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VARIATIONAL PROPERTIES OF SPACE-PERIODIC STANDING WAVES OF

NONLINEAR SCHRÖDINGER EQUATIONS WITH GENERAL NONLINEARITIES

PERLA KFOURY AND STEFAN LE COZ

Abstract. Periodic waves are standing wave solutions of nonlinear Schrödinger equations whose profile is

periodic in space dimension one. We consider general nonlinearities and provide variational characterizations
for the periodic wave profiles. This involves minimizing energy while keeping mass and momentum constant,

as well as minimizing the action over the Nehari manifold. These variational approaches are considered both in
the periodic and anti-periodic settings, and for focusing and defocusing nonlinearities. In appendix, we study

the existence properties of periodic solutions of the triple power nonlinearity.

1. Introduction

We consider in one space dimension the nonlinear Schrödinger equation

iψt + ψxx + bf(ψ) = 0, (1)

where ψ : Rt × Rx → C, f ⩾ 0 is a gauge invariant nonlinearity and b ∈ R \ {0}. Typical examples of
nonlinearities that will be considered in this paper are power-type nonlinearities such as f(z) = |z|p−1z for
p > 1, or combinations of powers such as f(z) = |z|p−1z + |z|q−1z for p, q > 1.

In the present paper, we are interested in specific solutions of (1), which we call periodic waves. Periodic
waves are solutions of the type ψ(t, x) = e−iatu(x), for a given frequency a ∈ R and a fixed profile u periodic
or anti-periodic in space, which verifies an ordinary differential equation (see (2)). They are the analogues in
the context of spatially periodic solutions of the so-called standing waves or solitary waves, which are solutions
of (1) of the same form, but for which the profile is asked to to be spatially localized, e.g. to live in H1(R).

The study of localized solitary waves has a long history, starting with the early works of Strauss [24] and
Berestycki and Lions [3] for the existence of solitary waves in higher dimensions, together with the seminal
papers of Cazenave and Lions [6] and Berestycki and Cazenave [2] for the stability and instability by blow-up
of solitary waves by variational techniques. The study is still on-going, see e.g. the recent works of Kfoury, Le
Coz and Tsai [17] on the stability of standing waves of the nonlinear Schrödinger equation with double power
nonlinearity and the works of Liu, Tsai and Zwiers [19] and Morrison and Tsai [21] on standing waves of the
nonlinear Schrödinger equation with triple power nonlinearity.

While there now exists an extensive literature on the existence and stability of solitary waves, the study
of periodic waves remains in its infancy, with studies focused mostly on specific nonlinearities such as the
cubic power. The aim of the present paper is to extend the existing results beyond the example of the cubic
nonlinearity and to treat more generic nonlinearities such as generic powers or sums of generic powers.

Before presenting our main results, we shortly review some of the existing results on periodic waves of
nonlinear Schrödinger equations. Most of the literature focuses on the cubic case, which is completely integrable
and for which explicit expressions of the periodic wave solutions in terms of Jacobi elliptic functions are available.
One of the early studies was performed by Rowland in [23], where he obtained formally the stability of snoidal
wave solutions. Gallay and Haragus [11, 12] proved stability of snoidal waves with respect to same period
perturbations using ordinary differential equations analysis and spectral arguments. Bottman, Deconinck and
Nivala [4], and Deconinck and Segal [9] used the complete integrability to obtain an analytical expression for the
spectrum (in L2(R)) of the linearization of the cubic (focusing and defocusing) nonlinear Schrödinger equation
around a periodic traveling wave. Orbital stability with respect to any subharmonic perturbation was obtained
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2 P. KFOURY AND S. LE COZ

by Deconinck and Upsal [10] and Gallay and Pelinovsky [13] via a Lyapunov functional using higher-order
conserved quantities of the cubic nonlinear Schrödinger equation. Rogue periodic waves, i.e. rogue waves on
a periodic background, have been constructed by Chen and Pelinovsky [7]. Gustafson, Le Coz and Tsai [14]
provided a global variational characterization of the cnoidal, snoidal, and dnoidal elliptic functions for the cubic
case, and proved orbital stability results for the corresponding solutions.

The existence and orbital stability of periodic waves of the cubic-quintic nonlinear Schrödinger equation were
studied by Alves and Natali in [1] using the construction of a smooth curve of dnoidal profiles by bifurcation.
Existence and orbital instability results of cnoidal periodic waves for the quintic Klein-Gordon and nonlinear
Schrödinger equations were obtained by Moraes and de Loreno [20] using spectral analysis and Shatah-Strauss
approach. The periodic traveling wave solutions of the derivative nonlinear Schrödinger equation (which is
connected to the cubic-quintic nonlinear Schrödinger equation) were studied by Hayashi [15]. A rigorous mod-
ulational stability theory for periodic traveling wave solutions to equations of nonlinear Schrödinger type with
generic nonlinearities was presented by Leisman, Bronski, Johnson and Marangell in [18], with application to
the cubic and quintic nonlinearities.

Most of the works devoted to the study of periodic waves uses tools such as ordinary differential equations
analysis, bifurcation theory or spectral theory. In the present paper, we focus on the variational properties of
periodic waves, i.e. we characterize them as solutions of minimization problems. The variational problems that
we consider are of two types: first, minimization of the energy over the mass constraint; second, minimization
of the action over the Nehari manifold. The first type of minimization problems has the advantage of leading at
the same time to the orbital stability of the wave obtained. On the other hand, it is of course unable to capture
unstable periodic waves. The second type of minimization problems has the advantage of capturing a wider
range of periodic waves. On the other hand, obtaining stability or instability requires further investigation.

Under mild assumptions on the nonlinearity, the Cauchy problem for (1) is locally well-posed (see [5]) in the
space of periodic functions H1

loc(R) ∩ PT (as well as in the space of anti-periodic functions H1
loc(R) ∩ AT ), i.e.

for any ψ0 ∈ H1
loc(R) ∩ PT there exists a unique maximal solution ψ ∈ C((−T∗, T ∗), H1

loc(R) ∩ PT ). Moreover,
we have continuous dependance with respect to the initial data, the blow-up alternative holds, and the energy,
mass and momentum of the solution, defined as follows, are conserved along the time evolution:

E(ψ) = 1

2

∫ T

0

|ψx|2dx− b

∫ T

0

F (ψ)dx,

M(ψ) =
1

2

∫ T

0

|ψ|2dx, P (ψ) =
1

2
Im
∫ T

0

ψψxdx,

where by F we denote the real antiderivative of f , i.e. F (z) =
∫ |z|
0
f(s)ds and T is the space period.

It is common to consider the so-called action functional, defined for a given a by

S(ψ) = E(ψ)− aM(ψ),

and the associated Nehari functional, defined by

I(ψ) = ⟨S′(ψ), ψ⟩ =
∫ T

0

|ψx|2dx− a

∫ T

0

|ψ|2dx− b

∫ T

0

Re(f(ψ)ψ)dx.

Periodic waves can be obtained as solutions of various variational problems. As already said, in the present
paper, we consider two variational problems in particular : minimization of the energy over fixed mass (and
sometimes momentum) and minimization of the action over the Nehari manifold. We have investigated these
minimization problems for periodic and anti-periodic functions. Our results can be summarized informally as
follows (see Section 3 for precise statements).

Theorem 1.1. Let the energy, mass, momentum, action and Nehari functionals be defined as above. The
following holds.

(1) Let b > 0. There exists a real valued minimizer of the energy, under fixed mass or under fixed mass and
zero momentum, among periodic functions. The minimal energy is finite and negative. If the mass is
larger than a given threshold, then the minimizer is not a constant, the associated Lagrange multiplier
verifies a < 0, and the minimizer is positive.

(2) Let b < 0. There exists a unique (up to phase shift) minimizer of the energy, under fixed mass or under

fixed mass and zero momentum, among periodic functions. It is the constant function u∞ ≡
√

2m
T .
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(3) Let b < 0 and f(u) =
∑N

j=1 |u|pj−1u,with pj > 1 for j = 1, . . . , N . There exists a unique (up to phase

shift and complex conjugate) minimizer of the energy, under fixed mass, among anti-periodic functions.

It is the plane wave u∞ ≡
√

2m
T e

iπx
T .

(4) Let b > 0, a < 0 and f(u) = |u|p−1u, with p > 1. The minimum of the action on the Nehari manifold
among periodic functions is finite and there exists a real minimizer.

(5) Let b < 0, a > 0 and f(u) = |u|p−1u, with p > 1. There exists a unique (up to phase shift) minimizer of

the action on the Nehari manifold among periodic functions. It is the constant function u∞ ≡
(−a

b

) 1
p−1 .

(6) Let b > 0, a < 4π2

T 2 and f(u) = |u|p−1u, with p > 1. The minimum of the minimization problem on the
Nehari manifold among anti-periodic functions is finite and there exists a minimizer. When p is an odd
integer then the minimizer is real.

To establish the results of Theorem 1.1, we proceed in the following way. We start by an analysis of the
ordinary differential equation verified by the profile. We then consider the variational problems themselves. As
we are working with periodic functions, hence on the bounded domain [0, T ], we benefit from the compactness
properties of Sobolev injections and existence of a minimizer is straightforward in most cases. On the other
hand, the identification of the minimizer, or its specific properties, are usually delicate to obtain. In particular,
in the case of minimization over the Nehari manifold for anti-periodic function (see Section 3.3.3), the fact that
the minimizer is real valued is established thanks to a Fourier rearrangement inequality which we believe to be
new and of independent interest (see Lemma 3.1).

The rest of the paper is organized as follows. In Section 2, we present the notation, the assumptions on the
nonlinearity and the analysis of the profile ordinary differential equation. In Section 3, we present a Fourier
rearrangement inequality, then we study minimization of the energy at fixed mass, and finally we consider
minimization over the Nehari manifold. The appendix gathers related material which was not fitting directly into
the study: we study the existence properties of periodic solutions to the equation with triple power nonlinearity.

2. Analysis of the profile equation

The simplest non-trivial solutions of (1) are the standing waves. They are solutions of the form

ψ(t, x) = e−iatu(x), a ∈ R.

The profile function u(x) satisfies the ordinary differential equation

uxx + au+ bf(u) = 0. (2)

It is an integrable ordinary differential equation, whose conserved quantities (on C) are the momentum J and
the energy E, given by

J = Im(uxu), E =
1

2
|ux|2 +

a

2
|u|2 + bF (u).

The nonlinearity f : C → C is defined for any z ∈ C by f(z) = g(|z|2)z with g ∈ C0([0,+∞),R)∩C2((0,+∞),R).
For simplicity, we denote by f ′ the derivative of f|R. For the analysis of the ordinary differential equation in
the present section, we make the following assumptions on the nonlinearity.

(H1) The derivative f ′ is non-decreasing on (0,∞).

(H2) At infinity lims→∞
F (r)
r2 = ∞.

(H3) The function s→ f(s)
s is increasing on (0,∞) and lims→0

f(r)
r = 0.

For the rest of this section, we assume that (H1)-(H3) hold and we study the bounded solutions of the profile
equation (2). We will distinguish between two different cases depending on whether J = 0 or not. When
u(x) ̸= 0, we introduce the polar coordinates

u(x) = r(x)eiϕ(x),

with r > 0 and r, ϕ ∈ C2(R). Invariants become

J = r2ϕx, E =
rx

2

2
+
J2

2r2
+ a

r2

2
+ bF (r).

If J = 0, then replacing r(x)eiϕ(x) with r(x)eiϕ for some ϕ ∈ [0, 2π] we can assume that u(x) ∈ R up to a
constant phase. If J ̸= 0, then u(x) ̸= 0 for all x ∈ R, and ϕx ̸= 0, so u is truly complex-valued. Define the
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effective potential by

VJ(r) =
J2

2r2
+ a

r2

2
+ bF (r).

By elementary calculations, we have

V ′
J(r) = −J

2

r3
+ ar + bf(r).

We describe the potential VJ . We start with the case J = 0. Then

V (r) = a
r2

2
+ bF (r), V ′(r) = ar + bf(r).

If V ′(r) = 0 for r > 0, then f(r)
r = −a

b . We know that f(r)
r is an increasing function for all r > 0, therefore

there exists at most one value r0 > 0 such that

ar0 + bf(r0) = 0.

We now discuss what happens depending on the values of a and b. Since lim
r→0

f(r)
r = 0, we have sign(V ′(r)) =

sign(a), when r approaches 0+. Moreover, we have lim
r→+∞

V (r) = sign(b)∞, because we have lim
r→+∞

F (r)
r2 = +∞.

We start with the defocusing case where b < 0. If a ⩽ 0, then V ′(r) < 0 for all r > 0 and there does not exist
bounded solutions. Assume that a > 0. Then V ′(r) = 0 has exactly one solution. Therefore the graph of V
as a function of r is given on the left of Figure 1. The third case is the focusing case where b > 0 with a ⩾ 0.
Then V ′(r) > 0 for all r > 0. The graph of V as a function of r is represented on the center of Figure 1. The
last case is the focusing case where b > 0 with a < 0, then V ′(r) = 0 has again exactly one solution, and the
graph of V as a function of r is represented on the right of Figure 1.

Figure 1. Possible plots of V as a function of r when J = 0.

Now we assume that J ̸= 0. If V ′
J(r) = 0 for r > 0, then −J2 + r4

(
a+ b f(r)r

)
= 0. Let

k(r) = r4
(
a+ b

f(r)

r

)
.

We will study the variations of the function k, and infer from these the graph of the potential. We have

k′(r) = 4ar3 + bf ′(r)r3 + 3br2f(r) = r3
(
4a+ bf ′(r) + 3b

f(r)

r

)
.

As f ′(r) and f(r)/r are increasing, the derivative k′ changes sign at most once. When b < 0 and a ⩽ 0, k is
always negative decreasing, VJ has no critical point and (2) has no bounded solution. We then consider the
defocusing case where b < 0 and a > 0. In this case the graph of k(r) as a function of r is presented on the
left of Figure 2. Hence V ′

J(r) = 0 has 2 solutions for J2 < rc where k′(rc) = 0 and the maximum occurs. The
graph of VJ as a function of r is presented on the left of Figure 3. In that case, VJ admits a minimum and a
maximum. When J2 = rc, V is monotonically decreasing but still admits a critical point, which gives rise to a
unique bounded solution of (2) (which is a plane wave). When J2 > rc, V is monotonically decreasing with no
critical point, and (2) has no bounded solution. The third case is the focusing case where b > 0 and a ⩾ 0. We



VARIATIONAL PROPERTIES OF PERIODIC NLS STANDING WAVES 5

know that k(r) is a strictly increasing function presented on the center of Figure 2. Therefore, V ′
J(r) = 0 has a

unique solution. Then the graph of VJ as a function of r is given in the center of Figure 3. The last case is the
focusing case where b > 0 and a < 0. The graph of k as a function of r is represented on the right of Figure 2.
Therefore, V ′

J(r) = 0 has a unique solution. Then the graph of VJ as a function of r is represented on the right
of Figure 3.

Figure 2. Possible plots of k as a function of r.

Figure 3. Possible plots of VJ as a function of r with J ̸= 0.

We now represent the phase portraits in each case where bounded solutions exist. In polar coordinates, the
equation (2) becomes

rxx − J2

r3
+ ar + bf(r) = 0.

We rewrite this second-order differential equation in the form of a first-order system by introducing new coor-
dinates

y =

(
y1
y2

)
=

(
r
rx

)
.

Then the differential system is the following

y′ = G(y) =

(
y2

J2

y3
1
− ay1 − bf(y1)

)
=

(
f1(y1, y2)
f2(y1, y2)

)
.

We start by finding the equilibrium points y such that G(y) = 0. Then we find the isoclines I0 and I∞, where

Iα =

{
(y1, y2) ∈ R2 :

f2(y1, y2)

f1(y1, y2)
= α

}
.
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We start with the case J = 0. We have

I0 = {(y1, y2) ∈ R2 : y2 ̸= 0, ay1 + bf(y1) = 0},
and

I∞ = {(y1, y2) ∈ R2 : −ay1 − bf(y1) ̸= 0, y2 = 0}.
These isoclines I0 and I∞ meet at the equilibrium points of the system and determine the regions where the
trajectories are monotonic:

Q++ = {y ∈ R2, f1(y) > 0, f2(y) > 0}.
Q+− = {y ∈ R2, f1(y) > 0, f2(y) < 0}.
Q−+ = {y ∈ R2, f1(y) < 0, f2(y) > 0}.
Q−− = {y ∈ R2, f1(y) < 0, f2(y) < 0}.

Then we study the stability of the equilibrium points. The Jacobian matrix of G is of the form

JG =

(
0 1

−a− bf ′(y1) 0

)
.

Classification of equilibrium points is determined by the eigenvalues λ1 and λ2 of the Jacobian matrix JG. Since
the trace of JG is 0, the eigenvalues verify λ1 = −λ2. Depending on the discriminant of JG, two situations
may arise. If λ1 = −λ2 ̸= 0 (or λ1 = −λ2 = 0 and b < 0) are real numbers, then the point is a saddle. If
λ1 = −λ2 ̸= 0 are purely imaginary numbers (or λ1 = −λ2 = 0 and b > 0) then the point is a center.

We start with the defocusing case where b < 0 and a > 0. We know that f(r)
r is an increasing function

on (0,∞) therefore in this case there exists a unique r0 > 0 such that ar0 + bf(r0) = 0. Thus we have three
equilibrium points (0, 0), (r0, 0) and (−r0, 0). Hence

I0 = {(y1, y2) ∈ R2 : y1 ∈ {0,±r0}, y2 ̸= 0}, (3)

and
I∞ = {(y1, y2) ∈ R2 : y1 /∈ {0,±r0}, y2 = 0}. (4)

The characteristic polynomial of the Jacobian matrix JG is given by P (λ) = λ2+a+bf ′(y1). At the equilibrium
point (0, 0) the eigenvalues are λ = ±i

√
a (recall that a > 0). Since the eigenvalues are purely imaginary, the

equilibrium point (0, 0) is a center. At the equilibrium points (±r0, 0) we have a + bf ′(r0) < 0, therefore the
eigenvalues are non-zero real numbers of opposite signs and the equilibrium point is a saddle point. The phase
portrait is given in Figure 4.

For the focusing case where b > 0 with a > 0 we have only one equilibrium point (0, 0). The eigenvalues
are given at the equilibrium point (0, 0) by λ = ±i

√
a and the equilibrium point (0, 0) is a center. The phase

portrait is given on the left of Figure of 5.
The last case is the focusing case with b > 0 and a < 0. There exists a unique r0 > 0 such that ar0+bf(r0) = 0

and we have three equilibrium points: (0, 0), (r0, 0) and (−r0, 0). As before, the isoclines I0 and I∞ are given
by (3) and (4). At the equilibrium point (0, 0) the eigenvalues are λ = ±

√
−a and the equilibrium point (0, 0)

is a saddle. At the equilibrium points (±r0, 0) the eigenvalues are non zero purely imaginary numbers hence
the equilibrium point is a center. The phase portrait is given on the right of Figure 5.

The second case is when J ̸= 0. We have

I0 =

{
(y1, y2) ∈ R2 :

J2

y31
− ay1 − bf(y1) = 0, y2 ̸= 0

}
,

and

I∞ = {(y1, y2) ∈ R2 :
J2

y31
− ay1 − bf(y1) ̸= 0, y2 = 0}.

The Jacobian matrix of G is of the form

JG =

(
0 1

−3J2

y4
1
− a− bf ′(y1) 0

)
.

We start with the defocusing case where b < 0, a > 0 and J2 < rc. In this case the equation J2

y4
1
−ay1−bf(y1) =

0 has 2 solutions rQ and rq such that 0 < rQ < rq (rQ = rq if J2 = rc). Thus we have two equilibrium points

(rQ, 0) and (rq, 0). The characteristic polynomial of the Jacobian matrix JG is given by P (λ) = λ2 + 3J2

y4
1

+
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Figure 4. Examples of phase portraits of the solutions for the defocusing case when J = 0.

Figure 5. Examples of phase portraits of the solutions for the focusing case when J = 0.

a + bf ′(y1). On the first equilibrium point (rQ, 0) we have λ2 = − 3J2

r4Q
− 1 + f ′(rQ) = −V ′′

J (rQ) < 0, because

VJ(r) is convex at rQ and therefore the eigenvalues are purely imaginary and the equilibrium point (rQ, 0) is a

center. On the second equilibrium point (rq, 0) we have λ2 = − 3J2

r4q
− 1 + f ′(rq) = −V ′′

J (rq) > 0, because VJ(r)

is concave at rq and therefore the eigenvalues are non-zero real numbers of opposite signs hence the equilibrium
point is a saddle. The phase portrait is given on the left of Figure 7. When J2 = rc, the equilibrium point is
the only bounded solution and is a saddle-node. The phase portrait for this case is given in Figure 6.

Figure 6. Example of phase portrait of the solutions when J2 = rc.

For the focusing case where b > 0, with both cases a > 0 or a < 0, the equation J2

y3
1
− ay1 − bf(y1) = 0 has 1

solution rQ. On the equilibrium point (rQ, 0) we have λ
2 = − 3J2

r4Q
−a−f ′(rQ) < 0, therefore the eigenvalues are

purely imaginary and the equilibrium point (rQ, 0) is a center. The phase portrait for these two cases is given
on the right of Figure 7.
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Figure 7. Example of phase portraits of the solutions when J ̸= 0.

3. The minimization problems

In this section, we study the variational properties of periodic states. We start by establishing a Fourier
rearrangement inequality that will be useful later on. We then study the minimization of the energy at fixed
mass (and momentum) in various settings (periodic, anti-periodic, focusing/defocusing nonlinearity). Finally,
we consider the minimization of the action over the Nehari manifold.

In addition to (H1)-(H3), we will sometime make use of some of the following additional assumptions on the
nonlinearity.

(H4) The function

h(s) := (sf(s)− 2F (s))s−2, (5)

is strictly increasing on (0,+∞). Moreover, lim
s→0

h(s) = 0 and lim
s→0

f(s)
s = 0.

(H5) There exist M > 0 , 1 < p < 5 and s0 such that for all s ⩾ s0 we have |f(s)| ⩽Msp.
(H6) For any s > 0, the following inequality is satisfied:

s2f ′′(s) > sf ′(s)− f(s). (6)

(H7) At infinity, we have

lim
s→∞

(
f(s)

s
− f ′(s)

)
= −∞. (7)

Most of these assumptions are related to the growth of the nonlinearity and are satisfied by sums of generic
power nonlinearities. The main restriction may comes from (H5), which imposes a mass-subcritical growth on
the nonlinearity and is used for minimization of the energy on the mass constraint in the focusing case.

We will denote norms on Lq(0, T ) spaces by

∥u∥Lq = ∥u∥Lq(0,T ) =

(∫ T

0

|u|q
) 1

q

,

and the complex L2 inner product by

(f, g) =

∫ T

0

fḡdx.

We will be interested in spatially periodic solutions ψ ∈ H1
loc(R) ∩ PT , and anti-periodic solutions ψ ∈

H1
loc(R) ∩AT , where

PT = {f ∈ L2
loc(R) : f(x+ T ) = f(x)}, AT = {f ∈ L2

loc(R) : f(x+ T ) = −f(x)}.

3.1. A Fourier rearrangement inequality. We start by presenting a lemma based on a Fourier rearrange-
ment process that will be useful later on. This is a generalization of a result used in [14] in the cubic case.

Lemma 3.1. Let v ∈ H1
loc(R) ∩AT

2
and p > 1 an odd integer. Then there exists ṽ ∈ H1

loc(R) ∩AT
2
such that:

ṽ(x) ∈ R, ∥ṽ∥L2 = ∥v∥L2 , ∥∂xṽ∥L2 = ∥∂xv∥L2 , ∥ṽ∥Lp+1 ⩾ ∥v∥Lp+1 .
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Proof. Since v ∈ H1
loc(R) ∩AT

2
, its Fourier series expansion contains only terms indexed by odd integers:

v(x) =
∑
j∈Z
jodd

vje
ij 2π

T x.

We define ṽ by its Fourier series expansion

ṽ(x) =
∑
j∈Z
jodd

ṽje
ij 2π

T x, ṽj :=

√
|vj |2 + |v−j |2

2
.

It is clear that ṽ(x) ∈ R, and by Plancherel formula, we have

∥ṽ∥L2 = ∥v∥L2 , ∥∂xṽ∥L2 = ∥∂xv∥L2 ,

so all we have to prove is that ∥ṽ∥Lp+1 ⩾ ∥v∥Lp+1 . We have

|v(x)|2 =
∑
j∈Z
jodd

|vj |2 +
∑
n∈2N
n⩾2

wne
in 2π

T x + w̄ne
−in 2π

T x,

where we have defined

wn =
∑

j>k,j+k=n
j,kodd

vj v̄−k + vkv̄−j .

Let N = p+1
2 . We start with

|v|p+1 =
(
|v|2
) p+1

2

=

∑
j∈Z
jodd

|vj |2 +
∑
n∈2N
n⩾2

wne
in 2π

T x + w̄ne
−in 2π

T x


N

,

=

N∑
k=0

(
N

k

)∑
j∈Z
jodd

|vj |2


N−k∑

n∈2N
n⩾2

wne
in 2π

T x + w̄ne
−in 2π

T x


k

.

We have∑
n∈2N
n⩾2

wne
in 2π

T x + w̄ne
−in 2π

T x


k

=

k∑
s=0

(
k

s

)∑
p1

· · ·
∑
pk

w̄p1
· · · w̄ps

· wps
wps+1

· · ·wpk
ei(−p1−···−ps+ps+1+···+pk)

2π
T x,

=

k∑
s=0

(
k

s

)∑
p1

· · ·
∑
pk

(
s∏

l=1

w̄pl
e−ipl

2π
T x

)(
k∏

l=s+1

wpl
eipl

2π
T x

)
,

where we use the convention

0∏
l=1

w̄pl
e−ipl

2π
T x = 1,

k∏
l=k+1

wpl
eipl

2π
T x = 1.
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Then we have

1

T

∫ T

0

|v|p+1dx

=
1

T

∫ T

0

N∑
k=0

(
N

k

)∑
j∈Z
jodd

|vj |2


N−k∑

n∈2N
n⩾2

wne
in 2π

T x + w̄ne
−in 2π

T x


k

dx,

=

N∑
k=0

(
N

k

)∑
j∈Z
jodd

|vj |2


N−k

·

1

T

∫ T

0

k∑
s=0

(
k

s

)∑
p1

...
∑
pk

(
s∏

l=1

w̄pl
e−ipl

2π
T x

)(
k∏

l=s+1

wpl
eipl

2π
T x

)
dx,

=

N∑
k=0

(
N

k

)∑
j∈Z
jodd

|vj |2


N−k

k∑
s=0

(
k

s

) ∑
p1,...,pn∈σ

(
s∏

l=1

w̄pl

)(
k∏

l=s+1

wpl

)
,

where σ = {(p1, ..., pn) : ∃α ∈ {0, 1}n :
∑
j

(−1)αjpj = 0}, and where we have used the fact that for n ∈ N, n ̸= 0,

we have ∫ T

0

ein
2π
T xdx = 0.

On the other hand, we observe that

wn =
∑

j>k,j+k=n
j,kodd

(
vj
ṽ−j

)
.

(
vk
ṽk

)
, (8)

where the . denotes the complex vector scalar product. Therefore,

|wn| ⩽
∑

j>k,j+k=n
j,kodd

∣∣∣∣( vj
ṽ−j

)∣∣∣∣ ∣∣∣∣(vkṽk
)∣∣∣∣ = ∑

j>k,j+k=n
j,kodd

√
2ṽ2j

√
2ṽ2k

= 2
∑

j>k,j+k=n
j,kodd

ṽj ṽk = w̃n,

where by w̃n, we denote the quantity defined similarly as in (8) for (ṽj). Therefore,

1

T

∫ T

0

|v|p+1dx

⩽
N∑

k=0

(
N

k

)∑
j∈Z
jodd

|vj |2


N−k

k∑
s=0

(
k

s

) ∑
p1,...,pn∈σ

(
s∏

l=1

|w̄pl
|

)(
k∏

l=s+1

|wpl
|

)
,

⩽
N∑

k=0

(
N

k

)∑
j∈Z
jodd

|vj |2


N−k

k∑
s=0

(
k

s

) ∑
p1,...,pn∈σ

(
s∏

l=1

w̃pl

)(
k∏

l=s+1

w̃pl

)
,

=
1

T

∫ T

0

|ṽ|p+1dx,

which concludes the proof. □
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3.2. Minimization on the mass constraint. We now consider our first set of variational problems. Let
m > 0. A common variational problem is to minimize the energy at fixed mass:

min{E(u) : u ∈ H1
loc(R) ∩ PT , M(u) = m}. (9)

Since the momentum is also conserved for (1), it is natural to consider the problem with a further momentum
constraint:

min{E(u) : u ∈ H1
loc(R) ∩ PT , M(u) = m, P (u) = 0}. (10)

The minimization problems (9) and (10) seek to find functions u which minimize the energy subject to the
constraint that the mass is fixed and, in the case of (10), the momentum is also zero. Note that when we
minimize the energy with fixed mass and fixed momentum p ̸= 0 the problem is more complicated. In our work
we will only focus on the case p = 0.

3.2.1. The focusing case in PT . Assume that b > 0.

Proposition 3.2. Assume that f verifies (H1)-(H3) and (H5). For all m > 0, the minimization problem (9)
admits a real minimizer which is also a minimizer of the minimization problem (10). The minimal energy is
finite and negative.

Proof. Without loss of generality, we can restrict the minimization to real valued non-negative functions. Indeed,
if u ∈ H1

loc(R) ∩ PT , then |u| ∈ H1
loc(R) ∩ PT and we have ∥∂x|u|∥L2 ⩽ ∥∂xu∥L2 . This implies that (9) and (10)

share the same minimizers.

Let us prove that the minimal energy is negative. To do so, let ϕm,0 ≡
√

2m
T be a test function. We have

M(ϕm,0) = m, E(ϕm,0) = −
∫ T

0

F

(√
2m

T

)
dx = −TF

(√
2m

T

)
< 0,

where the last inequality holds because F (z) > 0 for any z ∈ C by the assumptions on f .
Consider now a minimizing sequence (un) ⊂ H1

loc(R) ∩ PT for (9). We first prove that it is bounded in
H1

loc(R) ∩ PT . To this aim, we rely on the Gagliardo-Nirenberg inequality: for any u ∈ H1
loc(R) ∩ PT , we have

∥u∥p+1
Lp+1 ≲ ∥ux∥α(p+1)

L2 ∥u∥(1−α)(p+1)
L2 + ∥u∥p+1

L2 ,

where α = 1
2 − 1

p+1 . We also know that there exists p > 1 such that

F (u) ⩽ |F (u)| ≲ |u|2 + |u|p+1.

Consequently, for any u ∈ H1
loc(R) ∩ PT , such that M(u) = m, we have

E(u) = 1

2
∥ux∥2L2 −

∫ T

0

F (u)dx,

⩾
1

2
∥ux∥2L2 − C(∥u∥2L2 − ∥u∥p+1

Lp+1),

⩾
1

2
∥ux∥2L2 − Cm− C∥ux∥α(p+1)

L2 m
(1−α)(p+1)

2 − Cm
p+1
2 ,

= ∥ux∥2L2

(
1

2
− C∥ux∥α(p+1)−2m

(1−α)(p+1)
2

)
− C(m

p+1
2 −m).

The previous inequality implies the boundedness of ∥∂xun∥L2 when 1 < p < 5. Indeed, by contradiction, we

suppose that ∥∂xun∥L2 → ∞. Since 1 < p < 5, we have α(p+1)−2 < 0, and this implies that ∥∂xun∥α(p+1)−2
L2 →

0, and therefore E(un) → ∞, which is a contradiction with the minimizing nature of (un). Moreover, the same
arguments show that if 1 < p < 5, then the minimal energy is finite. Hence the sequence (un) is bounded in
H1

loc(R)∩PT . Therefore up to a subsequence, (un) converges weakly inH1
loc(R)∩PT and strongly in L2

loc∩PT and

Lp+1
loc ∩PT towards u∞ ∈ H1

loc(R)∩PT . We now show that (un) converges strongly towards u∞ in H1
loc(R)∩PT .

By weak convergence, we have

∥∂xu∞∥2L2 ⩽ lim
n→+∞

∥∂xun∥2L2 .
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Up to a subsequence, we also have F (un) → F (u∞) almost everywhere. Moreover, we have

|F (un)| ≲ |un|2 + |un|p+1

≲ ∥un∥2L∞ + ∥un∥p+1
L∞

≲ ∥un∥2H1 + ∥un∥p+1
H1 ⩽ max

n∈N
{∥un∥2H1 + ∥un∥p+1

H1 } <∞.

Then by the dominated convergence theorem we have

lim
n→+∞

∫ T

0

F (un)dx =

∫ T

0

F (u)dx.

Combining the previous arguments, we obtain

E(u∞) ⩽ lim
n→+∞

E(un), M(un) = m,

which in turn implies

∥∂xu∞∥2L2 = lim
n→+∞

∥∂xun∥2L2 .

Therefore the convergence from (un) to u∞ is also strong in H1
loc(R) ∩ PT . □

Proposition 3.3. Assume that f verifies (H1)-(H3) and (H4)-(H7). There exists m̃ > 0 such that if m > m̃,
then the minimizer of (9) is not a constant, the associated Lagrange multiplier verifies a < 0, the minimizer is
positive.

Remark 3.4. In the cubic case, it is known that for small enough values of m, the minimizer of the energy
functional in this case is the constant function.

Proof. Since u∞ is a minimizer of (9), there exists a Lagrange multiplier a ∈ R such that

−E ′(u∞) + aM ′(u∞) = 0

that is

∂xxu∞ + au∞ + bf(u∞) = 0.

Multiplying by u∞ and integrating (recall that the functions considered are assumed to be real), we find that

a =
∥∂xu∞∥2L2 − b

∫ T

0
f(u∞)u∞dx

∥u∞∥2L2

.

Note that

∥∂xu∞∥2L2 − b

∫ T

0

f(u∞)u∞dx = 2E(u∞) + 2b

∫ T

0

F (u∞)dx−
∫ T

0

bf(u∞)u∞dx

= 2E(u∞) + b

∫ T

0

(2F (u∞)− f(u∞)u∞)dx,

where E(u∞) < 0 and 2F (u∞)− f(u∞)u∞ < 0, by the assumption on (5). Therefore, we have

a < 0.

We introduce an auxiliary function

A(s) =
4π2

T 2
+ b

(
f(s)

s
− f ′(s)

)
.

By assumption (6), we have

A′(s) = b

(
f ′(s)s− f(s)

s2
− f ′′(s)

)
< 0.

Therefore A is a decreasing function, from 4π2

T 2 to −∞ from assumption (7). Let m∗ be such that A(m∗) = 0
and define

m̃ =
Tm∗2

2
.

We want to prove that if m > m̃, then u∞ is not constant.
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By contradiction, we assume that u∞ is constant for m > m̃. Then we necessarily have u∞ ≡
√

2m
T . The

Lagrange multiplier can also be computed and we find

a =
−b
∫ T

0
f
(√

2m
T

)√
2m
T dx

2m
= −bf

(√
2m

T

)√
T

2m
.

Since u∞ is supposed to be a constrained minimizer for (9), the operator

−∂xx − a− bf ′(u∞) = −∂xx + b

√
T

2m
f

(√
2m

T

)
− bf ′

(√
2m

T

)
,

must have Morse Index at most 1, i.e, at most 1 negative eigenvalue. The eigenvalues are given for n ∈ Z by
the following formula: (

2πn

T

)2

+ b

√
T

2m
f

(√
2m

T

)
− bf ′

(√
2m

T

)
, n ∈ Z.

If n = 0, the eigenvalue is negative:

b

√
T

2m
f

(√
2m

T

)
− bf ′

(√
2m

T

)
< 0.

Indeed as f(s)
s is an increasing function we have that for all s > 0,

(
f(s)
s

)′
= f ′(s)s−f(s)

s2 > 0. If n = 1 the

eigenvalue is of the form:

4π2

T 2
+ b

√
T

2m
f

(√
2m

T

)
− bf ′

(√
2m

T

)
= A

(√
2m

T

)
.

Recall that A
(√

2m
T

)
is non-negative if and only if

√
2m
T ⩽ m∗ which is equivalent to m ⩽ m̃ which gives the

contradiction. Therefore when m > m∗ the minimizer u∞ is not constant, which concludes the proof. □

3.2.2. The defocusing case in PT . Assume that b < 0.

Proposition 3.5. Assume that f verifies (H1)-(H3). For all m ∈ (0,∞) the constrained minimization
problems (9) and (10) have the same unique (up to phase shift) minimizer, which is the constant function

u∞ ≡
√

2m
T .

Proof. Consider a minimizing sequence (un) ⊂ H1
loc(R) ∩ PT for (9). We first prove that it is bounded in

H1
loc(R) ∩ PT . We have

E(un) =
1

2
∥∂xun∥2L2 − b

∫ T

0

F (un)dx ⩾ 0.

By contradiction, we suppose that ∥∂xun∥L2 → ∞. Therefore E(un) → ∞, which is a contradiction with the
minimizing nature of (un). Moreover, the same argument show that the minimal energy is finite. Hence the
sequence (un) is bounded in H1

loc(R)∩PT . Therefore up to a subsequence, (un) converges weakly in H1
loc(R)∩PT

and strongly in L2
loc ∩ PT and Lp+1

loc ∩ PT towards u∞ ∈ H1
loc(R) ∩ PT . As in the proof of Proposition 3.2 we

have that (un) converges strongly towards u∞ in H1
loc(R)∩PT . As for the focusing case, for any v ∈ H1

loc ∩PT ,
we have

M(|v|) =M(v), E(|v|) ⩽ E(v),
therefore we may assume that u∞ ⩾ 0.

As in the proof of Proposition 3.3, we know that there exists a Lagrange multiplier a such that

−E ′(u∞) + aM ′(u∞) = 0,

i.e. u∞ satisfies the ordinary differential equation (2). Hence a might be explicitly expressed in the following
way:

a =
∥∂xu∞∥2L2 − b

∫ T

0
f(u∞)u∞dx

∥u∞∥2L2

.
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Since b < 0, we have a > 0. In this case we know that the phase portrait for real valued solutions of (2) is given
in Figure 4.

The only solutions of (2) that do not change sign are the constant functions ±
√

2m
T . As a consequence, there

exists θ ∈ R such that

u∞ = eiθ
√

2m

T
,

which concludes the proof. □

Remark 3.6. Under the assumptions of Proposition 3.5, the minimizer is u∞ ≡
√

2m
T (up to phase shift), and

therefore the associated Lagrange multiplier is given by

a = −bf

(√
2m

T

)√
T

2m
.

The eigenvalues of the associated linearized operator

−∂xx − a− bf ′(u∞) = −∂xx + b

√
T

2m
f

(√
2m

T

)
− bf ′

(√
2m

T

)

are given for n ∈ Z by the following formula:

(
2πn

T

)2

+ b

(√
T

2m
f

(√
2m

T

)
− f ′

(√
2m

T

))
.

Since b < 0 and f(s)s−1 − f ′(s) < 0, if we assume in addition (H4), we remark that the eigenvalues are all
positive.

We will also consider the variational problem restricted to anti-symmetric functions:

min{E(u) : u ∈ H1
loc(R) ∩AT

2
, M(u) = m}. (11)

3.2.3. The defocusing case in AT . Assume b < 0.
In this section, we restrict ourselves to the sum of several powers.

Proposition 3.7. Let f(u) =
∑N

j=1 |u|pj−1u, where N > 1 and 1 < pj < ∞, for j = 1, . . . , N . There exists a

unique (up to phase shift and complex conjugate) minimizer of (11). It is the plane wave u∞ ≡
√

2m
T e

iπx
T .

Proof. Denote the supposed minimizer by w(x) =
√

2m
T e±

iπx
T . Let v ∈ H1

loc(R)∩AT
2
such that: M(v) = m and

v ̸≡ eiθw (θ ∈ R). Since v ∈ H1
loc(R) ∩ AT

2
, v must have 0 mean value. Recall that in this case v verifies the

Poincaré-Wirtinger inequality

∥v∥L2 ⩽
T

2π
∥v′∥L2 ,

and that the optimizers of the Poincaré-Wirtinger inequality are of the form ce±
iπx
T , c ∈ C. This implies that

∥∂xw∥2L2 =
8π2

T 2
M(w) =

8π2

T 2
M(v) < ∥∂xv∥2L2 .
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We will prove now that
∫ T

0
F (w)dx ⩽

∫ T

0
F (v)dx. We have∫ T

0

N∑
j=1

(
1

pj + 1
|w|pj+1

)
dx,

=

∫ T

0

N∑
j=1

( 1

pj + 1

) ∣∣∣∣∣
√

2m

T

∣∣∣∣∣
pj+1

 dx,

= T

N∑
j=1

(
1

pj + 1

)(
T−

pj+1

2 2
pj+1

2 m
pj+1

2

)
,

= T

N∑
j=1

(
1

pj + 1

)(
T−

pj+1

2 ∥v∥pj+1

L2

)
,

⩽ T

N∑
j=1

(
1

pj + 1

)(
T−

pj+1

2 T
pj−1

2 ∥v∥pj+1

Lpj+1

)
,

where the last inequality came from Hölder inequality:

∥v∥p+1
L2 ⩽ T

p−1
2 ∥v∥p+1

Lp+1 ,
1

p+1
2

+
1

p+1
p−1

= 1.

Therefore we have
N∑
j=1

1

pj + 1
∥w∥pj+1

Lpj+1 ⩽
N∑
j=1

1

pj + 1
∥v∥pj+1

Lpj+1

which implies that

E(w) < E(v),

which concludes the proof. □

3.3. Minimization on the Nehari manifold. In this section we restrict ourselves to the nonlinearity of the
form f(u) = |u|p−1u, with p > 1. We define the functional S : H1

loc(R) ∩ PT → R by setting for u ∈ H1
loc(R)

S(u) :=
1

2
∥∂xu∥2L2 −

a

2
∥u∥2L2 −

b

p+ 1
∥u∥p+1

Lp+1 .

It is standard that S is of class C2. The Fréchet derivative of S at u is given by

S′(u) = −uxx − au− b|u|p−1u.

Therefore, u is a solution of the ordinary differential equation (2) if and only if S′(u) = 0. Let I(u) =

∥∂xu∥2L2 − a∥u∥2L2 − b∥u∥p+1
Lp+1 . The set

{u ∈ H1
loc(R) : u ̸= 0, I(u) = 0}

is called Nehari manifold. We are interested in the minimization problems on the Nehari manifold:

min{S(u) : u ∈ H1
loc(R) ∩ PT , u ̸= 0, I(u) = 0}, (12)

and

min{S(u) : u ∈ H1
loc(R) ∩AT

2
, u ̸= 0, I(u) = 0}. (13)

The minimization problem on the Nehari manifold has been studied in numerous works. In this regard,
we mention the work of Szulkin and Weth [25], the work of Pankov [22] and Pankov and Zhang [26] for the
discrete nonlinear Schrödinger equation. We also mention the work of Hayashi [16] on the nonlinear Schrödinger
equation of derivative type and the work of Colin and Watanabe [8] on the nonlinear Klein-Gordon-Maxwell
type system.
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Remark 3.8. The interest for minimization over the Nehari manifold is that it is a natural constraint. Indeed,
assume that u ̸= 0 is a minimizer. We have

I ′(u) = −2uxx − 2au− b(p+ 1)|u|p−1u,

= −2uxx − 2au− 2b|u|p−1u+ b(2− (p+ 1))|u|p−1u,

= 2S′(u)− b(p− 1)|u|p−1u.

Moreover I(u) =< S′(u), u >, therefore

< I ′(u), u > = 2 < S′(u), u > −b(p− 1)∥u∥p+1
Lp+1 ,

= −b(p− 1)∥u∥p+1
Lp+1 ̸= 0.

On the other hand, if S′(u) = λI ′(u), this implies that

0 =< S′(u), u >= λ < I ′(u), u > .

Since < I ′(u), u > ̸= 0, this implies

λ = 0.

Therefore the minimizer u verifies S′(u) = 0, so it is a solution of the ordinary differential equation (2).

3.3.1. The focusing case in PT . Let b > 0 and a < 0. We have the following lemma.

Lemma 3.9. The minimum of (12) is finite and there exists a real minimizer solution of (2).

Proof. Consider a minimizing sequence (un) ⊂ H1
loc(R) ∩ PT for (12). We have I(un) = 0, therefore

S(un) = S(un)−
1

p+ 1
I(un) =

(
1

2
− 1

p+ 1

)(
∥∂xun∥2L2 − a∥un∥2L2

)
.

We have the boundedness of the sequence (un) in H1
loc(R) ∩ PT . Indeed, by contradiction we suppose that

∥un∥2L2 → ∞, or ∥∂xun∥2L2 → ∞, therefore S(un) → ∞, which is a contradiction with the minimizing nature
of (un). Therefore up to a subsequence, (un) converges weakly in H1

loc(R) ∩ PT and strongly in L2
loc ∩ PT and

Lp+1
loc ∩ PT towards u∞ ∈ H1

loc(R) ∩ PT . By the weak convergence we have

∥∂xu∞∥L2 ⩽ lim
n→∞

inf ∥∂xun∥L2 ,

then

∥∂xu∞∥2L2 − a∥u∞∥2L2 ⩽ lim
n→∞

inf
(
∥∂xun∥2L2 − a∥un∥2L2

)
.

Therefore

S(u∞)− 1

p+ 1
I(u∞) ⩽ lim

n→∞
inf S(un).

On the other hand we have

I(u∞) = ∥∂xu∞∥2L2 − a∥u∞∥2L2 − b∥u∞∥p+1
Lp+1

⩽ lim
n→∞

inf
(
∥∂xun∥2L2 − a∥un∥2L2

)
− b lim

n→∞
∥un∥p+1

Lp+1

⩽ lim
n→∞

I(un) = 0.

Then

I(u∞) ⩽ 0,

and this implies that

S(u∞) ⩽ S(u∞)− 1

p+ 1
I(u∞) ⩽ lim

n→∞
inf S(un).
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The graph of I(tu) is given in the Figure 8. We know that I(u∞) ⩽ 0, hence there exists t0 ⩽ 1 such that
I(t0u∞) = 0. We have

S(t0u∞) = S(t0u∞)− 1

p+ 1
I(t0u∞),

=

(
1

2
− 1

p+ 1

)
(∥∂xu∞∥2L2 − a∥u∞∥2L2),

⩽

(
1

2
− 1

p+ 1

)
(∥∂xu∞∥2L2 − a∥u∞∥2L2),

= S(u∞)− 1

p+ 1
I(u∞) ⩽ lim

n→∞
inf S(un).

Therefore
S(t0u∞) ⩽ lim

n→∞
inf S(un), I(t0u∞) = 0,

which implies the existence of the minimizer.
Moreover, without loss of generality, we can restrict the minimization to real-valued non-negative functions.

Indeed if (t0u∞) ∈ H1
loc(R)∩PT , then |t0u∞| ∈ H1

loc(R)∩PT and we have ∥∂x|t0u∞|∥L2 ⩽ ∥∂x(t0u∞)∥L2 . This
implies that S(|t0u∞|) ⩽ S(t0u∞) and I(|t0u∞|) ⩽ I(t0u∞) = 0. As before, we know from the graph of I(tu)
given in the Figure 8 that there exists t2 ⩽ 1 such that I(|t2u∞|) = 0 with S(|t2u∞|) ⩽ lim

n→∞
inf S(un) which

implies that the minimizer is real.

Figure 8. I(tu) as a function of t in the focusing case.

□

3.3.2. The defocusing case in PT . Let b < 0 and a > 0. We have the following lemma.

Lemma 3.10. The minimum of (12) is finite and there exists a unique (up to phase shift) minimizer solution

of (2) which is the constant function umin ≡
(
−a

b

) 1
p−1 .

Proof. Consider a minimizing sequence (un) ⊂ H1
loc(R)∩PT for (12). We know from the Hölder inequality that

∥v∥p+1
L2 ⩽ T

p−1
2 ∥v∥p+1

Lp+1 ,
1

p+1
2

+
1

p+1
p−1

= 1.

Thus, since I(un) = 0, we have

0 ⩽ ∥∂xun∥2L2 = a∥un∥2L2 + b∥un∥p+1
Lp+1 ⩽ aT

p−1
p+1 ∥un∥2Lp+1 + b∥un∥p+1

Lp+1

As a result the last term in the inequality is positive with b < 0 then (un) is bounded in Lp+1
loc ∩ PT . Moreover,

with the Hölder inequality we have then the boundedness of (un) in L2
loc ∩ PT . Finally as I(un) = 0 we have

the boundedness of the sequence (un) in H
1
loc(R) ∩ PT . Therefore up to a subsequence, (un) converges weakly

in H1
loc(R)∩PT and strongly in L2

loc ∩PT and Lp+1
loc ∩PT towards u∞ ∈ H1

loc(R)∩PT . By the weak convergence
we have

∥∂xu∞∥L2 ⩽ lim
n→∞

inf ∥∂xun∥L2 ,
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then

∥∂xu∞∥2L2 − a∥u∞∥2L2 ⩽ lim
n→∞

inf
(
∥∂xun∥2L2 − a∥un∥2L2

)
.

Therefore

S(u∞)− 1

p+ 1
I(u∞) ⩽ lim

n→∞
inf S(un).

On the other hand we have

I(u∞) = ∥∂xu∞∥2L2 − a∥u∞∥2L2 − b∥u∞∥p+1
Lp+1

⩽ lim
n→∞

inf
(
∥∂xun∥2L2

)
− a lim

n→∞
∥un∥2L2 − b lim

n→∞
∥un∥p+1

Lp+1

⩽ lim
n→∞

I(un) = 0.

Then

I(u∞) ⩽ 0,

and this implies that

S(u∞) ⩽ S(u∞)− 1

p+ 1
I(u∞) ⩽ lim

n→∞
inf S(un).

The graph of I(tu) is given in the Figure 9. Since I(u∞) ⩽ 0, there exists t0 > 1 such that I(t0u∞) = 0.
Observe also that

∥∂xu∞∥2L2 − a∥u∞∥2L2 ⩽ b∥u∞∥p+1
Lp+1 < 0.

We have

S(t0u∞) = S(t0u∞)− 1

p+ 1
I(t0u∞),

=

(
1

2
− 1

p+ 1

)
t20
(
∥∂xu∞∥2L2 − a∥u∞∥2L2

)
,

⩽

(
1

2
− 1

p+ 1

)(
∥∂xu∞∥2L2 − a∥u∞∥2L2

)
,

= S(u∞)− 1

p+ 1
I(u∞) ⩽ lim

n→∞
inf S(un).

Therefore

S(t0u∞) ⩽ lim
n→∞

inf S(un), I(t0u∞) = 0,

which implies the existence of the minimizer. As in the focusing case and without loss of generality, we can
prove that the minimizer is real-valued, non negative and solution of the ordinary differential equation (2). The

only such solution of (2) is the constant functions umin ≡
(
−a

b

) 1
p−1 with I(umin) = 0, which concludes the proof.

Figure 9. I(tu) as a function of t in the defocusing case.

□
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3.3.3. The focusing case in AT . Assume b > 0 and a < 4π2

T 2 .

Lemma 3.11. The minimum of (13) is finite.

Proof. Consider a minimizing sequence (un) ⊂ H1
loc(R) ∩AT

2
for (13). We have I(un) = 0, therefore

S(un) = S(un)−
1

p+ 1
I(un) =

(
1

2
− 1

p+ 1

)(
∥∂xun∥2L2 − a∥un∥2L2

)
. (14)

We will distinguish between two cases whether a < 0 or a > 0. In the first case, as in the periodic case, we can
directly conclude by contradiction with the minimizing nature of (un) that it is bounded in H1

loc(R) ∩ AT
2
. In

the second case, we suppose that a > 0. Since un ∈ AT
2
, un must have 0 mean value. In that case un verifies

the Poincaré-Wirtinger inequality:

∥un∥L2 ⩽
T

2π
∥∂xun∥L2 .

Replacing in (14), we obtain that

S(un) ⩾

(
1

2
− 1

p+ 1

)(
4π2

T 2
− a

)
∥un∥2L2 .

Then by the same arguments as in the first case we can prove that (un) is bounded in H1
loc(R) ∩AT

2
if

a <
4π2

T 2
.

Therefore up to a subsequence, (un) converges weakly in H1
loc(R)∩AT

2
and strongly in L2

loc∩AT
2
and Lp+1

loc ∩AT
2

towards u∞ ∈ H1
loc(R) ∩AT

2
. By the weak convergence we have

∥u∞∥H1 ⩽ lim
n→∞

inf ∥un∥H1 .

If a < 0, by the equivalence of the norms we have

∥∂xu∞∥2L2 − a∥u∞∥2L2 ⩽ lim
n→∞

inf
(
∥∂xun∥2L2 − a∥un∥2L2

)
.

And if a > 0, by the strong convergence in L2
loc ∩AT

2
we also have the above inequality. Therefore

S(u∞)− 1

p+ 1
I(u∞) ⩽ lim

n→∞
inf S(un).

On the other hand we have

I(u∞) = ∥∂xu∞∥2L2 − a∥u∞∥2L2 − ∥u∞∥p+1
Lp+1

⩽ lim
n→∞

inf
(
∥∂xun∥2L2 − a∥un∥2L2

)
− lim

n→∞
∥un∥p+1

Lp+1

⩽ lim
n→∞

I(un) = 0.

Then

I(u∞) ⩽ 0,

and this implies that

S(u∞) ⩽ S(u∞)− 1

p+ 1
I(u∞) ⩽ lim

n→∞
inf S(un).

As in the periodic case with the Figure 8 we can prove that there exists t0 < 1 such that I(t0u∞) = 0 and
S(t0u∞) ⩽ lim

n→∞
inf S(un) which implies the existence of the minimizer. □

We now consider the following intermediate minimization problem:

min

{(
1

2
− 1

p+ 1

)
∥v∥2H1 : v ̸= 0, I(v) ⩽ 0, v ∈ H1

loc(R) ∩AT
2

}
. (15)

We have the following lemma.

Lemma 3.12. The minimization problems (13) and (15) share the same minimizers. Moreover, when p is an
odd integer, there exists a real minimizer.
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Proof. Let
m1 := min{S(u) : u ∈ H1

loc(R) ∩AT
2
, u ̸= 0, I(u) = 0},

and

m2 := min{
(
1

2
− 1

p+ 1

)
∥v∥2H1 : v ∈ H1

loc(R) ∩AT
2
, v ̸= 0, I(v) ⩽ 0}.

We will prove that m1 = m2. Let u be such that m1 is reached. Hence I(u) = 0. We have

m1 = S(u) = S(u)− 1

p+ 1
I(u) =

(
1

2
− 1

p+ 1

)
∥u∥2H1 ⩾ m2.

Let u be such that m2 is reached. Then I(u) ⩽ 0. We will prove that I(u) = 0. By contradiction, we suppose
that I(u) < 0. As we can see in Figure 8 there exists t0 < 1 such that I(t0u) = 0. Therefore we have(

1

2
− 1

p+ 1

)
∥t0u∥2H1 ⩽

(
1

2
− 1

p+ 1

)
∥u∥2H1 = m2,

which gives the contradiction. Thus I(u) = 0. That being the case, we have

m2 =

(
1

2
− 1

p+ 1

)
∥u∥2H1 = S(u) ⩾ m1.

Hence m1 = m2. On the other hand from Lemma 3.1 of the Fourier rearrangement inequality, we conclude that
if p is an odd integer, then there exists ũ ∈ H1

loc(R) ∩AT
2
such that:

ũ(x) ∈ R, ∥ũ∥L2 = ∥u∥L2 , ∥∂xũ∥L2 = ∥∂xu∥L2 , ∥ũ∥Lp+1 ⩾ ∥u∥Lp+1 .

Hence the minimizer can be chosen real. Moreover as in the periodic case the minimizer is a solution of (2) and
this concludes the proof. □

Appendix A. Triple power nonlinearity

In this section we treat a special case not covered by the results of the previous sections. Consider the triple
power nonlinearity f(u) = a1|u|u + a2|u|2u + a3|u|3u = 0, where a1, a3 > 0 and a2 < 0. We are interested in
real valued bounded solutions of (2).

After using the scaling symmetries of (1), we may assume a1 = a3 = 1 and a2 = −γ < 0. Let

f(ϕ) = |ϕ|ϕ− γ|ϕ|2ϕ+ |ϕ|3ϕ.
Denote also

F (ϕ) =
1

3
|ϕ|3 − γ

4
|ϕ|4 + 1

5
|ϕ|5.

Changing notation, we set ω = −a, Consider the effective potential

V (r) = −ωr
2

2
+ F (r).

We study the critical points of V . Since f is gauge-invariant, V is even in r and we may restrict the study to
positive critical points. We have

V ′(r) = −ωr + f(r).

Define

f1(r) =
f(r)

r
.

The main difference between the present case and the nonlinearities treated in the rest of the paper is that f1(r)
is not strictly increasing, i.e. (H3) is not satisfied. A positive zero of V ′ is a positive solution of

0 = −ω + f1(r) = −ω + r − γr2 + r3. (16)

To determine the number of zeros of V ′, we analyze the variations of f1. We have

f ′1(r) = 1− 2γr + 3r2,

which has constant sign when γ <
√
3 and otherwise has two (positive) zeros given by

r± =
1

3

(
γ ±

√
γ2 − 3

)
.

As a consequence, when 0 < γ ⩽
√
3, the function f1 is strictly increasing on [0,∞) and there exists a (unique)

positive solution of (16) if and only if ω > 0.
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When γ >
√
3, we have f ′1(r) > 0 for r ∈ (0, r−) ∪ (r+,∞) and f ′1(r) < 0 for r ∈ (r−, r+). In this case, (16)

has between 0 and 3 solutions. In particular, (16) has three positive solutions if and only if ω > 0 and

1

27

(
γ(−2γ2 + 9)− 2(γ2 − 3)

3
2

)
= f1(r+) < ω < f(r−) =

1

27

(
γ(−2γ2 + 9) + 2(γ2 − 3)

3
2

)
.

The γ−ω regions of existence of solutions for (16) is represented in the figure below (zero solution, one solution,
two solutions, three solutions).

0 1 2 3 4

−0.4

−0.2

0

0.2

0.4

0.6

γ

ω

Whenever they exist, we denote the solutions of (16) by

0 < c1 < r− < c2 < r+ < c3,

with the convention that when r± do not exist the solution is called c1.
Let us now distinguish the various possibles phase portraits depending on γ and ω.
Case ω < min{0, f1(r+)}
In this case the only critical point of V is 0, which is a center. Solutions of (2) are all of sn/cn type. The

phase portrait is given in Figure 10.

3 2 1 0 1 2 3
3

2

1

0

1

2

3
= 1, = 1

Figure 10. Phase portrait 0 solution.

Case ω > 0, ω ̸∈ {(f1(r+), f1(r−))} In this case, V has two non-negative critical points: 0 and c1. The point
0 is a saddle point. The other critical point c1 is a center. The phase portrait is similar to the one of the single
focusing power. We have dn type solutions close to the center and cn type solutions for higher first integrals.
The phase portrait is given in Figure 11.

Case f1(r+) < ω < 0
In this case, V has three non-negative critical points: 0 and c2, c3. The points 0 and c3 are centers. The

other critical point c2 is a saddle point. The phase portrait is given in Figure 12.
Case max(0, f1(r+)) < ω < f1(r−)
In this case, V has four non-negative critical points: 0 and c1, c2, c3. The points 0 and c2 are saddle points.

The other critical point c1 and c3 are centers. There are three possible phase portraits depending on the value
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3 2 1 0 1 2 3
3

2

1

0

1

2

3
= 1, = 1

Figure 11. Phase portrait 1 solution.

3 2 1 0 1 2 3
3

2

1

0

1

2

3
= 3, = 1

Figure 12. Phase portrait 3 solution.

of V (c2). If V (c2) > 0, then we have a homoclinic solution connecting 0 to itself without passing through c2 and
an heteroclinic solution connecting c2 to −c2. If V (c2) < 0, then the heteroclinic solution connecting 0 to itself
passes through c2 and c3 and there are two homoclinic solutions at c2 (one by lower values and the other by
upper values). Finally, at the borderline case V (c2) = 0 the main distinguishing feature is a half-kink solution
connecting 0 to c2. In the plane (γ, ω), the half-kink line corresponds to the curve

γ → −
5γ
(
5γ2 − 24

)
432

+

√
5

√
(5γ2 − 16)

3

432
,

starting at the point
(

4√
5
, 2

√
5

27

)
(observe that this is nothing but the line of non-existence of solitons found

in [19]). The phase portraits are given in Figure 13.

2 2.5 3 3.5 4 4.5 5
0

5 · 10−2

0.1

0.15

0.2

γ

ω
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Figure 13. Phase portrait 3 solution, V (c2) > 0, V (c2) = 0, V (c2) < 0, bottom line is a zoom
of the top one.
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