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ON SOME FRAÏSSÉ LIMITS WITH FREE AMALGAMATION

Yvon Bossut

Abstract : In this work a general way is given to construct some examples of NSOP1 theories as
limits of some Fräıssé class satisfying strong conditions. These limits will satisfy existence, that Kim-
independence coincides with algebraic independence, and that forking independence is obtained by
forcing base monotonicity on Kim-forking. These theories also come with a stationary independence
relation. We conclude by asking some questions around stabilizers in NSOP1 groups. This study is
based on results of Baudisch, Ramsey, Chernikov and Kruckman.1

1 Introduction

NSOP1 theories have recently been studied as a generalisation of simple theories. The notion of Kim-
forking plays a similar role in NSOP1 theories than forking in simple theories. Kim and Pillay [22]
have shown that forking independence in simple theories is characterised by some of its properties
(see [25] for example). Chernikov and Ramsey have shown a similar result for Kim-independence in
NSOP1 theories, [12, Theorem 5.8]. The properties of Kim-forking in NSOP1 theories have recently
been studied by Ramsey, Kim, Chernikov, Kaplan ([19], [20] among others). In this work we shall
study independence relations in NSOP1 theories.

At the origin of this work is an interesting construction which appears in [5] : The parameterization
of a theory. Given some theory T in a language L, consider the language LP where we add a new sort
P and one variable in P to every symbol of L, and denote by O (for object) the original sort. Then
an LP -structure A consists of its set of parameters P (A) and of its set of objects O(A) which has an
L-structure Ap := O(A)p induced by every parameter p ∈ P (A). There does not always exist a model
companion to the theory TP expressing that for every parameter p, the L-structure induced by p is a
model of T .

Examples of such model companions are given in [12, Section 6.3] and constructed as Fräıssé limits.
Ramsey and Chernikov consider a relational language L and a class K of structures with the strong
amalgamation property. Then the parameterized class KP is defined as the class of LP -structures A
such that for every p ∈ P (A) the L-structure induced by p on A is in K, and show that the limit of
this class is NSOP1. They give some condition on K under which the limit of KP is non-simple. One
example of the theories they build is the theory of parameterized equivalence relations.

Here we shall give a context in which we can parameterize in the same fashion without assuming that
the language is relational. The cost of this is to have strong assumptions about the generated structure,
namely a set of condition (H) which strengthens the usual Fräısse properties. We obtain similar results
as Ramsey and Chernikov : If some class K satisfies (H) then its limit T is NSOP1 and we can compute
forking independence and Kim-independence in T (Corollary 3.2.10 and Proposition 3.2.15). This is
done through the use of some stationary independence relation which comes from the assumption that
K is closed under free amalgamation in the categorical sense. This independence relation was already
mentioned in [6], and it does not coincide with the notion of Free Amalgamation of [13], which also
is a stationary independence relation but requires the algebraic closure to be generically trivial : If A
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and B are independent and algebraically closed then their union is algebraically closed - this will not
hold in our case unless the algebraic closure is trivial.

It is also shown that the condition (H) is preserved under some modifications of the language L and the
class K : parameterizing K and adding generic structure to K. We also give a condition under which
the limit of the parameterized class is non-simple. This context allows us to build model companions
of some exotic theories, for example the theory of an abelian group with a unary function f such that
f(0) = 0. This example is studied to exhibit some behaviour of NSOP1 groups which we try to explore
in the last section. Here we set some definitions and try to find analogous notions to the stabilizer in
stability and simplicity theory in the NSOP1 context.

2 Preliminaries on independence relations

Let M |= T be a monster model of some complete theory. We introduce the different relations of
independence that we will work with. See [1] and [16] on the topic of the axiomatic approach to
independence relations.

Definition 2.1. Let b0, e be tuples of M and ϕ(x, b0) be a formula.

1. ϕ(x, b0) divides over e if there is an e-indiscernible sequence I = (bi : i < ω) such that {ϕ(x, bi)
: i < ω} is inconsistent. In that case we say that ϕ(x, b0) divides over e with respect to I.

2. A partial type p(x, b) forks over e if it implies a finite disjunction of formulas each of which
divides over e.

3. Let a ∈ M. We write a |⌣
f
e b to denote the assertion that tp(a/eb0) does not fork over e and

a |⌣
d
e b0 to denote the assertion that tp(a/eb0) does not divide over e.

4. A sequence of tuples (ai : i < ω) is called e-Morley if it is e-indiscernible and if ai |⌣
f
e a<i for

every i < ω.

Definition 2.2. A set e ⊆ M is an extension basis if a |⌣
f
e e for every a ∈ M. A theory T has

existence if every set is an extension basis. This is equivalent to saying that for every e ∈ M and every
p(x) ∈ S(e) there is an e-Morley sequence in p.

Remark 2.3. Every model is an extension basis, simple theories satisfy existence, and it is a conjecture
that NSOP1 theories do as well.

Definition 2.4. Assume that e is an extension basis. Let b0 ∈ M and ϕ(x, b0) be a partial type.

1. ϕ(x, b0) Kim-divides over e if there is an e-Morley sequence (bi : i < ω) such that {ϕ(x, bi) :
i < ω} is inconsistent. We will say that ϕ(x, b0) Kim-divides over e with respect to (bi : i < ω).

2. p(x, b) Kim-forks over e if it implies a finite disjunction of formulas each of which Kim-divides
over e.

3. Let a ∈ M. We write a |⌣
K
e b0 to denote the assertion that tp(a/eb) does not Kim-fork over e

and a |⌣
Kd
e b to denote the assertion that tp(a/eb) does not Kim-divide over e.

4. I = (ai : i < ω) is Kim-Morley over e if it is e-indiscernible and if ai |⌣
K
e a<i for every i < ω.

Definition 2.5. We define algebraic independence as the relation A |⌣
a
C B iff acl(AC) ∩ acl(BC) =

acl(C).

Definition 2.6. We define M -independence as the weakest relation implying |⌣
a and satisfying base

monotonicity and closure, i. e. A |⌣
M
C B iff acl(AC ′) |⌣

a
C′ acl(BC) for every C ⊆ C ′ ⊆ acl(BC).
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This relation was defined by Onshuus in the context of rosy theories (see [24] for reference), but we
will not make further use of rosiness because of Remark 3.2.16.

There are a lot of simplicity-like results characterising NSOP1-theories in terms of properties of Kim-
forking. We shall see some of them in Section 3., but for now let us set the following definition :

Definition 2.7. Let T be a theory with existence. T is NSOP1 if and only if Kim-independence is
symmetric, meaning that a |⌣

K
e b iff b |⌣

K
e a for all tuples a, e, b ∈ M.

If we were to remove the hypothesis of existence we would have to restrict ourselves to the study of
Kim-forking over models, which is also interesting. However since we will mostly work with existence
we will not add the definitions for this case. They can be found in [19].

3 Constructing the limit

In this section we consider some set of hypotheses (H) on a class K of structures. We begin by showing
that if K satisfies (H) then we can construct the limit theory T of K. We show that this limit T is
an NSOP1 theory, has existence, that |⌣

K= |⌣
a, that |⌣

M= |⌣
f= |⌣

d over arbitrary sets and that it
has weak elimination of imaginaries. We give some basic examples of such classes K. The bases of
this study are [12, Section 6.3] and [5]. The construction of Baudisch works in a much more general
context, but we focus here on the study of independence relations, which appears in his paper in [5,
Theorem 4.1] under some stronger hypotheses.

3.1 Hypothesis on the class and basic examples

Definition 3.1.1. We consider a countable language L and a class K of countable L-structures with
the following properties, which we will refer to as (H):

1. Hereditary Property : If A ⊆ B ∈ K is a substructure then A ∈ K.

2. Axiomatisability : If an L-structure A is not in K there is a quantifier free formula ϕ and a
finite tuple a ∈ A such that A |= ϕ(a) and A′ 6|= ϕ(a′) for every a′ ∈ A′ ∈ K.

3. Quantifier Elimination : For every quantifier free formula ϕ(x, y) satisfied in some structure
of K there is a quantifier free formula ψ(x) such that if a ∈ A ∈ K and A |= ψ(a) then there is
A ⊆ B ∈ K an extension and b ∈ B such that B |= ϕ(a, b).

4. Free Amalgamation : If C ⊆ A,B are structures in K (where we allow C = ∅ when the
language does not have any constants) there is D ∈ K and some embeddings iA, iB of A and B
respectively to D satisfying iA|C = iB |C , iA(A) ∩ iB(B) = iA(C), D is generated by the images
of A and B and such that given any morphism of L-structures ϕA : A → D′, ϕB : B → D′ to
D′ ∈ K there is a unique morphism ϕ : D → D′ such that ϕA = ϕ ◦ iA and ϕB = ϕ ◦ iB . We
will write A ⊕C B for this structure D. We also assume that the elements of K agree on the
structure generated by the constants, which is equivalent to the joint embedding property when
Free Amalgamation holds.

5. Generic Extension : If A ∈ K and V is a sort there is an extension A⊕〈∅〉 {x} ∈ K generated
by a single element x ∈ V over A such that for every morphism ϕ : A → A′ ∈ K and every
element a′ ∈ V (A′) there is a unique morphism ψ : A⊕〈∅〉 {x} → A′ extending ϕ by sending x to
a′.

6. Algebraically Independent 3-Amalgamation : Given a commutative diagram in K as on
the left below, where the arrows are embeddings, ϕBi

(Bi)∩ϕAi
(A) = ϕAi

◦ iA(E) = ϕBi
◦ iBi

(E)
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for i = 0, 1 and ψB0
(B0) ∩ ψB1

(B1) = ψB0
◦ iB0

(E) = ψB1
◦ iB1

(E), we can complete it inside
of K to a commutative diagram as on the right (where the arrows are embeddings) such that
ϕDi

(Di) ∩ ϕB(B) = ϕDi
◦ ϕBi

(Bi) = ϕB ◦ ψBi
(Bi) for i = 0, 1 and ϕD0

(D0) ∩ ϕD1
(D1) =

ϕD0
◦ ϕA0

(A) = ϕD1
◦ ϕA1

(A) (the blank arrows of the right diagram are those of the left
diagram; their names have been omitted for clarity).

D1 D1 D

A D0 A D0

B1 B B1 B

E B0 E B0iB0

ψB0iB1

iA

ϕA0

ϕB0

ϕA1

ψB1

ϕD0

ϕB

ϕD1

Notice that we do not assume that there are countably many isomorphism classes, nor that the struc-
tures in K are finitely generated. To check condition 5. for a formula it is enough to check it for a
strengthening of this formula that is also realised in K. The notation A⊕〈∅〉 {x} can be read as a Free
Amalgam over the structure generated by the constants. The notation {x} is here to insist on the fact
that what is between the braces is considered only as a set of generator. This notation A ⊕〈∅〉 {D}
where D ∈ K means the Generic Extension with generators indexed on D and should not be confused
with A⊕〈∅〉 D which is the Free Amalgam. Also 2. implies that K is closed under unions of countable
chains and implies 1.

6. is a strengthening of 3-amalgamation for |⌣
a; the fact that the images of A and B1 are disjoint over

the image of E in D1 should be read as ’A and B are algebraically independent inside of D1’ (which is
written A |⌣

a,D1

E B1 with the notations of [4], see this reference for some use of independence relation
in categories). In the usual 3-amalgamation we would ask that Di or B are generated by the image of
the two embeddings from A and Bi or from B0 and B1 respectively. Here however we allow ourselves
to take an extension of the generated structure which will be useful when adding structure in Section
4.2.

Some examples of classes K satisfying (H) are one based stable theories that can be presented as
Fräıssé limits : The class of countable vector spaces over a finite (or countable) field (which is in the
language), the class of countable abelian groups, the class of countable sets with no structure, and the
class of countable graphs. In all those cases the conditions 1.− 5. are easy to check, and the condition
6. is a consequence of the following proposition.

Lemma 3.1.2. Suppose some class K satisfies 1. − 5. and that free independence and algebraic
independence coincide, i. e. that for every E ⊆ A,B ∈ K such that A,B ⊆ D ∈ K, the canonical map
ϕ : A ⊕E B → D is an embedding if and only if A ∩ B = E (the examples previously quoted satisfy
this). Then condition 6. holds.

Proof. The hypotheses imply in particular that algebraic independence |⌣
a,D satisfies base monotonic-

ity in the structures of K (it is shown later in Proposition 3.2.9 that free independence always satisfies
base monotonicity, and it is clear that |⌣

a,D satisfies transitivity). Given E,A,B0, B1,D0,D1 and a
diagram satisfying the assumptions of 6. consider the following diagram, where D := [D0⊕B0

B]⊕A⊕EB

[D1 ⊕B1
B]. We want to show that D0 ∩D1 = A, D0 ∩ B = B0 and D1 ∩ B = B1 inside of D (i. e.
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D0 |⌣
a,D
A D1, D0 |⌣

a,D
B0

B and D1 |⌣
a,D
B1

B). We abuse notation and write 〈AB〉 for the substructure
of D generated by the images of A and B, and for substructures F,G,H of D such that F ∩ G = H,
we will indifferently write 〈FG〉 and F ⊕H G for the generated structure.

D1 ⊕B1
B D

D1 A⊕E B D0 ⊕B0
B

A D0

B1 B

E B0

The maps from A⊕E B to Di⊕Bi
B come from the fact that A and B are free over E in Di⊕Bi

B : In
fact if some element of Di⊕Bi

B is in the image of both A and B, then it is also in the image of Di, so it
is in the image of Bi, and by assumption Bi and A are free over E in Di. This diagram is commutative
and all arrows are embeddings. If some element of D is in the image of Di and B then it is in the
image of Bi, so Di |⌣

a,D
Bi

B for i ∈ {0, 1}. If some element of D is in the image of D0 and D1 then it
is in the image of A⊕E B which is just the substructure generated by the images of A and B. Since
Di |⌣

a,D
Bi

B by base monotonicity Di |⌣
a,D

〈ABi〉
〈AB〉, so it is enough to show that 〈AB0〉 |⌣

a,D
A 〈AB1〉.

Now A |⌣
a,D
E B since D0 |⌣

a,D
B0

B and A |⌣
a,D
E B0. By base monotonicity 〈AB0〉 |⌣

a,D
B0

〈B0B1〉, since

B0 |⌣
a,D
E B1 transitivity yields 〈AB0〉 |⌣

a,D
E B1, so 〈AB0〉 |⌣

a,D
A 〈AB1〉 by base monotonicity and 6.

holds.

3.2 Properties of the limit theory

We begin by constructing the limit theory T of K and then we prove some of its properties. We shall
assume the continuum hypothesis as we need an uncountable regular cardinal κ such that 2<κ = κ,
and it is convenient to take ℵ1 as such.

Definition 3.2.1. Given an L-structure M and a cardinal κ the κ-age of M is the class of the
substructures of M of cardinal < κ.

Definition 3.2.2. Let K be a class of countable structures in some countable language L. An L-
structure M is K-ℵ1-saturated if its ℵ1-age is K and if for every U ,B ∈ K countable and any embed-
dings f0 : U → M, f1 : U → B there is some embedding g : B → M such that g ◦ f1 = f0.

Proposition 3.2.3. There exist an L-structure M which is K-ℵ1-saturated and has cardinal ℵ1.
Every structure of ℵ1-age included in K and of cardinal ≤ ℵ1 embeds into M, and M is unique up to
isomorphism.

Proof. Let (Bi)i<ℵ1
enumerate the elements of K up to isomorphism. We construct by induction an

chain (Ui)i<ℵ1
of LP -structures in K. Let U0 = B0. If Ui has been defined, for every k < ℵ1 let

(fUi,k
j )j<ℵ1

enumerate the embeddings of Ui into Bk. We begin by showing that we can extend a
countable number of partial embeddings in K.
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Claim : If U ∈ K, Bi ∈ K for i < ω and fi : U → Bi are partial embeddings, then there is an
extension U ⊆ U ′ ∈ K and embeddings gi : Bi → U ′ such that gi ◦ fi is the identity on its domain for
all i < ω.

Proof : We build an increasing sequence (U ′
i)i<ω of extensions of U . Let Ei ⊆ U be the domain of fi

for i < ω. Consider the extensions E0 ⊆ U and f0 : E0 → B0. By Free Amalgamation we can define
U ′
0 = U ⊕E0

B0 ∈ K, and we set g0 to be the natural embedding B0 → U ′
0. Assume that U ′

i−1 and
gi−1 are defined for i − 1 < ω. Consider the extensions Ei ⊆ U ′

i−1 and fi : Ei → Bi. We can define
U ′
i = U ′

i−1⊕Ei
Bi, and we set gi to be the natural embedding Bi → U ′

i . Now let U ′ :=
⋃
i<ω

U ′
i . Since K is

closed under unions of countable chains this is a structure in K and it clearly satisfies the condition.

We can now construct the chain. Assume that Uj has been defined for j < i < ℵ1. Let U ′ :=
⋃
j<i

Uj .

Consider the sequence of embeddings (f
Uj ,k

l )j,k,l<i seen as partial embeddings on U ′ ⊇ Uj . By the

claim there is an extension Ui ⊇ U ′ and a sequence of embeddings (g
Uj ,k

l )j,k,l<i : Bk → Ui such that

g
Uj ,k

l ◦ f
Uj,k

l is the identity on its domain Uj for every j, k, l < i. We define M :=
⋃
i<ℵ1

Ui.

Now we show that M is K-ℵ1-saturated. Let U be a countable structure of M. By isomorphic
correction we can assume that the map f0 of the saturation property is the inclusion. Then U ⊆ Uj
for some i < ℵ1 so U ∈ K by Hereditarity thus ℵ1-age(U)⊆ K. Now consider an embedding f : U →
B ∈ K. B is isomorphic to Bk for some k < ℵ1 via ϕ : B → Bk. By Free Amalgamation there is
some k′ < ℵ1 and some embeddings g : Bk → Bk′ and f

′ : Uj → Bk′ such that g ◦ ϕ ◦ f = f ′ (Bk′ is

isomorphic to Ui ⊕U Bk). Now f ′ : Uj → Bk′ is equal to f
Uj ,k

′

l for some l < ℵ1. Set i = max{j, k, l},

by construction, there is a h = g
Uj ,k

′

l : Bk′ → Ui+1 such that h ◦ f ′ is the inclusion Uj ⊆ Ui+1. Then
h ◦ g ◦ ϕ is the embedding we want.

Ui Ui+1 ⊆ M

Uj Bk′

U B Bk

⊆

⊆

f ′

h

f

⊆

ϕ

g

For the second point we proceed as in Fräıssé theory and only use the property of ℵ1-saturation and
the fact that we can amalgamate over the structure generated by the constants : if M′ is a structure
of age inside of K and of cardinal ≤ ℵ1 we fix an enumeration (mi)i<ℵ1

of M′ and define by induction
an increasing sequence of embeddings fi : 〈m<i〉 → M, then the union f =

⋃
i<ℵ1

fi : M → M′ is our

embedding. Let f0 be the embedding of the constants from M′ to M (possibly f0 is the empty set). If
fj is defined for j < i < ℵ1, let f

′ :=
⋃
j<i

fj : B
′ ⊆ M′ → M. Let B be the image of M and g′ : B → B′

be the inverse map of f ′, we can compose g′ with the inclusion B′ ⊆ 〈m<i〉. Since 〈m<i〉 ∈ K we can
use the ℵ1-saturation of M to find a map fi : 〈m<i〉 → M such that fi ◦ g

′ = idB , which implies that
fi|B′ = f by pre-composing with f , i. e. that fi extends fj for j < i. In a similar fashion, to show
uniqueness we construct an isomorphism by back and forth.

Let T be the theory of M constructed in Proposition 3.2.3, we refer to T as the limit theory of K.

Remark 3.2.4. A consequence of the Free Amalgamation property is that dcl(A) = acl(A) = 〈A〉 for
every set A ⊆ M.
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Lemma 3.2.5. T has Quantifier Elimination in L.

Proof. This is clear from the condition 3. : If we consider any ℵ1-saturated model it is K-ℵ1-saturated,
so partial isomorphisms between finitely generated structures have the back and forth property.

Let now M be a monster model of T .

Lemma 3.2.6. The relation of algebraic independence |⌣
a on subsets of M satisfies the independence

theorem : If E,Ai, Bi ⊆ M for i ∈ {0, 1}, A0 ≡E A1, Ai |⌣
a
E Bi for every i ∈ {0, 1} and B0 |⌣

a
E B1

there is an A such that A ≡Bi
Ai for i ∈ {0, 1} and A |⌣

a
E B0B1.

Proof. Consider E,Ai, Bi for i = 0, 1 as in the statement, xA a tuple of variable indexed on A0 (and
A1 thought the isomorphism ϕ induced by A0 ≡E A1) where xa is the variable associated to a ∈ A0

and ϕ(a) ∈ A1. We extend it into xAy0 a tuple of variable indexed on 〈A0B0〉 and xAy1 a tuple of
variable indexed on 〈AB1〉 disjoint with y0. Let qi(xAyi) := qftp(〈AiBi〉/Bi) for i = 0, 1. We show
that q0(xAy0) ∪ q1(xAy1) ∪ {t(xa) 6∈ 〈B0B1〉 : For all terms t and tuples a ∈ A0 such that t(a) 6∈ E}
is consistent. By compactness is it enough to consider finitely generated structures E,Ai, Bi, and in
that case we get consistency by just applying 6.

Definition 3.2.7. We define the Γ-independence relation on small subsets of the monster model : for
E ⊆ A,B say that A |⌣

Γ
E B if the structure 〈AB〉 and the inclusions iA : A → 〈AB〉, iB : B → 〈AB〉

satisfy the universal property that every common extension of A and B in M factorises uniquely
through 〈AB〉.

Lemma 3.2.8. Full existence : For every E ⊆ A,B ⊆ M such that A ∩B = E there is A′ ≡E A such
that A′ |⌣

Γ
E B.

Proof. We want to construct an L-structure D extending B and an embedding iA : A→ D such that
for A′ := iA(A), D = 〈A′B〉 and A′ |⌣

Γ
E B. For countable substructures E′ ⊆ E, A′ ⊆ A, B′ ⊆ B

and E′ = A′ ∩ B′ we consider A′ ⊕E′ B′ ∈ K. The D we want to build is the inductive limit of these
structures, we show that they indeed form an inductive system. Let E′′ ⊆ E′ ⊆ E, A′′ ⊆ A′ ⊆ A,
B′′ ⊆ B′ ⊆ B be countable substructures such that E′ = A′ ∩ B′ and E′′ = A′′ ∩ B′′. Then there is
a canonical map from A′′ ⊕E′′ B′′ to A′ ⊕E′ B′ where E′′ ⊆ E′, A′′ ⊆ A′, B′′ ⊆ B′ and E′ = A′ ∩ B′.
We describe it in the following diagram. This map assures us that the system of the A′ ⊕E′ B′ we are
considering is directed and that we can define the L-structure D as its direct limit. Also Diag(D/B)
is consistent with T because any formula that appears in it is satisfied in some of the A′ ⊕E′ B′ ∈ K

A′ ⊕E′ B′

A′ A′′ ⊕E′′ B′′ B′

A′′ E′ B′′

E′′

∃!ϕ

Now we show that D satisfies the right property : Let D′ ⊆ M, and ϕA : A → D′, ϕB : B → D′

form a commutative square over E. For every E′′ ⊆ E′ ⊆ E, A′′ ⊆ A′ ⊆ A, B′′ ⊆ B′ ⊆ B countable
substructures such that E′ = A′ ∩ B′ and E′′ = A′′ ∩ B′′ the restricted morphism ϕE|E′′ ⊆ ϕE|E′ ,
ϕA|A′′ ⊆ ϕA|A′ , ϕB|B′′ ⊆ ϕB|B′ factorises uniquely via ϕA′′⊕E′′B′′ and ϕA′⊕E′B′ respectively trough
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A′′ ⊕E′′ B′′ and A′ ⊕E′ B′ respectively. By uniqueness if ϕ is the canonical map from A′′ ⊕E′′ B′′ to
A′ ⊕E′ B′ then ϕA′⊕E′B′ ◦ ϕ = ϕA′′⊕E′′B′′ , so the system of the ϕA′⊕E′B′ is also directed and we can
consider its limit ϕA⊕EB , which is the map we want.

The difference with the previous free amalgam notion is that it was defined for the elements of K
only, which corresponds to the countable substructures of M, whereas this notion is defined for small
substructures. Also since our class K is axiomatisable every countable substructure of M is inside
of K so there is no problem in considering the structures A′ ⊕E′ B′ for any countable substructures
E′, A′, B′ of M.

Proposition 3.2.9. The relation A |⌣
Γ
E B defined for structures E ⊆ A,B is invariant, symmet-

ric, satisfies existence, extension, monotonicity, finite character, stationarity, base monotonicity and
transitivity.

Proof. By existence here we mean that A |⌣
Γ
E E for every extension E ⊆ A. The properties of

symmetry, existence and the fact that it implies |⌣
a are immediate. Stationarity is a consequence of

Q. E. : Up to isomorphism over B there is a unique structure D = A ⊕E B that satisfies A |⌣
Γ
E B,

which means a unique type over B. For monotonicity assume that A |⌣
Γ
E B and consider E ⊆ C ⊆ B

a substructure (this is enough by symmetry). We consider the free amalgam D of A and C and the
associated embeddings iA, iC . Now let us consider the free amalgam D′ of D and B over C and its
associated embeddings jD, jB . There is a unique morphism ϕD : D → 〈AB〉 such that ϕD ◦ iA = idA
and ϕD ◦ iC = idC and ϕD′ ◦ jB = idB . Since 〈AB〉 = A⊕E B there is a unique morphism ψD′ : D′ →
〈AB〉 → D′ such that ψD′ restricted to A and B respectively is jD ◦ iA and jB respectively. From
this we get that ϕD′ ◦ ψD′ = idD′ and ψD′ ◦ ϕD′ = idD, so ϕD′ is an isomorphism. There is a unique
morphism ϕD′ : D′ → 〈AB〉 such that ϕD′ ◦ jD = ϕD. So ϕD′ ◦ jD ◦ iA = idA, and we get that D′ is
generated by the images of A and B and that ϕD′ is an isomorphism. We know that D is generated
by the images of A and C, and that it is sent to 〈AC〉 ⊆ 〈AB〉 by jD, so ϕD′ ◦ jD : D → 〈AC〉 is an
isomorphism by a similar argument, so A |⌣

Γ
E C.

〈AB〉

D′

D B

A C

E

ϕD′

jD

ϕD

jB

iA

iC

For transitivity, given structures E ⊆ A,C, C ⊆ B such that A |⌣
Γ
E C and 〈AC〉 |⌣

Γ
C B we want to

show that A |⌣
Γ
E B. Consider a structure D and two embeddings ϕA, ϕB that coincide in E from A

and B respectively to D. Then the embeddings ϕA and ϕB C coincide over E, and by assumption
there is a unique map ϕ〈AC〉 : 〈AC〉 → D such that ϕB C = ϕ〈AC〉 C

and ϕA = ϕ〈AC〉 A
. Now we

consider the two maps ϕ〈AC〉 and ϕB which coincide over C. Since 〈AC〉 |⌣
Γ
C B there is a unique map

ϕ : 〈〈AC〉B〉 = 〈AB〉 → D such that ϕ B = ϕB and ϕ 〈AC〉 = ϕ〈AC〉, so in particular ϕ A = ϕA. This
proof consist just in saying that the square formed by two adjacent pushouts forms a pushout.
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D

〈AB〉

〈AC〉 B

A C

E

∃!ϕ

∃!ϕ〈AC〉

ϕB

ϕA

For extension and stationarity, given structures E ⊆ A,C, C ⊆ B such that A |⌣
Γ
E C we can form the

free amalgam of 〈AB〉 and C over B inside of M thanks to Lemma 3.2.8. This allows us to find some
A′ such that 〈A′C〉 ∼= 〈AC〉 (since the free amalgam defines a unique isomorphism type), so by Q. E.
A′ ≡B A and 〈A′B〉 |⌣

Γ
B C, so A′ |⌣

Γ
E C by transitivity, and this gives us a unique type over C for

the same reason. Finite character is also a direct consequence of the universal property : assume that
A 6 |⌣

K
EB, so there is a structure D and two embeddings ϕA, ϕB from A and B respectively to D that

coincide in E such that there is no map ϕ : 〈AB〉 → D satisfying ϕA = ϕ|A and ϕB = ϕ|B . This is
equivalent to saying that the function that to an element t(a, b) ∈ 〈AB〉 associates t(ϕA(a), ϕB(b)) is
not well defined (since this function is the only candidate) or that it is not a morphism. In either of
those cases we can find some finite tuples a ∈ A, b ∈ B such that the same thing is happening with
the function that to an element t(a′, b

′
) ∈ 〈Eab〉 associates t(ϕA(a

′), ϕB(b
′
)), so a 6 |⌣

K
E b.

For base monotonicity, given structures E ⊆ A,C and C ⊆ B such that A |⌣
Γ
E B we want to show that

〈AC〉 |⌣
Γ
C B. We take the same notations as for transitivity. As previously A |⌣

Γ
E C (by monotonicity

this time). Consider a structure D and two embeddings ϕ〈AC〉, ϕB from 〈AC〉 and B respectively to
D that coincide on C. Then the embeddings ϕ〈AC〉 A

and ϕB coincide over E. By assumption there is
a unique map ϕ : 〈AB〉 = 〈〈AC〉B〉 → D such that ϕ A = ϕ〈AC〉 A

and ϕ B = ϕB . Then we also have

that ϕ C = ϕB C = ϕ〈AC〉 C
, so ϕ 〈AC〉 = ϕ〈AC〉 since A |⌣

Γ
E C. This proof consists just in saying that

if the square formed by two adjacent squares is a pushout and the left one also is then the right one is
also a pushout.

Corollary 3.2.10. For every E ⊆ A,B if A |⌣
Γ
E B then A |⌣

f
E B, so T has existence. Also T is

NSOP1 and for every E ⊆ A,B we have A |⌣
K
E B if and only if A |⌣

a
E B.

Proof. We show that A |⌣
Γ
E B implies A |⌣

d
E B. Assume that A |⌣

Γ
E B and let (Bi)i<ω be an E-

indiscernible sequence with B0 = B. By extension we can find A′ ≡B0
A such that A′ |⌣

Γ
B0

B<ω. By

transitivity and invariance A′ |⌣
Γ
E B<ω. By indiscernibility Bi ≡E B0 for every i < ω. Since B0 |⌣

Γ
E A

′

and Bi |⌣
Γ
E A

′ it follows from stationnarity that A′Bi ≡E A
′B0 ≡E AB0 for every i < ω. So A |⌣

d
E B.

Since |⌣
Γ satisfies extension we get that if A |⌣

Γ
E B then A |⌣

f
E B, and existence for |⌣

f follows from
existence for |⌣

Γ.

Now that we know that T has existence we can consider Kim-independence over arbitrary sets. We use
the Kim-Pillay theorem for Kim-forking [11, Theorem 5.1]. By [23, Lemma 2.7] |⌣

a satisfies extension,
existence, monotonicity, symmetry, strong finite character, and witnessing. By Lemma 3.2.6 it satisfies
the amalgamation theorem, and it is clear that it satisfies transitivity. We now show that it satisfies
the local character condition. Let a be a finite tuple, κ an uncountable regular cardinal, (Ai)i<κ a

9



continuous increasing sequence of structures of cardinal smaller than κ and Aκ =
⋃
i<κ

Ai. We want to

show that there is an i < κ such that 〈Aia〉 |⌣
a
Ai

Aκ. We choose some i0 < κ. If 〈Ai0a〉 6 |⌣
a
Ai0
Aκ

the set 〈Ai0a〉 ∩ Aκ is non empty and has cardinal smaller than κ, so it is contained in Ai1 for some
i1 > i0. We iterate this process to define a sequence (ij)j<ω and set i =

⋃
j<ω

ij which is smaller than κ

by regularity. Now if a ∈ 〈Aia〉 ∪Aκ it is in 〈Aija〉 ∪Aκ for some j < ω so by construction it is inside
of Aij+1

⊆ Ai.

Remark 3.2.11. In the case where the limit T of the class K is a stable theory |⌣
K= |⌣

f= |⌣
a and

|⌣
a= |⌣

Γ since both of these relations are stationary and satisfy existence. Also the Kim-Pillay criterion
for simple theories applied to the stationary relation |⌣

Γ tells us that |⌣
Γ satisfies local character if

and only if T is stable.

Remark 3.2.12. By [21, Theorem 2.7] we know that when applying the amalgamation theorem to
E,A0, A1, B0, B1 (as in the statement of the amalgamation theorem) for |⌣

K in an NSOP1 theory with
existence we can take A such that ABi |⌣Bi

B0B1 for i = 0, 1. In our setting by Lemma 3.2.6 and

(Algebraically Independent 3-Amalgamation) we also have AB0 |⌣
K
A AB1. However I do not know if

this is true in every NSOP1 theory with existence, see Section 7.2 later on this topic. Also notice that
in order to get this result we only need 1.− 5. and Lemma 3.2.6 to hold and not the full generality of
Algebraically Independent 3-Amalgamation.

Remark 3.2.13. The proof of Corollary 3.2.10 can be generalised to show that in any theory T with
some stationary independence relation |⌣ satisfying Proposition 3.2.9 and such that |⌣

a satisfies the
independence theorem over arbitrary sets, |⌣ implies |⌣

f , so that T is NSOP1, has existence and
|⌣
a= |⌣

K over arbitrary sets.

The following proposition is a general fact for theories such that algebraic independence satisfies the
amalgamation theorem, a proof can be found in [23, Proposition 3.22]. This fact is part of some
more general results about deducing weak elimination of imaginaries from the properties of some
independence relations (see [14, Section 4.4] for example).

Proposition 3.2.14. The theory T has weak elimination of imaginaries.

Proposition 3.2.15. For any E ⊆ A,B we have A |⌣
f
E B iff A |⌣

d
E B iff A |⌣

M
E B.

Proof. We begin by showing that in M the relation |⌣
M satisfies extension. Consider E ⊆ A,B ⊆ M

such that A |⌣
M
E B and B ⊆ B′. We can find A′ such that A′ ≡B A and 〈A′B〉 |⌣

Γ
B B′, let

us write D′ = 〈A′B′〉. We show that A′ |⌣
M
E B′. Consider C ′ ⊆ B′ and define C = C ′ ∩ B,

we want to show that 〈A′C ′〉 ∩ B′ = C ′. By 6, since 〈A′C〉 ∩ C ′ = C, 〈A′C〉 ∩ B = C (because
A |⌣

M
E B) and B ∩C ′ = C, the following diagram with the solid arrows, where 〈A′C ′〉 is the structure

generated by A′ and C ′ in D′, can be completed with the dashed arrows and a structure DC′ such that
ϕB′(B′) ∩ ϕ〈A′C′〉(〈A

′C ′〉) = ϕB′(C ′) = ϕ〈A′C′〉(C
′).
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〈A′C ′〉 D′ DC′

〈A′C〉 〈A′B〉

C ′ B′

C B

⊆

ϕ〈A′C′〉

∃!ϕ
⊆

ϕ〈A′B〉

⊆
ϕB′

There is a unique map ϕ such that ϕ|〈A′B〉 = ϕ〈A′B〉 and ϕ|B′ = ϕB′ . The two maps ϕ〈A′C′〉 and
ϕ|〈A′C′〉 coincide on the sets C ′ and 〈A′C〉, and these sets generates 〈A′C ′〉, so ϕ|〈A′C′〉 = ϕ〈A′C′〉. If
t(a′, c′) = t′(b′) for for two terms t, t′, a′ ∈ A′, c′ ∈ C ′ and b′ ∈ B′ inside of D′ then by applying ϕ we get
that ϕ〈A′C′〉(t(a

′, c′)) = ϕB′(t′(b′)), so by 6. there is a c ∈ C ′ such that ϕ〈A′C′〉(c) = ϕ〈A′C′〉(t(a
′, c′)) and

ϕB′(c) = ϕB′(t′(b′)). Since the maps ϕB′ and ϕ〈A′C′〉 are embeddings we get that t(a′, c′) = t′(b′) ∈ B′,

so 〈A′C ′〉 ∪B′ = C ′. So |⌣
M satisfies extension.

It is always true that |⌣
d =⇒ |⌣

M . To show that |⌣
M =⇒ |⌣

f it is sufficient to show that |⌣
M =⇒ |⌣

d

by extension. For this assume that A |⌣
M
E B0 and consider an indiscernible sequence I = (Bi)i<ω. We

begin by showing that we can assume that Bi |⌣
a
E B<i for every i < ω, then the proof is straightforward

using Lemma 3.2.6. Begin by adding a copy of ω at the beginning of the sequence (Bk)k∈ω+ω = I ′ ⌢ I,
by extension we can assume that A |⌣

M
E 〈(Bk)k∈ω+ω〉. Now set E′ = 〈(Bk)k<0〉 the structure generated

by I ′. Consider the structures B′
i = 〈E′Bi〉 for i < ω. They form an E′-indiscernible sequence. Define

A′ = 〈E′A〉, by base monotonicity A′ |⌣
M
E′ 〈(B′

i)i<ω〉. Now, if bi ∈ B′
i is also in 〈B′

<i〉 then it has to be
in E′ by indiscernibility of (Bk)k∈ω+ω (this is the point of adding the negative part : algebraic relations
happening in the sequence are already happening inside the negative part). So, replacing A by A′, E
by E′ and (Bi)i<ω by (B′

i)i<ω we get the hypothesis we wanted.

Now assume that Bi |⌣
a
E B<i for every i < ω. SinceB0 ≡E Bi there is some Ai such that AB0 ≡E AiBi.

We define by induction on i < ω a sequence of structures A′
i such that A′

i
|⌣
a
E B≤i and for all j ≤ i

AB0 ≡E A′
iBj. Let A0 = A′

0 = A. If A′
i has been defined then A′

i
|⌣
a
E B≤i, Ai+1 |⌣

a
E Bi+1,

Bi+1 |⌣
a
E B≤i and A

′
i ≡E Ai, so by Lemma 3.2.6 we can find a suitable A′

i+1. By compactness there is

some A′′ such that A′′Bi ≡E AB0 for all i < ω. So if A |⌣
M
E B then A |⌣

d
E B, by extension A |⌣

f
E B

also holds, so these three notions are equivalent.

Remark 3.2.16. We get from the previous proposition that in T thorn-forking coincides with forking
(see [3] for an introduction to thorn forking in terms of independence relations), so rosiness of T (which
is defined as thorn-forking satisfying local character) coincides with simplicity of T .

In the previous proposition we insist on the fact that we are considering two algebraically closed sets
A,B containing the basis E; the reason for this is that in NSOP1 theories it is not always true that
|⌣
f= |⌣

d over arbitrary sets. A counterexample is given in [15, Section 3.2] : if T 6O
f is the model

completion of the empty theory in a language containing only a binary function and T eqf its imaginary
expansion, then they give some real tuple a, small model M and some unordered pair d such that
a |⌣

d
M Md and a 6 |⌣

d
Macl

eq(Md).
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4 The parameterized class

In this section we consider a Fräıssé class K0 in a language L0 satisfying (H), its limit theory T0 and
a second Fräıssé class KP in a language LP satisfying (H) which is one sorted and its limit theory TP .
We show that we can ’parameterize’ the class K0 by KP to get a new class K of structures in a new
language that also satisfies (H), and that in some cases the limit theory of K is not simple, and so
strictly NSOP1 by Corollary 3.2.10.

Let M0 and M0 be monster models of T0 and TP respectively. By the previous section we know that
T0 and TP have Q.E., satisfy acl(A) = dcl(A) = 〈A〉 and that |⌣

a satisfies the independence theorem
over arbitrary sets, which implies that T0 and TP are NSOP1 and that |⌣

K= |⌣
a over arbitrary sets in

M0 and MP .

Definition 4.1. Let L be a new language built from L0 by adding a new sort P equipped with an LP
structure. We will refer to P as the parameter sort, we will refer to the sorts of L0 as the object sorts,
denoted O. We replace every symbol of constant c in L0 of sort O by a function symbol c : P → O,
every function symbol f :

∏
i<nOi →

∏
i<mO

′
i by a function symbol f : P ×

∏
i<nOi →

∏
i<mO

′
i

and every relation symbol R ⊆
∏
i<nOi by a relation symbol R ⊆ P ×

∏
i<nOi. For an L-structure

A and p ∈ P (A) we write Ap to denote the L0-structure induced by p on O(A). For a set of objects
A and a tuple of parameters p we will write 〈A〉p for the structure generated by (A, p), we will also
write 〈A〉 for the structure generated by a set A (possibly containing parameters and objects), so
〈A〉 = 〈O(A)〉〈P (A)〈.

Definition 4.2. Let K be the class of countable L-structures A such that Ap ∈ K0 for every p ∈ P (A)
and P (A) ∈ KP .

Let us fix some notations : We will write A⊕〈∅〉 {x} for the L0-structure freely generated over A ⊆ M0

by a tuple x of distinct elements in O. Such an extension exists by Generic Extension. For a symbol
of function f ∈ L we will sometimes write fp(x) instead of f(p, x), and similarly for relation symbols.
For an L0-formula ϕ and a parameter p we will write ϕp for the L-formula parameterized by p.

Remark 4.3. We will most often consider the case where LP is the empty language and so KP is the
class of countable sets. It might be easier to read the proofs with the case KP = = in mind.

Remark 4.4. The class K is axiomatisable : if an L-structure A is not in K then either for some
parameter p ∈ P (A) there is some p ∈ A such that Ap 6∈ K0, so there is an L0-formula ϕ such that
Ap |= ϕ and such that no structures in K0 satisfy ϕ. So A |= ϕp and no structure in K satisfy this
formula. Else P (A) 6∈ KP , which is then also expressed by a formula by condition 2. in KP . Also K
clearly satisfies the Heredity Property.

Lemma 4.5. The class K satisfies Free Amalgamation.

Proof. Consider some structures E ⊆ A,B ∈ K. We construct an L-structure in K satisfying the Free
Amalgamation property. Let us write E = (O(E), P (E)), A = (OA, PA) and B = (OB , PB). We begin
by forming the free amalgam P (D) := P (A)⊕P (E) P (B) ∈ KP which will be the parameter sort of the
free amalgam in K.

Let (pi)i<ω enumerate P (D). We define a sequence ((Dk
pi
)i<ω)k<ω of tuples of countable L0-structures

indexed by P (D) by induction such that the sequence (Dk
p)k<ω is a chain of L0-structures for any

p ∈ P (D) and that for any k < ω the sequence (Dk
pi
)i<ω is an increasing sequence of sets. Let

D0
p−1

:= A ∪ (B \A) and let E0 be the structure generated by the constants inside of K0.
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We define

D0
pi

:=(Api ⊕Epi
Bpi)⊕〈∅〉 {D

0
pi−1

\ (D0
−1)} if pi ∈ P (E),

D0
pi

:=Api ⊕〈∅〉 {D
0
pi−1

\ A} if pi ∈ P (A) \ P (E),

D0
pi

:=Bpi ⊕〈∅〉 {D
0
pi−1

\B} if pi ∈ P (B) \ P (E),

D0
pi

:=E0 ⊕〈∅〉 {D
0
pi−1

} if pi ∈ P (D) \ (P (A) ∪ P (B)).

Set D0 =
⋃
i<ω

D0
pi
. If Dk is defined for some 1 ≤ k < ω we set Dk+1

p0
= Dk

p0
⊕〈∅〉 {D

k \Dk
p0
}, similarly if

Dk
pi

is defined for some 1 ≤ i < ω we set Dk+1
pi+1

= Dk
pi+1

⊕〈∅〉 {D
k+1
i \Dk

pi
}.

Every Dk
p is an L0-structure for the parameter p. We set O(D) =

⋃
k<ω

Dk, this set is countable and

has an L0-structure for the parameter p ∈ P (D) given by Dp =
⋃
k<ω

Dk
p ∈ K0, so D ∈ K. This defines

an L-structure D = (O(D), P (D)) ∈ K which extends A and B, and such that A∩B = E inside of D.
Also if A and B are generated by (a, P (A)) and (b, P (B)) respectively (ab, P (A), P (B)) generates D.

Now that we constructed the structureD we show that is satisfies the amalgamation property. Consider
D′ ∈ K, ϕA : A→ D′ and ϕB : B → D′ as in the statement, and write ϕE their restriction to E. The
uniqueness of ϕ is clear from the fact that D is generated by the images of A and B. For existence
we define ϕ on the parameters : By free amalgamation in KP there is a unique morphism ϕP of
KP -structures from P (D) to P (D′) such that the diagram commutes. We then construct an increasing
sequence of tuples of morphism of L0-structures indexed on P (D) : ((ϕkpi : D

k
pi

→ D′
ϕ(pi)

)i<ω)k<ω.

For k = 0, if pi ∈ P (E) we take the unique morphism ϕ0
pi

: D0
pi

→ D′ that extends ϕA(p, ) :
Ap → D′

ϕP (pi)
and ϕB(p, ) : Bp → D′

ϕP (pi)
and sends any element d ∈ D0

pi−1
\ D0

p−1
to ϕ0

pi−1
(d). If

pi ∈ P (A) \ P (E) we take the unique morphism ϕ0
pi

: D0
pi

→ D′
ϕP (pi)

that extends ϕA(p, ) : Ap →

D′
ϕP (pi)

and sends any element d ∈ D0
pi−1

\ A to ϕ0
pi−1

(d), similarly if pi ∈ P (B) \ P (E) we take the

unique morphism ϕ0
pi

: D0
pi

→ D′
ϕP (pi)

that extends ϕB(p, ) : Bpi → D′
ϕP (pi)

and sends any element

d ∈ D0
pi−1

\ B to ϕ0
pi−1

(d), and finally if pi ∈ P (D) \ (P (A) ∪ P (B)) we take the unique morphism

ϕ0
pi

: D0
pi

→ D′
ϕP (pi)

that sends any element d ∈ D0
pi−1

to ϕ0
pi−1

(d).

Assume that for every i < ω the functions ϕkpi : D
k
pi

→ D′
ϕ(pi)

have been defined. Define ϕk+1
p0

: Dk+1
p0

→

D′
ϕ(p0)

as the unique morphism extending ϕkp0 : Dk
p0

→ D′
ϕ(p0)

by sending x ∈ Dk
pi

to ϕkpi(x) for every
i < ω. We just repeat the same steps for the other parameters. Once all these functions are constructed
we consider ϕ =

⋃
k<ω

ϕkp for every p ∈ P (D). This function defines a map in K from D to D′ such

that its restrictions to A and B are ϕA and ϕB respectively, and it is a morphism of L0-structure
since ϕ =

⋃
k<ω

ϕkp : Dp → D′
ϕ(p) is a morphism of L0-structure for every parameter p ∈ P (D) and

ϕP : P (D) → P (D′) is a morphism of LP -structure.

Remark 4.6. This means that K seen as a category has pushouts for pairs of monomorphisms. The
proof also implies that the construction of D does not depend (up to isomorphism) on the choices of
the bases of A and B and on the enumeration of the parameters : given the same construction for a
different enumeration D∗ =

⋃
i<ω

D∗,k
pi , by the same proof D∗ also has the universal property.

Remark 4.7. From the proof of Lemma 4.5 it is clear how to show that K satisfies Generic Extension.
If we add an element from a sort among the object sorts, we fix some enumeration (pi)i<ω of the
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parameters of the L-structure A. Begin by adding one object x in the right sort and consider the
associated L0-structure A

0
p0

= Ap0 ⊕〈∅〉 {x}, then A0
pi+1

= Api+1
⊕〈∅〉 {A

0
pi

\ A}, Ak+1
pi+1

= Akpi+1
⊕〈∅〉

{Ak+1
pi

\ Akpi+1
} and so on. Else if we add a parameter p we consider the L0-structure E0 it generates,

i. e. the structure generated by the constants in the class K0, and form A⊕〈∅〉 〈E0, p〉 the free product
in K. We can indeed send p to any parameter because any parameter agree with p on the structure
generated by the constants.

A substructure of a finitely generated structure is not necessarily finitely generated : If we consider
the examples of parameterized vector space over a finite field with LP = =, the structure E = 〈p1p2〉
freely generated by two parameters is infinite however the substructure (O(E), p1) where we removed
one parameter is not finitely generated. With the properties of K that we have proven so far we can
construct the limit M with Proposition 3.2.3, consider its theory T and M a monster model of it.

Lemma 4.8. K satisfies condition 3. : For every quantifier-free formula ϕ(x, a) satisfied in some
structure of K there is a quantifier-free formula ψ(x) such that if a ∈ A ∈ K and A |= ψ(a) then there
is A ⊆ B ∈ K an extension and b ∈ B such that B |= ϕ(a, b).

Proof. Consider a quantifier free formula ϕ(xv, yw) satisfied by some apbq ∈ A ∈ K with x, y in the
object sorts and v,w in the parameters. We can assume that ϕ(xv, yw) is of the form

∧
i,j Ei(fi, gi) ∧∧

iRi(vi, ni,mi) ∧
∧
iR

′
i(wi, n

′
i,m

′
i) ∧

∧
iR

′
i(w

′
i, n

′
i,m

′
i) where Ri, R

′
i are relations symbol or negated

relations symbols from L0, ni, n
′
i,mi,m

′
i are terms in xv, yw, Ei are relations symbols or negated

relation symbols form LP and w′
i, fi, gi are terms in v,w.

We consider a strengthening of ϕ satisfied by apbq. Let (hi)i<m enumerate the interpretation of all the
sub-terms of the variable terms appearing in ϕ when we fix vw to be pq. Let (ci)i<n enumerate the
interpretation of all the sub-terms of the object terms appearing in ϕ when we fix xvyw to be apbq.
Let k = (ki)i<m and z = (zi)i<n be tuples of variable of the same length. Enlarging ap we assume that
it contains every term ci and hi such that ci ∈ 〈ap〉 and hi ∈ 〈p〉, let xv be the corresponding tuples
of variables. We replace the tuple bq by bcqh, write ϕ = ϕ(xv, yzwk). We add to ϕ the formulas that
expresses the fact that ki is a sub-terms, meaning that if hi = ti(p, q, h<i) for ti an LP -term we add
ki = ti(x, y, k<i) to ϕ and replace the occurrences of ti(x, y, k<i) by occurrences of ki. Similarly we add
to ϕ the formulas that expresses the fact that zi is a sub-terms, meaning that if ci = ti(ρ, a, b, c<i) for
ti an L0-term and ρ ∈ pbh we add zi = ti(ν, x, y, z<i) to ϕ where ν ∈ vwk is the variable corresponding
to ρ and replace the occurrences of ti(ν, x, y, z<i) by occurrences of zi. After this the object terms that
appears in ϕ only use one parameter.

For every parameter variable ν ∈ vwk consider the L0-formula ϕν(x, yz) that specifies every equality
zj = tj(ν, x, y, z<j) (we consider the previous equalities and only mention those where the parameter ν
is used), the relations Rj,ν that holds between the elements of abc (so here we look at the L0-structure
induced by ν), and we include the instances of equality and inequality among these relations.

We consider the formula ϕP that specifies every equality ki = ti(x, y, k<i) (we consider the previous
equalities and only mention those in the parameter sort), the relations Ej that holds between the
elements of pph, and we include the instances of equality and inequality among these relations. We
can write the formula ϕ as ϕ(xv, yzwk) = ϕP (v,wk) ∧

∧

ν∈vwk

ϕν(x, yz).

We can consider ψP which is the LP -formula associated to ϕP by 3. in KP and ψν the L0-formula
associated to ϕP by 3. in K0 for every ν ∈ vwk. Let ψ(x, v) := ψP (v) ∧

∧
ν∈v ϕν(x). It satisfies the

condition, and we conclude as in Lemma 4.8 : If ψ(x, v) is satisfied by a′p′ ∈ A′ ∈ K we can extend
P (A) in KP thanks to ψP , choose an extension for every parameter variable vwk, and amalgamate
these extension in an L-structure extending A.
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Proposition 4.9. T proves the following statements :

1. If a is a n-tuple of objects, πi(x) is a n-type in T0 for every i ≤ n such that πi ⊢ xj 6= xj′ for
j 6= j′ and q(v) in a type in TP , then there exist an infinite number of tuples of parameters
(pi)i≤n such that |= πi(api) for every i ≤ n and |= q((pi)i≤n).

2. If p = p0, .., pn is a n-tuple of parameters and πi(x, bpi) is a type in Mpi over a n-tuple of objects
b such that the induced type in any of the xi is non-algebraic and that πi ⊢ xj 6= xj′ for j 6= j′

then there is a tuple of objects a such that |= πi(api , bpi) for every i ≤ n.

Proof. Consider the limit M of K built in Proposition 3.2.3, a finite tuple of objects a ∈ M and
a finite set of types πi(x) as in the first point of the statement. We can build a structure A ∈ K
containing a and with parameters (pi)i≤n such that |= πi(api) for every i ≤ n and |= q((pi)i≤n). Then
by saturation we can embed this structure A inside of M over a and find the parameters. The second
point is similar : consider the structure B generated by b, p and types πi(x, bpi) as in the statement.
We can extend B into B′ ∈ K that contains a tuple of objects a′ such that a′b has the right type for
the parameter pi for every i and then embed B′ into M over B to find the right objects.

Definition 4.10. A formula ϕ(x, y) has the independence property, I.P. for short, if there is (ai)i<ω
and (bI)I⊆ω two sequences of tuples such that |= ϕ(ai, bI) if and only if i ∈ I. A theory T has I.P. if
some formula in it has I.P. .

Corollary 4.11. The theory T has I.P. if there are two distinct non-algebraic types in T0, and is
non-simple if T0 is non-trivial, in the sense that there are a, b ∈ M0 such that 〈a, b〉 \ (〈a〉 ∪ 〈b〉) 6= ∅.

Proof. For I.P. consider two distinct T0-types πi in x for i = 0, 1. Now if we consider a sequence (pi)i<ω
of distinct parameters in M, then by 4.9 for every I ⊆ ω we can find aI such that |= π0,pi(aI) if and
only if i ∈ I.

Now for simplicity let t(x, y) be a L0-term such that t(a, b) 6∈ 〈a〉 ∪ 〈b〉 and consider a tree of param-
eters all distinct (pµ)ν∈ω<ω . Lets now consider a tree of distinct objects (aµ)µ∈ω<ω and the formulas
ϕ(x, y, aµ⌢i, pµ) := tpµ(x, y) = aµ⌢i along this tree. Clearly {ϕ(x, y, aµ⌢i, pµ) : i < ω} is 2-inconsistent
for every µ ∈ ω<ω, and by 4.9 every path is consistent.

Remark 4.12. The relation |⌣
Γ in M does not necessarily satisfy local character (otherwise it would

satisfy all conditions of the Kim-Pillay theorem) : Take some distinct objects o = o1, o2, o3 and a set
P = (pi)i<κ of parameters for κ = |TP |

+ such that o3 ∈ 〈o1o2〉pi for every i < κ and oj /∈ 〈P 〉 for every
j ∈ {0, 1, 2}. Then there is no subset P0 of cardinal |T | of P such that o |⌣

Γ
P0
P .

Remark 4.13. In the case where we can find inK0 some c = t(a, b) ∈ 〈ab〉\(〈a〉∪〈b〉) the relation |⌣
a in

M does not admit 4-amalgamation : Take 3 distinct parameters p0, p1, p2 and distinct objects b0, b1, b2
such that bi, bj 6∈ 〈pk〉 for every i, j, k such that {i, j, k} = {0, 1, 2} and such that tp0(b1, b2) = tp1(b0, b2),
tp1(b0, b2) = tp2(b0, b1) and tp0(b1, b2) 6= tp2(b1, b2). Then the type tp(p0/b1b2)∪tp(p1/b0b2)∪tp(p2/b0b1)
is inconsistent.

Since the theory T0 has Q.E., Kim-independence and algebraic independence coincide, and since the
algebraic closure and the generated structure coincide in M0 we can represent non-Kim-forking exten-
sions as commutative squares in the following way : The arrows are embeddings, the structure D is
generated by the images f(A) and g(B), and f(A)∩g(B) = f ◦j(E) = g ◦ i(E). Then the isomorphism
type of D over B gives us a type over D which corresponds to a non-forking extension of tp(A/E).
We will refer to such squares as strong amalgams. However for the (Algebraically Independent 3-
Amalgamation) the squares we are considering consist in an extension of such a square, meaning that
we compose with an embedding from D to some D′ ∈ K0.
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A D

E Bi

gj

f

Proposition 4.14. K satisfies Algebraically Independent 3-Amalgamation.

Proof. Consider the following diagram in K, which is as in the definition of (Algebraically Independent
3-Amalgamation) and where for simplicity we take the embeddings to be inclusions. We want to
complete it. First by condition 6. in KP we can complete the parameter part of this diagram with an
LP -structure P (D) ∈ KP which is going to be the parameter sort of our structure D. After this we
begin by choosing a completion for every parameter. Fix an enumeration (pi)i<ω of P (D). Looking
at the L0-structure indexed by any of the parameters pj ∈ P (E) we can find an L0-structure D

∗,0
pj

as in the right diagram. We begin by filling the cube for the L0 structures induced by each of the
parameters.

D1 D1,pj D∗,0
pj

A D0 Apj D0,pj

B1 B B1,pj Bpj

E B0 Epj B0,pjiB0

ψB0iB1

iA

ϕA0

ϕB0

ϕA1

ψB1

ϕD0

ϕB

ϕD1

These sets D∗,0
pj for pj ∈ P (E) are also equipped with the L-structure on the sets ϕB(B) and ϕDi

(Di)

for i = 0, 1 induced by the embeddings. We construct the L0-structure D
∗,0
pj for j ∈ P (D) \ P (E) and

consider the natural mappings from D0, D1 and B to D∗,0
pj .

If pj ∈ P (A) \ P (E) set D∗,0
pj

= [D0,pj ⊕Apj
D1,pj ]⊕〈∅〉 {B \ (B0 ∪B1)}

If pj ∈ P (Bi) \ P (E) set D∗,0
pj

= [D0 ⊕B0
B]⊕〈∅〉 {D1 \ (A ∪B1)}

If pj ∈ P (D0) \ (P (A) ∪ P (B0)) set D
∗,0
pj

= D0,pj ⊕〈∅〉 {(B \B0) ∪ (D1 \ A)}

If pj ∈ P (B) \ (P (B0) ∪ P (B1)) set D
∗,0
pj

= Bpj ⊕〈∅〉 {(D0 \B0) ∪ (D1 \B1)}

If pj ∈ P (D) \ (P (D0 ∪ P (D1) ∪ P (B)) set D∗,0
pj

= E0 ⊕〈∅〉 {(D0 ∪D1 ∪B)}

In this last union we assimilate elements that have the same predecessors in the diagram. Now that
we have all of our L0-structures we will just put them together in a canonical way : we define an
increasing sequence of tuples of L0-structures ((D

k
pj
)j<ω)k<ω. Let D

0
p0

= D∗,0
p0 , if D

0
pj

has been defined

for some j < ω let D0
pj+1

= D∗,0
pj+1

⊕〈∅〉 〈D
0
pj

\ (D0 ∪ D1 ∪ B〉)〉 where we assimilate D0, D1 and B

with their image in D0
pj
. Once D0

pj
has been defined for every j < ω we set D0 =

⋃
i<ω

D0
pj
. If Dk is

defined we let Dk+1
p0

= Dk
p0

⊕〈∅〉 〈D
k \Dk

p0
〉. Now assume that Dk+1

pj
is defined for some k < ω,j < ω,

we set Dk+1
pj+1

= Dk
pj+1

⊕〈∅〉 〈D
k+1
pj

\Dk
pj+1

〉. Then take D =
⋃
k<ω

Dk
pj

with the L0-structure induced for

every j < ω, this defines an L-structure, the natural mappings we had from D0, D1 and B to D are
embeddings for the L-structure we put on D and they satisfy the conditions.
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Finally we can state that the class K satisfies the conditions of (H). By Corollary 3.2.10 we know that
T is an NSOP1 theory with existence such that |⌣

K= |⌣
a over arbitrary sets.

5 Examples and non-examples

Let K be a class of countable L-structures satisfying (H). We describe now how adding generic
structure to the class K might affect the conditions (H) and some properties of the theory.

5.1 Adding a generic predicate

Definition 5.1.1. Consider a new symbol U for a unary predicate in some sort S, we define LU =
L ∪ {U} and the class KU of LU -structures consisting of a structure A in K equipped with a subset
U(A) ⊆ S(A).

Proposition 5.1.2. The class KU satisfies (H).

Proof. The conditions 1. , 2. are satisfied in KU . For condition 4. we just take U(A⊕E B) := U(A)∪
U(B) where A⊕EB is the free amalgam inK0. For condition 5. set U(A⊕〈∅〉〈x〉) := U(A). Similarly for
condition 6. we find an amalgam D using condition 6. in K and set U(D) to be U(B0)∪U(B1)∪U(B).
For condition 3. consider a finitely generated structure 〈a, b〉 ∈ KU and a quantifier free LU formula ϕ
such that |= ϕ(a, b). W. l. o. g. we can assume that ϕ(x, y) = ϕ′(x, y)∧

∧
i<n

U(ti(x, y))∧
∧
i<n

¬U(t′i(x, y))

where ϕ′(x, y) is an L0-formula and the ti and t′i are L0-terms. By taking a strengthening of ϕ we
can assume that ϕ′(x, y) ⊢

∧
j<n

t′i(x, y) 6= tj(x, y) for every i < n. Now we consider the formula ψ′(x)

associated to the L0-formula ϕ′(x, y)∧
∧

i,j<n

(t′i(x, y) 6= tj(x, y)) by condition 5. in K0. If A
′ |= ψ(a′) for

some a′ ∈ A′ ∈ KR then by assumption we can find some b′ ∈ B′ an extension of A′ in K0 such that
B′ |= ϕ′(a′, b′)∧

∧
i<n

(t′i(a
′, b′) 6∈ 〈tj(a

′, b′))j<n〉). Define the subset U on B′ to be U(A′)∪{tj(a
′, b′))j<n},

we get that B′ |= ¬U(t′i(a
′, b′)) for all i < n, so B′ |= ϕ(a′, b′), and B′ is an extension of A′ in KU .

Remark 5.1.3. If there are some a, b ∈ A ∈ K and a term t(x, y) such that t(a, b) ∈ 〈ab〉 \ (〈a〉 ∪ 〈b〉)
the limit theory TU of KU is non stable, in fact the formula U(t(x, y)) has the order property.

Definition 5.1.4. Let LR = L ∪ {R} be a new unary predicate symbol. We define the class KR of
LR-structures consisting of a structure A in K equipped with a substructure R(A).

Proposition 5.1.5. If the structures of K are uniformly locally finite the class KR satisfies condition
1. − 5 However if the generated structure in K is non-trivial the condition 6. need not to hold.

Proof. The conditions 1. 2. 4. 5. are still true by the same arguments as before, we will need the
local finiteness assumption on K to get condition 3. We define P (A ⊕E B) := 〈P (A)P (B)〉 and
P (A ⊕〈∅〉 〈x〉) := P (A). For condition 5. consider a finitely generated structure 〈a, b〉 ∈ KR and a
quantifier free LR formula ϕ such that 〈a, b〉 |= ϕ(a, b). W. l. o. g. we can assume that ϕ(x, y) =
ϕ′(x, y) ∧

∧
i<n

R(ti(x, y)) ∧
∧
i<n

¬R(t′i(x, y)) where ϕ
′(x, y) is an L0-formula, for all c ∈ R(〈ab〉) there is

some i < n such that c = ti(a, b) and for all c ∈ 〈ab〉\R(〈ab〉) there is some i < n such that c = t′i(a, b).
Since our theory is uniformly locally finite the condition t′i(x, y) 6∈ 〈(tj(x, y))j<n〉 is definable. Now
we consider the formula ψ′(x) associated to the L0-formula ϕ′(x, y) ∧

∧
i<n

(t′i(x, y) 6∈ 〈(tj)j<n〉) by

condition 3. in K, and then the formula ψ(x) := ψ′(x) ∧
∧
k<m

R(tik(x)) ∧
∧
k<m

¬R(tik(x)), where tik(x)

enumerates the terms t such that R(t(a)) and t′ik(x) enumerates the terms t′ such that ¬R(t′(a)).
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If A′ |= ψ(a′) for some a′ ∈ A′ ∈ KR then by assumption we can find some b′ such that 〈a′b′〉 |=
ϕ′(a′, b′)∧

∧
i<n

(t′i(a
′, b′) 6∈ 〈tj(a

′, b′))j<n〉). Define the substructure R on 〈a′b′〉 to be 〈tj(a
′, b′))j<n〉. We

obtain that 〈a′b′〉 |= ¬R(t′i(a
′, b′)) for all i < n, so 〈a′b′〉 |= ϕ(a′, b′), and this property still holds in

B′ := A′ ⊕〈a′〉 〈a
′b′〉, which is an extension of A as an LR-structure.

Now about condition 6. : By condition 6. in the class K we can find some structure D ∈ K
and some embeddings as in the statement. We want to define R(D). We know that in any case
〈R(D0)∪R(D1)∪R(B)〉 ⊆ R(D), however it might happen that b ∈ 〈R(D0)∪R(D1)∪R(B)〉 for some
b ∈ (B \R(B)), and in that case the L0-embedding ϕB can not be an LR-embedding.

To give a simple example of this last fact, let us look at some vector space over a finite field with
a predicate for a subspace. Take some independent vectors a0, a1, b0, b1 as in the statement of the
independence theorem for |⌣

a such that ¬R(a0 + b0), R(a1 − b1) and R(b0 + b1) are satisfied. Then
R(a+ b0) is satisfied if a satisfies tp(ai/bi) for i = 0, 1, which is a contradiction. In that case the limit
of KR still exist, and it might be NSOP1, however in that case |⌣

K 6= |⌣
a in this limit.

Remark 5.1.6. If we assume that the class K is uniformly locally finite we can restrict it to the class
of finite structures in K and have a Fräıssé class in the usual sense, and its limit is ω-categorical.

As we have seen in the previous section condition 6. puts a strong restriction on what we can add
to the structure, and some classes with an NSOP1 limit can satisfy the conditions 1. − 5. and not
satisfy condition 6. For example the class of finite equivalence relations, with limit the (stable) theory
of the equivalence relation with an infinite number of classes all infinite (which we will write T∞),
or its parameterized version (see [19] or [7]) which is strictly NSOP1, satisfies existence and that

|⌣
KM

= |⌣
f= |⌣

d over arbitrary sets.

Definition 5.1.7. Consider a new symbol E for a binary predicate in some sort S, we define the
language LE = L ∪ {V,E, p} where V is a new sort, E a binary relation on S, and p a unary map
form S to V . Define the class KE of LE-structures consisting of a structure A in K0 equipped with an
equivalence relation EA ⊆ S(A)2, a new sort V (A) and a map p : S(A) → V (A) realizing the quotient.

Proposition 5.1.8. The class KE satisfies (H).

Proof. If we do not add the quotient to the structure conditions 1. − 5. are satisfied but condition 6.
is not, also if we ask for the map p to be surjective the condition 3. will not hold. It is easy to see that
conditions 1. − 5. are satisfied in KE : The only structure on the quotient is equality and we can do
’in parallel’ free amalgamation in K and in the quotient. For 6. we proceed similarly by forming the
amalgam in K on one end and the amalgam of the quotient on the other end.

This construction is the same as adding a new sort V with no structure other than equality and then
some function from S to V .

5.2 Adding generic functions

Definition 5.2.1. Consider a new symbol f for a binary function, we define Lf = L∪{f} and the class
Kf of Lf -structures consisting of a structure A in K0 equipped with a binary function fA : A×A→ A
such that the structure generated by the constants is some specified Lf -structure (in order to have the
joint embedding property and uniqueness of the limit the structures need to agree on the constants).

Proposition 5.2.2. The class Kf satisfies (H).
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Proof. Conditions 1. and 2. are clearly satisfied in Kf . For condition 4. we construct some Lf -
structure D using 4. and 5. in K. Consider E ⊆ A,B two extensions of Lf -structures. We define an
increasing sequence of L0-structures (Di)i<ω equipped with a partial binary function fi+1 : D

2
i → Di+1.

Let D0 := A⊕E B and f0 = fE. Now set D1 := D0 ⊕〈∅〉 {D
2
0 \ (A

2 ∪B2)} and consider f1 : D
2
0 → D1

defined the following way : if (x, y) ∈ A2, f1(x, y) := fA(x, y), if (x, y) ∈ B2, f1(x, y) := fB(x, y)
and else (x, y) is sent to the element of D1 with the corresponding label. We iterate this process : if
Di, fi+1 are defined for i > 0 we let Di+1 := Di ⊕〈∅〉 {D

2
i \ (D2

i−1)}, and fi+1 extends fi by sending
(x, y) ∈ D2

i \ (D
2
i−1) to the element of Di+1 with the corresponding label. We then set D :=

⋃
i<ω

Di and

f :=
⋃
i<ω

fi : D
2 → D. This structure satisfies the universal property : it is generated by the images of

A and B as an Lf -structure, given D
′ and embeddings ϕA : A→ D′, ϕB : B → D′ as in the statement

we can define an increasing sequence of morphisms of L0-structures ϕi : Di → D′ in a canonical way
and show that its union is a morphism of Lf -structure. The construction of A⊕〈∅〉 {x} in Kf follows
the same method.

Condition 6. is easy to check, we just apply 6. inside of K0, find the embeddings, take fD|D2
i
to be

the image of fDi
by ϕDi

, similarly for B, and we can set f to be anything outside of D2
i and B2.

Now for condition 3. consider a structure 〈ab〉 ∈ Kf and some quantifier-free Lf -formula ϕ such that
〈ab〉 |= ϕ(a, b). By replacing every instance of f in ϕ by a new variable and separating the instances
of f applied only to elements of 〈a〉 from the other ones we can reshape ϕ(x, y) in the following form :

ϕ′(x, x≤m, y, y≤n)∧
∧

i≤m

(xi = f(si(x, x<i), s
′
i(x, x<i)))∧

∧

i≤n

(yi = f(ti(x, x≤m, y, y<i), t
′
i(x, x≤m, y, y<i)))

ϕ′ is an L0 quantifier-free formula and the ti, si, t
′
i, s

′
i are L0-terms. By strengthening the formula ϕ

we can assume that, if we define by induction xk(a) = f(sk(a, x<k(a)), s
′
k(a, x<k(a))) and

yk(a, b) := f(ti(a, x≤m(a), b, y<i(a, b)), t
′
i(a, x≤m(a), b, y<i(a, b)))

, and if yk(a, b) 6= yk′(a, b), then ϕ
′(x, x≤m, y, y≤n) specifies that (tk(x, x≤m, y, y<k), t

′
k(x, x≤m, y, y<k)) 6=

(tk(x, x≤m, y, y<k), t
′
k(x, x≤m, y, y<k)), and similarly for xk, x

′
k and xk, yk′ .

Now consider the L0-formula ψ′(x, x≤m) associated by condition 3. in K0 to ϕ′(x, x≤m, y, y≤n) and
then the Lf -formula ψ′(x) := ψ′(x, x≤m)∧

∧
i≤m

(xi = f(si(x, x<i), s
′
i(x, x<i))). Assume that A′ |= ψ(a′)

for some a′ ∈ A′. By assumption there is an L0-extension A′ ⊆ B′ and b′, b′≤n ∈ B′ such that
B′ |= ϕ′(a′, a′≤m, b

′, b′≤n)∧
∧
i≤m

(a′i = f(si(a
′, a′<i), s

′
i(a

′, a′<i))). We just need to define a binary function

fB′ on B′ extending fA′ such that b′k = f(ti(a
′, a′≤m, b

′, b′<i), t
′
i(a

′, a′≤m, b
′, b′<i) for every k ≤ n. We

begin by setting these values, this is possible thanks to the strengthening we had, and we can let fB′

be whatever outside of this, we write B′
f for the Lf -structure defined on B′, then B′

f |= ϕ(a′, b′).

Remark 5.2.3. Adding a generic binary function assures us that the theory of any limit is strictly
NSOP1, as proven in [23, Section 3]. Also we get that the generated structure is non-trivial. With the
same construction we can add generic functions of any arity.

Definition 5.2.4. We define Lπ = L ∪ {π, π−1} new symbols of unary functions and the class Kπ of
Lπ-structures consisting of a structure A in K0 equipped with a bijection πA of inverse function π−1

A

such that the structure generated by the constants is some specified Lπ-structure.

Proposition 5.2.5. The class Kπ satisfies (H).
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Proof. Conditions 1. and 2. are clearly satisfied in Kπ, for the conditions 3. , 5. and 6. we can proceed
as previously. Now we describe what to pick as the free amalgam for condition 4. . Let E ⊆ A,B be
two extensions in Kπ.

In the same fashion as previously we construct an increasing sequence of L0-structures (Di)i<ω, and
an increasing sequence of subsets Hi ⊆ Di and two increasing sequences of functions πi, π

−1
i : Hi → Di

such that Di ⊆ Hi+1 and πi+1 ◦π
−1
i = π−1

i+1 ◦πi = idHi
for every i < ω. Let D0 := A⊕EB, H0 = A∪B,

and π0 = πA ∪ πB , π
−1
0 = π−1

A ∪ π−1
B . D1 := D0 ⊕〈∅〉 {[D0 \ (A ∪ B)]k∈Z\{0}}, i.e., we consider the

L0-structure freely generated over D0 by copies of D0 \ (A∪B) indexed on Z \ {0}, we see the element
of D0 \ (A ∪B) as those corresponding to the copy of index 0. Set H1 = D0 ∪

⋃
k∈Z\{0}

[D0 \ (A ∪B)]k.

We define π1 as the extension of π0 that send an element of [D0 \ (A ∪ B)]k to its copy of index
k + 1, i. e. it sends t(a, b)k to t(a, b)k+1, similarly for π−1

0 which sends an element of [D0 \ (A ∪ B)]k
to its copy of index k − 1. Assume that Di+1,Hi and πi, π

−1
i have been defined for i > 0. We set

Di+1 := Di ⊕〈∅〉 {[Di \Di−1]i∈Z\{0}}, Hi+1 := Di ∪
⋃
k<ω

[Di \Di−1]k and take πi+1 to be the function

extending πi that sends an element of [Di \Di−1]k to its copy of index k + 1, similarly for π−1
0 which

sends an element of [Di \Di−1]k to its copy of index k − 1. Once this is done we take D :=
⋃
i<ω

Di,

πD :=
⋃
i<ω

πi and π−1
D :=

⋃
i<ω

π−1
i . This defines an Lπ-structure of bijection πD, and D satisfies the

universal property : it is generated by the images of A and B as an Lπ-structure, given D′ and
embeddings ϕA : A → D′, ϕB : B → D′ as in the statement we can define an increasing sequence of
morphism of L0-structures ϕi : Di → D′ in a canonical way and show that its union is a morphism of
Lπ-structure. We take ϕi : D0 → D′ to be the only morphism of L0-structure such that ϕi|A = ϕA and
ϕi|B = ϕB . If ϕi : D0 → D′ is defined we take ϕi+1 : Di+1 → D′ to be its unique morphism extending
ϕi that sends π

k
D(t) to πkD′(ϕ(t)) for every t ∈ Di. Set ϕ :=

⋃
i<ω

ϕi, it is a morphism of L0-structures

and by construction it commutes with π, so it is a morphism of Lπ-structures. The construction of
A⊕〈∅〉 {x} in Kπ follows the same method.

Definition 5.2.6. We define Lσ = L ∪ {σ, σ−1} new symbols of unary functions and the class Kσ

of Lσ-structures consisting of a structure A in K equipped with an automorphism σA and its inverse
function σ−1

A .

In Kσ condition 1. − 5. are easy to check : we use the Free Amalgam property to show that if
E ⊆ A,B ∈ Kσ then there is an (unique) automorphism σA⊕EB of A ⊕E B extending σA and σB
and (A ⊕E B,σA⊕EB) satisfies the universal property. For condition 4. we consider the L0-structure
A ⊕〈∅〉 〈(xi)i∈Z〉 equipped with the unique automorphism that extends σA and sends xk to xk+1 for
every k ∈ Z. As for the generic substructure we need the structures of K to be uniformly locally finite
for condition 5. to hold, in this case the proof follows the same method. Also condition 6. need not to
hold even in this case for similar reasons as in KR. The limit of Kσ still exist, and it might be NSOP1,
however in that case |⌣

K 6= |⌣
a in the limit.

To sum up this section, the theories we are building are model companion of theories which are made
from basic one-based stable theories, like the theory of a F2-vector space, to which we added some
basic structure (equivalence relation, bijection,..) that does not interact. This is slightly more general
than the model companion of the empty theory, and it allows us to give some minimalist example of
strictly NSOP1 theory : The model companion of the theory of an abelian group with a unary function
f such that f(0) = 0.
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6 Some strictly NSOP1 theories with strong amalgamation

The theory T of the limit of some K satisfying (H) is not a free amalgamation theory in the sense of
[13], our strong independence relation |⌣

Γ does not in general satisfies the closure condition (which
is defined as : if C ⊆ A,B are algebraically closed and A |⌣C B then A ∪ B is algebraically closed),
however the relation |⌣

Γ is interesting.

Remark 6.1. There are other known examples of NSOP1 theories admitting a strong independence
relation satisfying Proposition 3.2.9, which could motivate the study of such theories :

1. The theory of ω-free PAC fields of characteristic 0 (see [10] and [9]) with the the relation |⌣
III

defined as : for C ⊆ A,B, A |⌣
III
C B if A |⌣

lin
C B and acl(AB) = AB. This relation is named

strong independence in [8, Definition 4.5], written as here in [10, Section 3.6], but this definition
is not the same as the strong independence of [9, Definition 1.2].

2. The theory of vector spaces of infinite dimension over an ACF with a non degenerate bilinear
form with the relation |⌣

Γ (see [2], [17] or [7] for the definition of |⌣
Γ). This is not a free

amalgamation theory because of the closure condition.

3. The theory ACFG of an ACF with a generic multiplicative subgroup, see strong independence
in [18, Section 2.2] and the remark following [18, Section 4.4].
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[10] Zoé Chatzidakis. Independence in (unbounded) pac fields, and imaginaries. 2008.

[11] Artem Chernikov, Byunghan Kim, and Nicholas Ramsey. Transitivity, lowness, and ranks in nsop
1 theories. arXiv preprint arXiv:2006.10486, 2020.

[12] Artem Chernikov and Nicholas Ramsey. On model-theoretic tree properties. Journal of Mathe-

matical Logic, 16(02):1650009, 2016.

[13] Gabriel Conant. An axiomatic approach to free amalgamation. The Journal of Symbolic Logic,
82(2):648–671, 2017.

21



[14] Gabriel Conant and Alex Kruckman. Independence in generic incidence structures. The Journal

of Symbolic Logic, 84(2):750–780, 2019.

[15] Gabriel Conant and Alex Kruckman. Three surprising instances of dividing. arXiv preprint

arXiv:2311.00609, 2023.

[16] Christian d’Elbée. Axiomatic theory of independence relations in model theory. arXiv preprint

arXiv:2308.07064, 2023.

[17] Jan Dobrowolski. Sets, groups, and fields definable in vector spaces with a bilinear form. arXiv

preprint arXiv:2004.07238, 2020.

[18] Christian d’Elbée. Forking, imaginaries, and other features of. The Journal of Symbolic Logic,
86(2):669–700, 2021.

[19] Itay Kaplan and Nicholas Ramsey. On kim-independence. Journal of the European Mathematical

Society, 22(5):1423–1474, 2020.

[20] Itay Kaplan, Nicholas Ramsey, and Saharon Shelah. Local character of kim-independence. Pro-

ceedings of the American Mathematical Society, 147(4):1719–1732, 2019.

[21] Byunghan Kim. Weak canonical bases in nsop theories. The Journal of Symbolic Logic, 86(3):1259–
1281, 2021.

[22] Byunghan Kim and Anand Pillay. Simple theories. Annals of Pure and Applied Logic, 88(2-
3):149–164, 1997.

[23] Alex Kruckman and Nicholas Ramsey. Generic expansion and skolemization in nsop1 theories.
Annals of Pure and Applied Logic, 169(8):755–774, 2018.

[24] Alf Onshuus. th-forking, algebraic independence and examples of rosy theories, 2003.

[25] Frank Olaf Wagner. Simple theories, volume 260. Springer, 2000.

22


	Introduction
	Preliminaries on independence relations
	Constructing the limit
	Hypothesis on the class and basic examples
	Properties of the limit theory

	The parameterized class
	Examples and non-examples
	Adding a generic predicate
	Adding generic functions

	Some strictly NSOP1 theories with strong amalgamation

