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1 Introduction

How do we decide when to stop doing something when we don’t really know
when to stop? This is a non-trivial question in general that we can face in
several events during our life. For instance, as researchers, deciding when to
stop conducting more experiments to practically validate a new theoretical
result is one of the hardest decisions to make. In this paper, we would like to
answer a quite similar question: How do we decide when to stop an iterative
algorithm seeking an ε−solution for an optimization problem?

When solving an optimization problem with an iterative method, one is
looking for an ε−solution (i.e. a solution that’s ε close to the optimal one).
However, testing if a point is actually an ε−solution is not always easy, so
we do not really know when to stop the algorithm. This can be detrimental
to the running time of the method because of unnecessary iterations. In this
work, we aim to address this problem by studying several stopping criteria and
determine under which conditions they are accurate to detect ε−solutions.

(a) Fixed number of iterations, ε1 ≈ 10−28 (b) Karush-Kuhn-Tucker error, ε2 ≈ 10−6

Fig. 1 Gradient descent is employed to address an unconstrained Least-Squares problem,
utilizing two distinct stopping criteria aimed at achieving an ε = 10−5 solution

Figure 1 illustrates the significance of our study by demonstrating a sub-
stantial disparity observed when solving an unconstrained Least-Squares prob-
lem with the same algorithm but employing two distinct stopping criteria to
achieve an ε = 10−5 solution. At first glance, one might infer that sub-figure 1a
outperforms sub-figure 1b. Indeed, this inference holds when solely consider-
ing the y−axis, where a smaller error indicates closer proximity to optimality.
However, the x−axis conveys an alternate narrative regarding the requisite
number of iterations and thereby the computational run-time. While our ob-
jective is to detect an ε = 10−5 solution, sub-figure 1a has gone too far for,
approximately, a 10−28 solution but at the expense of time. Although sub-
figure 1a yields almost an optimal solution, it might become unfeasible to
track in other scenarios involving high-dimensional problems for example.
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We are interested in convex optimization problems under affine equality
constraints. That is:

min
x∈X

f(x) subject to Ax = b (P)

where f : X → R ∪ {+∞} is a proper, lower semi-continuous, and convex
function with a computable proximal operator, A : X → Y is a linear operator,
and b ∈ Y. We will, simultaneously, solve the primal and dual problems by
solving their associated saddle point problem:

min
x∈X

max
y∈Y

L(x, y) := f(x) + ⟨Ax− b, y⟩ (SPP)

where L(x, y) is the associated Lagrangian with (P) and y ∈ Y is the so-called
Lagrange multiplier or dual variable. Throughout the paper, we assume the
existence of a solution to (SPP).

Problems of form (SPP) are ubiquitous in operational research, signal
processing, shape optimization, statistical learning, etc... For example,

❖ Method of framers [12] and Basis Pursuit [8] are techniques for decom-
posing a signal into an “optimal” superposition of dictionary elements by
picking a solution whose coefficients have minimum ℓ2, and ℓ1 norms, re-
spectively.

❖ Statistical learning covers wide range of (un)constrained optimization prob-
lems like LASSO [25,28], constrained least-squares [4,27], etc...

❖ In operational research: linear programs [11,24] stand out as the most
renowned problems within a broader framework that encompasses the pres-
ence of inequality constraints, min

x≥0
max

y
⟨c, x⟩+ ⟨Ax− b, y⟩

Several measures of optimality have been considered in the literature. The
first and most natural one is ”Optimality Gap and Feasibility error (OGFE)”,
which directly fits the definition of the optimization problem at stake. Indeed,
the Optimality Gap represents the difference between the objective function
value at the current solution (xk) and the optimal solution (x⋆), while the Fea-
sibility Error measures the constraints violation. The second traditional one
is the ”Distance to the Optimal Solution Set (DOSS)” that measures how far
or close the solution is to be an optimal one. However, as both of those mea-
sures depend on the unknown point: x⋆, one cannot compute them before the
problem is actually solved! Hence in algorithms, the ”Karush–Kuhn–Tucker
error” [22,23] is widely used [16,14,6], it is a computable quantity and serves
as a first-order optimality measure for achieving optimality in non-linear pro-
gramming problems. It accomplishes this by quantifying the error in feasibility
and identifying, within the sub-differential of the associated Lagrangian, the
element with the smallest norm. Moreover, if the Lagrangian’s gradient is met-
rically sub-regular [21], then a small KKT error implies that the current point
is close to the set of saddle points. When the primal and dual domains are
bounded, the difference between the primal and dual optimal values that define
the so-called ”Duality Gap (DG)” [23] is a good way to measure optimality:
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it is often easily computable, and it is an upper bound to the optimality gap.
However, for unbounded domains, it’s no longer informative, as it will con-
sistently be infinity, except for the final iterations when the algorithm begins
identifying feasible solutions. A first generalization to unbounded domains has
been proposed in [26]: the ”Smoothed Duality Gap (SDG)”, a new measure
of optimality that is widely applicable but less well-studied than the other
ones. It’s based on the smoothing of non-smooth functions [20], and takes fi-
nite values for constrained problems, unlike the duality gap. Moreover, if the
smoothness parameter is small and the smoothed duality gap is small, this
means that the optimality gap, and the feasibility error are both small. A sec-
ond one has been proposed for linear programs in [2], we have extended its
definition within our framework (SPP) and termed it the ”Projected Dual-
ity Gap (PDG).” This concept involves calculating the duality gap at each
iteration while simultaneously projecting the primal-dual solution onto their
respective feasibility spaces. Another recent measure has been proposed for
analyzing the primal-dual hybrid gradient algorithm in [18], the authors dub
it: the ”Infimal Sub-differential Size (IDS)”. It always has a finite value, easy
to compute, and more importantly, it monotonically decays. IDS essentially
measures the distance between 0 and the sub-differential of the objective func-
tion. Throughout the remainder of this paper, our attention will be directed
towards four optimality measures: the optimality gap and feasibility error,
the Karush–Kuhn–Tucker error, the projected duality gap, and the smoothed
duality gap. On the one hand, we aim to demonstrate the conditions under
which the computable measures (KKT error, PDG, and SDG) serve as upper
bounds or approximations for the uncomputable measure, optimality gap and
feasibility error. On the other hand, our objective is to assess and compare the
performance of smoothed duality gap against both the Karush–Kuhn–Tucker
error and the projected duality gap to determine its efficacy and stability.

1.1 Our contributions and Paper organization

The paper’s contributions can be outlined as follows:

1. In section 2, we start by providing a comprehensive background.
2. Section 3 is dedicated to establishing a common understanding by precisely

defining the different optimality measures, accompanied by a detailed anal-
ysis when necessary. Moreover, this section introduces our generalization
of the existing measure: the projected duality gap, originally defined only
for linear programs, to our framework (SPP).

3. Section 4 is allocated to present and deeply study the novel measure, the
smoothed duality gap, while also deriving some new properties.

4. Section 5 is devoted to the establishment of computable approximations for
the uncomputable measure, the optimality gap, in terms of the other com-
putable measures (the KKT error error, PDG, and SDG). The necessary
regularity assumptions for this purpose are also introduced.
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5. A more in-depth examination of the smoothed duality gap and its inter-
connections with both: the KKT error and PDG is presented in section 6.
More precisely, we elucidate the conditions under which these measures can
function as approximations to the smoothed duality gap, and vice versa.

6. Section 7 presents several numerical experiments illustrating our findings,
while the technical proofs are relegated to the appendix.

1.2 Notations

We shall denote X the primal space, Y the dual space, and Z = X × Y the
primal-dual space. We assume that those vector spaces are Euclidean spaces.
Similarly, for a primal vector x, and a dual vector y, we shall denote z = (x, y).
The set of saddle points will be denoted as Z⋆. Let Γ0(X ) denote the set of
all proper, lower semi-continuous, and convex functions f : X → R ∪ {+∞}.
The proximal operator of a function f and a step size s > 0 is given by:

Proxsf (x) = arg min
x′∈X

f(x′) +
1

2s
∥x′ − x∥2

Let dist(z,Z) = min
z′∈Z

∥z − z′∥ denote the distance between point z and set Z.

We will make use of the convex indicator function associated with the convex
subset C ⊂ X :

ıC(x) =

{
0 if x ∈ C
+∞ Otherwise

2 Background

Proposition 1 (Young’s inequality)
For all vectors u and v of an inner product space, and for any scalar λ.

The following inequality holds:

|⟨u,v⟩| ≤ λ2

2
∥u∥2 + 1

2λ2
∥v∥2 (1)

Lemma 1 A function f : X → (−∞,+∞] is µ−strongly convex if for any
x, y ∈ domf and for any q ∈ ∂f(x), the following inequality holds:

f(y) ≥ f(x) + ⟨q, y − x⟩+ µ

2
∥y − x∥2

Lemma 2 Given f ∈ Γ0(X ), if q1 ∈ ∂f(x1) and q2 ∈ ∂f(x2), then:

⟨q1 − q2, x1 − x2⟩ ≥ 0

Lemma 3 Let g ∈ Γ0(X ), and denoting p = Proxsg(x), then we have for all
v ∈ X :

g(p) +
1

2s
∥x− p∥2 ≤ g(v) +

1

2s
∥x− v∥2 − 1

2s
∥p− v∥2
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Proposition 2 (Projection properties)
Let C ⊆ X be a nonempty, closed, and convex subset. Define a := ProjC(x)

for x ∈ X . Then for any u ∈ C, the following holds:

∥a− x∥2 ≤ ∥u− x∥2 (2)

⟨u− a, a− x⟩ ≥ 0 (3)

Definition 1 (Separable function)
We say that a function φ : Rn → R ∪ {+∞} is separable if there exists n

functions φi : R → R ∪ {+∞} such that ∀x ∈ Rn, φ(x) =

n∑
i=1

φi(xi).

Proposition 3 (Properties of Separable function)
Let φ : Rn → R ∪ {+∞} be a separable function, then for any x ∈ Rn,

∂φ(x) = ∂φ1(xi)× · · · × ∂φn(xn) (4)

Proxγφ(x) = (Proxγφ1
(x1), . . . ,Proxγφn

(xn)) (5)

sup
x∈Rn

φ(x) = sup
x1∈R

φ1(x1) + · · ·+ sup
xn∈R

φn(xn) (6)

Definition 2 (Fenchel-Legendre Conjugate)
Let f : X → [−∞,+∞]. The Fenchel-Legendre conjugate of f is the func-

tion f∗ : X → [−∞,+∞] defined by:

f∗(ϕ) = sup
x∈X

⟨ϕ, x⟩ − f(x), ϕ ∈ X

Proposition 4 (Fenchel-Young’s inequality)
Let f : X → [−∞,+∞]. For all (x, ϕ) ∈ X × X , the following inequality

holds:

f(x) + f∗(ϕ) ≥ ⟨ϕ, x⟩

with equality if, and only if, ϕ ∈ ∂f(x).

Proposition 5 Let f : X → (−∞,+∞] be proper, convex, and l.s.c. at some
point x ∈ X . Then,

ϕ ∈ ∂f(x) ⇐⇒ x ∈ ∂f∗(ϕ)

Proposition 6 (Moreau’s identity)
Consider f ∈ Γ0(X ) and s > 0. Then, for any x ∈ X ,

Proxsf (x) + sProxs−1f∗

(x
s

)
= x

Definition 3 A set-valued function F : Z ⇒ Z is metrically sub-regular
at z for v if there exists γ > 0 and a neighborhood N(z) of z such that
∀z′ ∈ N(z),

dist (F (z′), v) ≥ γdist
(
z′, F−1(v)

)
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Definition 4 We say that a function f : X → R∪{+∞} has a quadratic error
bound if there exists η and an open region R ⊆ X that contains argmin f such
that for all x ∈ R:

f(x)−min f ≥ η

2
dist(x, argmin f)2

We shall use the acronym f has an η-QEB.

Proposition 7 (Proposition 2 in [15])
Let f be a convex function such that f(x) ≤ f0 implies ∥∂f(x)∥0 ≥ ηdist (x,X ⋆).

Then, f(x) ≥ f(x⋆) + η
2dist (x,X

⋆) as soon as f(x) ≤ f0.

Lemma 4 Let M ∈ Rm×n be a symmetric matrix, then for any vector x ∈ Rn:

∥Mx∥ ≥ |λ(M)|min∥x∥

where |λ(M)|min is the smallest absolute value of the non-zero eigenvalues of
M .

3 Optimality measures

Within this section, our objective is to establish a common understanding by
defining the aforementioned optimality measures and the concept of ε−solution.
Furthermore, where necessary, we provide a comprehensive analysis supporting
these definitions.

Definition 5 (ε−Solution)
Given a target accuracy ε > 0. A point x̂ ∈ X is said to be an ε−Solution

of (P) if:

|f(x̂)− f(x⋆)| ≤ ε and ∥Ax̂− b∥ ≤ ε (7)

Definition 6 (Optimality Gap and Feasibility error (OGFE))
The Optimality gap, and the Feasibility error for (SPP) at a point x̂ ∈ X

are defined, respectively, as follows:

O(x̂) = max (f(x̂)− f⋆, 0) F(x̂) = ∥Ax̂− b∥ (8)

One can observe that the definition of the optimality gap and feasibility error
aligns precisely with the definition of ε−solutions. Consequently, any combi-
nation of the optimality gap and the feasibility error can be utilized to assess
whether a provided solution constitutes an ε−solution. However, due to the
uncomputability of the optimality gap, determining whether a solution truly
qualifies as an ε solution becomes a challenging task.

Next, we introduce the Karush–Kuhn–Tucker error, which is quite similar
to the outlined definition of the Infimal Sub-differential Size as presented in
[18]. They employ the same definition as we do but with weighted norms. This
definition draws inspiration from the Karush-Kuhn-Tucker conditions applied
to (SPP), where the saddle points are identified by having the sub-differential
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of the associated Lagrangian equal to 0. Said otherwise, (x⋆, y⋆) qualifies as a
saddle point for (SPP) if, and only if:

∂xL(x⋆, y⋆) = ∂f(x⋆) +AT y⋆ = 0 (Stationarity)

∂yL(x⋆, y⋆) = Ax⋆ − b = 0 (Primal-feasibility)

Therefore, employing any combination of these two conditions would provide
insight into whether the current point functions as a saddle point or not. We
utilize the squared norm of the vector that combines these two conditions.

Definition 7 (Karush–Kuhn–Tucker error (KKT))
The Karush-Kuhn-Tucker error for (SPP) is defined as follows:

K(z) :=
∥∥∂f(x) +AT y

∥∥2
0
+ ∥Ax− b∥2 (9)

where we define the ”Infimal size” of a set Q as:

∥Q∥0 := min{∥q∥ | q ∈ Q} (10)

3.1 Projected Duality Gap

The optimality measure, which we termed as the projected duality gap, was
initially introduced in [2] only for linear programs. This metric serves as the
stopping criterion utilized in the linprog solver within SciPy for Python.
In this work, we have extended its application to integrate with our (SPP)
framework. Essentially, our generalization operates quite similarly to the con-
ventional duality gap. However, it differs in that it computes the duality gap
at each iteration while simultaneously projecting the primal-dual solution onto
their respective feasibility spaces. Consequently, this method always yields a
finite value, unlike the conventional duality gap.

Definition 8 (Projected Duality Gap (PDG))
The Projected Duality Gap for (SPP) is defined as follows:

D(z) := |f(x) + f∗(a) + ⟨b, y⟩|2 +
∥∥a+AT y

∥∥2 + ∥Ax− b∥2 (11)

a := Projdomf∗

(
−AT y

)
(12)

This definition is inspired by the aforementioned saddle point problem (SPP):

min
x∈X

max
y∈Y

L(x, y) := f(x) + ⟨Ax− b, y⟩

Thanks to the Fenchel-Legendre transform, we can express the associated pri-
mal and dual problems equivalently in terms of it. That is:

min
x∈X

max
y∈Y

f(x) + ⟨Ax, y⟩ − ⟨b, y⟩

≡min
x∈X

f(x) + ı{b} (Ax)

https://docs.scipy.org/doc/scipy/reference/optimize.linprog-interior-point.html
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≡max
y∈Y

−f∗ (−AT y
)
− ⟨b, y⟩

Therefore, (x, y) is a saddle point if the following conditions hold:
|f(x) + ı{b} (Ax) + f∗ (−AT y

)
+ ⟨b, y⟩| = 0

Ax ∈ dom(ı{b}) ≡ Ax = b

−AT y ∈ dom(f∗)

Hence, by considering any combination of these conditions, an optimality mea-
sure is obtained. We take the squared norm of the vector combining the three
conditions.

The fourth measure under consideration is entirely novel and less well-
studied compared to the aforementioned ones. This is an area where we invest
more time and effort in our study. Consequently, we allocate a dedicated sec-
tion to comprehensively introduce it, along with deriving some new properties.

4 Smoothed Duality Gap

In this section, we present the last optimality measure along with some new
properties. The smoothed duality gap, initially introduced in [26], represents a
novel measure of optimality that is widely applicable but remains less studied
compared to the previously discussed ones.

Definition 9 (Definition 4 in [15]) .
Given β = (βx, βy) ∈ [0,+∞]2, z ∈ Z and ż ∈ Z, the smoothed gap Gβ is

the function defined by:

Gβ(z; ż) = sup
z′∈Z

L(x, y′)− L(x′, y)− βx

2
∥x′ − ẋ∥2 − βy

2
∥y′ − ẏ∥2 (13)

When the smoothness parameter β = 0, we recover the conventional duality
gap. The smoothed duality gap concept involves smoothing the duality gap
through a proximity function [20], thereby ensuring that the smoothed dual-
ity gap attains finite values for constrained problems, unlike its conventional
counterpart. Additionally, when the smoothness parameter is small and the
smoothed duality gap is small, it signifies that both the optimality gap and
the feasibility error are also small.

Moreover, the author in [15] has found that the smoothed duality gap offers
a robust outcome. Independently of any unknown or uncomputable variables,
it serves as a valid optimality measure. Therefore, it could be utilized as a
stopping criterion.

Definition 10 (Definition 5 in [15])
Given β = (βx, βy) ∈ [0,+∞[2, and z ∈ Z, the self-centered smoothed gap

is given by Gβ(z, z).
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Theorem 1 (Proposition 15 in [15])
The self-centered smoothed gap is a measure of optimality. Indeed, ∀z ∈

Z,∀β ∈ [0,+∞[2: (i) Gβ(z, z) ≥ 0 and (ii) Gβ(z, z) = 0 ⇐⇒ z ∈ Z⋆

An obstacle in the definition of the smoothed duality gap lies in it constituting
an optimization problem in itself, thereby adding complexity. However, for
the previously mentioned (SPP), we have managed to derive a closed-form
expression for the smoothed duality gap.

Proposition 8 The self-centered smoothed gap for (SPP) can be computed
as follows:

Gβ(z) := f(x)− f(p) + ⟨A(x− p), y⟩ − βx

2
∥p− x∥2 + 1

2βy
∥Ax− b∥2 (14)

p := Proxβ−1
x f

(
x− 1

βx
AT y

)
(15)

Proof We start with the definition of the smoothed duality gap:

Gβ(z) = f(x) + ⟨b, y⟩+max
x′

−f(x′)− ⟨Ax′, y⟩ − βx

2
∥x′ − x∥2 +max

y′
⟨Ax− b, y′⟩

−βy

2
∥y′ − y∥2

= f(x) + ⟨b, y⟩−f(p)− ⟨Ap, y⟩ − βx

2
∥p− x∥2 + ⟨Ax− b, y⟩+ 1

2βy
∥Ax− b∥2

= f(x)− f(p) + ⟨A(x− p), y⟩ − βx

2
∥p− x∥2 + 1

2βy
∥Ax− b∥2

where

p = argmax
x′

−f(x′)− ⟨Ax′, y⟩ − βx

2
∥x′ − x∥2

= argmin
x′

f(x′) + ⟨x′, AT y⟩+ βx

2

∥∥∥∥x′ −
(
x− 1

βx
AT y

)
− 1

βx
AT y

∥∥∥∥2
= argmin

x′
f(x′)+⟨x′, AT y⟩+ βx

2

∥∥∥∥x′ −
(
x− 1

βx
AT y

)∥∥∥∥2 + 1

2βx

∥∥AT y
∥∥2

−
〈
x′, AT y

〉
+⟨x− 1

βx
AT y,AT y⟩

= Proxβ−1
x f

(
x− 1

βx
AT y

)
□

Where the red terms cancel, and the green ones are free of x′.

Throughout the remainder of this section, we outline several properties of
the self-centered smoothed gap, which will significantly contribute to justi-
fying our subsequent findings. Additionally, we will call Gβ(x

⋆, y;x, y⋆) and
Gβ(x, y

⋆;x⋆, y) the outer-saddle and the inner-saddle smoothed gaps, respec-
tively.
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Lemma 5 Given β = (βx, βy) ∈ [0,+∞[2, then the proximal point, p, defined
in (15) satisfies:

p = Proxβ−1
x f

(
x− 1

βx
AT y

)
⇐⇒ βx(x− p) ∈ ∂f(p) +AT y

Proof Direct implication of Fermat’s rule.

Lemma 6 Given β = (βx, βy) ∈ [0,+∞[2, then for all z ∈ Z the self-centered
smoothed gap satisfies:

Gβ(z) ≥
βx

2
∥x− p∥2 + 1

2βy
∥Ax− b∥2

Proof By Lemma 3, we know that:

p = Proxβ−1
x f

(
x− 1

βx
AT y

)
⇐⇒ ∀v ∈ X ,

1

βx
f(p)+

1

2

∥∥∥∥p− (x− 1

βx
AT y

)∥∥∥∥2 ≤ 1

βx
f(v)+

1

2

∥∥∥∥v − (x− 1

βx
AT y

)∥∥∥∥2−1

2
∥v−p∥2

Taking v = x, we obtain:

f(x)− f(p)− βx

2
∥x− p∥2 ≥ βx

2

∥∥∥∥p− (x− 1

βx
AT y

)∥∥∥∥2 − 1

2βx

∥∥AT y
∥∥2 (16)

Thus,

Gβ(z) = f(x)− f(p)− βx

2
∥p− x∥2 + ⟨A(x− p), y⟩+ 1

2βy
∥Ax− b∥2

(16)

≥ βx

2

∥∥∥∥p− (x− 1

βx
AT y

)∥∥∥∥2 − 1

2βx

∥∥AT y
∥∥2 + ⟨A(x− p), y⟩

+
1

2βy
∥Ax− b∥2

=
βx

2
∥x− p∥2 + 1

2βy
∥Ax− b∥2 □

Corollary 1 Given β = (βx, βy) ∈ [0,+∞]2. Then, for any z ∈ Z, the feasi-
bility error defined in (8) could be approximated in terms of the self-centered
smoothed duality gap defined in (14) for (SPP). More precisely, for all z ∈ Z,

∥Ax− b∥ ≤
√
2βyGβ(z) (17)

Proof Direct implication of Lemma 6.
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Lemma 7 Given β = (βx, βy) ∈ [0,+∞]2, then for all z ∈ Z, the self-centered
smoothed duality gap satisfies:

Gβ(z) ≥
βx

2
∥xβ(y)− x∥2 + βy

2
∥yβ(x)− y∥2 (18)

xβ(y) := argmax
x′

−f(x′)− ⟨Ax′ − b, y⟩ − βx

2
∥x′ − x∥2 (19)

yβ(x) := argmax
y′

⟨Ax− b, y′⟩ − βy

2
∥y′ − y∥2 (20)

Proof

Gβ(z) = f(x) + sup
x′

−f(x′)− ⟨Ax′ − b, y⟩ − βx

2
∥x′ − x∥2 + sup

y′
⟨Ax− b, y′⟩

−βy

2
∥y′ − y∥2

= f(x) + F1(xβ(y)) + F2(yβ(x))

Where

F1(µ) = −f(µ)− ⟨Aµ− b, y⟩ − βx

2
∥µ− x∥2

F2(ν) = ⟨Ax− b, ν⟩ − βy

2
∥ν − y∥2

One can observe that F1 and F2 are βx

2 and
βy

2 −strongly concave, respectively.
Hence, by Lemma 1:

F1(xβ(y)) ≥ F1(x) +
βx

2
∥xβ(y)− x∥2

F2(yβ(x)) ≥ F2(y) +
βy

2
∥yβ(x)− y∥2

(21)

Thus,

Gβ(z) = f(x) + F1(xβ(y)) + F2(yβ(x))

(21)

≥ f(x)−f(x)− ⟨Ax− b, y⟩+ βx

2
∥xβ(y)− x∥2+ ⟨Ax− b, y⟩+βy

2
∥yβ(x)− y∥2

=
βx

2
∥xβ(y)− x∥2 + βy

2
∥yβ(x)− y∥2 □

Corollary 2 Given β = (βx, βy) ∈ [0,+∞]2, z ∈ Z, and z⋆ ∈ Z⋆, then the
outer-saddle smoothed gap satisfies:

Gβ(x
⋆, y;x, y⋆) ≥ −βx

2
∥x− x⋆∥2 + βx

2
∥xβ(y)− x⋆∥2

xβ(y) = argmax
x′

−f(x′)− ⟨Ax′ − b, y⟩ − βx

2
∥x′ − x∥2
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Proof

Gβ(x
⋆, y;x, y⋆) = f(x⋆) + sup

x′

(
−f(x′)− ⟨Ax′ − b, y⟩ − βx

2
∥x′ − x∥2

)
+ sup

y′
−βy

2
∥y′ − y⋆∥2

= f(x⋆)−f(xβ(y))− ⟨Axβ(y)− b, y⟩ − βx

2
∥xβ(y)− x∥2 + 0

= f(x⋆) + F (xβ(y))

Where

F (µ) = −f(µ)− ⟨Aµ− b, y⟩ − βx

2
∥µ− x∥2

Since F is βx

2 −Strongly-concave and its maximum is attained at xβ(y), then
by Lemma 1:

F (xβ(y)) ≥ F (x⋆) +
βx

2
∥xβ(y)− x⋆∥2

Therefore,

Gβ(x
⋆, y;x, y⋆) ≥ f(x⋆) + F (x⋆) +

βx

2
∥xβ(y)− x⋆∥2

= f(x⋆)−f(x⋆)− ⟨Ax⋆ − b, y⟩ − βx

2
∥x⋆ − x∥2 + βx

2
∥xβ(y)− x∥2

= −βx

2
∥x− x⋆∥2 + βx

2
∥xβ(y)− x∥2 □

Lemma 8 Let z⋆ ∈ Z⋆, then for any z ∈ Z, the self-centered smoothed duality
gap can be decomposed in terms of the outer and inner saddle smoothed gaps
as:

Gβ(z) = Gβ(x, y
⋆;x⋆, y) + Gβ(x

⋆, y;x, y⋆)

Proof By using the definition of SDG twice, first:

Gβ(x, y
⋆;x⋆, y) = f(x) + sup

x′
−f(x′)− ⟨Ax′ − b, y⋆⟩ − βx

2
∥x′ − x⋆∥2

+ sup
y′

⟨Ax− b, y′⟩ − βy

2
∥y′ − y∥2

= f(x)−f(x⋆) + sup
y′

⟨Ax− b, y′⟩ − βy

2
∥y′ − y∥2

Second:

Gβ(x
⋆, y;x, y⋆) = f(x⋆) + sup

x′
−f(x′)− ⟨Ax′ − b, y⟩ − βx

2
∥x′ − x∥2

+ sup
y′

−βy

2
∥y′ − y⋆∥2

= f(x⋆) + sup
x′

−f(x′)− ⟨Ax′ − b, y⟩ − βx

2
∥x′ − x∥2 + 0 □

Summing the two terms implies the result.
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Lemma 9 Given β = (βx, βy) ∈ [0,+∞]2, z ∈ Z, and z⋆ ∈ Z⋆, then the
outer-saddle smoothed gap satisfies:

Gβ(x
⋆, y;x, y⋆) ≥ −2

√
βxGβ(z)∥x− x⋆∥

Proof By corollary 2, we know that:

Gβ(x
⋆, y;x, y⋆) ≥ −βx

2
∥x− x⋆∥2 + βx

2
∥xβ(y)−x+ x− x⋆∥2

=
βx

2
∥xβ(y)− x∥2 + βx ⟨xβ(y)− x, x− x⋆⟩

≥ βx ⟨xβ(y)− x, x− x⋆⟩
(CS)

≥ −βx∥xβ(y)− x∥∥x− x⋆∥
(18)

≥ −
√
2βxGβ(z)∥x− x⋆∥ □

This last lemma will play a crucial role in establishing an upper bound for the
optimality gap in terms of the smoothed duality gap as we will elucidate in
the subsequent section.

5 Optimality Gap Bounds

In our earlier discussion regarding the definition of an ε-solution, a solution is
considered as an ε-solution if both the optimality gap and the feasibility error
are below ε. While the computation of the feasibility error is straightforward,
the same cannot be said for the optimality gap. Consequently, determining
whether the optimality gap is indeed less than ε or not poses a more compli-
cated challenge.

This section aims to establish computable approximations for the uncom-
putable measure, optimality gap, by setting upper bounds in terms of the
aforementioned computable ones: the KKT error, PDG, and SDG. The initial
approach involves attempting to set an upper bound on the optimality gap in
terms of the KKT error defined in equation (9). That is:

O(x) = f(x)− f⋆
?
≤ W(K(z))

For instance, this W could be K2 or cK for any scalar c, and so forth. Con-
sequently, if W(K(z)) ≤ ε, it follows that O(x) ≤ ε as well. Therefore, we
will attain an εg−solution with ε ≤ εg, depending on the tightness of our
subsequent bounds.

One possible starting point is by taking a vector that satisfies the station-
arity property of the Lagrangian:

q ∈ ∂f(x) +AT y ⇐⇒ ∀u ∈ X , f(u) ≥ f(x) + ⟨q −AT y, u− x⟩
u=x⋆

=⇒ f(x)− f(x⋆) ≤ ⟨q −AT y, x− x⋆⟩
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⇐⇒ f(x)− f(x⋆) ≤ ⟨q, x− x⋆⟩+ ⟨−y,A(x− x⋆)⟩
Ax⋆=b⇐⇒ f(x)− f(x⋆) ≤ ∥q∥∥x− x⋆∥+ ∥y∥∥Ax− b∥︸ ︷︷ ︸

Initial bound

(22)

Yet, our efforts have resulted in an expression that remains depending on the
unknown quantity, x⋆. This implies that unless we can eliminate this problem-
atic term, our progress will not surpass the limitations of the optimality gap
itself. Furthermore, when we attempted a similar approach with the projected
duality gap and the smoothed duality gap, we encountered an identical issue:

❖ Projected duality gap

f(x)− f⋆ ≤ |f(x) + f∗(a) + ⟨b, y⟩|+ ∥x⋆∥
∥∥a+AT y

∥∥ ≤ (1 + ∥x⋆∥)
√
D(z)

❖ Smoothed duality gap

f(x)− f⋆ = f(x) + ⟨Ax− b, y⟩+ 1

2βy
∥Ax− b∥2 − f⋆ − ⟨Ax− b, y⟩

− 1

2βy
∥Ax− b∥2

= Gβ(z)−Gβ(x
⋆, y;x, y⋆)− ⟨Ax− b, y⟩ − 1

2βy
∥Ax− b∥2

≤ Gβ(z)+
√
2βxGβ(z)∥x− x⋆∥ − . . . . . .

In each scenario, we continuously encountered the presence of the blue an-
noying unknown term. Nevertheless, we successfully transformed the initial
bounds of the optimality gap into final ones by introducing additional as-
sumptions that effectively eliminate the aforementioned blue annoying term.

Just to remark, more detailed proofs of each step of what we did in our
initial bounds will be presented later on in this section.

5.1 Regularity assumptions

In this subsection, we present the regularity assumptions that we employ to
eliminate the blue annoying term from our initial bounds of the optimality
gap. The first assumption is the metric sub-regularity of the sub-differential
of the Lagrangian, it was first introduced in the works of [17]. The approach
involves applying the definition of metric sub-regularity (Definition 3) to the
sub-differential of the Lagrangian of (SPP) (i.e. F = ∂L and v = 0). Formally,
this can be expressed as follows:

Assumption 1 (MSRSDL, [17])
The metric sub-regularity of the sub-differential of the Lagrangian (MSRSDL)

assumes that: there exists γ > 0 such that

∥∂xL(x, y)∥0 + ∥∇yL(x, y)∥ ≥ γdist(x,X ⋆) + γdist(y,Y⋆) (23)
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As we can observe, assuming the metric sub-regularity of the sub-differential
of the Lagrangian provides an upper bound for the earlier identified blue an-
noying term in terms of the KKT error.

The second assumption we introduce is referred to as the quadratic error
bound of the smoothed gap. While the quadratic error bound is a widely rec-
ognized and commonly used assumption in general contexts, its application
to the smoothed duality gap is relatively recent, first introduced in [15]. It’s
as broadly applicable as the metric sub-regularity of the Lagrangian’s sub-
differential, and it also serves as an upper bound for the blue annoying term
in terms of the smoothed duality gap.

Assumption 2 (QEBSG, Proposition 15 (iii) in [15])
The quadratic error bound of the smoothed gap (QEBSG) assumes that:

there exists β = (βx, βy) ∈]0,+∞]2, η > 0 and a region R ⊆ Z such that Gβ

has a quadratic error bound with constant η in the region R. Said otherwise,
for all z ∈ R:

Gβ(z) ≥
η

2
dist (z,Z⋆)

2
(24)

5.2 Final bounds

In the subsection, we present our final bounds of the optimality gap by assum-
ing the aforementioned regularity assumptions.

Theorem 2 Let f ∈ Γ0(X ), x⋆ = ProjX⋆(x), and q =
∥∥∂f(x) +AT y

∥∥
0
.

Then, under Assumption 1, the optimality gap defined in (8) could be approx-
imated in terms of the Karush–Kuhn–Tucker error defined in (9) for (SPP).
More precisely, for all z ∈ Z,

f(x)− f⋆ ≤ 2

γ
K(z) + ∥y∥

√
K(z) (25)

Proof As we have seen in our initial bound (eqn:22), taking q ∈ ∂f(x) +AT y
yields:

f(x)− f⋆ ≤ ∥q∥∥x− x⋆∥+ ∥y∥∥Ax− b∥
(23)

≤
∥∥∂f(x) +AT y

∥∥
0

1

γ

(
∥∂f(x) +AT y∥0 + ∥Ax− b∥

)
+ ∥y∥∥Ax− b∥

=
1

γ

∥∥∂f(x) +AT y
∥∥2
0
+

1

γ

∥∥∂f(x) +AT y
∥∥
0
∥Ax− b∥+ ∥y∥∥Ax− b∥

(9)

≤ 1

γ
K(z) +

1

γ

√
K(z)

√
K(z) + ∥y∥

√
K(z)

=
2

γ
K(z) + ∥y∥

√
K(z) □

Remark 1 An interesting observation in this first finding pertains to the term(
2
γK(z)

)
that depends on γ. The metric sub-regularity constant, γ, typically
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takes very small values, such as 10−8, 10−10, or even smaller. So, having 1
γ mul-

tiplied with K(z) rather than
√
K(z) yields a tighter and more efficient bound

where the algorithm will require fewer iterations to beat 1
γ before identifying

an ε−solution.

Counter-example 1 In Theorem 2, we derived an upper bound for the opti-
mality gap based on the KKT error. It is important to note, however, that
the reverse relationship may not always hold. The following counterexample
illustrates this point:

Let ε > 0, and consider the unconstrained optimization problem min
x∈R

f(x)

where f : R → R is defined as:

f(x) =

{
x If x > ε
x2

2ε + ε
2 If x ≤ ε

Then,

f ′(x) =

{
1 If x > ε
x
ε If x ≤ ε

One can observe that, ∀ε > 0:

f ′(ε) = 1 but f(ε)− f(0) =
ε2

2ε
+

ε

2
− ε

2
=

ε

2
−−−→
ε→0

0 □

which concludes the example.

Theorem 3 Let f ∈ Γ0(X ), x⋆ = ProjX⋆(x), and β = (βx, βy) ∈ (0,+∞)2.
Then, under Assumption 2, the optimality gap defined in (8) could be approx-
imated in terms of the self-centered smoothed duality gap defined in (14) for
(SPP). More precisely, for all z ∈ Z,

f(x)− f⋆ ≤

(
1 +

√
2βx

η

)
Gβ(z) +

√
2βy∥y∥

√
Gβ(z) (26)

Proof We start by rewriting the optimality gap in a decomposed way:

f(x)− f⋆ = f(x) + ⟨Ax− b, y⟩+ 1

2βy
∥Ax− b∥2 − f(x⋆)− ⟨Ax− b, y⟩

− 1

2βy
∥Ax− b∥2

= Gβ(x, y
⋆;x⋆, y)− ⟨Ax− b, y⟩ − 1

2βy
∥Ax− b∥2

(8)
= Gβ(z)− Gβ(x

⋆, y;x, y⋆)− ⟨Ax− b, y⟩ − 1

2βy
∥Ax− b∥2

(9)

≤ Gβ(z)+
√

2βxGβ(z)∥x− x⋆∥ − ⟨Ax− b, y⟩− 1

2βy
∥Ax− b∥2
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(24)

≤ Gβ(z) +
√
2βxGβ(z)

√
2

η
Gβ(z)− ⟨Ax− b, y⟩−0

≤

(
1 + 2

√
βx

η

)
Gβ(z) + ∥y∥∥Ax− b∥

(17)

≤

(
1 + 2

√
βx

η

)
Gβ(z) + ∥y∥

√
2βyGβ(z) □

Remark 2 The quadratic error bound constant, η, exhibits a similar charac-
teristic of taking very small values, akin to the metric sub-regularity constant.
In Theorem 3, we managed to establish an upper bound that depends on the
square root of η, while maintaining its multiplication with Gβ(z) instead of√

Gβ(z). Nevertheless, it is noteworthy that an alternative bound could be
formulated directly in terms of η itself by using Corollary 2.

Theorem 4 Let f ∈ Γ0(X ), x⋆ = ProjX⋆(x), β = (βx, βy) ∈ (0,+∞)2, and
βmin = min(βx, βy). Then, under Assumption 2, the optimality gap defined in
(8) could be approximated in terms of the projected duality gap defined in (11)
for (SPP). More precisely, for all z ∈ Z,

f(x)− f⋆ ≤
(
1 + ∥x∥+

√
2

η

√
(1 + ∥x∥+ ∥y∥)

√
D(z) +

1

2βmin
D(z)

)√
D(z)

(27)

In the proof of this theorem, we will use some arguments that will come later
in this paper. So, we will provide its proof later on as well.

Remark 3 Designing a new regularity assumption that inherently fits PDG is
out of the scope of the paper. Instead, we take advantage of assuming QEBSG
to derive our result.

6 Comparability Bounds

Our subsequent objective is motivated by the belief that the newly proposed
optimality measure, the smoothed duality gap, might serve as a more appropri-
ate stopping criterion compared to the others. This belief comes to light from
the smoothed duality gap’s definition; whereas the Karush–Kuhn–Tucker error
relies on the sub-differential of the objective function to assess optimality, the
smoothed duality gap is more directly based on the objective function itself.
Hence, in this section, our goal is to conduct a comparative analysis between
the smoothed duality gap, the Karush–Kuhn–Tucker error, and the projected
duality gap. We aim to investigate and identify the conditions under which
these measures could serve as approximations for the smoothed duality gap
and vice versa.
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6.1 SDG – KKT bounds

In this subsection, we start our comparative analysis between the smoothed
duality gap and the Karush–Kuhn–Tucker error. Initially, we present the up-
per bound obtained for SDG in terms of the KKT error. Subsequently, we
demonstrate the reverse relationship.

Theorem 5 Given β = (βx, βy) ∈ (0,+∞)2, z ∈ Z, and a function f ∈
Γ0(X ). Assume ∥q∥ =

∥∥∂f(x) +AT y
∥∥
0
. Then, for the Karush–Kuhn–Tucker

error and the smoothed duality gap defined, respectively, in (9) and (14) we
have:

Gβ(z) ≤
¯
βK(z) (28)

¯
β = max

(
1

βx
,

1

2βy

)
(29)

Proof First of all, let us observe the following:

❖ Using the definition of the sub-differential, we obtain:

q ∈ ∂f(x) +AT y ⇐⇒ ∀u ∈ Rn, f(u) ≥ f(x) + ⟨q −AT y, u− x⟩
u=p
=⇒ f(x)− f(p) ≤ ⟨q −AT y, x− p⟩ (30)

❖ From Lemma 5, we know that

p = Proxβ−1
x f

(
x− 1

βx
AT y

)
⇐⇒ βx(x− p) ∈ ∂f(p) +AT y

Hence, by Lemma 2, for any q ∈ ∂f(x) +AT y, we get:

⟨βx(x− p)− q, p− x⟩ ≥ 0 ⇐⇒ ⟨q, x− p⟩ ≥ βx∥p− x∥2

⇐⇒ ∥q∥ ≥ βx∥p− x∥
(31)

Now, from the definition of the SDG:

Gβ(z) = f(x)− f(p) + ⟨A(x− p), y⟩ − βx

2
∥p− x∥2 + 1

2βy
∥Ax− b∥2

(30)

≤ ⟨q −AT y, x− p⟩+ ⟨A(x− p), y⟩ − βx

2
∥p− x∥2 + 1

2βy
∥Ax− b∥2

≤ ⟨q, x− p⟩+ 1

2βy
∥Ax− b∥2

≤ ∥q∥∥x− p∥+ 1

2βy
∥Ax− b∥2

(31)

≤ ∥q∥ 1

βx
∥q∥+ 1

2βy
∥Ax− b∥2

(29)

≤
¯
β
[∥∥∂f(x) +AT y

∥∥2 + ∥Ax− b∥2
]

=
¯
βK(z) □
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Theorem 6 Given β = (βx, βy) ∈ (0,+∞)2, z ∈ Z, and a differentiable func-
tion f ∈ Γ0(X ) that has an L−Lipschitz gradient. Then, for the Karush–Kuhn–Tucker
error and the smoothed duality gap defined, respectively, in (9) and (14) we
have:

K(z) ≤ β̄LGβ(z) (32)

β̄L = max

(
2(L+ βx)

2

βx
, 2βy

)
(33)

Proof We start by observing the following:

❖ From Lemma 5, we know that

p = Proxβ−1
x f

(
x− 1

βx
AT y

)
⇐⇒ βx(x− p) ∈ ∂f(p) +AT y

Hence, keeping in mind that f is differentiable, we get:

βx∥x− p∥ =
∥∥∇f(p) +AT y

∥∥ (34)

❖ Since the gradient of f is L−Lipschitz, then by the reverse triangle inequal-
ity, we get:∥∥∇f(x) +AT y

∥∥− ∥∥∇f(p) +AT y
∥∥ ≤

∥∥(∇f(x) +AT y
)
−
(
∇f(p) +AT y

)∥∥
≤ L∥x− p∥

Hence, ∥∥∇f(x) +AT y
∥∥ ≤ L∥x− p∥+

∥∥∇f(p) +AT y
∥∥

(34)

≤ L∥x− p∥+ βx∥x− p∥
= (L+ βx)∥x− p∥ (35)

Therefore, starting from Lemma 6, we get:

Gβ(z) ≥
βx

2
∥x− p∥2 + 1

2βy
∥Ax− b∥2

(35)

≥ βx

2

∥∇f(x) +AT y∥2

(L+ βx)2
+

1

2βy
∥Ax− b∥2

≥min

(
βx

2(L+ βx)2
,

1

2βy

)[
∥∇f(x) +AT y∥2 + ∥Ax− b∥2

]
which implies the result:

K(z) ≤ β̄LGβ(z) □
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Counter-example 2 Theorem 6 necessitates the assumption that the objective
function is differentiable and has an L-Lipschitz gradient. Without these con-
ditions, Theorem 6 may not hold. This is exemplified in this counterexample.

Let β = (βx, βy) = (1, 1), and consider the unconstrained optimization
problem min

x∈R
|x|.

Then, the associated Lagrangian is L(z) = L(x) = |x|. Hence,

❖ The smoothed duality gap is defined as:

Gβ(z) = Gβ(x) = |x| −min
x′

|x′|+ 1

2
(x′ − x)2

= |x| −
∣∣Prox|.|(x)∣∣− 1

2

(
Prox|.|(x)− x

)2
= |x| − |[|x| − 1]+sgn(x)| −

1

2
([|x| − 1]+sgn(x)− x)

2

= |x| − [|x| − 1]+ − 1

2
([|x| − 1]+sgn(x)− x)

2

❖ The KKT error is defined as:

K(z) = K(x) = ∥∂f(x)∥20 with ∂f(x) =


−1 If x < 0

[−1, 1] If x = 0

1 If x > 0

Then,

lim
x→0

K(x) = 1 but lim
x→0

Gβ(x) = lim
x→0

|x| − 1

2
x2 = 0 □

which concludes the example.

6.2 SDG – PDG bounds

In this subsection, we proceed with our comparative analysis, this time be-
tween the smoothed duality gap and the projected duality gap. Firstly, we
present the upper bound acquired for the smoothed duality gap in terms of
the projected duality gap. Following this, we illustrate the converse relation-
ships. Furthermore, we will revisit Theorem 4 and derive its proof.

Theorem 7 Given β = (βx, βy) ∈ (0,+∞)2, z ∈ Z, and a function f ∈
Γ0(X ). Let βmin = min(βx, βy). Then, for the projected duality gap and the
smoothed duality gap defined, respectively, in (11) and (14) we have:

Gβ(z) ≤ (1 + ∥x∥+ ∥y∥)
√

D(z) +
1

2βmin
D(z) (36)
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Proof By the Fenchel-conjugate definition, we have:

f∗(a) = sup
x

⟨a, x⟩ − f(x)
x=p

≥ ⟨a, p⟩ − f(p) =⇒ −f(p) ≤ f∗(a)− ⟨p, a⟩ (37)

Thus,

Gβ(z) = f(x)−f(p) + ⟨A(x− p), y⟩ − βx

2
∥x− p∥2 + 1

2βy
∥Ax− b∥2

(37)

≤ f(x)+f∗(a) + ⟨Ax, y⟩ −
〈
p, a+AT y

〉
− βx

2
∥x− p∥2 + 1

2βy
∥Ax− b∥2

= f(x) + f∗(a) + ⟨Ax, y⟩ −
〈
x, a+AT y

〉
+
〈
x− p, a+AT y

〉
− βx

2
∥x− p∥2 + 1

2βy
∥Ax− b∥2

Now, by making use of Young’s inequality (Proposition 1) with u = x− p,
v = a+AT y and λ =

√
βx, we get:〈

x− p, a+AT y
〉
≤ βx

2
∥x− p∥2 + 1

2βx

∥∥a+AT y
∥∥2 (38)

Therefore,

Gβ(z) = f(x) + f∗(a) + ⟨Ax, y⟩ −
〈
x, a+AT y

〉
+
〈
x− p, a+AT y

〉
− βx

2
∥x− p∥2 + 1

2βy
∥Ax− b∥2

(38)

≤ f(x) + f∗(a) + ⟨Ax, y⟩ −
〈
x, a+AT y

〉
+

βx

2
∥x− p∥2

+
1

2βx

∥∥a+AT y
∥∥2 − βx

2
∥x− p∥2 + 1

2βy
∥Ax− b∥2

= f(x) + f∗(a)+⟨b, y⟩+ ⟨Ax−b, y⟩ −
〈
x, a+AT y

〉
+

1

2βx

∥∥a+AT y
∥∥2

+
1

2βy
∥Ax− b∥2

≤ |f(x) + f∗(a) + ⟨b, y⟩|+ ∥Ax− b∥ ∥y∥+ ∥x∥
∥∥a+AT y

∥∥
+

1

2βx

∥∥a+AT y
∥∥2 + 1

2βy
∥Ax− b∥2

≤ |f(x) + f∗(a) + ⟨b, y⟩|+ ∥Ax− b∥ ∥y∥+ ∥x∥
∥∥a+AT y

∥∥
+

1

2βmin

(∥∥a+AT y
∥∥2 + ∥Ax− b∥2

)
(11)

≤ (1 + ∥x∥+ ∥y∥)
√
D(z) +

1

2βmin
D(z) □

Now, we will derive Theorem 4. You’ll notice in the proof that at a certain
stage, we will establish a bound in terms of the smoothed duality gap. There-
fore, it was necessary to acquire an approximation for the smoothed duality
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gap in terms of the projected duality gap before completing the proof. With the
assistance of Theorem 7, we now possess this approximation and can proceed
to derive Theorem 4.

Proof Starting with the definition of the Fenchel-Conjugate function at an
optimal solution, we get:

f(x⋆) = sup
µ∈X

⟨µ, x⋆⟩ − f∗(µ)
µ=a

≥ ⟨a, x⋆⟩ − f∗(a)

=
〈
x⋆,−AT y

〉
− f∗(a) +

〈
x⋆, a+AT y

〉
≥ −⟨b, y⟩ − f∗(a)− ∥x⋆∥

∥∥a+AT y
∥∥

Thus,

f(x)− f⋆ ≤ |f(x) + f∗(a) + ⟨b, y⟩|+ ∥x⋆∥
∥∥a+AT y

∥∥
(11)

≤ (1 + ∥x⋆∥)
√

D(z)

≤ (1 + ∥x∥+ ∥x− x⋆∥)
√
D(z)

(24)

≤

(
1 + ∥x∥+

√
2Gβ(z)

η

)√
D(z)

(36)

≤
(
1 + ∥x∥+

√
2

η

√
(1 + ∥x∥+ ∥y∥)

√
D(z) +

1

2βmin
D(z)

)√
D(z)

□

Our latest finding establishes the upper bound of the projected duality gap
in terms of the smoothed duality gap. This last part is quite technical and
incorporates manifold and convex optimization concepts. Therefore, we outline
the main result here, deferring the detailed proofs to Appendix B.

Theorem 8 Given β = (βx, βy) ∈ (0,+∞)2, z ∈ Z, and a function f ∈
Γ0(X ). Then, under the following set of assumptions (we denote it E):

❖ The Fenchel-Conjugate of the objective function, f∗, could be written in a
separable way:

f∗(µ) = f∗
1 (µ1) + f∗

2 (µ2), µ ∈ X

❖ f∗
1 is Lf∗

1
−Lipschitz on its domain, domf∗

1 .
❖ The domain of f∗

2 is a non-empty affine space.
❖ Let µ0 ∈ domf∗

2 , then ∀µ2 ∈ domf∗
2 , we define

g(λ) = f∗
2

(
µ0 + ϕ−1(λ)

)
= f∗

2 (µ2)

where ϕ is the diffeomorphism defined in Lemma 16 (eqn:66) in Appendix
B.

❖ The function g is differentiable and has an Lg−Lipschitz gradient.
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The projected duality gap and the smoothed duality gap defined, respectively,
in (11) and (14) satisfy:

D(z) ≤
(
(3 + βxLg)Gβ(z) +

(√
2βx

(
2∥x∥+ Lf∗

1

)
+
√
2βy∥y∥

)√
Gβ(z)

)2

+ 2βmaxGβ(z)

(39)

a = Projdomf∗

(
−AT y

)
p = Proxβ−1

x f

(
x− 1

βx
AT y

)
(40)

Next, we will illustrate our theoretical findings through numerical exper-
iments. The directed graph depicted in Figure 2 summarizes our theoretical
findings and highlights their main assumptions.

Optimality gap
in terms of
∥x− x⋆∥

Optimality
gap

KKT

PDG

SDG

∇
f
is

L
ip
sc
h
it
z

f ∗
is
L
ipschitz

∇
f ∗

is
L
ipschitz

MSR

QEB

Fig. 2 Summary of our findings, the representation: M1
S−−→ M2 means that the measure

(M1) provides an upper-bound for the measure M2 under the assumption S

7 Numerical experiments

In the last section, we present a series of numerical experiments aimed at
illustrating and validating our findings and their tightness. Initially, we inves-
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tigate linearly-constrained least-squares problems where the objective is con-
vex and smooth. Subsequently, we extend our findings beyond affine equality
constraints, demonstrating their applicability to more generalized scenarios in-
volving inequality constraints. Finally, we explore a non-smooth problem that
showcases the superior stability of the smoothed duality gap compared to the
Karush-Kuhn-Tucker error.

One could observe that while the measures of optimality themselves are not
complex to implement programmatically, each one necessitates specific infor-
mation that may be tricky. For example, computing the sub-differential of the
objective function, crucial for the Karush–Kuhn–Tucker error, can be excep-
tionally complicated for certain functions. Similarly, while the smoothed du-
ality gap prefers an easily computable proximal operator of the objective, the
projected duality gap favors an objective with a tractable Fenchel-conjugate,
allowing projection onto its domain. Moreover, our results rely on additional
assumptions such as the metric sub-regularity of the sub-differential of the
Lagrangian and quadratic error bound of the smoothed gap, requiring the de-
termination of associated constants, a task often non-trivial in itself. Hence,
for each experiment, we will provide all non-trivial computations along with
detailed steps wherever necessary.

Primal-Dual Hybrid Gradient: we implement the Primal-Dual Hybrid
Gradient (PDHG) algorithm [3,7,10,1] to tackle our experiments. We chose it
because it’s famous for its efficiency in handling large-scale problems due to its
low cost per iteration, the PDHG algorithm enjoys linear convergence on the
problems under consideration, which makes it more insightful for showing the
numerical performance of the measures we consider. Additionally, it provides
primal-dual solutions at each iteration.

Algorithm: Primal-Dual Hybrid Gradient (PDHG)

x̄k+1 = Proxτf

(
xk − τAT yk

)
ȳk+1 = yk + σ (Ax̄k+1 − b)

xk+1 = x̄k+1 − τAT (ȳk+1 − yk)

yk+1 = ȳk+1

The convergence of the algorithm is guaranteed when the step sizes τ and
σ satisfy the inequality:

τσ∥A∥2 < 1

Therefore, we choose the following step sizes:

τ =
0.95

∥A∥
σ =

1

∥A∥

Smoothing parameter selection: to determine the smoothing parameter
β ∈]0,+∞[2, we adopt the following approach:

❖ We set the same primal-dual smoothing parameters, i.e., βx = βy.
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❖ We construct a predefined geometric list of values for β, denoted by I, with
a total of 41 values. This list includes the feasibility error at the current
iteration ∥Axk − b∥, along with 40 equally-divided values in logarithmic
scale ranging from 10−8 to 100:

I :=
{
10−8, 1.91× 10−7, . . . , 5.25× 10−1, 100, ∥Ax− b∥

}
❖ Then, for each iteration k ∈ N, we assign a value for β from I according

to the following criteria:
– For results of the form: g(zk) ≤ hβ(zk), we choose:

β̃ = argmin
β∈I

hβ(zk)

– For results of the form: gβ(zk) ≤ hβ(zk), we choose:

β̃ = argmin
β∈I

hβ(zk)

gβ(zk)

Computer configurations: our numerical results were generated on macOS
using an Apple M1 Pro processor with 16 GB of RAM. We employed Python
3.10.9 software for the computations.

7.1 Linearly-Constrained Least-Squares (LC-LS)

We are interested in illustrating several instances of the following Least-Squares
problem [4,27]:

min
x∈Rn

1

2
∥Qx− c∥2 subject to Ax = b (LC-LS)

or, equivalently, the associated saddle point problem:

min
x∈Rn

max
y∈Rm

L(x, y) = 1

2
∥Qx− c∥2 + ⟨Ax− b, y⟩

where the objective function f(x) = 1
2∥Qx−c∥2 is smooth

(
∇f(x) = QT (Qx− c)

)
,

and convex
(
∇2f(x) = QTQ ≽ 0

)
. The matrix A ∈ Rm×n and the vectors

c & b ∈ Rm are given. Before getting started with the instances, let’s analyze
the problem.

7.1.1 Problem Analysis

1. The gradient, ∇f , is L−Lipschitz with L =
∥∥QTQ

∥∥
op

= λmax

(
QTQ

)
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2. The proximal operator is:

ū = Proxsf (x) = arg min
u∈Rn

1

2
∥Qu− c∥2 + 1

2s
∥u− x∥2

⇐⇒ 0 ∈ ∂

(
1

2
∥Q.− c∥2 + 1

2
∥.− x∥2

)
(ū)

⇐⇒ ū =

(
QTQ+

1

s
Id

)−1(
QT c+

1

s
x

)
(41)

3. The Fenchel-Conjugate is: f∗(µ) = sup
x∈Rn

⟨µ, x⟩ − 1

2
∥Qx− c∥2, let:

x̄ = arg max
x∈Rn

⟨µ, x⟩ − 1

2
∥Qx− c∥2

⇐⇒ 0 ∈ ∂

(
⟨µ, .⟩ − 1

2
∥Q.− c∥2

)
(x̄)

⇐⇒ QTQx̄ = QT c+ µ

There are two cases:
❖ If µ /∈ Ran

(
QT
)
, which means that µ = µ1 + µ2 such that µ1 ∈

Ran
(
QT
)
and µ2 ∈ ker(Q), then one can find a maximizing sequence

defined as:

xn = nµ2, ∀n ∈ N

Then,

f∗(xn) = sup
n∈N

⟨µ, xn⟩ −
1

2
∥Qxn − c∥2

= sup
n∈N

n∥µ2∥2 −
1

2
∥c∥2 −−−−−→

n→+∞
+∞

❖ If µ ∈ Ran
(
QT
)
, then

x̄ =
(
QTQ

)† (
QT c+ µ

)
and f∗ could be simplified to get:

f∗(µ) =
1

2

〈
µ,
(
QTQ

)†
µ
〉
+
〈
µ,
(
QTQ

)†
QT c

〉
−1

2

∥∥∥Q (QTQ
)†

QT c− c
∥∥∥2

Thus,

f∗(µ) =
1

2

〈
µ,
(
QTQ

)†
µ
〉
+
〈
µ,
(
QTQ

)†
QT c

〉
− 1

2

∥∥∥Q (QTQ
)†

QT c− c
∥∥∥2

+ ıRan(QT )(µ)
(42)
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4. Rewriting f∗(µ) = f∗
1 (µ) and f∗

2 = 0 satisfies the set of assumptions, E , of
Theorem 8. Thus, we define:

g(λ) = f∗(µ0 + ϕ−1(λ))

=
1

2

〈
µ,
(
QTQ

)†
µ
〉
+
〈
µ,
(
QTQ

)†
QT c

〉
− 1

2

∥∥∥Q (QTQ
)†

QT c− c
∥∥∥2

λ = ϕ(µ) ∀µ ∈ domf∗

Hence, g is differentiable with Lipschitz constant

Lg =
∥∥∥(QTQ

)†∥∥∥
op

= λmax

((
QTQ

)†)
5. Projection onto domf∗ = Ran

(
QT
)

ProjRan(QT )(µ) = arg min
u∈Ran(QT )

∥u− µ∥2

u=QT v
= QT arg min

v∈Rm

∥∥QT v − µ
∥∥2

= QT
(
QQT

)†
Qµ

We will show in the sequel that finding the values of the QEBSG and MSR
constants η and γ, respectively, is tractable for this problem.

6. Metric sub-regularity constant, γ.

Lemma 10 For the LC-LS problem, let z⋆ = ProjZ⋆(z). Then, for any
z ∈ Z the Lagrangian’s sub-differential satisfies:

∥∂xL(x, y)∥+ ∥∇yL(x, y)∥ ≥ |λ(M)|min dist (z,Z
⋆) (43)

M =

[
QTQ AT

A 0

]
(44)

where |λ (M)|min is the smallest absolute value of the non-zero eigenvalues
of M.
Proof. See Appendix A

Thanks to this Lemma, one can take γ = |λ (M)|min

7. Quadratic error bound of the smoothed gap constant, η.

Lemma 11 For the LC-LS problem, the self-centered smoothed duality gap
could be reformulated into a quadratic form. That is, for any z ∈ Z:

Gβ(z) = zTHz + ⟨z, v⟩+ cst (45)

where,

v(n+m) =

[
vx
vy

]
H(n+m)×(n+m) =

[
Mxx

1
2Mxy

1
2M

T
xy Myy

]
(46)

Proof. See Appendix A
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Vector - Matrix Size

vx = βx
τ
B−1QT c−QT c n× 1

vy = −AB−1QT c m× 1

B = QTQ+ βx
τ
Idn n× n

Mxx = 1
2
QTQ+ σ

2βy
ATA+

β2
x

2τ2 B
−1 − βx

2τ
Idn n× n

Mxy = AT − βx
τ
B−1AT n×m

Myy = 1
2
AB−1AT m×m

The advantage of the lemma is that, for LC-LS, the self-centered smoothed
duality gap is convex and λmin(H)−metrically sub-regular, with λmin(H)
being the smallest positive eigenvalue of the positive semi-definite matrix

H. Hence, by Proposition 7, we conclude that Gβ(z) has a η = λmin(H)
2 −QEB.

7.1.2 Problem instances

In this part, we explore various instances of the LC-LS problem. We start by
examining a straightforward one-dimensional case, for which we can determine
the precise minimizer. Subsequently, we extend our analysis to a higher dimen-
sional problem with independently and identically distributed (i.i.d.) Gaussian
matrices Q and A. Finally, we delve into a more complex scenario where we
generate Q and A with non-trivial covariance matrices.

❖ One-dimensional problem

min
x∈R

1

2

(
1

9
x− 2

)2

9x = 7

(1D)

The primal-feasibility condition within the KKT conditions implies that
x⋆ = 7

9 . Consequently, in this particular problem, we can gain a more
precise assessment of the quality of our approximations for the optimality
gap.

❖ I.I.D. Gaussian matrices: We examine the LC-LS problem with dimen-
sions set to n = 20 and m = 10. In this scenario, we generate independently
and identically distributed (i.i.d.) Gaussian matrices Q and A. That is:

Q ∈ Rm×n s.t. ∀(i, j) ∈ J1,mK × J1, nK, Qij ∼ N (0, 1) i.i.d.

A ∈ Rm×n s.t. ∀(i, j) ∈ J1,mK × J1, nK, Aij ∼ N (0, 1) i.i.d.
(IIDG)

❖ Non-trivial covariance: We investigate the LC-LS problem with dimen-
sions set to n = 20 and m = 10. In this instance, we generate matrices Q
and A with non-trivial covariance matrices, defined as follows:

A = ΣaXa Q = ΣqXq (NTC)

where
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– The matrices Xa, Xq ∈ Rm×n are Gaussian matrices, following the
pattern established in the previous case.

– The matrices Σa, Σq ∈ Rm×m serve as covariance matrices, generated
using the Python built-in function toeplitz.

(a) One-dimensional, L ≈ 0.012 (b) I.I.D Gaussian L ≈ 49 (c) Non-trivial covariance

Fig. 3 Numerical illustration of Theorems (5 & 6) on several LC-LS instances. L denotes
the Lipschitz constant of the gradient

Figure 3 validates our comparability bound between the smoothed dual-
ity gap and the Karush–Kuhn–Tucker error, presented in subsection 6.1. It
illustrates their efficiency and tightness across various instances. In addition,
we note that the smoother the function (i.e. with smaller L) the tighter the
bound as in (3a and 3b).

7.2 Distributed Optimization

We examine the unconstrained optimization problem presented as follows [5]:

min
x∈Rn

1

2

M∑
i=1

∥Qix− ci∥2 (UC-DO)

In this formulation, for each i ∈ J1,MK, the matrix Qi ∈ Rm×n and the
vector ci ∈ Rm are real data sourced from the bodyfat dataset. This data
comprises 252 data-points, each characterized by 14 features. In our case, we
divide the dataset into M = 3, n = 14, and m = 84.

To address security concerns, we assume that the data Qi and ci are dis-
tributed across M distinct computers. These computers collaborate to solve
the problem in a manner where each computer i utilizes the data Qi and ci to
derive a partial solution, which is then transmitted to the subsequent computer
i + 1. Repeatedly until finding the optimum. To facilitate this collaborative
approach, we need to reformulate the unconstrained problem (UC-DO) into a
constrained optimization problem. This involves introducing additional vari-
ables and constraints to model the communication process among the various
computers.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.toeplitz.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html
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min
x1,...,xM∈Rn

1

2

M∑
i=1

∥Qixi − ci∥2

s.t. xi = xi+1, ∀i ∈ J1,M − 1K

Furthermore,

❖ The constraints can be expressed in matrix form as AX = 0, where the
matrix A is constructed as follows:

A(M−1)n×Mn :=


Idn −Idn 0n . . . 0n

0n Idn −Idn . . . 0n

... . . .
. . .

. . . . . .
0n . . . 0n Idn −Idn

 and XMn :=


x1

...

...
xM


❖ The objective function

(
f(X) =

1

2

M∑
i=1

∥Qixi − ci∥2
)

can be rewritten as:

f(X) =
1

2
∥QX − c∥2

Here, Q is formed by arranging the matrices Q1, Q2, . . . , QM along the
diagonal, and c is a stacked vector of c1, c2, . . . , cM . That is:

QMm×Mn :=


Q1 0m×n . . . 0m×n

0m×n Q2 . . . 0m×n

... . . .
. . . . . .

0m×n . . . 0m×n QM

 cMm :=

 c1
...

cM


Therefore, the unconstrained problem can be reformulated as an instance of
the LC-LS problem as follows:

min
X∈RMn

1

2
∥QX − c∥2 subject to AX = 0 (DO)

It is important to note that all the formulations of the problem are equiv-
alent, specifically (UC-DO ≡ DO). Consequently, since (UC-DO) represents
an unconstrained smooth problem, the minimizer x⋆ can be easily found:

x⋆ = arg min
x∈Rn

1

2

M∑
i=1

∥Qix− ci∥2

⇐⇒ 0 = ∇

(
1

2

M∑
i=1

∥Qix− ci∥2
)
(x⋆)

⇐⇒
M∑
i=1

QT
i (Qix

⋆ − ci) = 0
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⇐⇒

(
M∑
i=1

QT
i Qi

)
x⋆ =

M∑
i=1

QT
i ci (47)

Fig. 4 Numerical illustration of Theorems (2, 3, and 4), optimality gap vs. its bounds.
Target: ε = 10−10

Figure 4 validates our computable approximations for the optimality gap,
as presented in subsection 5.2. Notably, in this experiment, we were able to
precisely plot the optimality gap due to our analytical knowledge of the min-
imizer (eqn:47). Furthermore, the figure highlights the superior efficiency and
tightness of the SDG bound compared to the others, as it closely aligns with
the optimality gap curve.

7.3 Quadratic Programming

As we have seen, our theoretical findings have primarily focused on optimiza-
tion problems under equality affine constraints. However, in this experiment,
we aim to extend the applicability of our theoretical insights to address opti-
mization problems that incorporate inequality constraints. Therefore, in this
subsection, we delve into the same LC-LS problem as discussed earlier, but
now incorporating the additional requirement of non-negativity constraints on
the weights [19].

min
x∈Rn

1

2
∥Qx− c∥2

s.t. Ax = b

x ≥ 0

(QP)
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Applying our theoretical results to address this problem necessitates a refor-
mulation to align it with our framework. A feasible approach involves encap-
sulating the non-negativity constraint by introducing an indicator function
within the objective function. Thus, the reformulation is as follows:

min
x∈Rn

1

2
∥Qx− c∥2 + ıRn

+
(x)

s.t. Ax = b

Despite the current appropriate formulation, determining the proximal oper-
ator of the objective function, essential for computing the smoothed duality
gap, has become non-trivial. However, introducing an additional variable, x̃,
and incorporating an extra constraint, x = x̃, would render the computation
more manageable. That is:

min
x,x̃∈Rn

1

2
∥Qx− c∥2 + ıRn

+
(x̃)

s.t. Ax = b

x = x̃

Thanks to this trick, our objective function is now separable, facilitating the
computation of its proximal operator. By combining the two constraints into
a single matrix form, our problem can be expressed as follows:

min
X∈R2n

F (X) =
1

2
∥Qx− c∥2 + ıRn

+
(x̃)

s.t. ÃX = B

(PQP)

where

X :=

[
x
x̃

]
Ã :=

[
A 0
Id −Id

]
B :=

[
b
0

]
(48)

7.3.1 Problem Analysis

1. The sub-differential of the objective function

∂F (x, x̃) = ∂

(
1

2
∥Qx− c∥2 + ıRn

+
(x̃)

)
(4)
= ∇

(
1

2
∥Qx− c∥2

)
× ∂

(
ıRn

+
(x̃)
)

= QT (Qx− c)× ∂

(
n∑

i=1

ıR+
(x̃i)

)
(4)
= QT (Qx− c)×

n∏
i=1

∂ıR+
(x̃i)
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Thus,

∂F (X) =

2n−tuple︷ ︸︸ ︷
QT (Qx− c)︸ ︷︷ ︸

n−tuple

×
n∏

i=1

NR+(x̃i)︸ ︷︷ ︸
n−tuple

where NR+
(ν) =


∅, ν < 0

R−, ν = 0

{0}, ν > 0

(49)

2. The stationarity part of the KKT error:
Let J = ÃTY ∈ R2n and define:

¯
J := {J1, . . . , Jn} J̄ := {Jn+1, . . . , J2n}

Then,∥∥∥∂F (x, x̃) + ÃTY
∥∥∥2
0
= ∥∂F (X) + J∥20

= min ({∥q∥ | q ∈ ∂F (X) + J})2

= min

({∥∥∥∥∥
((

QT (Qx− c)
)
×

n∏
i=1

NR+(x̃i)

)
+ J

∥∥∥∥∥
})2

= min


∥∥∥∥∥
((

QT (Qx− c)
)
×

n∏
i=1

NR+
(x̃i)

)
+ J

∥∥∥∥∥
2


= min

∥∥QT (Qx− c) +
¯
J
∥∥2 + ∥∥∥∥∥

n∏
i=1

NR+
(x̃i) + J̄

∥∥∥∥∥
2


=
∥∥QT (Qx− c) +

¯
J
∥∥2 +min


∥∥∥∥∥

n∏
i=1

NR+
(x̃i) + J̄

∥∥∥∥∥
2


Now, let’s analyze the second term:

min


∥∥∥∥∥

n∏
i=1

NR+
(x̃i) + J̄

∥∥∥∥∥
2
 = min

{
n∑

i=1

(
NR+

(x̃i) + J̄i
)2}

=

n∑
i=1

min
{(

NR+(x̃i) + J̄i
)2}

=

n∑
i=1

min


+∞, x̃i < 0(
R− + J̄i

)2
, x̃i = 0

J̄2
i , x̃i > 0
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=

n∑
i=1


+∞, x̃i < 0

min
u∈R−

(
u+ J̄i

)2
, x̃i = 0

J̄2
i , x̃i > 0

=

n∑
i=1


+∞, x̃i < 0(
ProjR−

(
−J̄i

)
+ J̄i

)2
, x̃i = 0

J̄2
i , x̃i > 0

=

n∑
i=1


+∞, x̃i < 0

min
(
0, J̄i

)2
, x̃i = 0

J̄2
i , x̃i > 0

3. The proximal operator is:

Proxsf (x, x̃) = arg min
u,ũ∈Rn

1

2
∥Qu− c∥2 + 1

2s
∥u− x∥2︸ ︷︷ ︸

h(u)

+ıRn
+
(ũ) +

1

2s
∥ũ− x̃∥2

(5)
=

(
arg min

u∈Rn
h(u), arg min

ũ∈Rn
+

1

2s
∥ũ− x̃∥2

)
(41)
=

((
QTQ+

1

s
Id

)−1(
QT c+

1

s
x

)
,ProjRn

+
(x̃)

)

=

((
QTQ+

1

s
Id

)−1(
QT c+

1

s
x

)
,max(x̃, 0))

)

4. The Fenchel-Conjugate is:

f∗(µ, µ̃) = sup
X∈R2n

⟨µ, x⟩+⟨µ̃, x̃⟩−1

2
∥Qx− c∥2−ıRn

+
(x̃)

(6)
= sup

x∈Rn

(
⟨µ, x⟩ − 1

2
∥Qx− c∥2

)
+ sup

x̃∈Rn

(
⟨µ̃, x̃⟩ − ıRn

+
(x̃)
)

(42)
=

1

2

〈
µ,
(
QTQ

)†
µ
〉
+
〈
µ,
(
QTQ

)†
QT c

〉
− 1

2

∥∥∥Q (QTQ
)†

QT c− c
∥∥∥2

+ ıRan(QT )(µ) + ıRn
−
(µ̃)

5. Rewriting f∗(µ) = f∗
1 (µ̃) + f∗

2 (µ) such that:

f∗
1 (µ̃) = ıRn

−
(µ̃)

f∗
2 (µ) =

1

2

〈
µ,
(
QTQ

)†
µ
〉
+
〈
µ,
(
QTQ

)†
QT c

〉
− 1

2

∥∥∥Q (QTQ
)†

QT c− c
∥∥∥2

+ ıRan(QT )(µ)

satisfies the set of assumptions, E , of Theorem 8. Thus,
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❖ f∗
1 is Lf∗

1
= 0−Lipschitz on its domain, Rn

−.

❖ ∇f∗
2 is Lg = λmax

((
QTQ

)†)−Lipschitz using the earlier analysis we

did for LC-LS.
6. Projection onto the domf∗ = Ran

(
QT
)
× Rn

−

Projdomf∗(µ) =
(
QT

(
QQT

)†
Qµ, min (µ̃, 0)

)
7. While it is theoretically possible to determine the constants for the metric

sub-regularity of the sub-differential of the Lagrangian and the quadratic
error bound of the smoothed gap, the process is highly complex. Due to the
complexity involved, we opt for a practical approach by assigning arbitrary
small values to these constants. In this experiment, we set γ = η = 10−8

as convenient and satisfactory choices, allowing us to proceed without ex-
tensive efforts in identifying precise values.

(a) PDG bound, (eqn:36) (b) SDG bound, (eqn:83)

Fig. 5 Numerical illustration of Theorems (7 and 8) with n = 20 and m = 10

7.4 Basis Pursuit

Our final experiment involves a non-smooth convex minimization problem
known as the Basis Pursuit problem [8,13]. It aims to minimize the ℓ1 norm
while satisfying a system of linear equations and is mathematically formulated
as follows:

min
x∈Rn

∥x∥1 subject to Ax = b (BP)

Here, we set n = 20 and m = 10, and generate an i.i.d. Gaussian matrix
A ∈ Rm×n and vector b ∈ Rm.

The primary objective of this experiment is to highlight the superior stabil-
ity of the smoothed duality gap compared to the Karush–Kuhn–Tucker error,
as will be demonstrated subsequently.
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7.4.1 Problem Analysis

1. The sub-differential of the objective function

∂f(x) = ∂(∥x∥1) = ∂

(
n∑

i=1

|xi|

)
(4)
=

n∏
i=1

∂|xi|

where

∂|ν| =


{−1}, ν < 0

[−1, 1], ν = 0

{1}, ν > 0

2. The stationarity part of the KKT error: Applying the same approach
as we have previously done for (PQP), we obtain:

∥∥∂f(x) +AT y
∥∥2
0
=

n∑
i=1

{(
sgn(xi) + (AT y)i

)2
, xi ̸= 0(

min
(
max

(
−
(
AT y

)
i
,−1

)
, 1
)
+ (AT y)i

)2
, xi = 0

3. The proximal operator is: (Example 2.16, [9])

Proxsf (x) =
(
[|xi| − s]+ sgn(xi)

)
1≤i≤n

4. The Fenchel-Conjugate is: (Example 3.26, [23])

f∗(µ) = ıB∞(0,1)(µ)

5. The conjugate function is Lf∗ = 0−Lipschitz on its domain, B∞(0, 1).
So, we can take advantage of using Proposition 9 in Appendix B that has
a slightly tighter bound than Theorem 8.

6. Projection onto domf∗ = B∞(0, 1).

ProjB∞(0,1)(µ) =

({
sgn (µi) , |µi| > 1

µi, |µi| ≤ 1

)
1≤i≤n

7.4.2 Two versions of PDHG

In this sub-subsection, we consider two versions of the PDHG algorithm de-
signed to solve two formulations of the saddle point problem of (BP):

max
y

min
x

∥x∥1 + ⟨Ax− b, y⟩ (50)

≡max
x

min
y

∥y∥1 + ⟨Ay − b, x⟩

≡max
x

min
y

− (−∥y∥1 − ⟨Ay − b, x⟩)

≡−min
x

max
y

(−∥y∥1 − ⟨Ay − b, x⟩) (51)
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Version 1 Interpretation

x̄k+1 = Proxτf
(
xk − τAT yk

)
Primal Forward-Backward step

ȳk+1 = yk + σ (Ax̄k+1 − b) Dual Forward-Backward step
xk+1 = x̄k+1 − τAT (ȳk+1 − yk) Primal Extrapolation step
yk+1 = ȳk+1 Dual Extrapolation step

Table 1 Interpretation of each step of PDHG for solving (50)

Version 2 Interpretation

ȳk+1 = yk + σ (Axk − b) Dual Forward-Backward step
x̄k+1 = Proxτf

(
xk − τAT ȳk+1

)
Primal Forward-Backward step

yk+1 = ȳk+1 + σA (x̄k+1 − xk) Dual Extrapolation step
xk+1 = x̄k+1 Primal Extrapolation step

Table 2 Interpretation of each step of PDHG for solving (51)

Here, (50) and (51) can be interpreted as swapping the roles of the primal and
dual variables (x and y, respectively). Applying the PDHG algorithm to solve
(50) and (51) leads us to the following two versions:

The key advantage of implementing the two versions of PDHG for solving
the saddle point problems (50) and (51) is to demonstrate the superior sta-
bility of the smoothed duality gap over the Karush–Kuhn–Tucker error. To
understand this, let’s revisit the stationarity part of the KKT error:

∥∥∂f(x) +AT y
∥∥2 =

n∑
i=1

{(
sgn(xi) + (AT y)i

)2
, xi ̸= 0(

min
(
max

(
−
(
AT y

)
i
,−1

)
, 1
)
+ (AT y)i

)2
, xi = 0

The instability in the KKT error can be interpreted through the following two
remarks:

1. The stationarity expression is highly sensitive to whether the component
xi equals zero for each i. If |xi| ≤ ε for some i and for some very small
ε > 0, the algorithm may face convergence issues.

2. In the first version of the algorithm, x̄ could be zero since it represents
the proximal of the ℓ1-norm (as defined in (3)). However, the subsequent
update x = x̄−τAT (ȳ−y) may result in x being very close to zero but never
exactly zero. Consequently, this characteristic could prevent the algorithm
from converging. In contrast, the second version of the algorithm performs
the last update of x as the proximal of the ℓ1-norm, which could be exactly
zero.

7.5 Benchmark comparison

In this last subsection, we conduct a benchmark analysis by applying our find-
ings to the six experiments previously discussed. Initially, in Table 3, we report
the number of iterations required by each problem to identify an ε = 10−8 so-
lution, employing various stopping criteria. Note that, the same data is used to
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Fig. 6 Version 1 vs. version 2 of PDHG for both: the KKT error and SDG

compute the 3 measures for each experiment. It provides additional evidence
supporting our observations from Figure 4, showing that the smoothed duality
gap consistently achieves ε-solutions with fewer iterations across nearly all of
our experiments, thus demonstrating its superior efficiency.

Problems
Measures

KKT error SDG PDG

One-dimensional (1D) 12 11 13
I.I.D. Gaussian matrices (IIDG) 5334 5244 11538
Non-trivial covariance (NTC) 14274 13968 31806
Distributed Optimization (DO) 5652 4014 4659
Quadratic programming (PQP) 3492 3172 3358

Basis Pursuit (BP) ≫ 106 6920 7196

Table 3 Iterations needed to identify ε = 10−8 solution using various stopping criteria
across experiments

Subsequently, in Table 4, we demonstrate the tightness of our comparability
bounds, as outlined in Section 6, across each experiment. This is achieved by
presenting the average and standard deviation of the ratio of each result, more
specifically, for the bound M1 ≤ W(M2). The displayed values represent the

average and standard deviation of the term W(M2)
M1

. We observe the following:

❖ We observe that Theorem 5 provides a tight bound overall. Notably, in the
Basis Pursuit experiment, the non-convergence of the KKT error explains
the huge average and standard deviation observed.

❖ Concerning Theorem 6, we note a relatively less tight bound, particularly
when the gradient of the objective has a larger Lipschitz constant. The Lip-
schitz constants for the experiments: the I.I.D. Gaussian matrices, the non-
trivial covariance, and the distributed optimization are, approximately: 49,
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Problem
Theorem 5 Theorem 6 Theorem 7 Theorem 8
Gβ ≤

¯
βK K ≤ β̄LGβ Gβ ≤ W1(D) D ≤ W2(Gβ)

(1D) 1.76± 0.6 0.95± 0.15 (6.82± 19.3)104 5.0± 3.2
(IIDG) 2.02± 0.06 2.2± 0.05 101.65± 25.13 5.23± 5.43
(NTC) 2.03± 0.34 5.44± 0.47 15.21± 2.47 42.19± 35.72
(DO) 3.72± 3.9 (2.12± 25.9)108 11.8± 9.15 28.17± 10.75
(PQP) 1.25± 2.03 +∞ 4.21± 4.7 32.3± 20.98
(BP) (7.29± 146)109 +∞ 2.49± 2.02 20.52± 4.25

Table 4 Average ± (Standard deviation) of the ratio of each result across each experiment.

The ratio of a result, M1 ≤ W(M2), is:
W(M2)

M1

133.5, and 220.6, respectively. Furthermore, the non-smooth nature of the
objective function in both the quadratic programming and basis pursuit
experiments justifies the occurrence of +∞ in our results.

❖ Theorems (7 and 8) provide tight bounds overall. Even in instances where
the average ratio may appear elevated, such as observed in Theorem 7
during the one-dimensional experiment, Figure 7 illustrates that this phe-
nomenon occurs primarily within the initial iterations.

(a) One-dimensional (b) Non-trivial covariance (c) Basis pursuit

Fig. 7 Numerical illustration of Theorem 7

(a) One-dimensional (b) Non-trivial covariance (c) Basis pursuit

Fig. 8 Numerical illustration of Theorem 8
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8 Conclusion and Perspectives

In this paper, we have studied several stopping criteria: OGFE, the KKT
error, PDG, and SDG to determine under which conditions they are accurate
to detect ε−solutions. In the realm of convex optimization problems under
affine-equality constraints, our findings have led to significant insights:

❖ The efficacy of SDG stands on par with both: the KKT error and PDG
given specific conditions.

❖ By assuming MSRSDL or leveraging QEBSG, we have derived that the
KKT error, or SDG and PDG, respectively, serve as practical upper bounds
for the optimality gap, providing an effective approximation.

❖ Our investigation vividly demonstrates the superior stability of SDG over
the KKT error.

❖ Although our methodology is rooted in affine-equality constraints, our find-
ings extend their applicability to encompass other problems entailing in-
equality constraints.

This work opens several perspectives:

❖ Given our utilization of the QEBSG assumption in establishing the PDG
approximation for the OG, it prompts the question: could enhancing PDG
with a distinct regularity assumption potentially improve its performance?

❖ Is it feasible to develop a novel algorithm leveraging SDG as its stopping
criterion?

❖ What about the applicability of our findings in non-convex optimization
settings?

A MSR and QEB for LC-LS

▶ Lemma [10] For the LC-LS problem, let z⋆ = ProjZ⋆ (z). Then, for any z ∈ Z the
Lagrangian’s sub-differential satisfies:

∥∇xL(x, y)∥+ ∥∇yL(x, y)∥ ≥ |λ(M)|min dist (z,Z⋆)

M =

[
QTQ AT

A 0

]
where |λ (M)|min is the smallest positive eigenvalue of M.

Proof For any z ∈ Z, we have:

∥∇xL(x, y)∥+ ∥∇yL(x, y)∥ ≥ ∥∇L(x, y)∥
= ∥∇L(x, y)−∇L(x⋆, y⋆)∥

=

∥∥∥∥[QTQ(x− x⋆) +AT (y − y⋆)
A(x− x⋆)

]∥∥∥∥
= ∥M(z − z⋆)∥
(4)

≥ |λ(M)|mindist(z,Z∗) □
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▶ Lemma [11] For the LC-LS problem, the self-centered smoothed gap could be reformu-
lated into a quadratic form. That is, for any z ∈ Z:

Gβ(z) = zTHz + ⟨z, v⟩+ cst

where,

v(n+m) =

[
vx
vy

]
H(n+m)×(n+m) =

[
Mxx

1
2
Mxy

1
2
MT

xy Myy

]

Vector - Matrix Size

vx = βx
τ
B−1QT c−QT c n× 1

vy = −AB−1QT c m× 1

B = QTQ+ βx
τ
Idn n× n

Mxx = 1
2
QTQ+ σ

2βy
ATA+

β2
x

2τ2 B
−1 − βx

2τ
Idn n× n

Mxy = AT − βx
τ
B−1AT n×m

Myy = 1
2
AB−1AT m×m

Proof We start with the definition of the smoothed duality gap (eqn:13):

Gβ(z) = sup
z′∈Z

L(x, y′)− L(x′, y)−
βx

2τ
∥x′ − x∥2 −

βy

2σ
∥y′ − y∥2

=
1

2
∥Qx− c∥2 + ⟨b, y⟩+ sup

y′

(
⟨Ax− b, y′⟩ −

βy

2σ
∥y′ − y∥2

)
+ sup

x′

(
−

1

2
∥Qx′ − c∥2 − ⟨x′, AT y⟩ −

βx

2τ
∥x′ − x∥2

)
=

1

2
∥Qx− c∥2 + ⟨b, y⟩+

(
⟨Ax− b, ỹ⟩ −

βy

2σ
∥ỹ − y∥2

)
−
(
1

2
∥Qx̃− c∥2 − ⟨x̃, AT y⟩ −

βx

2τ
∥x̃− x∥2

)

with



ỹ = argmaxy′

(
⟨Ax− b, y′⟩ − βy

2σ
∥y′ − y∥2

)
= y + σ

βy
(Ax− b)

x̃ = argmaxx′

(
− 1

2
∥Qx′ − c∥2 − ⟨x′, AT y⟩ − βx

2τ
∥x′ − x∥2

)
= B−1

(
QT c−AT y + βx

τ
x
)

where B = QTQ+ βx
τ
Id

Substituting x̃ and ỹ, simplifying, and gathering the related terms we get:

Gβ(z) =

Txx︷ ︸︸ ︷
1

2
∥Qx∥2 +

σ

2βy
∥Ax∥2 −

1

2

∥∥∥∥βx

τ
QB−1x

∥∥∥∥2 −
βx

2τ

∥∥∥∥(βx

τ
B−1 − Id

)
x

∥∥∥∥2
+⟨x,AT y⟩ −

βx

τ

(〈
B−1x,AT y

〉
−
〈
QB−1x,QB−1AT y

〉
−
〈(

βx

τ
B−1 − Id

)
x,B−1AT y

〉)
︸ ︷︷ ︸

Txy

+
〈
B−1AT y,AT y

〉
−

1

2

∥∥∥QB−1AT y
∥∥∥2 −

βx

2τ

∥∥∥B−1AT y
∥∥∥2︸ ︷︷ ︸

Tyy
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−⟨Qx, c⟩ −
σ

βy
⟨Ax, b⟩ −

〈
βx

τ
QB−1x,QB−1QT c− c

〉
−

βx

τ

〈(
βx

τ
B−1 − Id

)
x,B−1QT c

〉
︸ ︷︷ ︸

Tx

−
〈
B−1QT c, AT y

〉
+
〈
QB−1AT y,QB−1QT c− c

〉
+

βx

τ

〈
B−1QT c, B−1AT y

〉
︸ ︷︷ ︸

Ty

+
1

2
∥c∥2 +

σ

2βy
∥b∥2 −

1

2

∥∥∥QB−1QT c− c
∥∥∥2 −

βx

2τ

∥∥∥B−1QT c
∥∥∥2︸ ︷︷ ︸

cst

Now, we will further simplify each sub-term, for instance:

Txx =
1

2
∥Qx∥2 +

σ

2βy
∥Ax∥2 −

1

2

∥∥∥∥βx

τ
QB−1x

∥∥∥∥2 −
βx

2τ

∥∥∥∥(βx

τ
B−1 − Id

)
x

∥∥∥∥2
=

1

2
⟨Qx,Qx⟩+

σ

2βy
⟨Ax,Ax⟩ −

β2
x

2τ2

〈
QB−1x,QB−1x

〉
−

βx

2τ

〈(
βx

τ
B−1 − Id

)
x,

(
βx

τ
B−1 − Id

)
x

〉
= ⟨x,Mxxx⟩

where

Mxx =
1

2
QTQ+

σ

2βy
ATA−

β2
x

2τ2
B−1QTQB−1 −

βx

2τ

(
βx

τ
B−1 − Id

)T (βx

τ
B−1 − Id

)
=

1

2
QTQ+

σ

2βy
ATA−

β2
x

2τ2
B−1QTQB−1 −

β3
x

2τ3
B−1B−1 +

β2
x

τ2
B−1 −

βx

2τ
Id

=
1

2
QTQ+

σ

2βy
ATA−

β2
x

2τ2
B−1

(
QTQ+

βx

τ
Id

)
︸ ︷︷ ︸

B

B−1 +
β2
x

τ2
B−1 −

βx

2τ
Id

=
1

2
QTQ+

σ

2βy
ATA−

β2
x

2τ2
B−1BB−1 +

β2
x

τ2
B−1 −

βx

2τ
Id

=
1

2
QTQ+

σ

2βy
ATA+

β2
x

2τ2
B−1 −

βx

2τ
Id

Same kind of simplifications could be done for the other sub-terms. Therefore, we can
rewrite the smoothed duality gap as follows:

Gβ(z) = ⟨x,Mxxx⟩+ ⟨x,Mxyy⟩+ ⟨y,Myyy⟩+ ⟨x, vx⟩+ ⟨y, vy⟩+ cst

= zTHz + ⟨z, v⟩+ cst □

B PDG in terms of SDG

Within this appendix, we provide an exhaustive proof of Theorem 8. We start by defining
two vectors pivotal to demonstrating the result, along with outlining their key properties.

1. The first one is:
p∗ := Proxβxf∗

(
βxx−AT y

)
(52)

Where f∗ ∈ Γ0(X ) is the Fenchel-Conjugate of the function f . Then, by Moreau’s
identity (6), we get:

p+
1

βx
p∗ = x (53)
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2. The second one comes from Lemma 5: p = Prox
β−1
x f

(
x− 1

βx
AT y

)
⇐⇒ βx(x− p) ∈

∂f(p) +AT y. So, we define:

ã := −AT y + βx(x− p) ∈ ∂f(p) (54)

Remark that since ã ∈ ∂f(p) this ensures that ã ∈ domf∗, which is a necessary condition
for the following properties to hold.

By (2)
∥∥∥a+AT y

∥∥∥ ≤
∥∥∥ã+AT y

∥∥∥ = ∥p∗∥ (55)

By (3)
〈
−AT y − a, ã− a

〉
≤ 0 (56)

By (4) f(p) + f∗(ã) = ⟨p, ã⟩ (57)

Lemma 12 For a, p∗, and ã defined, respectively, in (12), (52), and (54) we have:

∥a− ã∥ ≤ ∥p∗∥ (58)

Proof

∥a− ã∥2 =
∥∥∥a+AT y

∥∥∥2 +
∥∥∥ã+AT y

∥∥∥2 − 2
〈
a+AT y, ã+AT y

〉
=
∥∥∥a+AT y

∥∥∥2 +
∥∥∥ã+AT y

∥∥∥2 + 2
〈
−a−AT y, ã− a

〉
+ 2

〈
−a−AT y, a+AT y

〉
(56)

≤
∥∥∥a+AT y

∥∥∥2 +
∥∥∥ã+AT y

∥∥∥2 + 0− 2
∥∥∥a+AT y

∥∥∥2
≤
∥∥∥ã+AT y

∥∥∥2 □

Corollary 3 Given β = (βx, βy) ∈ [0,+∞]2, then for p∗ defined in (52) and for all z ∈ Z
the self-centered smoothed duality gap satisfies:

Gβ(z) ≥
1

2βx
∥p∗∥2 (59)

Proof From Lemma 6, we know:

Gβ(z) ≥
βx

2
∥x− p∥2 +

1

2βy
∥Ax− b∥2 ≥

βx

2
∥x− p∥2 (53)

=
βx

2

∥∥∥∥ 1

βx
p∗
∥∥∥∥2 □

Lemma 13 Given β = (βx, βy) ∈ [0,+∞]2, a function f ∈ Γ0(X ), and let a = Projdomf∗ (µ).
Then, for any z ∈ Z the self-centered smoothed duality gap defined in (14) satisfies:

f(x) + f∗(a) + ⟨b, y⟩ ≥ −
(√

2βx∥x∥+
√

2βy∥y∥
)√

Gβ(z) (60)

Proof

f(x) + f∗(a) + ⟨b, y⟩ = f(x) + f∗(a)− ⟨x, a⟩+ ⟨b−Ax, y⟩+
〈
x,AT y + a

〉
(4)

≥ 0 + ⟨y, b−Ax⟩+
〈
x, a+AT y

〉
≥ −∥y∥∥Ax− b∥ − ∥x∥

∥∥∥a+AT y
∥∥∥

(17)

≥ −∥y∥
√

2βyGβ(z)− ∥x∥
∥∥∥a+AT y

∥∥∥
(55)

≥ −∥y∥
√

2βyGβ(z)− ∥x∥∥p∗∥

(59)

≥ −∥y∥
√

2βyGβ(z)− ∥x∥
√

2βxGβ(z) □
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Lemma 14 Given β = (βx, βy) ∈ [0,+∞]2 and a function f ∈ Γ0(X ). Then, for ã defined
in (54), and for any z ∈ Z the self-centered smoothed duality gap defined in (14) satisfies:

f(x) + f∗(ã)− ⟨x, ã⟩ ≤ Gβ(z) (61)

Proof

Gβ(z) = f(x)−f(p) + ⟨A(x− p), y⟩ −
βx

2
∥x− p∥2 +

1

2βy
∥Ax− b∥2

(57)
= f(x)+f∗(ã)− ⟨p, ã⟩+ ⟨A(x− p), y⟩ −

βx

2
∥x− p∥2 +

1

2βy
∥Ax− b∥2

= f(x) + f∗(ã)−
〈
p,−AT y + βx(x− p)

〉
+ ⟨A(x− p), y⟩ −

βx

2
∥x− p∥2 +

1

2βy
∥Ax− b∥2

= f(x) + f∗(ã)− ⟨x, βx(x− p)⟩+ ⟨x− p, βx(x− p)⟩ −
βx

2
∥x− p∥2 + ⟨Ax, y⟩+

1

2βy
∥Ax− b∥2

= f(x) + f∗(ã)− ⟨x, ã⟩+
βx

2
∥x− p∥2 +

1

2βy
∥Ax− b∥2

≥ f(x) + f∗(ã)− ⟨x, ã⟩ □

Lemma 15 Given β = (βx, βy) ∈ [0,+∞]2 and a function f ∈ Γ0(X ). Let a = Projdomf∗ (µ),
and βmax = max(βx, βy). Then, the primal-dual feasibility terms in (11) could be approx-
imated in terms of the self-centered smoothed gap defined in (14). More precisely, for any
z ∈ Z: ∥∥∥a+AT y

∥∥∥2 + ∥Ax− b∥2 ≤ 2βmaxGβ(z) (62)

Proof From Lemma 6, we know:

Gβ(z) ≥
βx

2
∥x− p∥2 +

1

2βy
∥Ax− b∥2

(53)
=

1

2βx
∥p∗∥2 +

1

2βy
∥Ax− b∥2

(55)

≥
1

2βx

∥∥∥a+AT y
∥∥∥2 +

1

2βy
∥Ax− b∥2

≥
1

2βmax

(∥∥∥a+AT y
∥∥∥2 + ∥Ax− b∥2

)
□

Lemma 16 Let A ⊆ Rn be a non-empty affine space, and x0 ∈ A. Then for the vector
space V := A − x0, which could be seen as a smooth manifold, one can define a unique
coordinate chart (U , ϕ). Moreover, for any x, x̃ ∈ A,

1. The vector x ∈ A could be rewritten in terms of the diffeomorphism ϕ. Say otherwise:

x = x0 + ϕ−1(λ), ∀λ ∈ ϕ(U) (63)

2. The defined diffeomorphism preserves the norm. Say otherwise,

∥ϕ(x− x0)− ϕ(x̃− x0)∥ = ∥x− x̃∥ (64)

3. Denoting Jϕ−1 the Jacobian of the diffeomorphism ϕ−1, we have:

Jϕ−1 (ϕ(x− x0)− ϕ(x̃− x0)) = x− x̃ (65)

Proof 1. Since V is a vector space, one can find an orthonormal basis for it. Say, B =
{v1, . . . , vn}

Thus, for any v ∈ V, ∃! λ1, . . . , λn ∈ R such that v =
n∑

i=1

λivi
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Therefore, one could define the unique diffeomorphism as follows:

ϕ : U = V −→ Û ⊆ Rn s.t. ϕ(v) = ϕ

(∑
i

λivi

)
= λ (66)

Equivalently, for any x ∈ A, ∃!λ1, . . . , λn ∈ R such that:

x = x0 + v = x0 +
∑
j

λjvj
(66)
= x0 + ϕ−1(λ) (67)

□

2. Let x, x̃ ∈ A, then by (63), we have:

x = x0 +
n∑

i=1

λivi x̃ = x0 +
n∑

i=1

λ̃ivi

Since x− x0 & x̃− x0 ∈ U , we define:

ϕ(x− x0) := λ =∈ Rn ϕ(x̃− x0) := λ̃ =∈ Rn

Then, by Pythagorean theorem, we obtain:

∥x− x̃∥2 =

∥∥∥∥∥
(
x0 +

n∑
i=1

λivi

)
−
(
x0 +

n∑
i=1

λ̃ivi

)∥∥∥∥∥
2

=

∥∥∥∥∥
n∑

i=1

(
λi − λ̃i

)
vi

∥∥∥∥∥
2

=
n∑

i=1

(λi − λ̃i)
2

= ∥λ− λ̃∥2 □

3. Since ϕ is a diffeomorphism, then:

ϕ(x− x0) = λ ⇐⇒ ϕ−1(λ) = x− x0
(67)
=

n∑
i=1

λivi =⇒ Jϕ−1 =
[
v1 . . . vn

]
Hence,

Jϕ−1 (ϕ(x− x0)− ϕ(x̃− x0)) = Jϕ−1 (λ− λ̃)

=
[
v1 . . . vn

] 
λ1 − λ̃1

...

λn − λ̃n


=

n∑
i=1

(λi − λ̃i)vi

(67)
= x− x̃ □

▶ Theorem [8] Given β = (βx, βy) ∈ (0,+∞)2, z ∈ Z, and a function f ∈ Γ0(X ).
Then, under the following set of assumptions (we denote it E):
– The Fenchel-Conjugate of the objective function, f∗, could be written in a separable

way:
f∗(µ) = f∗

1 (µ1) + f∗
2 (µ2), µ ∈ X (68)
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– f∗
1 is Lf∗

1
−Lipschitz on its domain, domf∗

1 .

– The domain of f∗
2 is a non-empty affine space.

– Let µ0 ∈ domf∗
2 , then ∀µ2 ∈ domf∗

2 , we define

g(λ) = f∗
2

(
µ0 + ϕ−1(λ)

)
= f∗

2 (µ2) (69)

where ϕ is the diffeomorphism defined in Lemma 16 (eqn:66).
– The function g is differentiable and has an Lg−Lipschitz gradient.

The projected duality gap and the smoothed duality gap defined, respectively, in (11)
and (14) satisfy:

D(z) ≤

(
(3 + βxLg)Gβ(z) +

(√
2βx

(
2∥x∥+ Lf∗

1

)
+
√

2βy∥y∥
)√

Gβ(z)

)2

+ 2βmaxGβ(z)

a = Projdomf∗

(
−AT y

)
p = Prox

β−1
x f

(
x−

1

βx
AT y

)
Proof We initiate by analyzing and interpreting the assumptions:

❖ f∗(µ) = f∗
1 (µ1) + f∗

2 (µ2) is separable implies that:

∂f∗(µ) = ∂f∗
1 (µ1)× ∂f∗

2 (µ2) (70)

domf∗ = domf∗
1 × domf∗

2 (71)

So, p ∈ ∂f∗(ã)
(70)
= ∂f∗

1 (ã1)× ∂f∗
2 (ã2) if, and only if,

p = (p1, p2) & ã = (ã1, ã2) s.t. p1 ∈ ∂f∗
1 (ã1) & p2 ∈ ∂f∗

2 (ã2) (72)

Also, for

a = Projdomf∗

(
−AT y

)
(71)
= Projdomf∗

1 ×domf∗
2

(
−AT y

)
=
(
Projdomf∗

1

(
−
(
AT y

)
1

)
,Projdomf∗

2

(
−
(
AT y

)
2

))
So, for AT y =

((
AT y

)
1
,
(
AT y

)
2

)
, we let a = (a1, a2) be defined as follows:

a1 = Projdomf∗
1

(
−
(
AT y

)
1

)
a2 = Projdomf∗

2

(
−
(
AT y

)
2

)
(73)

❖ f∗
1 is Lf∗

1
−Lipschitz on its domain implies:

f∗
1 (a1) ≤ f∗

1 (ã1) + Lf∗
1
∥a1 − ã1∥ (74)

❖ By Lemma 16, we have seen that we can rewrite any vector µ2 ∈ domf∗
2 as:

µ2 = µ0 +

n∑
i=1

λivi = µ0 + ϕ−1(λ) (75)

where µ0 ∈ domf∗
2 ,B = {v1, . . . , vn} is an orthonormal basis for V = domf∗

2 − µ0, and
ϕ(µ2 − µ0 ∈ V ) := λ. Thus, for any µ2 ∈ domf∗

2 :

f∗
2 (µ2) = f∗

2

(
µ0 +

n∑
i=1

λivi

)
= f∗

2

(
µ0 + ϕ−1(λ)

)
(76)

Hence, by defining g(λ) = f∗
2 (µ0 + ϕ−1(λ)) and assuming that g is differentiable, we

mean that the function f∗
2 is differentiable on its domain.
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❖ The function g is differentiable, so by the chain rule: {∇g(λ)} = JT
ϕ−1∂f

∗
2 (µ0+ϕ−1(λ)).

Hence,
∇g(λ) = JT

ϕ−1 .ω, ∀ω ∈ ∂f∗
2 (µ0 + ϕ−1(λ)) (77)

❖ The function g has an Lg−Lipschitz gradient implies that the Taylor-Lagrange inequality

holds. That is: for any λ, λ̃ ∈ Û ⊆ Rn, we have:

g(λ) ≤ g(λ̃) +
〈
∇g(λ̃), λ− λ̃

〉
+

Lg

2
∥λ− λ̃∥2 (78)

Now, for the points a2, ã2 ∈ domf∗
2 , we define:

λ := ϕ(a2 − µ0) λ̃ := ϕ(ã2 − µ0) (79)

Thus, by (72, 77, and 78), we obtain:

g(λ) ≤ g(λ̃) +
〈
JT
ϕ−1 .p2, λ− λ̃

〉
+

Lg

2
∥λ− λ̃∥2 (80)

Equivalently:

f∗
2 (a2) ≤ f∗

2 (ã2) +
〈
p2, Jϕ−1 (λ− λ̃

〉
+

Lg

2
∥λ− λ̃∥2 (81)

Everything is ready now to be used to upper-bound the term:

f(x) + f∗(a) + ⟨b, y⟩
(68)
= f(x) + f∗

1 (a1) + f∗
2 (a2) + ⟨b, y⟩

(74,81)

≤ f(x) + f∗
1 (ã1) + Lf∗

1
∥a1 − ã1∥+ f∗

2 (ã2) +
〈
p2, Jϕ−1 (λ− λ̃

〉
+

Lg

2
∥λ− λ̃∥2 + ⟨b, y⟩

(64,65)
= f(x) + f∗

1 (ã1) + Lf∗
1
∥a1 − ã1∥+ f∗

2 (ã2) + ⟨p2, a2 − ã2⟩+
Lg

2
∥a2 − ã2∥2 + ⟨b, y⟩

= f(x) + f∗
1 (ã1) + f∗

2 (ã2) + Lf∗
1
∥a1 − ã1∥+ ⟨p2, a2 − ã2⟩+

Lg

2
∥a2 − ã2∥2 + ⟨b, y⟩

= f(x) + f∗(ã) + Lf∗
1
∥a1 − ã1∥+ ⟨p2, a2 − ã2⟩+

Lg

2
∥a2 − ã2∥2−⟨x, ã⟩ − ⟨x, a− ã⟩

+⟨x, a+AT y⟩ − ⟨Ax− b, y⟩

= f(x) + f∗(ã)− ⟨x, ã⟩+ Lf∗
1
∥a1 − ã1∥+ ⟨p2, a2 − ã2⟩+

Lg

2
∥a2 − ã2∥2−⟨x, a− ã⟩

+ ⟨x, a+AT y⟩ − ⟨Ax− b, y⟩
(61)

≤ Gβ(z) + Lf∗
1
∥a1 − ã1∥+ ⟨p2−x2, a2 − ã2⟩+

Lg

2
∥a2 − ã2∥2−⟨x1, a1 − ã1⟩

+ ⟨x, a+AT y⟩ − ⟨Ax− b, y⟩

≤ Gβ(z) + Lf∗
1
∥a1 − ã1∥+ ∥x1∥∥a1 − ã1∥+ ∥p2 − x2∥∥a2 − ã2∥+

Lg

2
∥a2 − ã2∥2

+ ∥x∥
∥∥∥a+AT y

∥∥∥+ ∥Ax− b∥ ∥y∥

(53)
= Gβ(z) +

(
Lf∗

1
+ ∥x1∥

)
∥a1 − ã1∥+

1

βx
∥p∗2∥∥a2 − ã2∥+

Lg

2
∥a2 − ã2∥2

+ ∥x∥
∥∥∥a+AT y

∥∥∥+ ∥Ax− b∥ ∥y∥

≤ Gβ(z) +
(
Lf∗

1
+ ∥x∥

)
∥a1 − ã1∥+

1

βx
∥p∗∥∥a2 − ã2∥+

Lg

2
∥a2 − ã2∥2 + ∥x∥

∥∥∥a+AT y
∥∥∥

+ ∥Ax− b∥ ∥y∥
(55)

≤ Gβ(z) +
(
Lf∗

1
+ ∥x∥

)
∥a1 − ã1∥+

1

βx
∥p∗∥∥a2 − ã2∥+

Lg

2
∥a2 − ã2∥2 + ∥x∥∥p∗∥

+ ∥Ax− b∥ ∥y∥
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(58)

≤ Gβ(z) +
(
Lf∗

1
+ ∥x∥

)
∥p∗∥+

1

βx
∥p∗∥2 +

Lg

2
∥p∗∥2 + ∥x∥∥p∗∥+ ∥Ax− b∥ ∥y∥

(59)

≤ Gβ(z) +
(
Lf∗

1
+ ∥x∥

)√
2βxGβ(z) + 2Gβ(z) + βxLgGβ(z) + ∥x∥

√
2βxGβ(z)

+ ∥Ax− b∥∥y∥
(17)

≤ (3 + βxLg)Gβ(z) +
(
Lf∗

1
+ 2∥x∥

)√
2βxGβ(z) + ∥y∥

√
2βyGβ(z)

Consequently, we have derived an upper bound for the term f(x) + f∗(a) + ⟨b, y⟩. Thanks
to Lemma 13 that provides us with a lower bound of that term as well. By combining these
two bounds, we obtain:

|f(x) + f∗(a) + ⟨b, y⟩| ≤ (3 + βxLg)Gβ(z) +
(√

2βx

(
2∥x∥+ Lf∗

1

)
+
√

2βy∥y∥
)√

Gβ(z)

(82)
Lastly, Lemma 15 along with this last bound (82) conclude the proof:

D(z) = |f(x) + f∗(a) + ⟨b, y⟩|2 + ∥Ax− b∥2 +
∥∥∥a+AT y

∥∥∥2
(82)

≤
(
Gβ(z) +

(√
2βx

(
∥x∥+ Lf∗

)
+
√

2βy∥y∥
)√

Gβ(z)

)2

+ ∥Ax− b∥2 +
∥∥∥a+AT y

∥∥∥2
(62)

≤
(
Gβ(z) +

(√
2βx

(
∥x∥+ Lf∗

)
+
√

2βy∥y∥
)√

Gβ(z)

)2

+ 2βmaxGβ(z) □

Upon setting f∗
2 = 0 in our preceding theorem, we managed to derive a slightly tighter

bound. The detailed expression is presented below.

Proposition 9 Given β = (βx, βy) ∈ (0,+∞)2, z ∈ Z, and a function f ∈ Γ0(X ) such
that its Fenchel-conjugate, f∗, is Lf∗−Lipschitz on its domain. Let βmax = max(βx, βy).
Then, for the projected duality gap and the smoothed duality gap defined, respectively, in
(11) and (14) we have:

D(z) ≤
(
Gβ(z) +

(√
2βx

(
∥x∥+ Lf∗

)
+
√

2βy∥y∥
)√

Gβ(z)

)2

+ 2βmaxGβ(z)

a = Projdomf∗

(
−AT y

)
p = Prox

β−1
x f

(
x−

1

βx
AT y

) (83)

Proof The main contrast between the proof of Theorem 8 and this one lies in the upper
bound established for the term f(x)+ f∗(a)+ ⟨b, y⟩. However, the rest of the proof remains
unchanged. Since f∗ is Lf∗−Lipschitz on its domain, then:

f∗(a) ≤ Lf∗∥a− ã∥+ f∗(ã) (84)

Therefore,

f(x) + f∗(a) + ⟨b, y⟩
(84)

≤ f(x)+f∗(ã) + Lf∗∥a− ã∥+ ⟨b, y⟩

= f(x) + f∗(ã)− ⟨x, ã⟩ − ⟨Ax− b, y⟩+
〈
x, ã+AT y

〉
+ Lf∗∥a− ã∥

(61)

≤ Gβ(z)− ⟨Ax− b, y⟩+
〈
x, ã+AT y

〉
+ Lf∗∥a− ã∥

≤ Gβ(z) + ∥Ax− b∥ ∥y∥+ ∥x∥
∥∥∥ã+AT y

∥∥∥+ Lf∗∥a− ã∥

(55)

≤ Gβ(z) + ∥Ax− b∥ ∥y∥+ ∥x∥∥p∗∥+ Lf∗∥a− ã∥

≤ Gβ(z) + ∥y∥
√

2βyGβ(z) + ∥x∥
√

2βxGβ(z) + Lf∗

√
2βxGβ(z) (85)
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where in the last line we utilized the upper bounds (17, 59, 58), respectively. Now, from this
upper bound (85) and the earlier-proven lower-bound (60), we get:

|f(x) + f∗(a) + ⟨b, y⟩| ≤ Gβ(z) +
(√

2βx
(
∥x∥+ Lf∗

)
+
√

2βy∥y∥
)√

Gβ(z) (86)

Therefore, Lemma 15 along with this last bound (86) conclude the proof:

D(z) = |f(x) + f∗(a) + ⟨b, y⟩|2 + ∥Ax− b∥2 +
∥∥∥a+AT y

∥∥∥2
≤
(
(3 + βxLg)Gβ(z) +

(√
2βx

(
2∥x∥+ Lf∗

1

)
+
√

2βy∥y∥
)√

Gβ(z)

)2

+ 2βmaxGβ(z)

□
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