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Abstract: The SWOT (Surface Water Ocean Topography) mission will provide high-resolution and
two-dimensional measurements of sea surface height (SSH). However, despite its unprecedented
precision, SWOT’s Ka-band Radar Interferometer (KaRIn) still exhibits a substantial amount of
random noise. In turn, the random noise limits the ability of SWOT to capture the smallest scales
of the ocean’s topography and its derivatives. In that context, this paper explores the feasibility,
strengths and limits of a noise-reduction algorithm based on a convolutional neural network. The
model is based on a U-Net architecture and is trained and tested with simulated data from the North
Atlantic. Our results are compared to classical smoothing methods: a median filter, a Lanczos kernel
smoother and the SWOT de-noising algorithm developed by Gomez-Navarro et al. Our U-Net model
yields better results for all the evaluation metrics: 2 mm root mean square error, sub-millimetric
bias, variance reduction by factor of 44 (16 dB) and an accurate power spectral density down to
10–20 km wavelengths. We also tested various scenarios to infer the robustness and the stability of the
U-Net. The U-Net always exhibits good performance and can be further improved with retraining
if necessary. This robustness in simulation is very encouraging: our findings show that the U-Net
architecture is likely one of the best candidates to reduce the noise of flight data from KaRIn.

Keywords: SWOT; KaRIn; altimetry; noise reduction; neural networks

1. Introduction

Until now, observations of the dynamics of the ocean surface are done by nadir
altimetric satellites. Nevertheless, the smallest structures observed by these altimeters
are larger than 150 km [1,2]. To access the mesoscale and submesoscale dynamics of the
ocean, a new satellite called SWOT (Surface Water and Ocean Topography) was launched
in December, 2022 [3]. It is a joint mission between the National Aeronautics and Space
Administration (NASA), the Centre National d’Études Spatiales (CNES) and the UK and
Canadian space agencies. To achieve the objectives for oceanography, the Sea Surface Height
(SSH) will be measured by the two KaRIn (Ka-band Radar Interferometer) instruments [4,5].
They will provide a 120 km wide swath of coverage with a resolution of 2 km.

SWOT will measure oceanic structures down to 15 km [6]. Hence, new phenomena
will be studied more precisely such as kinetic energy, vertical transport, coastal ocean
dynamics and internal tides [2,6]. Therefore, the first and second derivatives of the SSH will
be needed to investigate quantities such as geostrophic velocities, vorticity and strain rate.
However, despite its unprecedented resolution and precision (approximately five times
less noise than a Jason-class altimeter), the KaRIn instrument has a significant amount
of wave-modulated noise, hereafter referred to as KaRIn noise [7,8]. As expected from
Chelton et al. [9], the first and the second derivatives of a noisy field at a 2 km resolution
simply cannot be exploited as is. It is necessary to use noise-reduction algorithms—either
generic image processing algorithms or SWOT-specific noise-mitigation algorithms [1,10].
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Denoising data and especially images is a well-known topic in image processing. The
main objective is to remove the noise from a signal while preserving its features of interest
(e.g., textures, contours) without adding unwanted artefacts. In the context of SWOT ocean
products, we want to reduce the random noise while leaving the ocean features intact on
the SSH and its derivatives.

To achieve this, many techniques have been developed for different types of noise
(additive white Gaussian noise, salt and pepper noise, Poisson noise . . . ) and for different
databases (imageNet, Set12 . . . ) [11–13]. First, classical methods (i.e., not based on ma-
chine learning methods) have been developed such as the median filtering or the Lanczos
smoother. The boxcar, Gaussian and Laplacian smoothers are also considered classical
methods, but Gomez-Navarro et al. [1,10] show that the results are not satisfying and,
therefore, they are not reused in this study.

With the development of artificial intelligence and convolutional neural networks
(CNN), and particularly since the development of the AlexNet model [14], hundreds
of image de-noising models [12,13] have been developed and outperform conventional
methods [11]. These methods are used in many applications such as medical images [15,16]
and Synthetic Aperture Radar (SAR) images [17].

In that context, the goal of this work is to develop a neural network model to remove
the KaRIn noise on simulated SWOT products, and to compare its de-noising performance
with various alternatives. The paper is organized as follows: Section 2 presents the gener-
ation of the SWOT data using the SWOT scientific simulator, then Section 3 presents the
U-Net model and various other de-noising methods. Section 4 gives an overview of the
performance of all noise mitigation algorithms tested in this study. Lastly, in Section 5, we
test the robustness of the neural network model when it is used in non-perfect conditions.

2. Input Data

The inputs of the de-noising filter are based on the North Atlantic Ocean simulation
at 1/60◦ grid resolution called eNATL60. This simulation is a configuration of the NEMO
(Nucleus for a European Model of the Ocean) ocean model. The data used do not contain
the effect of oceanic tides but include the effect of the wind and pressure (no dynamic
atmospheric correction used, as in [18]) provided by an atmospheric forcing (ERA-interim).
Please refer to [19,20] for source files, codes and more information. Several ocean models
are available in the ocean community but the eNATL60 model provides one of the best
resolutions: between 0.8 and 1.6 km depending on latitude.

SWOT swaths calculated from the eNATL60 are generated by the SWOT simulator [8]
which is available at https://swot-simulator.readthedocs.io/ (accessed on 7 April 2023).
The Sea Surface Height (SSH) variable is interpolated on the SWOT grid at a resolution
of 2 km. Several errors are simulated: geophysical errors, including wet troposphere
and sea state bias, as well as instrumental errors. The latter are roll errors, phase errors,
baseline dilation errors, timing errors, orbital errors and KaRIn noise. Only the KaRIn
noise is a decorrelated random error, and it impacts wavelengths approximately under
50 km. In this study, we will only focus on this random error. Other errors are described in
Esteban-Fernandez [7] and Gaultier et al. [8]. The KaRIn noise is defined by a Gaussian
zero-centered distribution. The associated standard deviation depends on the distance to
the nadir and the Significant Wave Height (SWH), which varies between 0 and 8 m [7] as
shown in Figure 1. The error increases with the SWH and is more important on the borders
of the swath. In our simulations, real SWH from the global ocean reanalysis wave system
of Météo-France (WAVERYS) with a resolution of 1/5◦ degree is specified as input. If no
data is available at a particular location, the SWH is set at 2 m. More information about
the WAVERYS product is available on https://doi.org/10.48670/moi-00022 (accessed on 7
April 2023).

https://swot-simulator.readthedocs.io/
https://doi.org/10.48670/moi-00022


Remote Sens. 2023, 15, 2183 3 of 24

Remote Sens. 2023, 15, x FOR PEER REVIEW 3 of 25 
 

 

WAVERYS product is available on https://doi.org/10.48670/moi-00022 (accessed on 7 April 
2023). 

 
Figure 1. Height error (cm) of the KaRIn noise as a function of cross-track distance (km) from the 
nadir and the SWH (extracted from the documentation of the SWOT simulator). The KaRIn noise is 
more important at the borders of the swath and increases with the SWH. Thus, it varies geograph-
ically and temporally. These properties impact the performance of the classical smoothing. 

In practice, the SWOT simulator provides the SSH from the eNATL60 model interpo-
lated on the swath grid (hereafter referred to as true SSH), the values of each error and the 
SWH interpolated on the swath grid. These data are available from 1st July 2009 to 31st 
July 2010 over the North Atlantic Ocean. 

The true SSH defines the ground truth. Noisy SSH is constructed as follows: 

Noisy SSH = True SSH + KaRIn noise 

where KaRIn noise is modulated by the waves. Only values above the ocean are consid-
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Figure 1. Height error (cm) of the KaRIn noise as a function of cross-track distance (km) from the
nadir and the SWH (extracted from the documentation of the SWOT simulator). The KaRIn noise is
more important at the borders of the swath and increases with the SWH. Thus, it varies geographically
and temporally. These properties impact the performance of the classical smoothing.

In practice, the SWOT simulator provides the SSH from the eNATL60 model interpo-
lated on the swath grid (hereafter referred to as true SSH), the values of each error and the
SWH interpolated on the swath grid. These data are available from 1 July 2009 to 31 July
2010 over the North Atlantic Ocean.

The true SSH defines the ground truth. Noisy SSH is constructed as follows:

Noisy SSH = True SSH + KaRIn noise

where KaRIn noise is modulated by the waves. Only values above the ocean are considered;
other values are set to zero to avoid training over land. As the neural network model
described below requires data with a constant shape, each SWOT track is divided into
512 km long sections. Thus, input data images have a shape of 256 × 70 pixels.

To improve the performance of the model, two steps are performed. The first one is to
remove the temporally averaged SSH model (calculated over the 13 months available) to
work on Sea Level Anomalies (SLA). Second, the data is scaled: a standard scaler is used
which centers the data by removing the mean and scaling to the unit variance of each patch
of 256 × 70 pixels.

Data from the year 2009 are used and are divided into training and validation sets
using, respectively, 75% and 25% of the dataset. Data from the year 2010 is used for the
benchmark as the test set.

3. Noise-Reduction Algorithms
3.1. Neural Network Method
3.1.1. Convolutional Neural Network (CNN)

For several years, Convolutional Neural Networks (CNN) have been very successful
and have been rapidly developed for various computer vision tasks [21]. A CNN consists
of a succession of convolutional layers defined by:

hk
ij = f

((
Wk ∗ x

)
ij
+ bk

)
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where hk
ij is the output of layer k, commonly called the feature map, ∗ represents the

convolutional operator, Wk is the weights and bk the biases. f is a non-linear function called
the activation function. In our case, the Rectifier Linear Unit is chosen and is defined by:

ReLU (x) = max(0, x)

This function has several advantages that others such as the sigmoid or tanh do not have;
it can speed up learning and it avoids vanishing gradients in the backpropagation [21,22].

The weights and biases are the parameters to be learned. The learning step consists
of minimizing a loss function and updating the parameters using the backpropagation
algorithm. For more information, please refer to Albawi et al. [22] and Li et al. [21].

3.1.2. U-Net Architecture for Denoising

CNNs are often used in an autoencoder framework. Their architecture is adapted to
denoising problems [23]. Actually, they are composed of two parts: the encoder and the
decoder. The encoder part subsequently downscales the input resolution and eventually
creates a compact representation of the input data in a lower-dimensional space. The
objective of the encoder is to keep the essential part of the data (i.e., data without noise in a
denoising scenario). The decoder reconstructs the data from the low-dimensional space
back to the original input data space [24].

One of the most successful encoder–decoder architectures is called U-Net. It was
first proposed for biomedical image segmentation by Ronneberger et al. [25]. Its main
feature is the use of skip connections between the encoder and the decoder to improve
higher-resolution information flow. Many studies have used U-Net-like architectures to
denoise images [16,26]. U-Net-like architectures also perform well for other applications
such as segmentation [25,27] or nowcasting [28].

In our study, we designed a U-Net to remove the noise present in the SSH field.
Figure 2 describes the U-Net architecture. The encoder part is made of three CNN blocks
(each composed of two CNN layers) and, between each block, a max pooling layer. This
layer divides the size of the feature map by two. The filter numbers of each CNN block
are 16, 32 and 64. The decoder part is similar to the encoder, but the max pooling layer is
replaced by transpose convolution layer. It multiplies the size of the feature map by two in
order to reconstruct the data.
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3.1.3. Experimental Setup

To train the U-Net model, the denoised SSH must be compared to the ground truth
using a loss function. The two most used are L1-loss and L2-loss. Several studies [16,29]
show that L1-loss provides the best results. Actually, L2-loss penalizes large errors more
than small ones due to its definition. Therefore, L1-loss is chosen and is defined as follows:

Ll1 =
1
N ∑

p ∈ P
|x− y|



Remote Sens. 2023, 15, 2183 5 of 24

where x and y are the denoised SSH and the true SSH, respectively. It is calculated only on
values above the ocean and on valid ocean values provided by a mask.

Data augmentation of the training dataset is one of the most common techniques to
improve results [30]. In our study, the simplest data augmentation is the horizontal and/or
vertical flip. It increases the training dataset by a factor of four. Please note that the learning
is stopping after 15 epochs without improvement of the L1-loss of the validation dataset in
order to avoid overfitting.

The network is coded using Pytorch [31] and Pytorch Lightning, two Python libraries.
It is composed of 231,000 trainable parameters. The ADAM optimizer [32] is used with a
learning rate of 0.001. The experiments were run on an NVIDIA Tesla V100 GPU available
for high-performance computing provided by the CNES (more information on https:
//centredecalcul.cnes.fr/en/data-processing-centre, (accessed on 7 April 2023)). The
hyperparameters (learning rate, batch size, number of filters . . . ) are tuned with optuna, a
python package [33].

For the training part, the computation time is around 2 h on GPU. Once it is done, the
inference part is rapid: it takes around 30 s on CPU to denoise 100 swaths.

3.1.4. Data Post-Processing

The objective of this part is to reconstruct the swaths as the input data. As the swaths
are divided every 512 km along-track, processing was performed to join them to avoid
discontinuities. To do this, the first 10 pixels of 512 km along track swath are shared with
the previous 512 km along-track swath. Similarly, the last 10 pixels are identical to the first
10 pixels of the next 512 km along-track swath. The pixels located at the ends of the swath
are denoised twice by the inference. These pixels are weighted by the following function:

f (x) =
1
2
(tanh(6x + 3) + 1)

where x ∈ [0, 1]. x = 0 corresponds to the pixel at the end of the swath, and x = 1 to the 10th
pixel from the end. This function has these properties: f (0) ≈ 0, f (1) ≈ 1, f (0.5) = 0.5, f
has rotational symmetry with respect to (0.5, 0.5) and f is infinitely differentiable. This last
property is useful to avoid discontinuities when computing velocity and vorticity fields.

3.2. Other De-Noising Algorithms

In Section 4, the method above is compared to more “traditional” filtering/smoothing
methods, i.e., algorithms that do not use a neural network. This is not an exhaustive list
of all the “traditional” methods. They are frequently used in image denoising and/or
developed and tested on SWOT data. Other “traditional” methods could provide better
results than ones presented in Section 4 such as the method presented in [34].

Firstly, spatial-based filters are commonly used in image filtering [11]. In our ex-
periments, we test two spatial-based filters: the median filter and the Lanczos smoother.
Other filters used on SWOT data in Gomez-Navarro et al. [1] (Boxcar filter and Gaussian
filter) and in Gómez-Navarro et al. [10] (Laplacian filter) do not provide satisfying results
and, thus, are not reused in this study. The parameters of the median and the Lanczos
smoother are window size and wavelength (lx), respectively. Gaps are present in the data
corresponding to land, islands, missing data or nadir gaps. As a better result of these filters
is obtained on data without gaps, two operations are calculated on the data and on the
mask associated with gaps with the same kernel. The filtered data is divided by the filtered
mask. Finally, the mask is applied to filtered data. To implement these filters, the functions
from scipy.ndimage (accessed on 7 April 2023) (a Python module) are used. The parameters
of each filter are set as 7 for the window size and 5 for the wavelength.

Secondly, a variational filter was specifically developed for SWOT data by Gomez-
Navarro et al. [1]. Its objective is to minimize the following cost function:

J(h) =
1
2
‖m ◦ (h− hobs)

2‖2 +
λ2

2
‖∆h‖2

https://centredecalcul.cnes.fr/en/data-processing-centre
https://centredecalcul.cnes.fr/en/data-processing-centre
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where m is the mask, h the denoised image, hobs the noisy image and ‖.‖ the L2-norm.
The parameter λ2 must be optimized. Gomez-Navarro et al. [1] show that this parameter
depends on the study area, the season and the ocean model. λ2 varies between 1 and 54.
Hereafter, we use λ2 = 10 which is suitable for high-variability areas and for the eNATL60
model. This value is not optimal for low-variability areas; a new value of λ2 for these areas
should be set (not done in this study). Therefore, the results of this method presented
in Section 4 could be improved. This variational problem is solved by using a gradient
descent method. Hereafter, this filter will be referred to as the Gomez filter.

The computation time of these methods is longer than the U-Net in inference: about
45 min for 100 swaths.

3.3. Diagnostics for Evaluation

To quantify the denoising methods, a benchmark was developed. It provides the
following metrics:

• Root Mean Square Error (RMSE): RMSE =
√

1
N ∑N

i=1
(
hnoisyi − htruei

)2;

• Mean of SSH residuals: MeanSSHres =
1
N ∑N

i=1
(
hnoisyi − htruei

)
;

• Variance of SSH residuals: VarSSHres =
1
N ∑N

i=1
(
hnoisyi − htruei

)2;
• Resolved scale corresponding to the Signal-to-Noise-Ratio (SNR) equals to i.e.,

PSD(hnoisy−htrue)
PSD( htrue )

= 1 [34];

• KaRIn noise reduction: R = 10 log
(

RMSE2
be f ore denoising

RMSE2
a f ter denoising

)
(in dB).

hnoisy and htrue are, respectively, the denoised field and the true field, while PSD
represents the Power Spectral Density. All these metrics must be as close to zero as
possible. The mean of SSH residuals traduces the bias made by a filter while all the other
metrics traduce the performance. The variance of SSH residuals and the RMSE reflect
the performance of the models. The resolved scale corresponding to SNR = 1 provides
information on the wavelength at which the noise dominates the oceanic signal.

The RMSE and the resolved scale are calculated on the SSH field, the geostrophic
current field and the relative vorticity field. The geostrophic current and the relative
vorticity are calculated as follows:

V =
g
f

√(
dh
dx

)2
+

(
dh
dy

)2
and ζ =

1
f

(
d2h

dxdy
− d2h

dydx

)
with h representing the noisy or true SSH, f the Coriolis parameter which depends on the
latitude and g the gravity. The derivatives are computed in the swath coordinate system.
Hence, x and y correspond to the along-track and the across-track direction. dx and dy
correspond to the distance between two consecutive pixels, i.e., the spatial resolution of
the data (in our case, 2 km). The gradients are computed on all available pixels. Please
note that all the metrics computed on the geostrophic velocity are similar, whatever the
studied component.

4. Results

In this section, the U-Net model is trained on simulated products from 2009. To
calculate the different scores, the model is applied to inference independent data from 2010
over the North Atlantic Ocean. The scores of the classical methods were also calculated for
simulated data from 2010. All these scores are compared to the scores for the noisy field
and the ground truth.

4.1. Examples of Denoised Swaths

In this section, two examples of swaths denoised by our method and by the classical
methods are compared. They are 600 km long. The SWOT pass illustrated in Figures 3–5
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is a part of pass 496 of cycle 17. It is situated in the Gulf Stream near the American coast.
Figures 3–5 illustrate the SSH, the geostrophic current and the vorticity, respectively. On all
these figures, the left column shows—from top to bottom—the true field, the noisy field
before denoising and the field after denoising by the U-Net. The errors between the noisy
field or the denoised field and the ground truth appear in the right column.
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Figure 5. Relative vorticity of (a) True SSH, (b) Noisy SSH, (d) SSH denoised by the U-Net and
(c,e) their associated errors (Pass 496, cycle 17 located in the Gulf Stream).

The SSH is correctly restored in these two examples. The KaRIn noise is completely
removed, and the maximum error made by the model is about 1 cm which is a reduction, by
a factor of 3, in the KaRIn noise. However, the residual errors are correlated at wavelengths
of around 10 km. The main structures of the geostrophic current calculated from the noisy
SSH remain visible, but the associated errors reach 1 m/s. The U-Net reduces these errors
by one order of magnitude and restores all the main structures. No information can be
exploited from the vorticity field. Denoising is necessary, as shown in Chelton et al. [9].
The U-Net restores the main structures with the correct order of magnitude. Nevertheless,
it is complicated to measure the error made due to some artefacts present on the true field.
They are caused by the interpolation of the ocean model (which is on a regular grid) onto
the swath grid in the SWOT simulator.

Figure 6 shows the same example, but the denoising is done by the Gomez filter which
we have chosen as our reference for this study. The results are similar to the U-Net except
for the vorticity field. A residual noise still remains. In low-variability areas, the main
structures and the order of magnitude of the vorticity are not well restored (not shown). It
is due to the choice of the value of λ2. The swaths denoised by the other classical methods
are presented in Appendix A.
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4.2. Statistics and Geographical Variations

The scores presented in Tables 1 and 2 are divided into two parts: the offshore scores
which are calculated at more than 10 km from the coast and the coastal scores calculated at
less than 10 km.

Table 1. Comparison of the offshore (>10 km to the coast) scores between the U-Net, the classical
methods and with no filtering computing on the entire domain.

U-Net Gomez
Filter

Median
Filter Lanczos Smoother No Filter

RMSESSH (cm) 0.19 0.24 0.31 0.44 1.27
KaRIn noise reduction 45 (16 dB) 28 (14 dB) 17 (12 dB) 8 (9 dB) -

Mean of SSH residuals (mm) <0.1 <0.1 <0.1 <0.1 0.
Variance of SSH residuals (cm2) 0.04 0.07 0.10 0.20 1.63

RMSEV (m/s) 0.04 0.06 0.10 0.17 0.78
RMSEζ (-) 0.37 0.53 1.11 2.07 10.50

Table 2. Comparison of the coastal (<10 km to the coast) scores between the U-Net, the classical
methods and with no filtering computing on the entire domain.

U-Net Gomez
Filter Median Filter Lanczos Smoother No Filter

RMSESSH (cm) 0.32 0.84 0.87 0.81 1.21
KaRIn noise reduction 14 (11 dB) 2 (3 dB) 2 (3 dB) 2 (3 dB) -

Mean of SSH residuals (cm) 0.01 0.04 0.03 0.01 <0.01
RMSEV (m/s) 0.09 0.14 0.14 0.21 0.69

RMSEζ (-) 0.67 0.80 1.10 1.88 7.92

First, the offshore scores show that all the methods remove a part—or almost all—of
the noise, but the U-Net model performs best (Table 1). Indeed, its offshore RMSE of SSH is
0.19 cm, i.e., a reduction of 85% compared to noisy SSH. While the tenth of a millimeter
difference is meaningless for real ocean data, it is nevertheless useful in a neural network
context to evaluate the performance of the model. The KaRIn noise is reduced by a factor of
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45, i.e., 16 dB. The offshore variance of SSH residuals is as much as 0.04 cm2 and is reduced
by 97%. The geostrophic current and the relative vorticity are restored: the associated
RMSEs are reduced by 95%. The Gomez filter has the best performance among the classical
methods. Nevertheless, it reduces the KaRIn noise by only 28 (14 dB). The offshore RMSE
of the SSH and the variance of the SSH residuals are only reduced by 80% and by 94%
compared with not using a filter. The RMSEs associated with the first two derivatives are
also greater than for the neural network. For all the filters, the mean of the SSH residuals is
lower than 1 mm which means that none of the filters used generate a bias.

However, the scores are worse near the coast and especially those of the classical
methods (Table 2). The latter have an RMSE of SSH around 0.8 cm, low KaRIn noise
reduction and a high RMSE of geostrophic current and relative vorticity. These methods are
not suitable for edges and, in our case, for coasts. The U-Net gives the best coastal scores
even though there are slightly greater RMSE and variance of SSH residuals than offshore.
Actually, the RMSE and the variance of SSH residuals are only reduced by around 80%. It
is also important to note that the interpolation of the ocean model on the swath grid creates
some discontinuities, especially on jagged coastlines. The U-Net does not reproduce these
discontinuities, which explains the poorer scores near the coast. As the Gomez filter has
the best results among the classical filters, the comparisons will hereon be made between
the U-Net and the Gomez filter only, treating the Gomez filter as the reference.

Figure 7 shows the variance of the SSH residuals, the RSMEs of the geostrophic current
and relative vorticity of the U-Net filter and their comparison with the Gomez filter over
North Atlantic Ocean. The RMSEs of the SSH are not shown because the results are similar
to the variance of the SSH residuals.

The best results are obtained for areas of low variability. The improvement of the
U-Net relative to the Gomez filter is higher than 50%. Near the coastline, the improve-
ment approaches 100% due to the bad performance of the Gomez filter in these areas
described above. However, in high-variability areas, the variance of SSH residuals is
0.1 cm2, especially in the Gulf Stream, near the polar coast and near Florida. Near Florida,
the bathymetry has important gradients which are neither observed elsewhere nor well-
denoised by the model. Compared to the Gomez filter, the U-Net performs better: the
improvement is higher than 25% except in the Gulf Stream where, for some pixels, the
Gomez filter’s performance is similar. This is because of the λ2 parameter we used as a
reference, which is optimal for high-variability regions [1]. Assuming that the λ2 parameter
of the Gomez filter is correctly optimized locally (for each longitude/latitude and wave-
modulated SNR), it is likely that the Gomez filter would exhibit the same performance as
the U-Net model. Nevertheless, an advantage of our U-Net filter is that a single training is
needed to optimally denoise the entire domain, whereas a long and complex search for the
optimal value of λ2 at each pixel would be required with the Gomez filter.
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Red on the comparison map indicates that the U-Net performs better than the Gomez filter while
blue indicates the opposite.

The SWOT tracks are visible in the variance of the SSH residuals (Figure 7a). It is
caused by the definition of the KaRIn noise; more noise must be removed on the edges of
the swaths (cf. Figure 1). Therefore, the error made by the denoising methods generally
provides the highest error on the external edges of the swaths: 5.8 mm for the U-Net and
8.8 mm for the Gomez filter on average (cf. Figure 8). Whatever the along-track distance,
the U-Net has the lowest error compared to the Gomez filter (reduction between 20 and
30%). In the middle of each half-swath, the error is the smallest: around 2.5 mm for the
U-Net. On the inner edges, this error achieves 3.8 mm.

The RMSE of the geostrophic current is similar to the RMSE of the SSH. The RMSE
of the relative vorticity is homogenous and is lower than 0.2 except in the Caribbean Sea
and near the equator due to the definition of the Coriolis parameter. Except in these areas,
the comparison with the Gomez filter shows an improvement superior to 75% over almost
the entire domain as expected in the example of Figure 6. The U-Net better reproduces the
second derivative.

4.3. Temporal Scores

Figure 9 shows the mean of SWH, the RMSE of SSH and the KaRIn noise reduction as
a function of time. The computation is performed for each cycle and the date corresponding
to the beginning of the cycle is also indicated. As previously, the U-Net model gives the
best results whatever the season. Nevertheless, the performance is slightly correlated with
the SWH. In winter, when the mean of SWH is the highest (2.75 m), the RMSE of SSH is
equal to 0.21 cm. In summer, the SWH decreases to 1.50 m. In this case, the RMSE of SSH
decreases to 0.16 cm. The KaRIn noise reduction is between 16 and 17 dB (i.e., a factor
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of between 41 and 56). Thus, the waves have little impact on the results of the U-Net.
Moreover, the observability after denoising is not affected by the season as with classical
altimetry [35].
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Figure 9. SWH, RMSE of SSH and KaRIn noise reduction as function of the cycle. The dates
correspond to the beginning of each cycle. The results of the U-Net model are in blue and the Gomez
filter in orange.

For the Gomez filter, the results are similar to the neural network model, but they are
higher than before (around 20% whatever the period). Gomez-Navarro et al. [1] showed
that a parametrization of λ2 as a function of the season improved the results. On the other
hand, performing several trainings of the U-Net depending on the season is not necessary
even for improving a particular period.
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4.4. Spectral Analysis

A spectral analysis was also performed on the denoised SSH over the eNATL60
domain. To do so, the PSDs were computed as follows. For each across-track distance, a
PSD is computed with 512 km segments in the along-track direction. Then, all the obtained
PSDs are averaged. The postprocessed data (i.e., reconstructed data after Section 3.1.4)
are used.

Figure 10 shows the PSDs calculated for the SSH field, the geostrophic current field
and the relative vorticity field in the along-track direction. The green spectrum represents
the PSD of the noisy field. The noise impacts small structures in the SSH field and bigger
structures in the geostrophic currents. The noise dominates the vorticity field. These results
are consistent with the resolved scale given by SNR = 1. An SNR = 1 indicates that the
PSD of the error made by the model intersects with the PSD of the ground truth, i.e., the
spectrum of the denoised signal deviates from that of the ground truth (cf. Figure 11). In
this case, there is as much noise/error as there is signal. The resolved scale defines the limit
of observable structures in the ocean. If the spectrum of the denoised signal is lower than
the spectrum of the reference, we assume that we cannot observe structures below 1000 km
wavelength. The resolved scales associated with the noisy signal are 42 km for the SSH and
102 km for the geostrophic current, while no structures below a wavelength of 1000 km
can be observed in the vorticity. These results are expected based on the examples in
Section 4.1. Please note that the obtained spectra are similar to the ones shown in Appendix
E of Chelton et al. [9].
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Figure 10. PSD of (a) true SSH (blue), noisy SSH (green), SSH denoised by the U-Net (orange) and SSH
denoised by the Gomez filter (red) and the PSD of the associated first (b) and second (c) derivatives.
The PSD is computed from the average of each along-track PSD over the eNATL60 domain and on
the test dataset (year 2010). The vertical dotted lines are computed from Figure 11 and indicate the
resolved wavelengths.

Turning now to the SSH spectra, the PSDs of the U-Net model and the Gomez filter
correctly fit the PSD of the true field down to wavelengths of 20 km. Below 20 km, the
spectrum of the U-Net deviates from the ground truth. Thus, too much energy is removed
by the U-Net. On average, more energy is present in the small scales for the Gomez filter at
these wavelengths. Nevertheless, this energy is not well localized as shown in Figure 11a.
The resolved wavelengths reflect this; they are as small as 10 km for the U-Net and only 27
km for the Gomez filter, which is similar to the calculation by Gomez-Navarro et al. [1]. It
is also important to note that, even at the longest wavelengths, the U-Net performs better
than the Gomez filter.
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Figure 11. Examples of the method to determine the wavelength associated with the SNR = 1. It
is the wavelength where the spectrum of the error over the spectrum of the ground truth crosses
the value 1. If the spectrum is higher than 1 i.e., never crosses the value 1, the wavelength is setup
as >1000 km like for the noisy field in (c). This example is calculated from the spectrums shown in
Figure 10 i.e., (a) is computed from the SSH field, (b) from the first derivative and (c) from the second
derivative over the eNATL60 domain and on the test dataset (year 2010). In green, the wavelengths
of the noisy signal are, respectively, 42 km, 102 km and >1000 km. In red, the wavelengths of the SSH
denoised by the Gomez filter are, respectively, 27 km, 28 km and 128 km. In orange, the wavelengths
of the SSH denoised by the U-Net are 10 km.

The objective of SWOT is to observe oceanic structures below wavelengths of 15 km [6].
However, some assumptions are made. The first one is that SWH has a constant value of
2 m. This is very restrictive: the SWH varies between 0 and 8 m and the median SWH is
around 3 m. Other assumptions are that a mean of SSH is calculated over 7.5 km × 7.5 km
boxes and the 68% quantile spectrum is used. They are also restrictive and not used in
this study: the 2 km resolution is maintained, and all the data is used to calculate the PSD.
Despite breaking these assumptions, the U-Net model nonetheless produces the desired
observability of 10 km. Among all the denoising methods tested, the U-Net is the only one
to achieve this objective. Moreover, its spectrum adapts to all types of ocean variability.

The resolved scale is also calculated for the geostrophic current and for the relative
vorticity. The U-Net provides the best results. Hence, structures down to 10 km can be
observed in the geostrophic current field and in the relative vorticity field while, for the
Gomez filter, these values are limited to 28 km and 128 km, respectively (cf. Figure 11b,c).
Recall that, without denoising, these values are 102 km and higher than 1000 km, respec-
tively. As with the spectra of the SSH fields, the spectrum of the velocity and vorticity
field of the Gomez filter likewise seems to better fit the spectra of the ground truth (cf.
Figure 11b,c), but the resolved wavelengths belie this. The energy of the Gomez filter is not
as well-restored as the U-Net filter. As for the SSH field, the longest wavelengths are better
restored by the U-Net.

5. Robustness of the Model
5.1. Method Applied to Test the Robustness

The data used in this study are simulated by the SWOT simulator. Even if it reproduces
all the known errors, there is a possibility that the data are idealized: the KaRIn noise might
not be exactly as described or might be transformed by several operations at level 1 or
level 2 of the altimetric processing. The purpose of this section is to test the robustness
of the U-Net model. Three scenarios are tested: a more intense KaRIn noise, a correlated
KaRIn noise and a KaRIn noise impacted by the residuals of corrections of systemic errors.
Another uncertainty is the description of the small structures present in the ocean. The
ocean model used previously is regional and the phenomenon particular to other regions
could impact the denoising.
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To verify that our denoising model is effective in these various cases, the following
method is applied:

1. A new dataset is generated either with the modified KaRIn noise or with another
ocean model. As before, the year 2010 is used. The objective of this step is to simulate
data which would have different properties from those of the SWOT simulator.

2. When the real SWOT data are available, the ground truth will not be accessible. Thus,
the U-Net is applied in inference on this new dataset without training.

3. The scores are calculated from the output of the model.

This same method will also be applied to the first SWOT observations and the U-Net
must provide good results for unseen data. Hereafter, the U-Net applied to the eNATL60
model and without modification of the noise is considered as our baseline.

5.2. Scenario: 50% More Noise

This scenario is the simplest. The objective is to ensure that more intense noise will be
correctly removed. The KaRIn noise previously presented is multiplied by 1.5 to obtain
the new KaRIn noise. Recall that the KaRIn noise depends on the SWH and the along-
track distance.

The results are shown in Table 3. The scores are higher than the baseline: the RMSE of
SSH is 0.24 cm, i.e., a noise reduction of 18 dB (factor 63). The RMSE of the geostrophic
current is 0.05 m/s (i.e., 95% lower than before denoising) and the RMSE of the relative
vorticity is 0.40 (i.e., 97% lower). The variance of SSH residuals is equal to 0.062 cm2 (i.e.,
98% lower). The high-variability areas have the highest variance. Nevertheless, these
values remain very low even if the KaRIn noise is higher. Furthermore, the resolved scale
remains unchanged regardless of the field. Thus, noisier data are correctly denoised by the
U-Net and the elevated noise has little effect on the result.

Table 3. Offshore (>10 km to the coast) scores of four scenarios. The scores before denoising are also
indicated for each scenario. The scores are calculated on the entire domain.

50% More Noise Correlated Noise XCal Residuals Glorys Data
No Filter U-Net No Filter U-Net No Filter U-Net No Filter U-Net

RMSE (cm) 1.91 0.24 0.97 0.20 1.65 0.91 1.33 0.13
Mean of SSH residuals (mm) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Variance of SSH residuals (cm2) 3.67 0.06 0.94 0.04 2.78 0.81 1.83 0.02
RMSEV (m/s) 1.22 0.05 0.60 0.04 0.85 0.13 0.84 * 0.02 *

RMSEζ (-) 15.75 0.40 8.35 0.39 10.82 0.58 11.72 * 0.12 *
Resolved scale of SSH (km) 56 10 42 22 46 10 57 22

Resolved scale of V (km) >1000 10 102 20 171 10 >1000 * 21 *
Resolved scale of ζ (km) >1000 10 >1000 85 >1000 >1000 >1000 * 46 *

* Values calculated on the entire domain of Glorys except between 6◦N and 6◦S.

5.3. Scenario: Correlated Noise
5.3.1. Generation of the Correlated Noise

SWOT consists of two antennas, each composed of one KaRIn instrument. Each KaRIn
instrument is formed by nine beams that are reflected off the surface with an approximate
angle of 0.1◦. The approximate resolution is 250 m. For most oceanographic products, a
two-dimensional smoothing will be applied to the nine-beam product. The final product
will have a resolution of 2 km on an Earth-fixed grid as in this study. For more details,
please refer to Appendix B of Chelton et al. [9]. As of yet, the filter of this smoothing has
not been chosen by the SWOT community [36]. At the SWOT Science Team meeting in June
2022, Molero et al. [37] presented a method using a Hamming filter with a half-power filter
cutoff wavelength of 4 km. This filter generates a two-dimensional correlated noise even
with decorrelated waves as input.

To generate this correlated noise, a method similar to the one implemented in the
SWOT simulator is used. The Gaussian zero-centered distribution is replaced by a random
realization based on the Hamming spectrum with a variance of 1 cm2. In this scenario, the
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correlated noise also depends on the SWH to compare it to the baseline. The resolved scale
of the SSH field remains the same i.e., 42 km. Figure 12 shows the PSD of the SSH with a
correlated noise, with the white noise and the ground truth. The correlated noise impacts
wavelengths under 20 km; the longest wavelengths remain unchanged.
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5.3.2. Results

The results of this second scenario are summarized in Table 3. As in the previous
scenario, the scores are slightly higher than the baseline. The KaRIn noise reduction is 14 dB
(factor 23). The RMSEs decreased by around 90% after the denoising by the U-Net. The
variance of SSH residuals approaches 0.041 cm2 (i.e., 96% lower than before denoising). The
mean of the SSH residuals is higher than the U-Net with the classic KaRIn noise but remains
lower than 0.1 mm. The resolved scale of the SSH field does not meet the requirement of
SWOT observability [6]. The resolved scales computed for the first two derivatives are
also higher than the baseline, especially for the relative vorticity. Note that if the U-Net is
retrained on the correlated noise these values can be reduced and meet the requirements;
the resolved scales of SSH field, geostrophic current, and relative vorticity become 12 km,
10 km, and 85 km, respectively. However, the model without retraining can be used for
new types of noise even in inference as a first guess.

5.4. Scenario: XCal Residuals
5.4.1. XCal Residuals

Before filtering the KaRIn noise, another step consists of eliminating the systematic
instrumental errors, i.e., the roll, the phase, the baseline dilation, the timing and the
orbital errors. This step is called crossover calibration (referred to as XCal hereafter).
Dibarboure et al. [38] developed a method based on the inversion of the swath crossings. In
the fast-sampling phase, the time step between two swaths is small at crossovers. Therefore,
the ocean state remains almost unchanged and the values of the systematic errors can
be deduced from these crossings. By interpolating the result in time and space, the XCal
correction is obtained by applying the standard crossover algorithm to the ground segment.
However, some residuals of these errors will remain and will be present in the following
steps such as the filtering. The objective of this scenario is to test our model on KaRIn noise
to which XCal residuals are added. One of the objectives of the denoising is to only remove
the small scales (i.e., KaRIn noise and high-frequency residuals), and to not modify the
large scales such as bias or large, structured errors. To do so, a Lanczos filter is used to
separate the small from the large scales with a cutoff of 50 km. Only the small scales are
added to the KaRIn noise. The result of this processing is that vertical stripes appear and a
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dipole is present between the borders and the center of a half-swath; these are shown in
Figure 13.
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Figure 13. Example of high-frequency XCal residuals. This field is added to the KaRIn noise.

5.4.2. Results

The vertical stripes and the KaRIn noise are correctly removed by the model in this
case. Nevertheless, the dipole between the edges and the center of a half-swath is still
present after the denoising. That explains the high values of the RMSEs and the variance
of SSH residuals (cf. Table 3). The RMSEs of the SSH field, of the geostrophic current and
of the relative vorticity are 0.91 cm (i.e., 1.8 times lower than before denoising), 0.13 m/s
(i.e., 6.5 times lower) and 0.58 (i.e., 1.5 times higher), respectively. The variance of the SSH
residuals is equal to 0.83 cm2 (i.e., 18 times lower). Bias is locally present in the map of
the mean of SSH residuals (not shown) but is absent from the global scores. It is caused
by the dipole. The resolved scales of the SSH and the geostrophic current fields approach
10 km like the baseline. However, these values are impacted by the computational method
of the PSD.

Thus, the U-Net can remove small structures (the vertical stripes) even if they are
not learnt by the model and do not look like noise. However, structures with the longest
wavelengths are not removed by the model. Thus, the U-Net does not remove structures
that could, because of their scale, potentially be oceanic information. To correct the dipole
error, a more complex XCal was developed by Dibarboure et al. [38].

5.5. Generalization of the Model
5.5.1. Glorys Ocean Model

The Glorys 1/12◦ ocean model developed by Lellouche et al. [39] is used in the
operational Copernicus Marine Service operated by Mercator Ocean International. This
global model does not resolve the small-mesoscale, unlike eNATL60, but only large- and
medium-mesoscale. The objective of this scenario is to test the robustness of the U-Net
on other oceans where different phenomena and structures can be observed than in the
North Atlantic Ocean. In practice, the daily SSH of Glorys is interpolated on a swath grid
as before. The KaRIn noise generated by the SWOT simulator remains unchanged. The
SWOT data are available from 12 April 2014 to 30 December 2015. The last six months are
used for the benchmark.

5.5.2. Results

The results of this scenario are presented in Table 3. The RMSE of SSH is equal to
0.13 cm and the variance of SSH residuals is 0.022 cm2. The RMSEs of the first and the
second derivatives are 0.02 m/s and 0.12, respectively. Please note that these last two scores
are calculated for the Glorys domain except between 6◦N and 6◦S. They are better than
those calculated from the eNATL60 data. The smallest structures resolved by the Glorys
ocean model are higher than the ones in the eNATL60 model and, therefore, the noise is
more easily separable from the smallest oceanic structures. Figure 14 shows the variance
of SSH residuals. All the oceans are correctly denoised. As before, the low-variability
areas have the best scores and the error made by the U-Net model is less than 5 mm.
The high-variability areas, especially in the Gulf Stream, have a higher variance of SSH
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residuals and, thus, a higher error, which remains less than 2 cm. Other currents such as
the Kuroshio Current or the Antarctic Circumpolar Current are well denoised even if they
are not learnt by the model. The coasts are correctly denoised except near the Scandinavian
coasts because of the jagged coastlines. The error is still less than 2 cm, however.
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as the eNATL60 ocean model due to their respective resolutions. The resolved wave-
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A spectral analysis was also performed for the Glorys domain. The PSDs of U-Net
calculated for the SSH field, the geostrophic current field and the relative vorticity field are
similar to the PSD of the ground truth (cf. Figure 15). The resolved wavelength of the SSH
field is 22 km which is higher than the wavelength required by the SWOT Requirement [6].
It is explained by the size of the smallest structures resolved by Glorys. The denoised
spectrum is close to the ground truth up to the resolved scale. This is because the Glorys
ocean model does not resolve small scales and does not model turbulence as well as the
eNATL60 ocean model due to their respective resolutions. The resolved wavelengths of the
geostrophic current field and of the relative vorticity field are 21 km and 46 km, respectively.
Hence, the U-Net model trained on an ocean model and on a specific area can be used on
another ocean model and on another area.
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Figure 15. PSD of SSH (a), geostrophic current (b) and relative vorticity (c) of the Glorys model. The
ground truth is in blue, the field denoised by the U-Net is in orange and the noisy field is in green.
The PSD is computed from the average of each along-track PSD over the Glorys domain and on the
test dataset (from the 1st July 2015 to the 31st December 2015).

5.6. Discussion about the Robustness of the U-Net

Different scenarios were proposed to test the robustness of the U-Net. It adapted well
to all regions and to other types of oceanic data. This is principally due to the diversity of
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the training dataset which is composed of high-variability areas (such as the Gulf Stream),
low-variability areas and coastal areas. The chosen period—which covers the summer, the
fall and the beginning of the winter—trains it on a large number of different situations.
The training dataset is a crucial component of the neural network model (as, too, is the
preprocessing of data). Some trainings are realized on Gulf Stream area and do not produce
satisfying results by applying it outside its training area, particularly in low-variability
areas (up to −75% of the variance of SSH residuals compared to the results presented in
Section 4).

The data augmentation also has a major effect on the robustness of the model. The
neural network interprets this data augmentation as a set of new situations to model. Thus,
it improves the performance of the eNATL60 test dataset by reducing the variance of SSH
residuals by 5%. However, for the Glorys test dataset (without retraining), the reduction is
greater (around 10% for the variance of SSH residuals).

Another key to its robustness towards other types of noise is that KaRIn noise varies
with SWH. This allows training on a wide range of noise intensities, which is why the
model provides satisfying results on more or less noisy data. However, the U-Net removes
some oceanic structures with less noisy data (not shown). The structure of the U-Net also
has an important role because it allows it to comprehend other types of noise, such as
correlated noise. Indeed, in the example presented above which featured noise correlated
at 4 km, the first operations of the U-Net (pooling) allowed it to decrease the dimension of
the input data to bring it back to a case already known to the model.

However, the U-Net does not provide the best possible results for the different sce-
narios. A retraining is possible for each scenario proposed. It would improve the results
presented because it would better fit the properties (see Appendix B for an example on the
first scenario) and/or avoid removing oceanic structures. The retraining of all the scenarios
is not done in this study; the retraining and the retuning of the U-Net will be performed
for real KaRIn noise if the properties are not as expected to improve the efficiency of the
denoising. In addition, retraining can also be used for regional studies. Thus, a retraining
on the region of interest improves results, but they are degraded outside of this area.

6. Interpretation of De-Noised Ocean Dynamics

The technical findings of this study are part of a wider set of open challenges concern-
ing the understanding of fine-scale ocean dynamics and their role in global ocean variability
and climate. They will largely help the scientific community in the use and interpretation
of future SWOT data. While current satellite altimetry observations are limited to resolving
scales down to around 80 to 70 km at best [35], a significant share of the observed SSH vari-
ability originates at scales shorter than 50 km [40–42]. Additionally, small-scale processes
have been shown to significantly contribute to horizontal fluxes of energy, momentum and
tracers such as heat, carbon and nutrients [2,43]. Our understanding of these dynamics
relies today on either high-resolution simulations or scarce in situ measurements. Both
highlight the important role of mesoscale and submesoscale processes when interpreting
diagnostics such as vorticity or surface velocities, but these findings need to be supported
by global and frequent observations.

In this context, SWOT will produce unprecedented two-dimensional swath images
of ocean surface topography to characterize the ocean mesoscale and submesoscale from
larger scales down to around 15 km wavelength [2,3]. However, SWOT instrumental
noise will limit the actual observability, thereby limiting the physical interpretation of the
observations. Figures 4b and 5b demonstrate this point perfectly. Clearly, the velocity
and vorticity fields will not be directly detectable from a SWOT noisy SSH field. The
effect of the speckles present in the SSH field is enhanced in higher-order diagnostics,
such as the geostrophic velocity field (order 1) and vorticity (order 2). In line with the
findings of Chelton et al. [9], the large-scale and most energetic traits of the velocity field are
still detectable from the noisy data, but many of the smaller-scale noise features could be
misinterpreted as a real signal without previous knowledge of the error-free field (Figure 4a).
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On the other hand, it is impossible to extrapolate the vorticity features computed from the
noisy SSH at any scale. Solving scales down to 10 km has powerful physical implications,
particularly in regions of small Rossby radius where a significant part of the mesoscale
variability is still out of reach for conventional altimetry (e.g., in the Antarctic Circumpolar
Current or ACC). The potential of this study is also evident when comparing the result
of resolving 10 km scales globally and independent of the sea state to previous findings
by Wang et al. [34]. They show that SWOT observability degrades to 30–45 km at high
latitudes due to the SWH-induced instrument noise, especially in the ACC, and that this
correlation causes a large seasonality.

To date, the overall eddy field—a reservoir of kinetic energy—still cannot be balanced
in terms of inputs and outputs [44]. In maps reconstructed with current altimetry observa-
tions, large-scale eddies seem to spontaneously emerge before suddenly disappearing, but
the processes that generate and kill them, and the quantitative energy transfers between
these and smaller scales, remain obscured [2,45]. The resolution of smaller scales will
enlighten the energy transfers between the different scales, improving our understanding
of the generation and extinction of mesoscale structures and energy sources and sinks in the
ocean. The contribution of such high-resolution two-dimensional information is not limited
to the ocean surface, but the estimates of the surface pressure could also be used as a proxy
to gain insight into the vertical structure of the ocean velocity field [46] and its role as a
heat pump for the climate system [43,47]. Having access to two-dimensional, de-noised 15
to 150 km SSH, geostrophic velocities and vorticity fields globally opens many new paths
and research questions on the role of small scales in ocean dynamics and their interaction
with larger-scale circulation—in terms of the energy budget, mixing and dissipation—and
on the vertical exchanges between the surface and deeper layers.

7. Conclusions

Despite its unprecedented precision, SWOT’s Ka-band radar interferometer yields an
ocean surface topography with a non-zero random noise. A noise-reduction technique is
therefore beneficial: to improve the observability of small to sub-mesoscales and to better
investigate ocean dynamics at the smallest scales with SSH derivatives. Arguably the
main challenge in noise mitigation is that KaRIn’s noise is modulated by waves. Because
ocean dynamics are also geographically and temporally variable, the signal-to-noise ratio
is as well. The statistical properties of the denoising problem are local in space and time.
In Section 4, the method above is compared to more “traditional” filtering/smoothing
methods, i.e., algorithms that do not use a neural network.

In this paper, we used a U-Net neural network to reduce the noise on simulated SWOT
products. The network was trained and tested on independent datasets based on a realistic
ocean model and the SWOT scientific simulator. Its de-noising performance was compared
to three other filters: the filter from Gomez-Navarro et al. (2020) which was the state of the
art for SWOT at the beginning of our study, as well as a more classical median filter and a
Lanczos filter. Our U-Net model yields better results for all the evaluation metrics: 2 mm
root mean square error, sub-millimetric mean error, a factor of 44 of variance reduction
(16 dB), and an accurate power spectral density down to 10–20 km wavelengths.

Furthermore, the U-Net is the only filter that correctly captures the first and second
derivatives for smaller ocean scales of interest for SWOT. Only one training is necessary to
denoise the entire North Atlantic Ocean for each period of the year, and the model can be
used for the global ocean. More importantly, the training can be done without any kind
of regional/local tuning: contrary to other filters, it is not necessary to find statistically
optimal parameters. Another practical advantage of the model is that, once trained, the
denoising is extremely fast.

Because SWOT’s flight data might differ from our simulated training dataset, we
tested the robustness of the U-Net noise reduction in various scenarios where the inference
is done on a dataset with very different properties than the training data. For all the
scenarios the U-Net residuals are still functioning as expected: random noise is mitigated
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very efficiently, albeit with slightly larger residuals. Moreover, in the presence of a complex
correlated error (namely, XCal residuals from Dibarboure et al. [38]), our filter is even able
to capture a small fraction of said error (the highest frequencies) even if it is beyond the
original denoising objectives. In addition to this solid capability, our simulations show that
the U-Net can be retrained to better fit the actual noise properties that will be measured on
flight data during the calibration/validation phase. To that extent, when SWOT’s flight data
become available, we expect that the U-Net algorithm will provide a solid and upgradable
noise-mitigation baseline.

The literature about denoising is also very rich [26,48]; it is possible, if not likely,
that other algorithms might yield even better results on SWOT products. To that extent,
we set up a standardized open-source data challenge for any group who wants to test
their algorithms in a controlled environment with predefined metrics (available at https:
//github.com/ocean-data-challenges/2022a_SWOT_karin_error_filtering, accessed on 7
April 2023).
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Appendix A

This appendix presents the examples of denoising by the classical methods to illustrate
the good performance of the U-Net filter. Hence, the Figures A1 and A2 represent the
results of the median and the Lanczos smoothers, respectively. They can be compared to
Figures 3–5. It is a part of the pass 496, cycle 17 located in the Gulf Stream. The figures are
organized as follows. In the left column, the SSH, the geostrophic current and the vorticity
are plotted. In the right column, the associated errors are plotted.
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Appendix B

This appendix presents the impacts of retraining the U-Net model. The example
below shows a comparison before and after retraining on the scenario with 50% more noise
presented in Section 5.2. The retraining is done on 2009 data. The hyperparameters can be
modified to further improve the results but, in this example, the same ones are kept. The
results are computed for 2010.

The scores are summarized in Table A1. All the scores with retraining are less than or
equal to those without retraining. Actually, the RMSE of SSH are 17% lower. The KaRIn
noise reduction increases by 1 dB with retraining and is equal to 19 dB. The variance of the
SSH residuals, the RMSE of the geostrophic current and the vorticity decrease by 30%, 20%
and 12%, respectively. The resolved scale remains unchanged. Therefore, the retraining
improves the results and the model better fits the noise properties. Please note that a
retuning of the hyperparameters of the U-Net will also improve the performance.

Table A1. Offshore (>10 km to the coast) scores with and without retraining for the scenario with
50% more noise.

No Filter Without Retraining With Retraining

RMSE (cm) 1.91 0.24 0.20
Mean of SSH residuals (mm) <0.1 <0.1 <0.1

Variance of SSH residuals (cm2) 3.67 0.06 0.04
RMSEV (m/s) 1.22 0.05 0.04

RMSEζ (-) 15.75 0.40 0.35
Resolved scale of SSH (km) 56 10 10

Resolved scale of V (km) >1000 10 10
Resolved scale of ζ (km) >1000 10 10
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