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Abstract—The joint decomposition of a sequence of signals
is addressed, where each signal is coded within a predefined
dictionary. We propose a convex variational formulation involving
a regularization term based on optimal transport. The latter
is designed so as to promote proximity between neighboring
channels. Two kinds of regularization criteria are designed, cor-
responding to distinct cross-channel information on the transport
of dictionary atoms from one channel to another. The resulting
optimization problems are reformulated as quadratic programs
and solved using a proximal algorithm. The proposed approach
is analyzed for a multichannel deconvolution problem.

Index Terms—Inverse problem, multichannel decomposition,
optimal transport, proximal algorithm.

I. INTRODUCTION

The recording of multichannel signals, corresponding to
sequences of signals evolving in time or space occurs in
many application fields. Such data can be found in, e.g.,
spectroscopy, seismology, and hyperspectral imaging [1], [2].
In this paper, channels refer to sensors capturing a physical
process at different times or spatial locations. For instance, in
hyperspectral imaging, each channel corresponds to a space
location (pixel). The related signal depends on the wavelength,
and can be analyzed using sparse decomposition in a dictio-
nary containing all possible spectral features [2].

Hereafter, the dictionary is assumed to be known and
designed from expert knowledge. When dealing with mono-
variate signals, sparse decomposition can be carried out using
ℓ0 or ℓ1 minimization. For strongly correlated dictionaries, the
sparse decomposition problem becomes ill-posed, and extra
regularization information is needed to improve accuracy.

In the multichannel setting, one aims at jointly decomposing
the set of observed signals. Multichannel decomposition can be
addressed by leveraging the correlation information between
neighboring channels. Variational techniques consist of mini-
mizing a penalized least-squares cost function. Several convex
penalties can be used, corresponding to various priors on the
trajectories of active atoms across channels. Using mixed ℓ1-
ℓ2 norms is a popular approach to promote simultaneous atom
decomposition [3]. However, simultaneous sparsity appears
to be rather restrictive. Extended group sparsity techniques
have been proposed to deal with atom decomposition that
evolves from one channel to another. The latter is based on
the design of groups of neighboring atoms [4]. A limitation

of this approach is that the group sparsity structure should be
empirically defined.

Optimal Transport (OT) has emerged as a powerful tool in
machine learning [5], where one needs to quantify the diver-
gence between probability measures. In the field of inverse
problems, a recent trend is to use OT metrics to design non-
parametric convex penalties [6], [7] that appear to be more
flexible than mixed norm criteria. Apart from flexibility, the
attractiveness of OT divergences comes from the fact that their
computation amounts to solving a linear program, and fast
solvers are available. OT regularization techniques have been
explored for multi-task regression in neuroimaging [8] as well
as for online signal tracking [9].

We propose an offline approach to decompose slowly
evolving signals in a dictionary, with prior knowledge on
inter-channel correlation. We design two regularizers based
on (i) optimal transport between two consecutive channels,
and (ii) multimarginal OT (MMOT) to deal with an extended
channel neighborhood. Note that the MMOT concept was first
exploited in [10] to deal with sensor fusion issues.

The proposed method is presented in Sect. II. The related
optimization problems are solved using a first order proximal
algorithm [11] in Sect. III. Then, the proposed algorithms are
assessed on numerical simulations in Sect. IV.

II. PROPOSED METHOD

We consider a multichannel signal seen as a sequence of
monovariate signals (yn)n∈EN

with N the number of channels
and EN the set of integers J1, NK. Each signal yn ∈ RK in the
sequence is represented in a known dictionary A ∈ RK×M ,
which is a collection of M elementary signals called atoms.
Gaussian i.i.d noise, denoted nn ∈ RK , is added such that:

∀n ∈ EN , yn = Axn + nn.

The inverse problem aims to retrieve the decomposition
weights (xn)n∈EN

from observations (yn)n∈EN
and dictionary

A. In this paper, we assume that xn are non-negative signals
that satisfy the sum-to-one assumption:

∀n ∈ EN , xn ∈ RM
+ , 1⊤xn = 1, (1)

with 1 the column vector of ones of size M . Therefore, each
xn will be interpreted as a discrete probability measure. Such



an assumption is rather restrictive, but it is a common one in
hyperspectral unmixing, for instance [2]. We further assume
a slow evolution of the sequence of measures (xn)n∈EN

with
respect to the channel index n.

A. First-order method

The slow evolution of the sequence of (xn)n∈EN
induces

a correlation between xn and its neighbors xn−1, xn+1. We
propose to take advantage of this correlation by considering a
regularization between xn and xn+1 in a joint framework:

min
x1,...,xn∈RM

+

∀n, 1⊤xn=1

N∑
n=1

∥yn −Axn∥22+ω

N−1∑
n=1

OT1(xn,xn+1). (2)

Here, we choose an OT metric to quantify the degree of
proximity between measures xn. Generally speaking, OT aims
to find the joint probability distribution Pn between two
probability measures µ1 and µ2 that minimizes a cost function
such as:

OT1(µ1, µ2) = min
P∈RM×M

+

⟨P,C⟩F , (3a)

s.t. P1 = µ1, P⊤1 = µ2, (3b)

with ⟨·, ·⟩F the Frobenius inner product [5]. Hereafter, we set:

∀i, j ∈ EM , Cij = (i− j)2, (4)

thus OT1 identifies with the 2-Wasserstein distance. By plug-
ging (3) within (2), we get the following quadratic (convex)
formulation:

min
x1,...,xn∈RM

+

P1,...,PN−1∈RM×M
+

N∑
n=1

∥yn −Axn∥22 + ω

N−1∑
n=1

⟨Pn, C⟩F , (5a)

s.t. ∀n ∈ EN , 1⊤xn = 1, (5b)
∀n ∈ EN−1, Pn×̄21 = xn, Pn×̄11 = xn+1. (5c)

Note that constraints (3b) and (5c) are identical up to a notation
change. Here, we introduce the k-mode vector product ×̄k to
marginalize out the k-th dimension, that is, across the rows
and columns for k = 1 and 2, respectively.

The effect of the OT1 penalty is illustrated in Fig. 1. Here,
A is a convolutive dictionary with Gaussian shaped atoms and
xn are sparse sequences. Axn identifies with a convolution
product h ∗ xn where h refers to the Gaussian impulse re-
sponse. One can notice that OT1(xn,xn+1) is strongly related
to the horizontal shifts |i − j| between the corresponding
spikes within xn and xn+1, at respective positions i and
j [5]. According to (4), Cij increases with |i − j|, therefore
OT1(xn,xn+1) increases with the speed of displacement of
spikes. Therefore, when ω is large, the OT1 penalty tends to
prevent strong mass displacements from xn to xn+1.

The above method will be referred to as first-order since it
prevents lateral displacements of the spike locations. Indeed,
the method penalizes the (discrete) first-order derivatives (over
channels) of the spike location trajectories.

Fig. 1. As spikes move between x1,x2,x3 (on the right), OT1(x1,x2) ̸= 0
and OT1(x2,x3) ̸= 0. However, OT2(x1,x2,x3) = 0 as they are aligned
(locally uniform displacement speed).

B. Second-order method

In order to make the OT-based method more flexible and
to allow arbitrary (unknown) displacement speed between
the spikes, we propose to replace OT1 by a second-order
penalty OT2. The latter considers an extended neighborhood
defined by the triplet xn,xn+1 and xn+2, favoring uniform
displacements of the 3D spikes within the local time interval
Jn, n+ 2K. The resulting cost function reads:

min
x1,...,xn∈RM

+

∀n, 1⊤xn=1

N∑
n=1

∥yn −Axn∥22

+ ω

N−2∑
n=1

OT2(xn,xn+1,xn+2) (6)

OT2 is a MMOT functional [5, Chap. 10] aiming to re-
trieve the tridimensional joint probability distribution related
to xn,xn+1,xn+2, seen as marginal distributions. In what
follows, we will denote by P the 3D tensor that minimizes
the multimarginal cost function related to three probability
measures µ1, µ2, µ3:

OT2(µ1, µ2, µ3) = min
P∈RM×M×M

+

⟨P,C⟩F , (7a)

s.t. P×̄2,3(11
⊤) = µ1, (7b)

P×̄1,3(11
⊤) = µ2, (7c)

P×̄1,2(11
⊤) = µ3. (7d)

The (k, ℓ)-mode vector product, denoted ×̄k,ℓ, is used to
marginalize out both dimensions k and ℓ simultaneously. We
propose to define the 3D cost tensor C as:

∀i, j, k ∈ EM , Ci,j,k = (2j − i− k)2. (8)

The rationale behind this choice is related to the fact that i,
j and k correspond to the spike locations for measures µ1,
µ2, µ3. One can easily see that Cijk = 0 iff j = i+k

2 , so
Ci,j,k = 0 whenever a spike trajectory is linear.

We refer to problem (6) a second-order version of (2)
since the cost matrix Ci,j,k promotes linear trajectories of the
spike locations from one channel to another. In other words,
the discrete second-order derivatives (across channels) of the
spike location trajectories are small. Fig. 1 illustrates the fact
that OT1 penalizes the horizontal displacement of probability



Fig. 2. Pn is the 3D joint distribution between probability measures
xn,xn+1 and xn+2. The 2D joint distribution Pn is obtained from Pn

by marginalizing out the third dimension. It is also obtained from Pn−1 by
marginalizing out the first dimension.

measures displacement whereas OT2 penalizes local transport
that is nonlinear.

Similar to Sect. II-A, the minimization problem (7) related
to the computation of OT2 is incorporated in the target prob-
lem (6). The resulting minimization problem (9) is obtained.
It involves a set of 1D variables xn, 2D latent variables
Pn representing joint distributions between two consecutive
measures, and 3D variables Pn coding for joint distributions
between three consecutive measures:

min
x1,...,xn∈RM

+

P1,...,PN−1∈RM×M
+

P1,...,PN−2∈RM×M×M
+

N∑
n=1

∥yn −Axn∥22 + ω

N−2∑
n=1

⟨Pn,C⟩F , (9a)

s.t. ∀n ∈ EN , 1⊤xn = 1, (9b)
∀n ∈ EN−1, Pn×̄21 = xn, Pn×̄11 = xn+1, (9c)
∀n ∈ EN−2, Pn×̄31 = Pn, Pn×̄11 = Pn+1. (9d)

The three-stage structure linking 1D, 2D and 3D variables is
illustrated on Fig. 2. The constraint (9c) is applied to enforce
that the marginal distributions of 2D probability measures Pn

identify with the 1D measures xn and xn+1. Similarly, (9d) is
a consistency constraint that forces the marginal distribution
of the 3D probability measure Pn to identify with the 2D joint
distributions Pn and Pn+1. One can further notice that (9b)-
(9c) identify with (5b)-(5c).

C. Fast approximate implementation

The first and second-order methods defined above rely
on convex optimization problems. However, these problems
are obviously high-dimensional. Here, we propose a slight
adaptation aiming to reduce the number of variables involved
in the optimization problems. In the proposed adaptation, a
maximal support proximity constraint is applied, impeding
mass transfer over a certain horizontal range. We denote
by Bd =

{
(i, j) ∈ J1,MK2, |i− j| ≤ d

}
a 2D band where

d ∈ N is a user predefined parameter. In order to restrict all
admissible spike displacements to belong to Bd, we set the
cost matrix to with:

C∞
i,j =

{
Ci,j , if (i, j) ∈ Bd

∞, otherwise

Proposition 1 Setting C = C∞, the penalty term in prob-
lem (3) is finite iff ∀(i, j) ̸∈ Bd, Pi,j = 0. Thus, the penalized-
OT problem (3) only depends on 2d+ 1 diagonals of P . This
amounts to O(dM) scalar variables instead of O(M2).

The same idea applies for OT2, with a super-band tensor

C
∞
i,j,k =

{
Ci,j,k, if (i, j, k) ∈ SBd

∞, otherwise

where SBd =
{
(i, j, k) ∈ J1,MK3, |2j − i− k| ≤ d

}
.

Proposition 2 Setting C = C∞, the OT-penalty term in
problem (7) is finite iff ∀(i, j, k) ̸∈ SBd, Pi,j,k = 0. Thus,
the OT-penalized problem is restricted to a limited number
of variables, corresponding to the super-band SBd of P. It
involves solving O(dM2) variables instead of O(M3).

Hereafter, we will solve problems (5) and (9) using cost matrix
C∞ and cost tensor C∞, respectively. The algorithms are
described though in the general case where C and C are
arbitrary non-negative matrices.

III. PRIMAL DUAL IMPLEMENTATION

Both optimization problems (5) and (9) are convex quadratic
problems, because the related cost function is a separable sum
of quadratic functionals depending on xn and Pn (respectively,
Pn), and their constraints are linear.

Hereafter, we solve both problems using a proximal first-
order scheme. The Condat-Vu algorithm is a primal-dual
algorithm dedicated to the following type of problems:

min
z

h(z) + f(z) +

I−1∑
i=0

gi(Liz), (10)

where h is convex and differentiable, f and gi are convex, and
Li are linear operators.

A. Implementation of the first-order method

Let us denote by z ∈ RZ
+ an unfolded variable gathering of

all variables xn and Pn involved in the target problem (5):

z =
{
(xn, n ∈ EN ) ; (Pn, n ∈ EN−1)

}
.

Proposition 3 Problem (5) can be reformulated in the
Condat-Vu framework with I = 2 and:

• h is the quadratic cost function appearing in (5a),
• f = ιRZ

+
for non-negativity constraints in (5), where ι

refers to the indicator function,
• g1 = ι{1} and L1 is the linear operator appearing

in (5b), which returns 1⊤xn for all n,
• g0 = ι{0} and L0 is the linear operator induced by (5c).

The Condat-Vu algorithm (in the simplest form, that is,
without overrelaxation) is sketched in Algorithm 1 where
u
(k)
i refer to dual variables at iteration k. It involves three

hyperparameters τ and σ0, σ1 related to the step sizes in
the primal and dual domains, respectively. When dealing with
problem (5), the proximal operators appearing in the Condat-
Vu algorithm (proxτf , proxσig∗

i
) have simple closed form ex-

pressions, leading to Algorithm 1 where (z)+ := max(z,0).

The primal and dual gradient steps τ , σ0 and σ1 should
verify the condition expressed in [11, Th. 9.7] to ensure the



Algorithm 1 Condat-Vu (unrelaxed) implementation of (5).
for k = 1, 2, . . . do

z(k+1) =
(
z(k) − τ∇h(z(k))− τ

1

Σ
i=0

L⊤
i u

(k)
i

)
+

u
(k+1)
0 = u

(k)
0 + σ0L0

(
2z(k+1) − z(k)

)
u
(k+1)
1 = u

(k)
1 + σ1

(
L1

(
2z(k+1) − z(k)

)
− 1

)
end for

Algorithm 2 Condat-Vu (unrelaxed version) implementation
of (9). We set α0 = α2 = 0, α1 = 1,

for k = 1, 2, . . . do

z(k+1) =
(
z(k) − τ∇h(z(k))− τ

2

Σ
i=0

L⊤
i u

(k)
i

)
+

for i = J0, 2K do
u
(k+1)
i = u

(k)
i + σi

(
Li

(
2z(k+1) − z(k)

)
− σiαi

)
end for

end for

convergence of iterates in the Condat-Vu algorithm. Let us
now specify this condition in the context of Problem (5).

Proposition 4 The conditions for convergence [11, Th. 9.7]
are met for Algorithm 1 as soon as:

τ ≤
(
2
∥∥A⊤A

∥∥+ σ1M + 2σ0(M + 1)
)−1

.

where ∥ · ∥ is the spectral norm of a matrix.

SKETCH OF PROOF: The condition in [11, Th. 9.7] reads:

τ ≤
∥∥∥Q+

I−1

Σ
i=0

σiL
⊤
i Li

∥∥∥−1

,

with Q the Hessian of h. Using the triangle inequality, we get
a slightly more restrictive condition:

τ ≤
(
∥Q∥+

I−1

Σ
i=0

σi

∥∥L⊤
i Li

∥∥)−1

.

From (5a), we get ∥Q∥ = 2
∥∥A⊤A

∥∥. Moreover, one can show
that

∥∥L⊤
1 L1

∥∥ = M and
∥∥L⊤

0 L0

∥∥ ≤ 2(M + 1).
A complete proof can be found in [12].

B. Implementation of the second-order method

Similar to Sect. III-A, we denote by z ∈ RZ
+ a column

vector gathering of all variables xn, Pn and Pn:

z =
{
(xn, n ∈ EN ) ; (Pn, n ∈ EN−1) ; (Pn, n ∈ EN−2)

}
Proposition 5 Problem (9) can be reformulated in the
Condat-Vu framework with I = 3 with:

• h the quadratic criterion appearing in (9a),
• f, g0, g1 and L0, L1 defined as in Proposition 3,
• g2 = g0 = ι{0} and L2 the linear operator induced by

constraints (9d).

Regarding the setting of hyperparameters τ and σi, let us apply
Theorem 9.7 from [11] to Problem (9).
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Proposition 6 The conditions for convergence [11, Th. 9.7]
are met for Algorithm 2 as soon as:

τ ≤
(
2
∥∥A⊤A

∥∥+ σ1M + 2(M + 1)(σ0 + σ2)
)−1

.

SKETCH OF PROOF: The complete proof is an extension of
that of Proposition 3 (see [12]). The spectral norms

∥∥L⊤
1 L1

∥∥
and ∥Q∥ remain unchanged. Furthermore, one can show that∥∥L⊤

2 L2

∥∥ can be upper bounded by 2(M+1), akin to
∥∥L⊤

0 L0

∥∥.

IV. NUMERICAL RESULTS

Our methods are tested on a sparse deconvolution prob-
lem. Each observed signal yn reads as a noisy convolution
product h ∗ xn + nn where h is a Gaussian shaped impulse
response and xn is a sparse signal, see Fig. 1. As shown in
Fig. 3, the sequence yn slowly evolves across channels. It is
noticeable that the dictionary columns are strongly correlated,
which makes the decomposition problem difficult, especially
when the noise level is high and when the trajectories are
overlapping. Hereafter, the simulation problem has K = 97
observations, N = 40 channels, and the convolutive dictionary
is composed of M = 75 shifted atoms.

We compare both first and second order methods (with
the fast implementation of Sect. II-C, with d = 5) with
Basis Pursuit Denoising (BPDN) and Group-Norm minimiza-
tion (GN) [13]. BPDN boils down to monovariate sparse
decomposition, that is, each channel is treated independently.
In the GN approach, each group is defined by gathering a
given dictionary atom for two consecutive channels n and
n + 1. The results of Fig. 4 were obtained for the dataset
of Fig. 3. GN tends to force locally constant, discontinuous



N
ch

an
ne

ls

10 20 30 40 50 60 70

5

10

15

20

25

30

35

40

10 20 30 40 50 60 70

5

10

15

20

25

30

35

40

N
ch

an
ne

ls

10 20 30 40 50 60 70

5

10

15

20

25

30

35

40

10 20 30 40 50 60 70

5

10

15

20

25

30

35

40

M atoms M atoms

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Fig. 4. Ground truth x∗
n (top left) and recovered signals x̂n for problem of

Fig. 3: group norm (top right), OT1 (bottom left), OT2 (bottom right).

trajectories of atoms. On the contrary, the OT1 based method
succeeds to recover continuous trajectories. One can further
notice that the OT2 method has an improved capacity to
follow up overlapping trajectories. The BPDN method (not
shown here) gives poor results at this noise level. In Fig. 5,
the previous experiment is repeated for various noise levels
and noise realizations. The RMSE comparisons confirm the
potential of the proposed approach.

It is noticeable that the number of variables of optimization
problems (5) and (9) is strongly reduced in the fast imple-
mentation setting (Sect. II-C, d = 5). When M = 500,
K ≈ M , and N = 40, the number variables is 2.105 and
2.107, respectively as compared to 107 and 5.109 for the
original (high dimensional) problems.

In principle, a substantially smaller problem should be much
faster to solve. However, we have only observed small gains in
terms of speed for the Condat-Vu algorithm, whereas we have
obtained the expected one using a totally different solution
based on CPLEX to solve (5) or (9), once put in the generic
format of quadratic programming problems. Moreover, we
have also observed that our CPLEX implementation was far
more efficient than our Matlab implementation of Condat-Vu.
Indeed, we suspect that the efficiency of the latter may be
strongly impacted by calls to a specialized tensor toolbox.

V. CONCLUSION

We introduced two kinds of regularization schemes based on
OT for multichannel signal decomposition. As expected, the
first order approach promotes locally constant trajectories of
selected dictionary atoms, while the second order approach is
more flexible and recovers oblique trajectories. On the sparse
deconvolution problem, both methods outperform BPDN for
monovariate decomposition and the group-norm approach for
multivariate decomposition. Moreover, the fast implementa-

R
M

SE

-5 0 5 10 15

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

SNR (dB)
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tion greatly reduces the number of variables involved in the
optimization problems.

The sum-to-one assumption (1) might be unrealistic in many
scenarios. A main perspective is to relax this assumption,
leading us to investigate the so-called unbalanced OT metrics,
see, e.g., [9]. Other perspectives include acceleration of the op-
timization scheme using Sinkhorn’s algorithm. This approach
is expected to improve efficiency with the disadvantage to
yield less sparse decomposition results.
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