∣∣ |S0|
n
− |A ∩ S0|

t

∣∣∣∣+ 2δ

k−1∑
j=0

εj + 2δε

(iii)

≤ δmax

{
ε,
|S0|
n

}
+ 14δε ≤ δ |S|

n
+ 16δε ≤ 2δmax

{
|S|
n
, 16ε

}
,

where the second-last step uses the fact that |S0| ≤ |S|+
k∑
j=0

|Bi| ≤ |S|+
∞∑
j=0

εn
2j ≤ |S|+ 2εn.

Therefore A is a relative (16ε, 2δ)-approximation of F with probability at least 1 − γ. Repeating the
same arguments with δ′ = δ/2 and ε′ = ε/16 we get a relative (ε, δ)-approximation of F , as required.
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Proof of Theorem 3

The folklore argument is similar to the discrepancy-based argument in [MWW93] used for ε-approximations,
though it is somewhat simpler as it does not need discrepancy, and it applies to the more general notion
of a relative (ε, δ)-approximation.

To see the intuition, observe that since |F| ≤ (e|X|/d)d, the bound of Theorem 1 depends only on
|X|—in particular that a random sample A1 ⊆ X of size O

(
1
εδ2 ln |X|d

)
= O

(
d
εδ2 ln |X|

)
is a relative

(ε, δ)-approximation. The size of A1 is much smaller than that of X and so applying Theorem 1 again
to F|A1 gives a relative (ε, δ)-approximation A2 ⊆ A1 for F|A1 , with

|A2| = O

(
1

εδ2
ln |A1|d

)
= O

(
d

εδ2
ln

(
d

εδ2
ln |X|

))
= O

(
d

εδ2
ln

d

εδ
+

d

εδ2
ln ln |X|

)
.

The size of A2 is again much smaller than that of A1. Furthermore, it follows immediately from the
definition of relative (ε, δ)-approximations that A2 is a relative (ε, 3δ)-approximation for F . With each
successive application of Theorem 1, the size of the set decreases rapidly, while the error of approximation
increases only linearly, giving the required bound that is independent of |F|.

Now we present the formal proof. Let T (ε, δ, γ) be the smallest integer such that a uniform random
sample of size at least T (ε, δ, γ) from X is a relative (ε, δ)-approximation for F with probability at least
1− γ. When δ ≤ 1√

|X|
, we have |X| ≤ 1

δ2 and thus T (ε, δ, γ) is upper-bounded as required.

Otherwise, a random sample A′ ⊆ X of size T
(
ε, δ3 ,

γ
2

)
is a relative

(
ε, δ3
)
-approximation for F with

probability at least 1 − γ
2 . By Theorem 1 let A be a random sample of A′ that is a relative

(
ε, δ3
)
-

approximation for F|A′ with probability 1 − γ
2 . Thus A is a uniform random sample of X that is a

relative (ε, δ)-approximation for F with probability at least 1− γ, implying the recurrence

T (ε, δ, γ) ≤ |A| = 3

ε(δ/3)2
ln

2 |F|A′ |
(γ/2)

≤ 27

εδ2
ln

 4

γ

(
e T
(
ε, δ3 ,

γ
2

)
d

)d .

The required bound on T (ε, δ, γ) now follows by induction. As
(

1 + 1
d ln 2

γ

)d
≤ 2

γ ,

27

εδ2
ln

 4

γ

e 9 c1
εδ2

(
d ln 3

εδ + ln 2
γ

)
d

d
 ≤ 27

εδ2
ln

(
4

γ

(
e 27 c1
ε2δ3

)d(
1 +

1

d
ln

2

γ

)d)
≤ c1
εδ2

ln
1

(εδ)
d
γ
,

for a large-enough c1.
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