EFFECT OF THERMAL-TREATMENT ON STRUCTURAL, MÖSSBAUER AND MAGNETIC PROPERTIES OF ZN-NANOFERRITE

<u>S. N. Kane^{1,*}, R. Verma¹, S. S. Modak¹, V. R. Reddy², and F. Mazaleyrat³</u>

¹Magnetic Materials Laboratory, School of Physics, D. A. University, Indore-452001, India ²UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore-452001, India ³SATIE, ENS Paris-Saclay, 4 Avenue des Sciences, 91190 Gif-sur-Yvette, France

*Corresponding author, e mail: kane_sn@yahoo.com

Details of the studied samples are as follows: synthesized 'dry gel' sample is labelled as DG, sample annealed at 600 °C / for 3 hours is labelled as ANN, and spark plasma sintered at 800 °C for 5 minutes is labelled as SPS.

Theoretical lattice parameter a_{th} , bond angles - θ_1 , θ_2 , θ_3 , θ_4 , θ_5 , Oxygen position parameter - $u^{\overline{4}3m}$ were computed by cationic distribution, utilizing the following equations:

$$a_{th} = \frac{8}{3\sqrt{3}} \left[\left(r_A + R_0 \right) + \sqrt{3} \left(r_B + R_0 \right) \right]$$
(1)

where, r_A – A-site ionic radius, r_B – B-site ionic radius, R_o – 0.138 nm is the radius of Oxygen ion.

$$u^{\overline{4}3m} = \frac{(r_A + R_o)}{(\sqrt{3} * a_{exp})} + \frac{1}{4}$$
(2)

where, $R_{o} - 0.138$ nm is the radius of Oxygen ion, $a_{exp} - experimental lattice parameter.$

$$\theta_{1} = \cos^{-1} \left[\frac{p^{2} + q^{2} - c^{2}}{2 p q} \right], \qquad \theta_{2} = \cos^{-1} \left[\frac{p^{2} + r^{2} - e^{2}}{2 p r} \right], \qquad \theta_{3} = \cos^{-1} \left[\frac{2 p^{2} - b^{2}}{2 p^{2}} \right] \qquad (3)$$
$$\theta_{4} = \cos^{-1} \left[\frac{p^{2} + s^{2} - f^{2}}{2 p s} \right], \qquad \theta_{5} = \cos^{-1} \left[\frac{r^{2} + q^{2} - d^{2}}{2 r q} \right]$$

The interionic distances between cations - b, c, d, e, f , and between cation and anion - p, q, r, s were estimated

b, c, d, e, f - the distance between metal-metal cations (M_e - M_e), p, q, r, s – the distance between metal cations, and Oxygen anions (Me - O),.

Obtained cationic distribution was used to compute Neel magnetic moment ' \mathbf{n}_N ' (in Bohr magneton ' μ_B '), is calculated by using the formula: $n_N = M_B - M_A$ (6) where M_A , M_B are respectively magnetic moments of A, B-site obtained by cationic distribution.

Theoretical magnetization at 0 K: M_{s(th)}, was obtained using following expression:

where, n_N - Neel magnetic moment, μ_B - 0.9274 × 10⁻²⁰ emu, N_A – Avogadro's number, m - molecular weight (g mol⁻¹).

(7)

Canting angle $\alpha_{\text{Y-K}}$ was computed using the equation :

 $a_{Y-K} = \cos^{-1} \{ (n^{e_{B(x)}} + M_{A(x)}) / M_{B(x)} \}$

where $M_{A(x)}$ and $M_{B(x)}$ are the magnetic moments expressed in Bohr magneton μ_B on A, B sites, and $n^e{}_{B(x)}$ is the experimental magnetic moment.

Magnetic dead layer thickness *t* was calculated by using the equation:

 $t = D_{W-H} / 6 [1 / (M_S / M_B)]$

(8)

(9)

(7)

where, D_{W-H} – Williamson–Hall grain diameter, M_s – saturation magnetization, and M_B – bulk magnetization.

Anisotropy constant K1 was calculated by using equation:

 $K_1 = [H_c \times M_s] / 0.96$

Where M_s – Saturation magnetization, H_c - coercivity

XRD patterns of the studied samples were Rietveld refined by software MAUD (Material Analysis Using

Diffraction) [1], and are shown as figure S1 (a to c). Peak position of α -Fe₂O₃ phase is matched with ICDD No. 01-079-0007.

Figure S1:. Reitveld refined XRD patterns of the studied (a) DG, (b) ANN, (c) SPS samples.

Table S1: Rietveld refined R-parameters (R_{wp} , R_p , $R_{exp.}$), goodness of fit (GOF = $R_{wp}/R_{exp.}$), and the shape parameters (u, v, w) for the studied samples.

Sample	R _{wp}	R_p	R exp	GOF	u u	v	w
	<mark>(%)</mark>	<mark>(%)</mark>	<mark>(%)</mark>				
DG	<mark>20.23</mark>	<mark>25.8</mark>	<mark>14.15</mark>	<mark>1.43</mark>	<mark>0.0023</mark>	<mark>- 0.0123</mark>	<mark>0.0134</mark>
ANN	<mark>18.48</mark>	<mark>7.23</mark>	<mark>14.28</mark>	<mark>1.29</mark>	<mark>0.0026</mark>	<mark>- 0.0461</mark>	<mark>0.1451</mark>
SPS	<mark>23.36</mark>	<mark>13.42</mark>	<mark>19.53</mark>	1.19	<mark>- 0.0375</mark>	<mark>- 0.0369</mark>	<mark>0.1639</mark>

References:

[1] Lutterotti, L.; Scardi, P. Simultaneous structure and size-strain refinement by the Rietveld method. J. Appl. Crystallogr. 23, (1990) 246–252.