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• Personalization of onco-immunotherapy treatment relies on both cancer and immune 

profiling.  

• Single-cell RNA-seq delivers detailed but sparse information.  

• Bulk RNA-seq requires extrapolation to quantitatively estimate the immune 

contexture.  

• We reviewed standard methods that can boost clinical applications of tumor RNA-

seq.  
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Abstract 

The rising interest for precise characterization of the tumor immune contexture has recently 

brought forward the high potential of RNA sequencing (RNA-seq) in identifying molecular 

mechanisms engaged in the response to immunotherapy. In this review, we provide an 

overview of the major principles of single-cell and conventional (bulk) RNA-seq applied to 

onco-immunology. We describe standard pre-processing and statistical analyses of data 

obtained from such techniques and highlight some computational challenges relative to the 

sequencing of individual cells. We notably provide examples of gene expression analyses 

such as differential expression analysis, dimensionality reduction, clustering and enrichment 

analysis. Additionally, we used public datasets to exemplify how deconvolution algorithms 

can identify and quantify multiple immune subpopulations from either bulk or single-cell RNA-

seq. We give examples of machine and deep learning models used to predict patient 

outcomes and treatment effect from high-dimensional data. Finally, we balance the strengths 

and weaknesses of single-cell and bulk RNA-seq regarding their applications in the clinic.  

 

 

Key words  

Immunotherapy; single-cell RNA-seq; bulk RNA-seq; tumor microenvironment; cancer; 

precision medicine   



 
 
Applications of single-cell and bulk RNA sequencing in onco-immunology 

4 
 

Introduction 

Tumor samples always contain heterogeneous cell populations that comprise – beyond 

malignant cells – stromal and immune tumor-associated cells (Figure 1) 1. After a long period 

of focusing on the tumor’s genetic alterations, we have slightly entered an era in which the 

behavior of non-tumoral cells becomes as meaningful as the tumor itself. Immunotherapy 

guidance for first line treatment and beyond still lacks reliable biomarkers, yet accumulating 

evidences point towards the importance of studying a tumor tissue as a whole to better 

capture its potential of response to immune-checkpoint blockers: exhaustive composition, 

density, functional state, organization and interaction between cellular subtypes, including 

tumor cells 2,3. 

Tumor immune infiltrates can associate CD8+ cytotoxic T cells, CD4+ helper cells (TH1 cells), 

dendritic cells, CD25+/FOXP3+ regulatory T cells, myeloid-derived suppressor cells 

(MDSCs), natural-killer cells, B lymphocytes, tumor-associated macrophages, among others. 

Some of those promote immune escape of the tumor (e.g. MDSCs), some elicit anti-tumoral 

actions (e.g. dendritic cells), others can either promote or prevent immune escape depending 

on their activation status (e.g. CD8+ T cells) 4,5. For example, the presence and proportion of 

M1 macrophages, B cells and TH1 lymphocytes within the immune infiltrate almost always 

correlates with good prognosis, whereas the presence of regulatory T cells or M2 

macrophages usually associates with bad prognosis 3. Even though their cellular behavior 

may be influenced by the tumor, it is expected that those non-tumoral immune cells share the 

same DNA sequence, which is specific to the host (with the exceptions of rearranged 

immunoglobulin and TCR loci). However, they significantly vary phenotypically and harbor 

separate mRNA expression profiles, which makes them identifiable by gene expression 

analysis.  

Among various techniques deployed to assess gene expression 6, RNA sequencing (RNA-

seq) can provide qualitative (RNA sequence) and quantitative (RNA abundance) analyses of 
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either targeted mRNA transcripts or the complete transcriptome of a particular tissue 7–9. Two 

methods of RNA-seq are henceforth commonly considered for onco-immunology studies: 

standard bulk RNA-seq and single-cell RNA-seq (scRNA-seq). Standard bulk RNA-seq 

started replacing microarray techniques in the late 2000s and is now widely used in 

translational research. For each transcript, it provides an average expression level in the 

sample, which may comprise different cell types 10. Conversely, scRNA-seq is a relatively 

new technology that measures the gene expression levels for each transcript within each 

individual cell of the sample and allows a representation of the distribution of this expression 

in each sub-population of cells 11,12. Therefore, scRNA-seq rather aims to study a particular 

cell or cell type behavior in the specific context of its microenvironment, while bulk RNA-seq 

was not primarily designed for the precise characterization of a tumor composition 13.   

At first glance, one could believe that scRNA-seq represents the most suited method to draw 

a complete picture of a tumor and thus, may be a method of choice to study the immune 

tumor-related features that could be predictive of response to immunotherapy. Yet, the initial 

substantial excitement regarding scRNA-seq theoretical promises has historically faced 

technical limitations 13. In addition, it is now technically possible to extrapolate the cellular 

composition of a tumor sample from bulk analysis, which at least partially alleviates the 

conceptual frontier between bulk and scRNA-seq full potentials.  

Here, we give an overview of some standard methods used for processing single-cell or bulk 

RNA-seq data. We describe how scRNA-seq and bulk methods can share several 

computational analysis concepts (reads quality control, mapping or quasi-mapping, 

differential expression analysis, dimensionality reduction, clustering, etc.) – sometimes with 

the same objectives, sometimes with very distinct outputs – bearing in mind that for every 

task, scRNA-seq analysis will often imply additional dimensionalities to estimate one 

complete gene expression profile per individual cell. 
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We notably emphasize the statistical approaches that can be used to study the tumor 

microenvironment composition – including from bulk analysis – in a qualitative and 

quantitative manner. We also describe machine learning tools that aim at predicting survival 

or tumor response following treatment with immune-checkpoint blockers. Finally, we depict 

the recent evolution in the clinical development field of onco-immunology that increasingly 

integrates RNA-seq in clinical trial designs, reflecting the growing interest in this approach for 

multiple purposes.  

 

Single-cell and bulk RNA-seq processing: basic clues to appreciate the differences 

Collecting, storing and processing RNA 

Unlike DNA, which is a stable structure, RNA is highly sensitive to oxidation and hydrolytic 

cleavage of its phosphodiester bonds by nucleases, and therefore requires conscientious 

storage to prevent rapid degradation 14. Bulk RNA-seq can be performed on human tumor 

samples obtained from surgical resection or biopsies, preserved in formalin-fixed and paraffin 

embedded (FFPE) or freshly frozen 15–17. Thus, all the samples can be collected in due 

course and processed all in the same time.  

Additional facts to consider for scRNA-seq 

On the other hand, scRNA-seq analysis requires viable cells suspension to allow robust cell 

isolation, which contraindicates any fixation of freezing steps. ScRNA-seq therefore requires 

processing the samples quite promptly – within a few days – after the time of collection. 

Another important point to consider is that during that process, the cellular viability of each 

sub-population of cells can be differently affected, leading to some cell types being over- or 

under-represented in the final dataset (source of interpretation bias). Therefore, before 

planning a scRNA-seq analysis, several questions need to be addressed, including: (i) which 

and how many cell types are to be analyzed (for example, only tumor cells, all stromal 
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immune cells or only a subset of immune cells such as memory CD4+ T cells or sparse 

population of a subset of dendritic cells), (ii) which method is used to prepare cell suspension 

(tissue dissociation, selected cells enrichment and cells conservation), (iii) which single-cell 

technology (droplet- or plate-based; short or long reads; Unique Molecular Identifiers or not) 

and (iv) which library and other RNA-seq parameters to use 18–21.  

Sequencing and basic bias correction 

The following steps of single-cell and bulk RNA-seq usually comprise reverse transcription, 

reads sequencing, mapping or quasi-mapping, data format transformation, count table 

generation and inference, such as the exploration of gene expression and/or transcript 

fusions (Figure 2).  

Additional facts to consider for scRNA-seq 

As compared to bulk, scRNA-seq comprises additional steps, including: (i) keeping 

information of unique molecular identifiers (UMI) to further identify mRNA molecules, and 

barcodes to identify which mRNA belongs to which single cell, and (ii) reduce experimental 

biases often triggered by the sequencing of single cells (Table 1). Those biases – mainly 

known as batch effect and dropout effect – exist for both single-cell and bulk RNA-seq, but 

are exacerbated by the processing of single cells.  

Batch effect encompasses various causes of variation in gene expression estimation, related 

to technical bias or other independent factors such as variations in sampling, library 

preparation and sequencing platform, or variations inherent to the origin of the sample 

(different tumor types). Hence, a frequent challenge is to analyze combined data from 

various tumor types or from various centers. Batch effect can be corrected a posteriori with 

computational methods, such as Mutual Nearest Neighbors 22 and Canonical Correlation 

Analysis 23. Several tools using these and other methods exist, such as ComBat-seq 24, 
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RUVseq 25 and svaseq 26 for bulk RNA-seq, and kBET 27, Harmony 28, Conos 29 and Seurat 30 

for scRNA-seq.  

ScRNA-seq, much more than bulk RNA-seq, generates sparse matrices filled with many 

zeros, corresponding either to a biological feature (truly silent gene) or to a technical artifact, 

called “dropout effect” and referring to a statistical observation called zero-inflated 

distribution. The “dropout effect” refers to the limited sampling of RNA content in single-cell 

wet protocols (falsely silent gene). Indeed, the expression of only 10% of total genes tends to 

be effectively measured in scRNA-seq experiments 31,32. Zero-inflated scRNA-seq data can 

be processed by imputation methods, in order to reduce the impact of the dropout effects, 

before using pipelines designed for bulk RNA-seq 33,34. Although deep learning has 

contributed to significant improvement on this task, the imputation step is rarely performed 

due to its highly data-dependent efficiency 34,35. 

 

Letting the data speak using statistical analyses of gene expression 

Once RNA-seq data are ripe for further analysis, statistical methods are applied to answer 

different biological questions. Selecting the most appropriate requires bearing in mind the 

objective of the analysis, the magnitude of the above-cited batch effect and potential 

statistical biases.  

Expression values from bulk RNA-seq can generally be approximated by Poisson, negative-

binomial or log-normal distributions and from scRNA-seq by zero-inflated distribution. This 

limits the use of statistics based on a Gaussian distribution. In practice, simple (log+1)-

transformation and expression matrix scaling are often performed, negative-binomial model 

(adjusted by a regression of bias) 36 can be used, and an increasing number of models now 

intend to handle zero-inflation in scRNA-seq 37,38. In the next sections, we review the most 

common methods used, in a non-exhaustive manner. To illustrate the most common outputs 
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of RNA-seq analysis (Figure 3), such as volcano plots, we used the published dataset from 

Hugo et al. 39, which comprises bulk RNA-seq data of patients with metastatic melanoma 

obtained prior to treatment with immune-checkpoint blockers, together with the clinical 

information of whether or not they responded to treatment. This dataset was primarily used to 

build an immune signature associated with the response to immune-checkpoint blockers. 

Additional facts to consider for scRNA-seq 

Expression values from bulk RNA-seq can generally be approximated by Poisson, negative-

binomial or log-normal distributions, whereas expression values from scRNA-seq follows a 

zero-inflated distribution. This limits the use of statistics based on a Gaussian distribution. In 

practice, simple (log+1)-transformation and expression matrix scaling are often performed, 

although negative-binomial model (adjusted by a regression of bias) 36 can be used, and an 

increasing number of models now intend to handle zero-inflation in scRNA-seq 37,38. 

Statistics for high-dimensional data: why do we “adjust” the p-value?  

RNA-seq data often display a greater number of variables than observations (i.e. more genes 

than samples analyzed). This high-dimensionality implies a high risk of false discovery. For 

example, if a statistical test is performed iteratively for each individual gene, and considered 

significant if p-value <0.05, the user will potentially obtain five false positive results every 100 

tested genes. Thus, for 20,000 tested genes, the false positive signals may reach up to 1,000 

genes, so the p-values must be adjusted according to the number of tests performed. 

Multiple methods have been proposed to control this "multiple testing error" as Bonferroni or 

Benjamini and Hochberg's False Discovery Rate (FDR) 40–42.  

Differential expression analysis 

Differential expression (DE) analysis aims at identifying significant gene expression 

variations between two or more experimental groups. For example, DE analysis can be used 

to uncover genes that are the most differentially expressed in RNA-seq of patients who 
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responded to immune-checkpoint blockers compared to RNA-seq of patients who did not 25. 

DESeq2 43 and EdgeR 44 are two popular R packages for DE analysis from gene expression 

data.  

Outputs of DE are fold-change of expressions between the different groups, associated with 

a corrected p-value. The results can be represented using a volcano plot (Figure 3A) or a 

heatmap (Figure 3B), which highlight the genes that are significantly over- or under-

expressed between two or several groups. Volcano plots display the magnitude of both the 

difference (x-axis) and its statistical meaning (y-axis), while heatmaps use color gradients.  

Special aspects of differential expression for scRNA-seq analysis 

In scRNA-seq, DE analysis can be used to compare subpopulations of cells or several 

treatment conditions within a peculiar cell type 45. Some methods have been developed 

specifically for scRNA-seq, although their performances are often similar to naive methods or 

methods originally developed for bulk RNA-seq 46.  

Dimensionality reduction  

Dimension reduction consists in projecting data from a large space (with many dimensions – 

for example, each gene being a dimension) into a smaller space (with fewer dimensions – for 

example, by focusing on genes of interest). Basically, it consists in drastically “summarizing” 

a dataset to make it more understandable, ideally while retaining most of its intrinsic 

properties of interest.  

Dimension reduction can be carried out using two ways through either feature selection or 

feature engineering. Eventually, one can apply both approaches sequentially or even 

iteratively. Feature selection consists in selecting automatically the most important genes for 

the analysis (for example, the most differentially expressed genes between two conditions, or 

variable selection with lasso regression, further detailed in Box 1). Feature engineering – or 

projection – aims at separating samples according to relevant properties in the data. It can 
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consist in either linear methods – meaning that it preserves all differences between samples 

– such as Principal Component Analysis (PCA) 47 or Independent Component Analysis (ICA), 

or non-linear methods such as t-distributed Stochastic Neighbor Embedding (t-SNE) or 

Uniform Manifold Approximation and Projection (UMAP) (Box 1).  

In our example, we used PCA  (the most famous linear feature engineering technique) on DE 

genes (adding feature selection), which reduced the gene list and clearly outlined the two 

groups of patients, responding or not to immune-checkpoint blockers (Figure 3C). An 

example of application of non-linear dimensionality reduction is also shown in Figure 3D, 

using the UMAP method. 

Special aspect of dimension reduction for scRNA-seq analysis: trajectory inference 

In addition, a rapidly advancing field called “cellular trajectory inference”, which uses single 

cell data, can be considered as a special type of non-linear dimensionality reduction, with the 

goal to study cellular dynamic processes such as cell cycle, cell differentiation or cell 

activation. This method – which cannot be applied to bulk data – is based on the assumption 

that cells that differentiate display a continuous spectrum of states because individual cells 

will differentiate in an unsynchronized manner (each cell is a snapshot of differentiation time). 

Tools are therefore used to order the cells along a trajectory based on similarities in their 

expression patterns, where the “pseudotime” is the unit allowing representing each cell’s 

transcriptional progression toward the terminal state of its trajectory. There are over 75 

existing tools for trajectory inference; most of which can be found in the dynverse wrapper 48. 

More details regarding trajectory inference are depicted in Box 2. 

Clustering 

Clustering defines a way to simplify and interpret gene expression data by classifying (or, 

partitioning) the samples (for bulk RNA-seq) or cells (for scRNA-seq), into groups with gene 

expression profiles more similar within the group rather than between the groups. Clustering 
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belongs to the family of unsupervised machine learning methods: groups are inferred by the 

data themselves, their distribution and their multi-dimensional geometry (and not by 

predefined classes), among other possible characteristics. Interpretation of the resulting 

clusters often requires other variables to correlate with, such as phenotypic (type of cancer, 

toxic exposures, clinical outcome or other continuous data), genetic (for e.g. cluster of gene 

co-expression with HER2 status in breast cancers), cell types/states (for single-cell data), or 

technical bias to correct (batch effect). More details are provided in Box 3.  

In our RNA-seq example, we have clustered samples based on differentially expressed 

genes and visualized their relation to response to immunotherapy (Figure 3B, clustering on 

the left). A second clustering was performed on the same differentially expressed genes in 

order to identify co/anti-regulated modules (Figure 3B, clustering on the top).  

Special aspects of clustering for scRNA-seq analysis 

Clustering is a crucial step in single cell data analyses with the objective to characterize the 

cellular heterogeneity by defining cell types and states. Clustering, (orlike other dimension 

reduction methods such as PCA, t-SNE or UMAP) can also be used for data analysis and 

quality control. For example, clustering of a scRNA-seq gene expression matrix may output 

clusters corresponding to the origin of each cell types identified. In this case, it might be (at 

least in part) sufficient to characterize the cellular heterogeneity within a sample, for example 

to appreciate the immune infiltrate composition. Other algorithms such as deconvolution or 

mixture model-based approach adapted to single-cell data can help adjusting on confounding 

factors 33,49.  

 

Describing the cancer immune contexture from bulk RNA-sequencing 

As we just mentioned, when applied to scRNA-seq data, clustering methods might be 

sufficient to identify the various immune sub-populations that compose a tumor sample. 
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Thus, the scRNA-seq technique is probably the most suited for this purpose. However, it is 

also possible to describe the immune contexture from bulk RNA-seq, and multiple 

approaches have become available to extrapolate the qualitative and relatively-quantitative 

compositions of tumor-infiltrating immune cells from bulk data 50,51.  

Those methods often rely on prior knowledge of biological processes or cell type specificities. 

Such information is usually obtained from independent datasets that were established upon 

purified cell cultures or single-cell experiments. 

Enrichment analysis and gene lists applied to immune infiltrate description  

Enrichment analysis provides higher-level information compared to gene expression-based 

analysis. Basically, it enables to identify known biological processes that may be up- or 

down-regulated within a sample or a population of cells (cluster). Enrichment analysis can 

therefore also be used to identify and quantify cell type-specific signals, for example to depict 

whether an identified cluster within a bulk sample is more likely to be CD8+ T cells, 

macrophages or tumor cells.  

Enrichment analysis requires a-priori defined sets of genes that are specific to cell types or 

biological processes. These gene sets are often valid across many biological conditions 52. 

For example, ImmuneSigDB is a collection of ∼5,000 gene lists derived from ∼400 

immunological studies, which can be completed with other sources of gene lists 53–56. 

Depending on the question in hand, the user may also choose other gene set collections 

such as MsigDB (Molecular Signatures Database) 57 and KEGG (Kyoto Encyclopedia of 

Genes and Genomes containing pathways) 58. 

Scoring methods are often used to design higher-level variables from the gene expression 

related to gene sets. Among many scoring methods, Gene Set Enrichment Analysis (GSEA) 

is the most widely used 57. GSEA-based approaches rank genes according to their 

expression variation and then evaluate the enrichment of a particular cell type in a sample, 
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using a semi-quantitative score. For example, GSEA on bulk RNA-seq data was used to 

characterize the immune phenotypes of tumor-infiltrating lymphocytes enriched in 598 

colorectal cancers 59. It was also used to build the Cancer Immunome Atlas 

(https://tcia.at/home) from more than 9,000 samples covering 20 different solid cancers 60. 

Enrichment analyses are still under development and recent R packages, such as GAGE 61 

and topGO 62, that provide access to several methods in a user-friendly manner. 

Deconvolution methods 

Deconvolution refers to breaking data up into its various composing elements. Basically, in 

RNA-seq analysis, the goal of deconvolution is to estimate the relative fractions of individual 

cell types from a bulk analysis, as a surrogate of what scRNA-seq analysis can produce 50,63. 

More than 50 deconvolution algorithms for bulk RNA-seq data are published, with various 

methods explored, either supervised (the algorithm learns to predict labels from biological 

measurements) or unsupervised (from the unlabeled data, the algorithm extracts novel 

features and patterns). Some deconvolution methods assume that each gene expression in a 

heterogeneous sample is a linear combination of the expression levels of this gene across all 

the cell types within the sample, weighted by the relative cell fractions 63. More details are 

provided in Box 4.  

In an alternative approach, scRNA-seq can help deconvolution models applied to bulk RNA-

seq: a model can be trained to predict proportions of the different cell types quantified from 

scRNA-seq, from bulk RNA-seq 64. This method is notably used by CIBERSORTx 65, an 

improved version of CIBERSORT, which allows a research of cell signatures, and notably, 

signatures associated with response to immunotherapy. The joint use of single-cell and bulk 

RNA-seq for the analysis of a particular tissue or disease can therefore maximize the 

accuracy and the thoroughness of the final analysis (Table 1).   
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Clinical considerations, applications and current limitations of RNA-seq 

In the era of cancer immunotherapy, RNA-seq technologies can help addressing major 

biological questions, such as how does the immune system evolve along with cancer 

progression, how drugs impact anti-tumor immunity and how clinicians can anticipate 

patients’ outcomes and treatment effect, etc (Figure 1). Using a rigorously selected pipeline 

(from wet to dry lab) among the above-described overall methods, one could theoretically 

answer a wide variety of biological question from analysis of either bulk or single cell data, 

albeit with fluctuating performances. With this in mind, we reviewed in the next sections the 

actual landscape of bulk and scRNA-seq usages in translational and clinical practice. 

Predictive biomarkers for immune-checkpoint blockers 

Programmed death-ligand 1 (PD-L1) tumoral expression was the first biomarker approved as 

a companion test for the prescription of the immune-checkpoint inhibitors targeted toward 

PD-1, such as pembrolizumab. It remains, however, an imperfect biomarker for several 

reasons, including high rates of false negatives and false positives 66,67, technical issues 

despite the standardization of immunohistochemistry assays 68,69 and the absence of 

consensus regarding the relevant staining threshold that should define a PD-L1-positive or –

negative tumor 70. Additionally, tumor mutational load (i.e. the number of mutations per 

megabase) has been shown to be related to immune-checkpoint blockers efficacy, notably in 

microsatellite instability-high (MSI-H) tumors 71–78. In addition to PD-L1 expression, MSI 

status and tumor mutational burden, an increasing number of immune gene expression 

signatures are emerging across cancer types, together with methods that aim to estimate 

neoantigen presentation level, often with the intent to better characterize tumor immune 

response 39,53,79–81. Notably, each of these approaches could be addressed using RNA-seq 

methods. For example, PD-L1 mRNA expression has been shown to correlate both with 

immunohistochemistry assessment of PD-L1 expression and clinical prediction of response 

to immune-checkpoint blockade 82,83. 
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The broad effect of most immunotherapies, including immune-checkpoint blockers, is 

tempered by the modest proportion of patients who derive a prolonged benefit from it. Up to 

30% of patients with commonly sensitive solid tumors (such as melanoma or lung cancer) 

may in fact be primary refractory to immune-checkpoint blockers 84. Secondary resistance – a 

mechanism whereby patient initially responding to a treatment cease to do so – additionally 

affects up to 20% of patients with melanomas treated in first-line and 30% of patients with 

lung adenocarcinomas 85. Finally, about 20% of patients harbor prolonged responses 86. The 

type and quantity of immune cells found within the tumor micro-environment influence tumor 

development and can impact the prognosis of patients 2,87. The immune infiltrate composition 

was also shown to be predictive of clinical response to immune-checkpoint blockers 2,88–90. 

However, no perfect predictive biomarker has been identified so far and emerging immune 

signatures often lack validation on independent cohorts, such as in our example. Marker 

combinations may improve clinical utility. For example, a highly immunogenic tumor – with 

high PD-L1 expression, CD8+ T cell and dendritic cell infiltration – is more likely to respond 

to immune-checkpoint blockers than a non-immunogenic tumor 91. 

Machine learning for prediction modeling 

Machine learning is a branch of artificial intelligence that exploits a large number of statistical 

techniques to allow mathematical functions to "learn" from experience acquired from similar 

examples (training). Deep learning is a branch of machine learning stacking several 

statistical models together to increase nonlinearity between input data and predictions. 

Machine-learning methods are increasingly used in cancer diagnosis, prognosis and 

treatment guidance; especially with RNA-seq data as inputs to feed linear models (such as 

shallow Cox regression) or nonlinear models (such as neural networks). Recent adaptations 

of neural networks have also integrated methods to learn on survival data (comprising 

censored values), for example by using a Cox-loss function 92,93. 

Prognostic models  
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Some machine learning approaches have led to clinical applications such as estimating 

patients’ outcome from gene expression values in breast cancers 92,94,95. Nevertheless, 

overfitting and poor generalization inherent of high-dimensional data with a small number of 

examples have limited the success of such methods so far 96,97. Several teams have 

developed pan-cancer prognosis predictors by feeding deep learning models with RNA-seq 

data from the TCGA project 92,93,98,99. In these studies, concordance indexes (C-indexes) – 

which provide a global assessment of the model’s ability to predict survival – ranged from 

0.59 to 0.75, which correspond to modest performance values (0.50 corresponding to 

random prediction, and 1 to perfect prediction). Limiting overfitting during models training is a 

very active field of research in machine learning. Several methods exist, that are beyond the 

spectrum of this review, except for automatic input variable selection such as lasso 

penalization, which are close to dimension reduction technics detailed above and in Box 1. 

Prediction of treatment effect 

Evaluation of the effect of treatments has been mostly explored in cell lines 100. An early 

study showed that gene expression data was the most efficient data type to predict drug 

sensitivity, across multi-omics data 100. Recently, a deep learning-based model based on 

prior knowledge showed impressive results for the prediction of tumor sensitivity to 

anticancer compounds 101. Additionally, Hwang et al. recently reported that they were able to 

accurately predict the response to anti-PD1 treatment in patients with non-small cell lung 

cancer (with sensitivity, specificity and accuracy of 0.89, 1.0 and 0.95, respectively), by 

applying a random forest classifier using immune gene signature scores obtained from 

single-sample GSEA (ssGSEA) 81. Altogether, an increasing number of gene expression 

signatures related to response to immunotherapy are emerging from deep and machine 

learning analyses of RNA-seq data 102,103.  

RNA-seq in clinical trials in onco-immunology 
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Recently, an increasing number of clinical trials have been integrating RNA-seq in their 

design with various objectives; either biological description of the effect of treatments or with 

the intent to treat patients (Figure 4). This illustrates the growing interest of clinicians in 

whole transcriptome profiling. Examples of interventional studies using RNA-seq to guide 

treatment decisions concerned children with high-grade gliomas (NCT03739372), or adult 

patients with biliary tract cancers (NCT04318834) or soft-tissue sarcomas (NCT03784014, 

NCT03375437). Recent evaluations of the use of RNA-seq to orient patients with refractory 

cancers to targeted treatments demonstrated the feasibility of such an approach in routine; 

however, it failed to improve patients’ outcomes so far 104,105. Other studies used RNA-seq to 

evaluate the immune transcriptome profiles of tumors receiving immune-checkpoint blockers, 

some using immune gene expression signatures (for example in trials NCT03978624, 

NCT04326257 and NCT03673787).  

Studies using scRNA-seq often investigate the changes in tumor immune cell population 

rates in response to treatments. For example, this has been done in patients receiving 

endocrine therapy and a CDK4/6 inhibitor for advanced or metastatic breast cancer 

(NCT04352777), and in patients receiving pembrolizumab with or without chemotherapy for 

non-small cell lung cancer (NCT04061590). 

Yet, the feasibility of the translation of RNA-seq methods into the clinical routine raises many 

questions, such as the lack of gold standard technical and computational methods. For 

example, if we consider five types of sequencing libraries, times three different mapping 

techniques, four imputations, seven normalization processes and four differential expression 

testings, this leads to 1,680 ways to differentially interpret one dataset. This is largely 

underestimated if we take into account every parameter that could be manually set at each 

step. Therefore, standardized pipelines need to be developed to allow reproducibility 

between centers. Awareness is raising regarding this aspect, and efforts are being made in 

this direction 106.  
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Cost 

Another important component for evaluating the implementation of RNA-seq into the routine 

clinical care is cost. The budget for performing RNA-seq depends on many factors, including 

sequencing depth (average number or reads per transcript), type of library used (rRNA-

depleted, poly(A)-enriched RNA, whole RNA sequencing, small RNA sequencing, etc.), type 

of sequencing (single-end or paired-end), sample size and quality (number of cells to 

sequence for single-cell), and, if appropriate, cell isolation method (droplet-based, micro-

fluidics etc.). Bulk RNA-seq usually requires at least 100-2000 ng of total good quality RNA. 

This corresponds to 2-10 mg of fresh frozen tissue or 2-4 Formalin-Fixed Paraffin-Embedded 

(FFPE) slides; although a few companies propose ultra-low input sequencing from 10 pg of 

high-quality total RNA, at higher costs. Regarding all of these parameters, in 2020, a “typical” 

experiment of bulk RNA-seq may cost between 150€ and 1500€ per sample; while scRNA-

seq still scales between 1000€ and 9000€ per sample (Table 1). These costs do not include 

bioinformatics services. 

Low-cost alternatives are exponentially emerging and intend to reduce the average expense 

for a whole transcriptome profiling to less than 30€ per sample, mostly by using specific 

libraries and extensively optimized sequencing techniques 35,107,108. Additionally, targeted 

RNA-seq represents an attractive cheaper alternative in case specific transcripts of interest 

are known beforehand, for example, once a particular immune signature has been built from 

whole transcriptome analyses and is related to a specific treatment effect. For example, 

restricting the systematic sequencing to a panel of 500 relevant transcripts could reduce the 

cost to 10-15€ per sample. 

 

Conclusion 
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After almost a decade of intensive clinical and translational research in the field on onco-

immunology, major questions remain, and notably: can we, should we – and how to – 

anticipate resistance phenomenon upon immune blockade? Those questions are still 

pending, yet RNA-seq technologies are on a clear positive path regarding technical 

feasibility, affordability, the vast number of computational tools associated with an active user 

community engaged in offering free-access to user-friendly tools. RNA-seq is expected to 

become a cornerstone of personalized care in onco-immunology. The increasing availability 

and popularity of innovative techniques further scales up the challenges connected to the 

analysis of molecular data. Bringing scRNA-seq to the clinic may be challenging, although an 

increasing number of translational studies should contribute to define its position in cancer 

treatment personalization.  

ScRNA-seq analysis provides expressions of the genes within each cell studied, although 

recent technological advances allow carrying out several measurements on the same cells. 

For example, for lymphocytes, the complete variable sequences of the TCR / Ig of each cell 

can be obtained (Single Cell Immune Profiling). Similarly, the presence of target proteins on 

the surface of cells can be assessed by CITE-seq 109. Yet, the major innovation remains the 

association between gene expression and the location of cell groups in a tissue section, so 

called the “spatially-resolved transcriptomics” 110,111. In addition, the single-cell technologies 

are not restricted to transcriptomics. Single-cell ATAC-seq is well established, and single-cell 

proteomics are actively under development. Great efforts are being made to integrate “multi-

omics” from one cell. 

Despite great improvement of the techniques, important issues regarding application of the 

computational and machine learning-based methods for the analysis of both bulk and 

scRNA-seq data are emerging. Mainly, it affects reproducibility and interpretability of their 

results and thus, limits their translationality to the clinic. The most technically advanced 

approaches, such as artificial neural network-based methods, even if they are very tempting 

to use, frequently produce results with limited generalization performance. Also, poor human 
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interpretability keeps on being a limitation, even if no human can interpret clinically the data 

from a full cancer transcriptome, and while many methods are developed to decipher neural 

networks decisions. Also, gaining insights in these methods should improve the way we may 

use it in the clinic. In this context, clinical guidelines for the redaction of clinical trials 

protocols (SPIRIT-AI) 112 and final reports (CONSORT-AI) 113 of interventions involving 

artificial intelligence have very recently evolved to take account of these advances.  

Finally, single-cell and bulk RNA-seq would both benefit from being developed as 

complementary techniques (Table 1). In the context of immune therapy, clinical translation of 

RNA-seq will require consolidating the robustness of predictive features associated with 

response/resistance to immune-checkpoint blockers. Ultimately, defining standardized 

analysis pipelines among thousands available will be essential and should benefit to 

reproducibility and gradual generalization of the practice.  
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Figure legends 
Figure 1. Graphical abstract. Clinical positioning of RNA sequencing to personalize onco-

immunotherapy treatments from the analysis of a patient’s tumor biopsy. The tumor and its 

microenvironment can be analyzed using gene expression signatures, deconvolution and 

modeling methods to predict tumor sensitivity to therapies.  

Figure 2. Processing pipelines of bulk and single-cell RNA-seq experiments. RNA 

transcripts are reverse-transcribed into complementary DNA (cDNA), the cDNA second 

strand is synthesized and then amplified, before being sequenced by a next-generation 

sequencing (NGS) machine. In the case of scRNA-seq, the reverse transcription step 

includes the incorporation of unique molecular identifiers (UMI) to identify mRNA molecules, 

and barcodes to identify single cells. RNA-seq generates 100 nucleotide long reads. A 

FASTQ file stores all the reads of one sample, in an arbitrary order, together with one quality 

score per sequenced nucleotide. Mapping (or alignment) refers to finding the position of a 

read on a reference genome or transcriptome. Quasi-mapping (or pseudo-mapping) aligns 

reads to a pre-indexed transcriptome rather than to a reference genome and is thus faster. A 

SAM file stores the information relevant to each read. This information, compressed in 

binary, is known as a BAM file. Expression estimation relates to counting every read using 

various normalization methods, and producing gene- or transcript-based quantification fitted 

for further analysis. Other analyses concerns detection of transcript fusions, splicing variants, 

or estimate genomic variations, which we do not detail in this review. 

Figure 3. Illustration of popular methods used to analyze bulk and single-cell RNA-seq 

in the field of immune-oncology. For (A) to (C), we used the public GSE78220 dataset of 

bulk RNA-seq performed on 38 melanoma patients before treatment with immune-checkpoint 

inhibitors (either pembrolizumab or nivolumab) described in Hugo et al., Cell (2016) 25. (A) 

Volcano plot for differential expression analysis comparing responder and non-responder 

patients. Gene names are represented in colors for differentially expressed genes with 

absolute fold change > 0.3 and p-values < 0.01. (B) Heatmap organized by hierarchical 
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clustering of the log transformed gene expression for the differentially expressed genes 

(defined in A). The row side bar represents responder and non-responder patients. (C) PCA 

of the differentially expressed genes separates responder and non-responder patients in the 

two first dimensions of the PCA (Dim1 and Dim2). (D) UMAP representation of the single-cell 

RNA-seq analysis of the KUL01-T sample retrieved from the publicly available GSE144735 

project (Ho et al., Nat Genet (2020)). The sample comprised 1.922 cells analyzed and pre-

filtered and 51.292 genes or genomic loci. Expression values have been normalized by an 

improved negative binomial model. Dimensionality reduction was performed using PCA and 

then UMAP on the first 30 dimensions, using R Seurat version 3.2.0. The UMAP plot displays 

the cells (1 point = 1 cell). UMAP efficiently depict the clusters of immune cell types. A gene 

list of 1149 genes related to activation of invasion and metastasis processes were retrieved 

(gene list from Zhang et al., Front Genet (2020)). Coloring intensity represents the sum of the 

expressions in the list of genes. 

Figure 4. Evolution of the number of opening clinical studies that integrated 

conventional (A) or single-cell (B) RNA-seq analyses in their designs between 2010 

and 2019, according to clinicaltrials.gov. Only studies related to cancer were considered. 

Non-interventional studies are shown in red, interventional studies are shown in black. 

Dotted lines correspond to estimations based on the number of clinical trials fulfilling the 

criteria that opened between January 1, 2020 and July 1, 2020. 
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Table 1. Comparison of bulk and single-cell RNA-seq for clinical translation, 

specifically in onco-immunology. We also explore the advantages and limitations of 

combining both techniques.  

    RNA-sequencing 

    

Conventional 
bulk 

Single-cell 

Joint use of 
single-cell 
and bulk 

data 

Experimental and general aspects      

 Cost + +++ ++++ 

 Size of sample (minimal amount of RNA required) +++ + +++ 

 Batch effect + ++ +++ 

 Dropout amplification/coverage bias + +++ ++ 

     

Computational aspects    

 Storage capacity + ++++ ++++ 

 Handling sparsity + +++ ++ 

 Differentiating complex expression patterns from noise ++ +++ ++ 

 Dealing with missing data ++ +++ ++ 

 Deconvolution requirement to characterize immune infiltrate  ++++ + + 

     

Acquired information    

 Appreciating tissue heterogeneity at the cell level + ++++ ++++ 

 Analysing specific populations (T cells, B cells…) + +++ ++++ 

 Describing populations as a whole ++ ++ ++++ 

  Accuracy of the final analysis ++ +++ ++++ 
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Box 1: To go deeper into dimensionality reduction 
 
 
Feature selection can consist in the selection of genes from DE analysis by setting 

thresholds of fold-change and FDR. A reduced gene list comprising only the most differently 

expressed genes can then be visualized, for example using a heatmap (Figure 3B). Many 

other approaches of feature selection exist. For example, in the field of supervised machine 

learning, regularized and/or sparse linear regression (e.g., based on lasso) forces certain 

coefficients to zero, resulting in genes not used by the model. Non-zero genes are therefore 

selected as important for the predictions. Unsupervised methods of feature selection can be 

used by selecting the most fluctuating genes (from estimation of the variance), genes whose 

dispersion strongly deviates from what would be expected based on their mean expression 

level (so called over-dispersed genes), 114 or genes strongly contributing to the distinction 

between data clusters or linear components (see below). 

The feature engineering approach to dimensionality reduction consists in transforming the 

initial data variables, such as gene expression, into a relatively small number of linear or 

nonlinear combinations. In the case of linearly constructed features, they are frequently 

referred to as components or meta-genes. The oldest and most widely used linear method 

for dimensionality reduction is Principal Component Analysis (PCA) 47, which constructs 

orthogonal sets of vectors in the data space, corresponding to the directions of maximal 

variance. The classical PCA is a deterministic method while some of its later modifications 

are probabilistic, e.g., in the case of large single cell datasets. Independent Component 

Analysis (ICA) is another popular linear method which is usually applied on top of PCA, and  

creates the most statistically independent features as possible 115. Both PCA and ICA 

components can be interpreted either by considering the weights associated to genes (by 

applying functional enrichment tests) or to samples (confronting with their annotations). In 

these analyses, ICA components are systematically characterized by improved biological or 

clinical interpretation 115. Thus, individual independent components can emerge from the 
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presence of distinct cell types within a tumor sample: as such, ICA can be used as an 

unsupervised cell type deconvolution technique 116.  

T-distributed Stochastic Neighbor Embedding (t-SNE) 117, and Uniform Manifold 

Approximation and Projection (UMAP) 118 are non-linear dimensionality reduction methods, 

based on constructing a pairwise distance similarity graph between data points and 

representing its structure as faithfully as possible in the reduced 2D or 3D space. t-SNE and 

UMAP are non-deterministic methods and the resulting axes cannot be directly interpreted. 

As a matter of fact, t-SNE and UMAP projections can be rotated without their meaning being 

changed. They can perform significantly better than PCA in grouping on the map points that 

are close in the large dimensional space, while PCA is more faithful in representing large 

distances between data points. Compared to t-SNE, the UMAP algorithm better preserves 

the global structure of the data. Both methods successfully deal with large datasets and are 

therefore relevant for visualizing scRNA-seq datasets and the results of their analyses. 

Moderate dimensionality reduction by applying PCA (with 10-50 dimensions being retained) 

is usually advised before application of t-SNE, which reduces the computational cost and de-

noises the single cell profiles to some extent. By contrast, this step is not always mandatory 

in the case of UMAP, which can be directly applied to large dimensional data.  

  



 
 
Applications of single-cell and bulk RNA sequencing in onco-immunology 

39 
 

Box 2: To go deeper into trajectory inference 
 

Trajectory inference is applicable in the case when a population of cells represents a 

snapshot of an actively developing dynamic process, such as differentiation. In this case, the 

geometrical structure of the data is recapitulated as a bouquet of diverging and branching 

trajectories, where branching points represent important cell fate decisions. Each individual 

cell can be attributed to one or several trajectories and characterized by the value of 

pseudotime, which reflects the accumulated number of molecular changes as the total path 

length along the trajectory measured from some root state. The relation between pseudotime 

and physical time can be highly non-trivial. Dozens of trajectory inference methods such as 

Monocle 119, STREAM 120, PAGA 121  have been suggested and systematically benchmarked 

48. Interestingly, trajectory-based analysis can be applied to bulk tumoral transcriptomic 

profiles, too 122. The usefulness of trajectory inference approaches in onco-immunology is yet 

to be fully demonstrated.  

The trajectory inference is often accompanied by the dynamic network inference whose goal 

is to discover the gene regulatory networks that drive transitions from one cell type or state to 

another. Dynamic network inference analysis uses cell ordering from trajectory analysis and 

co-occurring or correlated genes. Several tools exist (SCENIC 123, GRISLI 124, LEAP 125 and 

PIDC 126, for example), but the quality of results strongly depends on the dataset. 
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Box 3: To go deeper into clustering 

Clustering based on the transcriptome is attractive given the wide and unbiased nature of the 

output. However, clustering algorithms contain a crucial parameter that directly or indirectly 

defines the number of generated clusters – and thus, the resolution or granularity of the 

analysis. This parameter has a huge impact on downstream conclusions, although it is 

usually difficult to define before the interpretation step. Thus, underestimating the number of 

clusters leads to merging important cellular phenotypes together, while overestimating it 

might make it impossible to identify statistically significant features distinguishing cell states. 

Therefore, a pragmatic strategy frequently used is to generate several data partitions into 

clusters at several scales, and develop a multi-scale data analysis strategy. 

The most commonly-used algorithms for clustering bulk transcriptomic profiles are 

hierarchical clustering, k-means and density-based clustering such as DBSCAN 127, and 

graph-based clustering algorithms also exist such as general-purpose Louvain 128 and Leiden 

129. PhenoGraph 130 approach gained popularity in the single cell data analysis field. These 

algorithms are based on finding tight communities in point neighborhood graphs which 

makes them highly scalable and sensitive to relatively fine-grained dissimilarities between 

cellular transcriptomes 131. Clustering methods have notably sparked several atlas projects 

such as the Human Cell Atlas 132.  

Using clustering, it is also possible to identify the genes that drive the most the differences 

between clusters – named “marker genes” – that further reduce the information and help 

interpretation 50. In the case of bulk RNA-seq, clustering can output clusters corresponding to 

tumor types, or to different sequencing techniques. In this case, such analysis can be used 

as a quality control. If technical (or undesired biological) factors correlate with clusters, 

additional correction of the batch effect can be considered.  
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Box 4: To go deeper into deconvolution methods 

Recent popular supervised deconvolution algorithms include CIBERSORT 133, MCP-counter 

56, TIMER2.0 134, xCell 135, ESTIMATE 136, csSAM 137, BSEQ-sc 138, EPIC 139 and ABIS 140, 

among other tools, which focuses on immune-infiltration quantification. A global approach of 

immune deconvolution could integrate several of these tools to estimate immune cell 

fractions from bulk RNA-seq data, as proposed by immunedeconv 141. Although most of 

these tools only work for human data, some of them -such as mMCP-counter- also offer a 

version for murine data 142 (adapted from MCP-counter) and ImmuCC 143 (derived from 

CIBERSORT). 

Unsupervised deconvolution algorithms, often based on matrix factorization methods 116,144–

146, work without predefined reference cell type signatures. Recent unsupervised methods 

have used neural networks in the form of auto-encoders, where the thinnest hidden layer of 

the neural network is extracted to represent a lower-dimension of the data 147,148. 
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