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This paper presents an advanced strategy combining fuzzy logic and artificial neural networks (ANNs) for direct torque control
(DTC) and broken-bar fault diagnosis in induction motors. More specifically, a fuzzy-based controller is used to simultaneously
minimize the stator flux and the electromagnetic torque ripples. A neural switching table is then proposed to achieve the interface
inverter control. Besides, a closed-loop broken-bar fault detection strategy based on the Hilbert technique (HT) with the discrete
wavelet transform (DWT) and ANNs is proposed. The fault detection is performed by analyzing the induction motor’s stator
current by using the combined techniques HT-DWT. The effect of a broken-bar fault on the machine varies according to the
number and position of the broken bars. The neural detector was used in order to identify the number of broken bars through only
one current measurement. The effectiveness of the developed control has been verified using MATLAB/Simulink and real-time
simulation in OPAL-RT 4510. Obtained results show improved performances in terms of torque ripple minimization and stator

current quality, evaluated, respectively, at 43.75% and 41.26% as well as a rigorous motor health monitoring.

1. Introduction

The induction machine is believed to be the electric machine
most met these last years in the industrial sector due to its
simplicity of design and maintenance, robustness of gen-
eration, reduced cost of manufacture, and reliability in
operation [1]. Recently, the direct torque control (DTC) of
the induction motor has become very useful in electric
drives. Nevertheless, the induction motor is still affected by
different types of faults. Monitoring the state of the in-
duction motor driven in an open or closed loop is of im-
perious necessity, which prompted researchers to develop
fault diagnosis techniques for this kind of motor [2, 3]. The
objective of the diagnosis is to identify and locate the various
problems of the motor to bring early solutions in order to
increase its lifetime [4-6]. For the drives of the electrical
machines, faults can be detected on the switches of the static
converter connected to these machines. Electrical machines

are subjected to various faults such as short circuits in the
stator or breakage of one or more bars in the rotor [7, 8].
Similarly, the faults can also be encountered in measurement
or detection elements [9].

The detection of anomalies and faults affecting the
asynchronous machine was initially based on the analysis of
noise, vibration, and temperature [10]. The high cost and
noise sensitivity of the electromechanical installation have
made these techniques impractical [11]. The second variety
of technique recommended in the same order of idea is
called the analysis of the signature of the motor current for
which, each type of defect corresponds to it with a spectral
signature [5, 6]. This method offers simplicity in the mea-
surement of current and signal processing, which is fast
Fourier transformation (FFT), characterized by its great
ability in static mode to detect the anomaly of rotor bars
breaking [11]. To overcome the problem of better frequency
detection of the lateral bands due to proximity and overlap
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with the fundamental frequency, the Hilbert transformation
technique (HT) has been suggested [12]. On the other hand,
the wavelet transform (WT) method is relevant to many
areas of mathematics, including signal and image process-
ing. It is considered as a suitable tool for the analysis of
nonstationary signals [13].

The presence of variable speed drives controlling the
induction machine makes it difficult to diagnose faults since
the operation of the motor is always maintained in any
desired requirements (speed references and load distur-
bances). The imposed regulation corrects and compensates
the effect of the possible fault on the rotation speed of the
asynchronous motor. For this reason, it is highly necessary
to diagnose the defects of the closed-loop induction motor,
which is widely used in the industrial sector, through the
analysis of control variables other than those of the rotation
speed [14, 15]. For the field-oriented control approach and
the classical direct torque control strategy, the electrical
quantities, which comprise the quadratic components of the
current and the stator phase current as well as the me-
chanical quantity represented by the rotational speed
(sensed or estimated), have been analyzed by the FFT, HT, or
discrete wavelet transform (DWT) methods to extract the
broken rotor bars fault of asynchronous motor. The authors
in reference [4] have used the FFT technique and the DWT
method for the identification of bar break defects applied to
a reduced model of the asynchronous motor. In turn, the
authors in reference [11] have used only the FFT method for
the same type of fault affecting the same model of the
asynchronous motor developed in reference [4]. By keeping
the same control technique for the same model of the in-
duction motor having the same defect studied in references
[4, 11], the authors in reference [13] have applied the DWT
method on the rotational speed, on the stator current, and
on the signal coming from the speed regulator output to
identify the possible anomalies. Another research work has
been presented in reference [14] where the authors have
proposed an indirect field-oriented control of the faulty
induction motor. The HT and ANN methods have been
employed for the fault diagnosis task. On one hand, the
classical DTC strategy with an adaptive model of the
asynchronous motor was investigated during the application
of broken rotor bars faults. The FFT technique has treated
the measured stator currents and voltages for the detection
of the defect caused by the authors in reference [6]. On the
other hand, the authors in reference [15] have conserved the
use of the conventional DTC strategy of the induction motor
with analysis of the stator current by FFT and DWT to
diagnose the defect of broken bars. In recent years, the DTC
control of healthy induction motors has seen the application
of artificial intelligence and advanced control laws to im-
prove its performance. Table 1 summarizes some of the
techniques recently published in the literature.

Our research work proposes a new approach DTC of the
induction motor, characterized by replacing the two hys-
teresis comparators of the flux and the torque and the
switching table identified by three inputs and three outputs
through a combined intelligent device. It is composed of
a single fuzzy controller providing simultaneous flux and
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torque correction and a neural switching table where its first
input represents the sector locating the position of the stator
flux and its second is the output of the proposed fuzzy
controller.

The same research work also proposes a diagnostic and
fault detection study relating to a break of adjacent bars (1, 2,
or 3) of the induction motor, characterized by its reduced
model that can treat several types of defects, compared to
other existing models. The information on the presence of
defects is offered after analysis and examination of the stator
current of the induction motor by the combined method
between the Hilbert technique and the discrete wavelet
transform (HT-DWT). In order to classify and detect the
number of broken bars, artificial neural networks have been
deployed in this work to perform this task. The necessary
data for the intelligent neural detector are communicated by
the HT-DWT transformation analyzing the stator current of
the motor. The different results obtained with the consid-
eration of the monitoring of possible faults for a closed-loop
electric drive under different conditions confirm the ability
of the induction motor to operate with better performance
compared to the conventional DTC control.

This paper is organized into six sections. Section 2 is
reserved for the presentation of the reduced mathematical
model of the induction motor. The classical DTC strategy
and the improved one based on artificial intelligence are
discussed in detail in Section 3. Several simulation and
experimental tests related to the improved DTC strategy of
the healthy and faulty induction motor are exhibited and
interpreted in Section 4. The applied techniques for the
diagnosis, detection, and classification of the broken rotor
bar fault affecting the induction motor are presented in
Section 5. Finally, Section 6 concludes this paper.

2. Reduced Mathematical Model of
Induction Motor

Each study of a physical mechanism obeys in most cases to
a mathematical modeling. To know the behavior of the
studied system under the action of different internal and
external effects, a simulation is necessary to reveal the
influence of existing or induced defects to better un-
derstand all the mechanisms governing the modeled
system. The concretization of the reduced model intended
to be applied for a closed-loop control with consideration
of rotor and stator-related faults is extracted from the
multiwinding model of the asynchronous motor as il-
lustrated in Figure 1 [4, 11]. This model requires an ex-
tensive park transformation on the rotor system allowing
having the system of (Nr) bars in reference (d, g). The
developed model aims to study the behavior of the
asynchronous motor in a healthy and defective state under
different operating conditions [13].

The reduced system of the induction motor is modeled
mathematically by the following equation:

[Lmot] % = [Umot] - [Rmot] [Imot]' (1)
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Figure 1: Equivalent circuit relating to the rotor of the
induction motor.

The matrices of the voltages (U,,,,), currents (I,
inductances (L), and resistors (R,,,) of the motor are,
respectively, defined as follows:

[Umot] = [Uds qu]T’

T
[Imot] = [Ids Iqs Idr Idr Ie] >

- Nr .
Lsc 0 _7 sr 0 0
0o L, 0 M, 0
L = 3 ,
[ mot] _5 Msr 0 ch 0 0
3
0 =M, 0 L., O o
L o 0 0 0 Ll
r Nr -
R, -wL, 0 = wM,, 0
NT
wL,. R, Y wM,, 0 0
[ Rmot ] = >
0 0 [erd erq ] 0
0 0 [Riqa Re| ©
L O 0 0 0 R

e

where (L) represents the total cyclic inductance of the
stator phase, composed of the magnetization inductance
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(Lp) and the leakage inductance (L), which is represented
as follows:

Lsc = Lsp + Lsf (3)
Now, the magnetization inductance (Ly,) is calculated as
follows:
N2.R-1
L, =4y, | —=—— ) (4)
sp = Mo (e ] p2 ] 71)

The mutual inductance (M,,) relative to the two stator
and rotor parts is expressed by using the following equation:

M, :(%) : (e%) -N,-R-Isin (g) (5)

The electrical angle («) of two adjacent meshes of the
rotor is calculated by using the following relation:

aep. (ZZV_”) (6)

r

The cyclic inductance of the rotor phase (L,.) is rep-
resented by the following equation:

L
L,C:L,P—Mr,+2-(ﬁe)+2-Le-(l—cosoc). (7)

r

The identification of the cyclic inductance of the rotor
phase (L,.) is subordinated to the knowledge of the in-
ductance of the rotor mesh (L,,) and the mutual inductance
of nonadjacent rotor meshes (M,,). These two inductances
are, respectively, defined as follows:

Nr_l Ho
Lrp=< : ).(?).ZH.R.,,
Mr,,ZA(lZ)(‘blO)ZT[Rl
N2) \e

The electromagnetic torque generated by the reduced
model of the induction motor, expressed as a function of the
stator and rotor currents, is formulated by the following
equation:

3
T =

em_z'

PN, M (Lo Iy =T 1s,). 9

The rotor speed (w,) of the induction motor depending

on the electromagnetic torque is identified as follows:
do, 1
dt J

(Tem - Tr - fwr)> (10)

where J, T,, and f are, respectively, the inertia moment,
torque resistance, and friction coefficient.

The expressions that take into account the problem of
breakage of the rotor bars of the induction motor are given
by the following relationships:
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2
Riddrqq = Rr +ﬁ (1 —cosa)ZRbfk- (14 cos (2k—-1)-a),
r k

(11)

2 .
Ridqrqd = N (1--cosa) ZRbfk - sin (2k—1) - a.
r k

Through the aforementioned system of equations, the
algebraic sum concerns all the bars with defects. The term
(Ryp) denotes the initial value before the defect of the index
bar (k). When using the induction motor with a reduced
model exposed to defects, controlled by intelligent DTC
strategy, it is necessary to transfer useful quantities posi-
tioned in the reference (d, q) to the fixed reference (a, )
characterizing the DTC approach.

3. Proposed DTC Strategy

The classical DTC control is a technique that essentially deals
with the direct regulation of the electromagnetic torque once the
stator currents and voltages of the asynchronous motor are
measured. Two conventional hysteresis controllers with two and
three levels are used, respectively, to ensure proper control of the
stator flux and electromagnetic torque after estimating and
comparing these two quantities with their corresponding ref-
erences. The electromagnetic torque reference is generated at
the output of the standard proportional-integral (PI) controller.
The same controller also provides effective speed control of the
induction motor. On the other hand, as presented in Table 2,
this control approach has a standard commutation table with
three inputs (stator flux position, torque, and flux correction
actions) and three outputs (S, S5 and S,), acting as the
switching control of the inverter feeding the induction motor.
The following equations are required for this control law
[22, 24]:

(12)

The module and the position of the stator flux are, re-
spectively, calculated as follows:

A A2Zooa2
¢s = ¢sa +¢sﬁ >

A (13)
o[ 9

N
¢S(X

A —
0, = tan

Only after determining the two quantities of flux and
stator current, as given in the following relationship, can the
electromagnetic torque be calculated:

A A A
Tem :P'<¢sa'15ﬁ_¢sﬁ'lstx)’ (14)

where P denotes the asynchronous motor’s number of
pole pairs.

3.1. Design of Fuzzy Torque and Flux Controllers. The re-
searcher Zadeh invented the principle of fuzzy sets in 1965 [25].
Thereafter, the principles of this invention were applied by the
researcher Mamdani in 1974 in order to design the first
controller based on the fuzzy logic theory [26]. Its simplicity of
structure and its robustness have given it a great reputation to
be used in several fields of research; among them, we will
mention the field of electrical engineering. To properly operate
this kind of controller, three essential steps must be followed,
namely, fuzzification, fuzzy inference process, and defuzzifi-
cation [22, 26]. The enhanced DTC is characterized by a flux
and torque control that operates simultaneously by using
a fuzzy controller called fuzzy torque and flux controller
(FTEC) that will replace the two standard two-level and three-
level flux and torque controllers, respectively. The main
function of the FTFC is to minimize the ripples of the stator
flux and electromagnetic torque, thus inducing to obtain better
performance of the DTC control.

The developed FTFC is of the Mamdani type. It is
characterized by two inputs which are the difference
recorded between the reference electromagnetic torque
(recovered at the output of the conventional PI-type speed
controller) and the estimated electromagnetic torque as well
as the difference resulting from the difference between the
reference stator flux and the estimated flux. These two inputs
are fuzzified, respectively, by five and three triangular-type
membership functions for the torque error and the flux
error. The output of the fuzzy controller, which represents
the flux and torque correction actions at the same time, is in
turn fuzzified by five very narrow triangular-type mem-
bership functions. Based on Table 3, the fuzzy rules char-
acterizing our FTFC controller are formulated by a set of if-
then expressions, as follows:

Fuzzyrule (1): If Torque Error is NB and Flux Error is N Then: FTFCis RedT RedF,

Fuzzy rule (2): If Torque Error is NB and Flux Error is Z Then: FTFCis RedT IncF,

(15)

Fuzzy rule (15): If Torque Error is PB and Flux Error is P Then: FTFCisIncT IncF.



TABLE 2: Standard switching table.

Sector
1 2 3 4 5 6
1 V, V3 Vy Vs Vg V)
1V, Vo V, Vo V, V,
Torque -1 Flux Vo Vi Vo, V3 V, Vs
correction 1 correction Vs Vy Vs Vg Vi V),
0 VO V7 V() V7 VO V7
-1 Vs Vg Vi V, V3 V,
Vo (000); V; (100); V, (110); V5 (010); V, (011); V5 (001); Vi (101); V, (111).

TaBLE 3: FTFC controller rules.

Torque error NB NS Z PS PB
RedT RedT KC IncT IncT
Flux RedF RedF RedF RedF
RedT IncT IncT
error Z RedT IncF RedF KC RedF RedF

P RedT IncF RedT IncF KC IncT IncF IncT IncF

N, negative; Z, zero; P, positive; B, big; S, small; Inc, increase; Red, reduce;
KC, keep constant; T, torque; F, flux.

These rules constitute a database connecting the two
inputs with the output for selecting a good decision-making
after execution of the defuzzification phase by the center of
gravity method, as illustrated in Figure 2.

3.2. Design of Neural Decision Table for the Smart DTC
Strategy. Inspired typically by the highly evolved func-
tionality of the human brain, ANNs have invaded the field of
advanced electrical drives considerably [23]. With the ca-
pacity to learn from already existing systems, this intelligent
technique is able to regenerate new generalized models that
can adapt to situations that have not been considered during
the learning phase [27]. The neuron endowed with activation
and summation function represents the essential part of the
ANN. The mathematical model of the neuron is given by the
following relationship [16]:

Y=£<iwi-x,¢\>, (16)
i=1

where the neuron’s input and output signals are identified by
X1, X5, ... Xy and Y, respectively, the weights associated
with the neuron’s inputs are represented by Wy, W, ..., W,,,
and A denotes the neuron’s bias while & is the tangent
sigmoid function.

The supervised learning algorithm is very important
when creating the ANN. In fact, the backpropagation
method alternating between forward and backward motion
is the most commonly used. The calculation of the mean
square error (E,) for this technique is given by the following
equation:

1 m
E == (SO-Y0), (17)
i=1
where [ determines the number of iterations, m represents
the input-output training data, S; is the desired response, and
Y; is the output provided by the neural network in response
to the input X;.
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FTFC Output

Figure 2: FTFC controller map.

The update of the weights of the neural network output
layer is expressed by the following equation:

oE, (I)

W, (+1)=W; (O —ﬂm,

(18)

where y designates the learning rate and Wj; represents the
weight linking the j™ neuron of the output layer to the i
neuron of the previous layer.

The high values of y accelerate the learning phase of the
ANN and lead to a rapid convergence. To do this, a positive
constant 77 known as the moment constant must be added to
equation (18) to get the following equation:

OE, (I

Wi (1+1) =W () —#W

AW (). (19)

The neural switching table has been developed based on
the standard switching table of the DTC strategy. The
proposed fuzzy corrector of torque and flux has been
designed to operate with a specific switching table of two
inputs as depicted in Table 4.

The neural decision table proposed in this paper has been
integrated into the improved DTC strategy to be able to
work properly with the fuzzy controller (FTFC), leading to
the development of a combined fuzzy neural DTC (FNDTC)
strategy, ensuring effective control of the induction motor.

As shown in Figure 3, the constructed neural decision
table has a basic architecture (3-16-3), ensuring the best
learning and testing performance. It is composed of an input
layer of 03 neurons representing sector, torque, and flux
correction actions; a hidden layer of 16 neurons with Tansig
activating functions; and an output layer of 03 neurons
representing the three decision actions (S,,S;,andS,) with
purelin activating functions. The supervised learning
method applied is that of Levenberg-Marquardt while the
method of calculating the error is that of the least squares
with a number of iterations of 1000 and an acceptable
tolerance of the error fixed to 107,

The advanced FNDTC strategy of the induction motor,
characterized by the combination of two intelligent con-
trollers of the fuzzy and neural type, which is intended to
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TABLE 4: Fuzzy switching table.

Sector

Torque and. 2 3 4 5 6
flux correction

IncT IncF V2 V3 V4 V5 V6 Vl
IncT RedF Vs V, Vs Vs Vi Vs
KC V() V7 Vo V7 VO V7
RedT RedF Vs Ve Vi Va V3 Vy
RedT IncF Vi V, Vs Vy Vs Ve

Ing, increase; Red, reduce; KC, keep constant; T, torque; F, flux.

Hidden Layer
Input . Output
Layer Layer
00 e
I
O] L DI 04—
FTFC .
I
EC ». | ‘-—P S,
I
I
e

FiGure 3: Neural architecture of the proposed decision table.

Sector

improve the performance of the standard DTG, is illustrated
in Figure 4.

4. Real-Time Simulation and Discussions

The effectiveness of the proposed control strategy has been
tested using real-time simulations in OPAL-RT 4510. The
entire control strategy and system have been implemented in
the MATLAB/Simulink environment and built-in OPAL-RT
4510 using RT-LAB. Indeed, after obtaining the simulation
results in MATLAB/Simulink software, a real-time valida-
tion is carried out using an OPAL-RT. An OPAL-RT-4510
rapid control prototyping system is used for real-time
simulation. This setup comprises of the target computing
nodes, an oscilloscope, a host PC, an Ethernet communi-
cation link, and input and output boards. The setup is a part
of the smart power platform of the IRENA laboratory.
Figure 5 depicts the laboratory setup used for testing. The
necessary parameters used for these tests are presented in
Table 5.

The induction motor in healthy and faulty states is driven
under load at high and low speeds of 200 rad/s and 30 rad/s
for the two directions of rotation as shown in Figure 6. The
motor in this case has a defect of two adjacent broken bars at
the instant t=1.5s. It is clearly visible that the induction
motor was able to reject the disturbance of the load caused at
time t=1s on the one hand and suitably follow the refer-
ences of the imposed rotation speeds in this robustness test
at times t=2, 4, and 6s on the other hand.

Through Figure 7, it can be seen that the electromagnetic
torque and the stator current (I,) react positively to the
realized robustness tests. Furthermore, the spectral analysis
carried out on the stator current (I,) for the different im-
posed rotation speeds of 200 rad/s, —200 rad/s, 30 rad/s, and
—30rad/s gave us, respectively, the improved THD rates of
8.75%, 7.66%, 11.66%, and 12.28% compared to those of the
classical DTC which had the values of 22.95%, 22.91%,
25.88%, and 26.08%. These values represent an average
improvement rate of 41.26% for the stator’s current quality.
For the stator flux, it is always kept constant at its reference
value of 1 Wb.

The classical DTC and suggested FNDTC techniques
have been validated and compared in real-time using the
hardware in the loop test method based on both dSPACE
1103 and OPAL-RT 4510 devices. As presented in Figure 8,
the response of the induction motor rotational speed under
load presents better speed dynamics with a minimal over-
shoot and a static error of very low value with perfect
tracking of its reference value of 200 rad/s.

The disturbance caused was quickly rejected thanks to
the intervention of the speed regulator employed in this
command. From the same figure, it is obvious that at startup,
the electromagnetic torque reaches its maximum value
limited to 7 N-m and then stabilizes at a value practically zero
in a steady state (without load). After the motor is loaded
with a resistive torque of 3.5N-m, for which the electro-
magnetic torque reacts suitably to this provoked action, the
torque ripples recorded when applying the FNDTC strategy
are reduced in a very significant way compared to those
given by the classical DTC (reduced from +1.6N-m to
+0.7N-m giving an improvement rate of 43.75%). With
regard to the stator current of phase (a) shown in Figure 8,
a good sinusoidal shape was obtained when using the in-
telligent DTC, with an experimental THD value of 8.99% as
recorded in Figure 9. In addition, for both control strategies,
the stator current of phase (a) reacts correctly after loading
the induction motor by a resistive torque of 3.5N-m, as
indicated in Figure 8.

To prove the effectiveness of the FNDTC strategy, the
loaded healthy and faulty asynchronous motor has been
driven under a variety of desired speeds. As shown in
Figure 10, the rotation speed was able to follow the different
imposed references with success due to the applied
control law.

The obtained experimental results show that the pro-
posed DTC approach, applied to the healthy and faulty
induction motor, is able to minimize the ripples of the
electromagnetic torque in a very effective manner, thus
ensuring a better quality of the stator currents compared to
the classical DTC strategy. Nevertheless, the knowledge of
the existence of the fault that affected the asynchronous
motor through these results is not apparent.

5. Methodology of Rotor Fault Diagnosis

5.1. Theoretical Study. In this paper, the diagnostic approach
for identifying rotor faults (broken rotor bars) in an in-
duction machine is performed through the combined
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FIGURE 5: Real-time simulation test bench.

HT-DWT method as shown in Figure 11. By using this
methodology, faults can be diagnosed automatically. It
depends on the use and analysis of the stator current, which
is used as input to the developed neural network detector as
indicated in Figure 11.

The Hilbert transform is a convolution dependent on the
time factor of the signal F(f) with the function (1/f) and
highlights the specific characteristics of the signal F(¢) in the
following manner [14]:

IJ“’OF(T)

HTIF ()] =] :dT:F(t)* %, (20)

TABLE 5: Specifications of simulation and experimental parameters.

P,: nominal power 1.1kW
V: nominal line voltage 220V
I: nominal current 46A
fi: power source frequency 50 Hz

P: number of pole pairs 1

R: average radius of the air-gap 35.76 mm

I: rotor length 65 mm

e: mean diameter of air-gap 0.2mm

po: magnetic permeability of the air 47 % 107 H/m

N,: number of bars 16

Ng: number of turns per phase 160

Rg: stator phase resistance 7.58 Q)

R,: rotor bar resistance 150 &)

R.: ring portion resistance 150 uQ2

L,: short-circuit ring leakage inductance 01uH

Ly: leakage inductance of a rotor bar 0.1uH

Ly stator leakage inductance 26.5mH

J: inertia moment 54 % 10 kg-m®

T: sampling time 0.0001's

Simulation software M.ATL.AB/
Simulink

Practical implementation system (HIL tests) ~ OPAL-RT 4510

where the time, the time domain signal, the convolution, and
the transformation of F(tf) by Hilbert are, respectively,
represented by ¢, F(¢), *, and HT [F(#)].

For the DWT analysis method, it is based on the con-
version of signals in the time/frequency domain. This
method depends on the use of filters with different fre-
quencies where they divide the analysis signal into two
others: the first is called the approximation signal, which is
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FIGURE 7: Simulation results: electromagnetic torque, stator flux, and stator current (I,) of the FNDTC strategy.

produced by the low-pass filter and the second is called the
detail signal, which in turn is produced by the high-pass filter
4, 28].

5.2. Verification of Applied Techniques. Using simulation and
experiment data, the stator current and its formulated en-
velope via Hilbert’s analysis for a motor loaded by a nominal
load in the healthy state and broken-bars (b.b) faulted state
are shown in Figures 12(a) and 12(b).

One of the most important advantages of Hilbert
analysis (envelope) is the suppression of the fundamental
frequency (f;). It is considered a problem when diagnosing

broken rotor bar faults, especially when the load or speed is
low. In this situation, the fundamental frequency and the
frequency of the fault are near each other, which makes it
difficult to identify faults [29].

From Figures 12(a) and 12(b), we can see that it is very
difficult to detect the fault by observing only the performance
of the machine in the time domain. Signal analysis by FFT is
one of the most important solutions to facilitate fault di-
agnosis, since it converts the time domain into the frequency
domain. The benefit of this procedure is that each defect has
its unique frequency. Therefore, the extracted frequencies can
diagnose the fault that manifests in the machine as shown in
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Figures 13(a) and 13(b). From the same figures, we analyzed
the stator current of the induction motor in the healthy and
faulty state using the HT-FFT method.

Through the comparison between the two Figures 13(a)
and 13(b), we notice that there are additional frequencies
when the machine is faulty, which indicates the existence of

{ Stator current envelope }7

o Discrete Wavelet-Transform
(DWT)
o Energy-Calculation

HT-DWT

Effective value
(RMS)

Neural detection
> (Code (1 or 0))

!

Conclusion
(Machine is in healthy state
or in faulty state)

FiGgure 11: Diagnostic methodology based on HT-DWT.

a broken rotor bar fault in the induction machine. The
following equation expresses these additional harmonics or
frequencies [29]:

S Hfaure =2KS; fi, (21)

where K=1,2,3, ...
the motor’s slip.

The frequency values found from Figures 13(a) and 13(b)
and calculated using equation (21) are close to each other, as
seen in Table 6.

Through the previously mentioned advantageous as-
pects, Hilbert’s analysis is very useful for diagnosing defects.
The fundamental drawback of this approach is that it does
not operate well on unstable signals (nonstationary), for
example, when the machine is operating at different loads,
variable speeds, or faults during startup. In fact, when the
signal is not constant, it creates several other frequencies,

, f; is the machine’s frequency and §; is
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FIGURE 12: Stator current and its envelope in the healthy state and in fault of 2.b.b: (a) simulation results and (b) experimental data.
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FIGURE 13: HT-FFT of stator current in the healthy state and in fault of 2.b.b: (a) simulation results and (b) experimental data.

TaBLE 6: Frequencies of the results obtained from the simulation
and experimental spectrum of the machine with a fault of 2.b.b.

Simulation tests Experimental
tests
2S: f; 4S;: f; 2S: f; 4S; f;
fH'fault (Hz): deduced 3.667 7 3.531 7.156
fHfae (Hz): calculated 3.643 7.286 3.538 7.077
Magnitude (dB) —-33.86 —55.62 -33.99 —54.88

which causes difficulties in determining the fault frequen-
cies. The HT-DWT approach has been recommended to
solve this main problem.

In order to calculate the level (N;;) of decomposition of
the DWT method, the sampling frequency (f,,) and the
network frequency (f,.) affect this level. It can be determined
by using the following equation [4, 28]:

log (fsa/fne)
> 71% 2 +1.

In this study, the decomposition level is set at 9, as shown
in Table 7.

The current signal (Sig) analyses by the HT-DWT
method in the healthy and defective states are compared in
Figure 14(a) (simulation results) and Figure 14(b) (experi-
mental data). It can be seen that when a fault occurs, the

Li (22)
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TasLE 7: Different levels of frequencies.
N.i=9 Frequency (Hz)
a9 0 to 9.7656
d9 9.7656 to 19.53125
ds8 19.53125 to 39.0625
d7z 39.0625 to 78.125
dé 78.125 to 156.25
d5 156.25 to 312.5
d4 312.5 to 625
d3 625 to 1250
d2 1250 to 2500
d1 2500 to 5000

amplitude of the a9 coefficients increases, as shown by the
comparison of the details and signals of the approximation
in the following two cases: healthy and faulty. The a9 co-
efficient can be used as an indicator to diagnose this fault.

5.3. Intelligent Fault Detector. Automatic diagnosis is one of
the most important applications that have attracted the
interest of researchers for several considerations, including
facilitating the process of fault identification and diagnosis in
the induction motor based on artificial intelligence. The
neural network is one of the most important methods of
artificial intelligence. To discover and get the best perfor-
mance from the neural network structure, we perform
a number of tests [29].

The neural network employed in this section is made up
of three layers: an input layer, a layer for decision-making as
an output, and a hidden layer made up of five neurons. The
RMS values of the current envelope Iagrms) and energy
(E,9) are considered as inputs to this network. For the
output, we use two pairs of numbers that contain a number
of zero (0) or one (1), where each number represents the
probability that the machine is in a healthy state or in a faulty
state (healthy (0.b.b), one broken rotor bar (1.b.b), two
broken rotor bars (2.b.b), and three broken bars (3.b.b or
>2.b.b)), as shown in Figure 15.

The two entries, Energy (E,o) and Iag rms), were chosen
for several considerations, including the following:

(i) They are affected by the change of state of the
machine, from a healthy machine to a faulty one, and
even when the fault changes, i.e., when the number
of broken rotor bars increases (Figure 16)

(ii) In addition, one of the most important reasons to
choose them is that despite the change in the load of
the machine, the fault can be detected, which means
that the load does not affect the fault detection
(Figure 16)

In order to model an intelligent approach to diagnosing
the fault, a diverse database must be created that allows us to
detect the fault accurately and easily, as shown in Figure 17.
Several samples were taken from the machine in several

International Transactions on Electrical Energy Systems

cases (healthy, 1.b.b, 2.b.b, and 3.b.b or >2.b.b) and different
loads (10%, 20%, 40%, 60%, 80%, and 100% of rated load), as
shown in Figure 17.

As presented in Figure 18, a root-mean-square error
(RMSE) of 1.5567¢ """ and 65 iterations are required to finish
the learning phase. The recorded RMSE value is very close to
zero. We can therefore consider that the learning stage of the
intelligent fault detector is effective.

The targets, response of the intelligent fault detector, and
output errors are shown in Figure 19. It can be seen that the
network response follows the targets with the same path and
the same code. As indicated in Figure 19, the learning error
value which is about 107 reflects the good learning quality of
the designed neural detector model.

Different values not found in the previous database
(learning and training phase) are taken in order to test the
behavior of the suggested and developed neural fault de-
tector. The test is performed as follows:

(i) From t=0s to t=1s, there is no fault in the motor
and the load value is equal to 30% of the rated
load value

(ii) From t=1sto t=2s, there is no fault in the motor
and the load value is equal to 90% of the rated
load value

(iii) From t=2s to t=3s, there is a fault in the motor
(1.b.b) and the load value is equal to 30% of the
rated load value

(iv) From t=3s to t=4s, there is a fault in the motor
(1.b.b) and the load value is equal to 50% of the
rated load value

(v) From t=4s to t=5s, there is a fault in the motor
(2.b.b) and the load value is equal to 50% of the
rated load value

(vi) From t=5s to t=6s, there is a fault in the motor
(2.b.b) and the load value is equal to 70% of the
rated load value

(vii) From t=6s to t=7s, there is a fault in the motor
(>2.b.b) and the load value is equal to 30% of the
rated load value

(viii) From t=7s to t=8s, there is a fault in the motor
(>2.b.b) and the load value is equal to 70% of the
rated load value.

Figure 20 shows the outputs and the errors of these
outputs when testing the neural fault detector under the
previously mentioned values. Through the performed tests
and obtained results, we can remark that the suggested
neural detector is able to automatically detect faults, espe-
cially when loading the machine under different loads.

Finally, a synthesis including a comparative study be-
tween the proposed fault diagnosis strategy and existing
methods in the literature is shown in Table 8. From Table 8, it
can be seen that the closed-loop fault diagnosis strategy
proposed in this paper is better than the diagnosis methods
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FIGURE 16: E,¢ and Iag rys) at different torque values: (a, c¢) healthy IM and (b, d) faulty IM (2.b.b).
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FIGURE 17: Neural network’s training set’s input data.

recently published in the literature. The combined HT-DWT
diagnostic method that we have applied to the induction
motor is functional for stationary, nonstationary, full-load,
and low-load conditions. In addition, the defect affecting the
induction motor is automatically detected by a neural de-
tector. By referring to the recently published research works

of Table 8, it is clear that these works do not provide a di-
agnosis in all conditions compared to our proposed di-
agnosis and detection methods. On the other hand, the
FNDTC control applied to both the healthy and the faulty
induction motor is the most suitable to ensure an effective
speed regulation.



International Transactions on Electrical Energy Systems

Network response Targets

10°

10°

Mean Squared Error (mse)

10-]0

Best Training Performance is 1.5567e-11 at epoch 65

Figure 18: Recorded RMSE value.

B B E g
T i i z : g
50 ‘ :
1 £ (00) (10 (01) (ry)
L
1 1 1 1 E _1 1 1 1 1 1
1 6 11 16 21 24 g, 1 6 11 16 21 24
g
4
. ,EEEEEj,z****:,,,H“ g
| | | | L
Sk = Z
N N N N -1 N N N N N
1 6 11 16 21 24 1 6 11 16 21 24
Samples Samples
—=— Output 1 I Output 2
—— Output 2 Il Output 1
%107
2 T T T T T
2 oL ate 9o 9 o[T7 T9.
= 1 M IR l ol
[52)
-2 L L L L L
1 6 11 16 21 24
x10°
5 T T
[\l . .
g 0 T 1’ T f 1{ I o 1 T foo¢
-
T 1
-5 L L L L L
1 6 11 16 21 24
Samples

FIGURE 19: Targets, network response, and output errors of the suggested neural detector.

15



16

International Transactions on Electrical Energy Systems

-5
15 1><10
1 05
2 05 & 0_|_|—
= g
(@) s3]
0 0.5 _|_
0.5 1
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8
Time (s) Time (s)
6
15 4 10
1 2
N N
- _'_I_
2 05 £ o0
] =)
o s3]
0 2
0.5 4

Time (s)

Time (s)

FIGURE 20: Outputs and errors of these outputs when testing the suggested neural detector.

TaBLE 8: Comparative study between the proposed fault diagnosis strategy and existing methods in the literature.

IM control {\P phed. Operation modes Load type Automatic fault
Recent works strategies diagnostic . . detection
g methods Stationary Nonstationary Full Low

Closed-loop drive Combined
Proposed work fuzzy neural DTC HT-DWT Yes Yes Yes Yes ANN detector
Reference [2] Open-loop drive DWT and HT Yes Yes Yes — No

Closed-loop drive
Reference [6] classical DTC FFT Yes No Yes Yes No
Reference [10] Open-loop drive DWT Yes Yes Yes — ANN detector
Reference [11] Closed-loop drive FOC FFT Yes No Yes — No
Reference [14] Closedl—égo(}:) drive HT Yes No Yes Yes ANN detector
Reference [15] Closed.— loop drive FFT and DWT Yes Yes Yes — No

classical DTC
. Wavelet Fuzzy logic

Reference [30] Open-loop drive packet Yes Yes Yes Yes detector

6. Conclusion

The monitoring of the state of health for the induction motor
driven in a closed loop by an improved DTC strategy with
consideration of the load variation was discussed in this
paper. Furthermore, an intelligent broken bars number
detector based on artificial neural networks has been pro-
posed. Simulation and real-time testing in OPAL-RT have
been carried out in order to highlight the effectiveness of the
proposed strategy under different operating conditions of
the asynchronous motor. The new configuration of the DTC
strategy based on the fuzzy logic and artificial neural net-
work controllers has improved the quality of the stator
currents while minimizing the undulations of the

electromagnetic torque. An average improved rate of 41.26%
has been recorded for the stator current, while the elec-
tromagnetic torque undulations have achieved a rate of
43.75%.

Concerning the induction motor health, the stator
current analysis via the combined method between the
Hilbert technique and the discrete wavelet transform has
been realized for the purpose of detecting any broken bar
defects in the rotor of the driven motor. The real-time tests
have confirmed the effectiveness of the suggested method in
the field of fault diagnosis of the induction motor controlled
by the enhanced DTC strategy.

Finally, as a continuation of this research work, it is en-
visaged to apply an advanced control law in order to operate
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the induction motor controlled by the DTC at a fixed switching
frequency and to study other types of faults such as eccentricity
and stator winding short-circuit, affecting the induction motor.

Acronyms

IM: Induction motor

DTC: Direct torque control

FOC: Field-oriented control

IFOC: Indirect field-oriented control
SVM: Space vector modulation

ANN: Artificial neural network

ACO: Ant colony optimization

PSO: Particle swarm optimization

HT: Hilbert transform

DWT: Discrete wavelet transform

FFT: Fast Fourier transformation
FTFC:  Fuzzy torque and flux controller
FENDTC: Fuzzy neural direct torque control
Mot: motor

s, 1 Stator and rotor index

d, q: Direct and quadratic components
Uss Ugs:  Stator voltages in (d, q) axis

Iy Igs: Stator currents in (d, q) axis

I Short-circuit ring current

Number of rotor bars

Short-circuit ring leakage inductance
Magnetic permeability of the air

Number of turns per phase

Average radius of the air-gap

Rotor length

Mean diameter of the air-gap

Angle between two broken rotor bars

Stator resistance

Rotor resistance

Inductance

Mutual inductance

Number of pole pairs

Electromagnetic torque

wr: Rotor speed

PL Proportional integrator

a, B Fixed reference frame axes

Isa, IsB:  Stator currents in the fixed reference frame (a, )
Vsa, Vsf3: Stator voltages in the fixed reference frame («, )
@sa, psP: Stator flux in the fixed reference frame («, f3)
0y Stator flux angle

Sa Spy Sc: Inverter control actions

TEO®SR Y TR ZT OZ

&
8

b.b: Broken bars

THD: Total harmonic distortion
Sig: Signal

E: Energy.
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