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Abstract: The SWOT (Surface Water Ocean Topography) mission will provide high-resolution and
two-dimensional measurements of sea surface height (SSH). However, despite its unprecedented
precision, SWOT’s Ka-band Radar Interferometer (KaRIn) still exhibits a substantial amount of
random noise. In turn, the random noise limits the ability of SWOT to capture the smallest scales
of the ocean’s topography and its derivatives. In that context, this paper explores the feasibility,
strengths and limits of a noise-reduction algorithm based on a convolutional neural network. The
model is based on a U-Net architecture and is trained and tested with simulated data from the North
Atlantic. Our results are compared to classical smoothing methods: a median filter, a Lanczos kernel
smoother and the SWOT de-noising algorithm developed by Gomez-Navarro et al. Our U-Net model
yields better results for all the evaluation metrics: 2 mm root mean square error, sub-millimetric
bias, variance reduction by factor of 44 (16 dB) and an accurate power spectral density down to
10-20 km wavelengths. We also tested various scenarios to infer the robustness and the stability of the
U-Net. The U-Net always exhibits good performance and can be further improved with retraining
if necessary. This robustness in simulation is very encouraging: our findings show that the U-Net
architecture is likely one of the best candidates to reduce the noise of flight data from KaRIn.

Keywords: SWOT; KaRlIn; altimetry; noise reduction; neural networks

1. Introduction

Until now, observations of the dynamics of the ocean surface are done by nadir
altimetric satellites. Nevertheless, the smallest structures observed by these altimeters
are larger than 150 km [1,2]. To access the mesoscale and submesoscale dynamics of the
ocean, a new satellite called SWOT (Surface Water and Ocean Topography) was launched
in December, 2022 [3]. It is a joint mission between the National Aeronautics and Space
Administration (NASA), the Centre National d’Etudes Spatiales (CNES) and the UK and
Canadian space agencies. To achieve the objectives for oceanography, the Sea Surface Height
(SSH) will be measured by the two KaRIn (Ka-band Radar Interferometer) instruments [4,5].
They will provide a 120 km wide swath of coverage with a resolution of 2 km.

SWOT will measure oceanic structures down to 15 km [6]. Hence, new phenomena
will be studied more precisely such as kinetic energy, vertical transport, coastal ocean
dynamics and internal tides [2,6]. Therefore, the first and second derivatives of the SSH will
be needed to investigate quantities such as geostrophic velocities, vorticity and strain rate.
However, despite its unprecedented resolution and precision (approximately five times
less noise than a Jason-class altimeter), the KaRIn instrument has a significant amount
of wave-modulated noise, hereafter referred to as KaRIn noise [7,8]. As expected from
Chelton et al. [9], the first and the second derivatives of a noisy field at a 2 km resolution
simply cannot be exploited as is. It is necessary to use noise-reduction algorithms—either
generic image processing algorithms or SWOT-specific noise-mitigation algorithms [1,10].
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Denoising data and especially images is a well-known topic in image processing. The
main objective is to remove the noise from a signal while preserving its features of interest
(e.g., textures, contours) without adding unwanted artefacts. In the context of SWOT ocean
products, we want to reduce the random noise while leaving the ocean features intact on
the SSH and its derivatives.

To achieve this, many techniques have been developed for different types of noise
(additive white Gaussian noise, salt and pepper noise, Poisson noise . .. ) and for different
databases (imageNet, Set12 ... ) [11-13]. First, classical methods (i.e., not based on ma-
chine learning methods) have been developed such as the median filtering or the Lanczos
smoother. The boxcar, Gaussian and Laplacian smoothers are also considered classical
methods, but Gomez-Navarro et al. [1,10] show that the results are not satisfying and,
therefore, they are not reused in this study.

With the development of artificial intelligence and convolutional neural networks
(CNN), and particularly since the development of the AlexNet model [14], hundreds
of image de-noising models [12,13] have been developed and outperform conventional
methods [11]. These methods are used in many applications such as medical images [15,16]
and Synthetic Aperture Radar (SAR) images [17].

In that context, the goal of this work is to develop a neural network model to remove
the KaRIn noise on simulated SWOT products, and to compare its de-noising performance
with various alternatives. The paper is organized as follows: Section 2 presents the gener-
ation of the SWOT data using the SWOT scientific simulator, then Section 3 presents the
U-Net model and various other de-noising methods. Section 4 gives an overview of the
performance of all noise mitigation algorithms tested in this study. Lastly, in Section 5, we
test the robustness of the neural network model when it is used in non-perfect conditions.

2. Input Data

The inputs of the de-noising filter are based on the North Atlantic Ocean simulation
at 1/60° grid resolution called eNATL60. This simulation is a configuration of the NEMO
(Nucleus for a European Model of the Ocean) ocean model. The data used do not contain
the effect of oceanic tides but include the effect of the wind and pressure (no dynamic
atmospheric correction used, as in [18]) provided by an atmospheric forcing (ERA-interim).
Please refer to [19,20] for source files, codes and more information. Several ocean models
are available in the ocean community but the eNATL60 model provides one of the best
resolutions: between 0.8 and 1.6 km depending on latitude.

SWOT swaths calculated from the eNATL60 are generated by the SWOT simulator [8]
which is available at https:/ /swot-simulator.readthedocs.io/ (accessed on 7 April 2023).
The Sea Surface Height (SSH) variable is interpolated on the SWOT grid at a resolution
of 2 km. Several errors are simulated: geophysical errors, including wet troposphere
and sea state bias, as well as instrumental errors. The latter are roll errors, phase errors,
baseline dilation errors, timing errors, orbital errors and KaRIn noise. Only the KaRIn
noise is a decorrelated random error, and it impacts wavelengths approximately under
50 km. In this study, we will only focus on this random error. Other errors are described in
Esteban-Fernandez [7] and Gaultier et al. [8]. The KaRIn noise is defined by a Gaussian
zero-centered distribution. The associated standard deviation depends on the distance to
the nadir and the Significant Wave Height (SWH), which varies between 0 and 8 m [7] as
shown in Figure 1. The error increases with the SWH and is more important on the borders
of the swath. In our simulations, real SWH from the global ocean reanalysis wave system
of Météo-France (WAVERYS) with a resolution of 1/5° degree is specified as input. If no
data is available at a particular location, the SWH is set at 2 m. More information about
the WAVERYS product is available on https://doi.org/10.48670/moi-00022 (accessed on 7
April 2023).


https://swot-simulator.readthedocs.io/
https://doi.org/10.48670/moi-00022

Remote Sens. 2023, 15, 2183

3 0f24

— SWH= 2.00 (m)
e SWH= 3.00 (M)

SWH= 4.00 (m)
= SWH= 5.00 (m)

SWH= 6.00 (m)
e SWH= 7.00 (m)
e SWH= 8.00 (m)

Height Error (random+surfboard) (cm)

» |

oL A A A A
10 20 30 40 50 60
Ground Range (km)

Figure 1. Height error (cm) of the KaRIn noise as a function of cross-track distance (km) from the
nadir and the SWH (extracted from the documentation of the SWOT simulator). The KaRIn noise is
more important at the borders of the swath and increases with the SWH. Thus, it varies geographically
and temporally. These properties impact the performance of the classical smoothing.

In practice, the SWOT simulator provides the SSH from the eNATL60 model interpo-
lated on the swath grid (hereafter referred to as true SSH), the values of each error and the
SWH interpolated on the swath grid. These data are available from 1 July 2009 to 31 July
2010 over the North Atlantic Ocean.

The true SSH defines the ground truth. Noisy SSH is constructed as follows:

Noisy SSH = True SSH + KaRIn noise

where KaRIn noise is modulated by the waves. Only values above the ocean are considered;
other values are set to zero to avoid training over land. As the neural network model
described below requires data with a constant shape, each SWOT track is divided into
512 km long sections. Thus, input data images have a shape of 256 x 70 pixels.

To improve the performance of the model, two steps are performed. The first one is to
remove the temporally averaged SSH model (calculated over the 13 months available) to
work on Sea Level Anomalies (SLA). Second, the data is scaled: a standard scaler is used
which centers the data by removing the mean and scaling to the unit variance of each patch
of 256 x 70 pixels.

Data from the year 2009 are used and are divided into training and validation sets
using, respectively, 75% and 25% of the dataset. Data from the year 2010 is used for the
benchmark as the test set.

3. Noise-Reduction Algorithms
3.1. Neural Network Method
3.1.1. Convolutional Neural Network (CNN)
For several years, Convolutional Neural Networks (CNN) have been very successful

and have been rapidly developed for various computer vision tasks [21]. A CNN consists
of a succession of convolutional layers defined by:

hﬁ;:f((wk*x)ij+bk)
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where hi-‘]- is the output of layer k, commonly called the feature map, * represents the

convolutional operator, W¥ is the weights and by the biases. f is a non-linear function called
the activation function. In our case, the Rectifier Linear Unit is chosen and is defined by:

ReLU (x) = max(0, x)

This function has several advantages that others such as the sigmoid or tanh do not have;
it can speed up learning and it avoids vanishing gradients in the backpropagation [21,22].

The weights and biases are the parameters to be learned. The learning step consists
of minimizing a loss function and updating the parameters using the backpropagation
algorithm. For more information, please refer to Albawi et al. [22] and Li et al. [21].

3.1.2. U-Net Architecture for Denoising

CNN:is are often used in an autoencoder framework. Their architecture is adapted to
denoising problems [23]. Actually, they are composed of two parts: the encoder and the
decoder. The encoder part subsequently downscales the input resolution and eventually
creates a compact representation of the input data in a lower-dimensional space. The
objective of the encoder is to keep the essential part of the data (i.e., data without noise in a
denoising scenario). The decoder reconstructs the data from the low-dimensional space
back to the original input data space [24].

One of the most successful encoder—decoder architectures is called U-Net. It was
first proposed for biomedical image segmentation by Ronneberger et al. [25]. Its main
feature is the use of skip connections between the encoder and the decoder to improve
higher-resolution information flow. Many studies have used U-Net-like architectures to
denoise images [16,26]. U-Net-like architectures also perform well for other applications
such as segmentation [25,27] or nowcasting [28].

In our study, we designed a U-Net to remove the noise present in the SSH field.
Figure 2 describes the U-Net architecture. The encoder part is made of three CNN blocks
(each composed of two CNN layers) and, between each block, a max pooling layer. This
layer divides the size of the feature map by two. The filter numbers of each CNN block
are 16, 32 and 64. The decoder part is similar to the encoder, but the max pooling layer is
replaced by transpose convolution layer. It multiplies the size of the feature map by two in
order to reconstruct the data.

Noisy - CNN CNN | ___,l Denoised
SSH block block SSH

CNN CNN
block block

CNN CNN » Pooling
N J
block block

» Upconv

» CNN block

Figure 2. Architecture of the U-Net used for removing the KaRIn noise from a SSH field.

3.1.3. Experimental Setup

To train the U-Net model, the denoised SSH must be compared to the ground truth
using a loss function. The two most used are L1-loss and L2-loss. Several studies [16,29]
show that L1-loss provides the best results. Actually, L2-loss penalizes large errors more
than small ones due to its definition. Therefore, L1-loss is chosen and is defined as follows:

1
Lll:ﬁ Y |x—yl
peP
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where x and y are the denoised SSH and the true SSH, respectively. It is calculated only on
values above the ocean and on valid ocean values provided by a mask.

Data augmentation of the training dataset is one of the most common techniques to
improve results [30]. In our study, the simplest data augmentation is the horizontal and/or
vertical flip. It increases the training dataset by a factor of four. Please note that the learning
is stopping after 15 epochs without improvement of the L1-loss of the validation dataset in
order to avoid overfitting.

The network is coded using Pytorch [31] and Pytorch Lightning, two Python libraries.
It is composed of 231,000 trainable parameters. The ADAM optimizer [32] is used with a
learning rate of 0.001. The experiments were run on an NVIDIA Tesla V100 GPU available
for high-performance computing provided by the CNES (more information on https:
/ /centredecalcul.cnes.fr/en/data-processing-centre, (accessed on 7 April 2023)). The
hyperparameters (learning rate, batch size, number of filters . .. ) are tuned with optuna, a
python package [33].

For the training part, the computation time is around 2 h on GPU. Once it is done, the
inference part is rapid: it takes around 30 s on CPU to denoise 100 swaths.

3.1.4. Data Post-Processing

The objective of this part is to reconstruct the swaths as the input data. As the swaths
are divided every 512 km along-track, processing was performed to join them to avoid
discontinuities. To do this, the first 10 pixels of 512 km along track swath are shared with
the previous 512 km along-track swath. Similarly, the last 10 pixels are identical to the first
10 pixels of the next 512 km along-track swath. The pixels located at the ends of the swath
are denoised twice by the inference. These pixels are weighted by the following function:

f(x) = 3 (tanh(6x +3) +1)
where x € [0, 1]. x = 0 corresponds to the pixel at the end of the swath, and x = 1 to the 10th
pixel from the end. This function has these properties: f(0) ~ 0, f(1) ~ 1, f(0.5) = 0.5, f
has rotational symmetry with respect to (0.5, 0.5) and f is infinitely differentiable. This last
property is useful to avoid discontinuities when computing velocity and vorticity fields.

3.2. Other De-Noising Algorithms

In Section 4, the method above is compared to more “traditional” filtering /smoothing
methods, i.e., algorithms that do not use a neural network. This is not an exhaustive list
of all the “traditional” methods. They are frequently used in image denoising and/or
developed and tested on SWOT data. Other “traditional” methods could provide better
results than ones presented in Section 4 such as the method presented in [34].

Firstly, spatial-based filters are commonly used in image filtering [11]. In our ex-
periments, we test two spatial-based filters: the median filter and the Lanczos smoother.
Other filters used on SWOT data in Gomez-Navarro et al. [1] (Boxcar filter and Gaussian
filter) and in Gomez-Navarro et al. [10] (Laplacian filter) do not provide satisfying results
and, thus, are not reused in this study. The parameters of the median and the Lanczos
smoother are window size and wavelength (Iy), respectively. Gaps are present in the data
corresponding to land, islands, missing data or nadir gaps. As a better result of these filters
is obtained on data without gaps, two operations are calculated on the data and on the
mask associated with gaps with the same kernel. The filtered data is divided by the filtered
mask. Finally, the mask is applied to filtered data. To implement these filters, the functions
from scipy.ndimage (accessed on 7 April 2023) (a Python module) are used. The parameters
of each filter are set as 7 for the window size and 5 for the wavelength.

Secondly, a variational filter was specifically developed for SWOT data by Gomez-
Navarro et al. [1]. Its objective is to minimize the following cost function:

1 A
J(h) = 3 lmo (h— Tobs)? 12 + 72||Ah||2
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where m is the mask, h the denoised image, K, the noisy image and ||.|| the L2-norm.
The parameter A, must be optimized. Gomez-Navarro et al. [1] show that this parameter
depends on the study area, the season and the ocean model. A, varies between 1 and 54.
Hereafter, we use A, = 10 which is suitable for high-variability areas and for the eNATL60
model. This value is not optimal for low-variability areas; a new value of A, for these areas
should be set (not done in this study). Therefore, the results of this method presented
in Section 4 could be improved. This variational problem is solved by using a gradient
descent method. Hereafter, this filter will be referred to as the Gomez filter.

The computation time of these methods is longer than the U-Net in inference: about
45 min for 100 swaths.

3.3. Diagnostics for Evaluation

To quantify the denoising methods, a benchmark was developed. It provides the
following metrics:

e  Root Mean Square Error (RMSE): RMSE = \/% YN, (Mnoisyi — hm,el-)z;
e Mean of SSH residuals: Meangsres = % Yiq (noisyi — Htruei);
e Variance of SSH residuals: Vargspyes = + YN, (Mnoisyi — htmei)z ;

e Resolved scale corresponding to the Signal-to-Noise-Ratio (SNR) equals to i.e.,
PSD(hnois _hrrue> .
PSD( e ) L 104

RMSE
¢ KaRIn noise reduction: R = 10 log(

2
before denoising :
RSE. ) (in dB).

after denoising

hnoisy and hyre are, respectively, the denoised field and the true field, while PSD
represents the Power Spectral Density. All these metrics must be as close to zero as
possible. The mean of SSH residuals traduces the bias made by a filter while all the other
metrics traduce the performance. The variance of SSH residuals and the RMSE reflect
the performance of the models. The resolved scale corresponding to SNR = 1 provides
information on the wavelength at which the noise dominates the oceanic signal.

The RMSE and the resolved scale are calculated on the SSH field, the geostrophic
current field and the relative vorticity field. The geostrophic current and the relative
vorticity are calculated as follows:

g | (dh\?* [dn\? 1/ d*h  d?h

' f\/<dx) " (dy> ey (dxdy - dydx)
with & representing the noisy or true SSH, f the Coriolis parameter which depends on the
latitude and g the gravity. The derivatives are computed in the swath coordinate system.
Hence, x and y correspond to the along-track and the across-track direction. dx and dy
correspond to the distance between two consecutive pixels, i.e., the spatial resolution of
the data (in our case, 2 km). The gradients are computed on all available pixels. Please

note that all the metrics computed on the geostrophic velocity are similar, whatever the
studied component.

4. Results

In this section, the U-Net model is trained on simulated products from 2009. To
calculate the different scores, the model is applied to inference independent data from 2010
over the North Atlantic Ocean. The scores of the classical methods were also calculated for
simulated data from 2010. All these scores are compared to the scores for the noisy field
and the ground truth.

4.1. Examples of Denoised Swaths

In this section, two examples of swaths denoised by our method and by the classical
methods are compared. They are 600 km long. The SWOT pass illustrated in Figures 3-5
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is a part of pass 496 of cycle 17. It is situated in the Gulf Stream near the American coast.
Figures 3-5 illustrate the SSH, the geostrophic current and the vorticity, respectively. On all
these figures, the left column shows—from top to bottom—the true field, the noisy field
before denoising and the field after denoising by the U-Net. The errors between the noisy
field or the denoised field and the ground truth appear in the right column.
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Figure 3. (a) True SSH, (b) Noisy SSH, (c) the KaRIn noise applied, (d) SSH denoised by the U-Net
and (e) its error (Pass 496, cycle 17 located in the Gulf Stream).
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associated errors (Pass 496, cycle 17 located in the Gulf Stream).
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Figure 5. Relative vorticity of (a) True SSH, (b) Noisy SSH, (d) SSH denoised by the U-Net and
(c,e) their associated errors (Pass 496, cycle 17 located in the Gulf Stream).

The SSH is correctly restored in these two examples. The KaRIn noise is completely
removed, and the maximum error made by the model is about 1 cm which is a reduction, by
a factor of 3, in the KaRIn noise. However, the residual errors are correlated at wavelengths
of around 10 km. The main structures of the geostrophic current calculated from the noisy
SSH remain visible, but the associated errors reach 1 m/s. The U-Net reduces these errors
by one order of magnitude and restores all the main structures. No information can be
exploited from the vorticity field. Denoising is necessary, as shown in Chelton et al. [9].
The U-Net restores the main structures with the correct order of magnitude. Nevertheless,
it is complicated to measure the error made due to some artefacts present on the true field.
They are caused by the interpolation of the ocean model (which is on a regular grid) onto
the swath grid in the SWOT simulator.

Figure 6 shows the same example, but the denoising is done by the Gomez filter which
we have chosen as our reference for this study. The results are similar to the U-Net except
for the vorticity field. A residual noise still remains. In low-variability areas, the main
structures and the order of magnitude of the vorticity are not well restored (not shown). It
is due to the choice of the value of A,. The swaths denoised by the other classical methods
are presented in Appendix A.
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Figure 6. SSH denoised by the Gomez filter and its derivatives in the left column. The associated
errors are plotted in the right column. The ground truth of the SSH, the geostrophic current and the
vorticity are in Figures 3-5, respectively (Pass 496, cycle 17 located in the Gulf Stream).

4.2. Statistics and Geographical Variations

The scores presented in Tables 1 and 2 are divided into two parts: the offshore scores
which are calculated at more than 10 km from the coast and the coastal scores calculated at
less than 10 km.

Table 1. Comparison of the offshore (>10 km to the coast) scores between the U-Net, the classical
methods and with no filtering computing on the entire domain.

U-Net G(.)mez M?dlan Lanczos Smoother No Filter
Filter Filter
RMSEggy (cm) 0.19 0.24 0.31 0.44 1.27
KaRIn noise reduction 45 (16 dB) 28 (14 dB) 17 (12 dB) 8 (9dB) -
Mean of SSH residuals (mm) <0.1 <0.1 <0.1 <0.1 0.
Variance of SSH residuals (cm?) 0.04 0.07 0.10 0.20 1.63
RMSEy (m/s) 0.04 0.06 0.10 0.17 0.78
RMSE; (-) 0.37 0.53 1.11 2.07 10.50

Table 2. Comparison of the coastal (<10 km to the coast) scores between the U-Net, the classical
methods and with no filtering computing on the entire domain.

U-Net G{)mez Median Filter Lanczos Smoother No Filter
Filter
RMSEggy (cm) 0.32 0.84 0.87 0.81 1.21
KaRIn noise reduction 14 (11 dB) 2 (3dB) 2 (3dB) 2 (3dB) -
Mean of SSH residuals (cm) 0.01 0.04 0.03 0.01 <0.01
RMSEy (m/s) 0.09 0.14 0.14 0.21 0.69
RMSE; (-) 0.67 0.80 1.10 1.88 7.92

First, the offshore scores show that all the methods remove a part—or almost all—of
the noise, but the U-Net model performs best (Table 1). Indeed, its offshore RMSE of SSH is
0.19 cm, i.e., a reduction of 85% compared to noisy SSH. While the tenth of a millimeter
difference is meaningless for real ocean data, it is nevertheless useful in a neural network
context to evaluate the performance of the model. The KaRIn noise is reduced by a factor of
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45, i.e., 16 dB. The offshore variance of SSH residuals is as much as 0.04 cm? and is reduced
by 97%. The geostrophic current and the relative vorticity are restored: the associated
RMSEs are reduced by 95%. The Gomez filter has the best performance among the classical
methods. Nevertheless, it reduces the KaRIn noise by only 28 (14 dB). The offshore RMSE
of the SSH and the variance of the SSH residuals are only reduced by 80% and by 94%
compared with not using a filter. The RMSEs associated with the first two derivatives are
also greater than for the neural network. For all the filters, the mean of the SSH residuals is
lower than 1 mm which means that none of the filters used generate a bias.

However, the scores are worse near the coast and especially those of the classical
methods (Table 2). The latter have an RMSE of SSH around 0.8 cm, low KaRIn noise
reduction and a high RMSE of geostrophic current and relative vorticity. These methods are
not suitable for edges and, in our case, for coasts. The U-Net gives the best coastal scores
even though there are slightly greater RMSE and variance of SSH residuals than offshore.
Actually, the RMSE and the variance of SSH residuals are only reduced by around 80%. It
is also important to note that the interpolation of the ocean model on the swath grid creates
some discontinuities, especially on jagged coastlines. The U-Net does not reproduce these
discontinuities, which explains the poorer scores near the coast. As the Gomez filter has
the best results among the classical filters, the comparisons will hereon be made between
the U-Net and the Gomez filter only, treating the Gomez filter as the reference.

Figure 7 shows the variance of the SSH residuals, the RSMEs of the geostrophic current
and relative vorticity of the U-Net filter and their comparison with the Gomez filter over
North Atlantic Ocean. The RMSEs of the SSH are not shown because the results are similar
to the variance of the SSH residuals.

The best results are obtained for areas of low variability. The improvement of the
U-Net relative to the Gomez filter is higher than 50%. Near the coastline, the improve-
ment approaches 100% due to the bad performance of the Gomez filter in these areas
described above. However, in high-variability areas, the variance of SSH residuals is
0.1 cm?, especially in the Gulf Stream, near the polar coast and near Florida. Near Florida,
the bathymetry has important gradients which are neither observed elsewhere nor well-
denoised by the model. Compared to the Gomez filter, the U-Net performs better: the
improvement is higher than 25% except in the Gulf Stream where, for some pixels, the
Gomez filter’s performance is similar. This is because of the A, parameter we used as a
reference, which is optimal for high-variability regions [1]. Assuming that the A, parameter
of the Gomez filter is correctly optimized locally (for each longitude/latitude and wave-
modulated SNR), it is likely that the Gomez filter would exhibit the same performance as
the U-Net model. Nevertheless, an advantage of our U-Net filter is that a single training is
needed to optimally denoise the entire domain, whereas a long and complex search for the
optimal value of A; at each pixel would be required with the Gomez filter.

50°N

10°N

100°W 80°W 60°W 40°W 20°W 0° 20°E ) o o o o o 20°F

0.00 0.02 0.04 0.06 0.08 0.10 =50 =25 0 25 50 75 100
Variance of SSH residuals [cm?] Variance of SSH residuals - improvement (%)

(a) (b)

Figure 7. Cont.
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Figure 7. Variance of SSH residuals (a), RMSE of geostrophic current (c) and relative vorticity (e) and
their comparison with the Gomez filter ((b), (d) and (f), respectively) over the North Atlantic Ocean.
Red on the comparison map indicates that the U-Net performs better than the Gomez filter while
blue indicates the opposite.

The SWOT tracks are visible in the variance of the SSH residuals (Figure 7a). It is
caused by the definition of the KaRIn noise; more noise must be removed on the edges of
the swaths (cf. Figure 1). Therefore, the error made by the denoising methods generally
provides the highest error on the external edges of the swaths: 5.8 mm for the U-Net and
8.8 mm for the Gomez filter on average (cf. Figure 8). Whatever the along-track distance,
the U-Net has the lowest error compared to the Gomez filter (reduction between 20 and
30%). In the middle of each half-swath, the error is the smallest: around 2.5 mm for the
U-Net. On the inner edges, this error achieves 3.8 mm.

The RMSE of the geostrophic current is similar to the RMSE of the SSH. The RMSE
of the relative vorticity is homogenous and is lower than 0.2 except in the Caribbean Sea
and near the equator due to the definition of the Coriolis parameter. Except in these areas,
the comparison with the Gomez filter shows an improvement superior to 75% over almost
the entire domain as expected in the example of Figure 6. The U-Net better reproduces the
second derivative.

4.3. Temporal Scores

Figure 9 shows the mean of SWH, the RMSE of SSH and the KaRIn noise reduction as
a function of time. The computation is performed for each cycle and the date corresponding
to the beginning of the cycle is also indicated. As previously, the U-Net model gives the
best results whatever the season. Nevertheless, the performance is slightly correlated with
the SWH. In winter, when the mean of SWH is the highest (2.75 m), the RMSE of SSH is
equal to 0.21 cm. In summer, the SWH decreases to 1.50 m. In this case, the RMSE of SSH
decreases to 0.16 cm. The KaRIn noise reduction is between 16 and 17 dB (i.e., a factor
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of between 41 and 56). Thus, the waves have little impact on the results of the U-Net.
Moreover, the observability after denoising is not affected by the season as with classical
altimetry [35].
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Figure 8. SSH residuals as function of the across-track distance from the nadir. Only data at more

than 10 km from the coast are considered.
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Figure 9. SWH, RMSE of SSH and KaRIn noise reduction as function of the cycle. The dates
correspond to the beginning of each cycle. The results of the U-Net model are in blue and the Gomez
filter in orange.

For the Gomez filter, the results are similar to the neural network model, but they are
higher than before (around 20% whatever the period). Gomez-Navarro et al. [1] showed
that a parametrization of A; as a function of the season improved the results. On the other
hand, performing several trainings of the U-Net depending on the season is not necessary
even for improving a particular period.
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4.4. Spectral Analysis

A spectral analysis was also performed on the denoised SSH over the eNATL60
domain. To do so, the PSDs were computed as follows. For each across-track distance, a
PSD is computed with 512 km segments in the along-track direction. Then, all the obtained
PSDs are averaged. The postprocessed data (i.e., reconstructed data after Section 3.1.4)
are used.

Figure 10 shows the PSDs calculated for the SSH field, the geostrophic current field
and the relative vorticity field in the along-track direction. The green spectrum represents
the PSD of the noisy field. The noise impacts small structures in the SSH field and bigger
structures in the geostrophic currents. The noise dominates the vorticity field. These results
are consistent with the resolved scale given by SNR = 1. An SNR = 1 indicates that the
PSD of the error made by the model intersects with the PSD of the ground truth, i.e., the
spectrum of the denoised signal deviates from that of the ground truth (cf. Figure 11). In
this case, there is as much noise/error as there is signal. The resolved scale defines the limit
of observable structures in the ocean. If the spectrum of the denoised signal is lower than
the spectrum of the reference, we assume that we cannot observe structures below 1000 km
wavelength. The resolved scales associated with the noisy signal are 42 km for the SSH and
102 km for the geostrophic current, while no structures below a wavelength of 1000 km
can be observed in the vorticity. These results are expected based on the examples in
Section 4.1. Please note that the obtained spectra are similar to the ones shown in Appendix
E of Chelton et al. [9].
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Figure 10. PSD of (a) true SSH (blue), noisy SSH (green), SSH denoised by the U-Net (orange) and SSH
denoised by the Gomez filter (red) and the PSD of the associated first (b) and second (c) derivatives.
The PSD is computed from the average of each along-track PSD over the eNATL60 domain and on
the test dataset (year 2010). The vertical dotted lines are computed from Figure 11 and indicate the
resolved wavelengths.

Turning now to the SSH spectra, the PSDs of the U-Net model and the Gomez filter
correctly fit the PSD of the true field down to wavelengths of 20 km. Below 20 km, the
spectrum of the U-Net deviates from the ground truth. Thus, too much energy is removed
by the U-Net. On average, more energy is present in the small scales for the Gomez filter at
these wavelengths. Nevertheless, this energy is not well localized as shown in Figure 11a.
The resolved wavelengths reflect this; they are as small as 10 km for the U-Net and only 27
km for the Gomez filter, which is similar to the calculation by Gomez-Navarro et al. [1]. It
is also important to note that, even at the longest wavelengths, the U-Net performs better
than the Gomez filter.
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Figure 11. Examples of the method to determine the wavelength associated with the SNR = 1. It
is the wavelength where the spectrum of the error over the spectrum of the ground truth crosses
the value 1. If the spectrum is higher than 1 i.e., never crosses the value 1, the wavelength is setup
as >1000 km like for the noisy field in (c). This example is calculated from the spectrums shown in
Figure 10 i.e., (a) is computed from the SSH field, (b) from the first derivative and (c) from the second
derivative over the eNATL60 domain and on the test dataset (year 2010). In green, the wavelengths
of the noisy signal are, respectively, 42 km, 102 km and >1000 km. In red, the wavelengths of the SSH
denoised by the Gomez filter are, respectively, 27 km, 28 km and 128 km. In orange, the wavelengths
of the SSH denoised by the U-Net are 10 km.

The objective of SWOT is to observe oceanic structures below wavelengths of 15 km [6].
However, some assumptions are made. The first one is that SWH has a constant value of
2 m. This is very restrictive: the SWH varies between 0 and 8 m and the median SWH is
around 3 m. Other assumptions are that a mean of SSH is calculated over 7.5 km x 7.5 km
boxes and the 68% quantile spectrum is used. They are also restrictive and not used in
this study: the 2 km resolution is maintained, and all the data is used to calculate the PSD.
Despite breaking these assumptions, the U-Net model nonetheless produces the desired
observability of 10 km. Among all the denoising methods tested, the U-Net is the only one
to achieve this objective. Moreover, its spectrum adapts to all types of ocean variability.

The resolved scale is also calculated for the geostrophic current and for the relative
vorticity. The U-Net provides the best results. Hence, structures down to 10 km can be
observed in the geostrophic current field and in the relative vorticity field while, for the
Gomez filter, these values are limited to 28 km and 128 km, respectively (cf. Figure 11b,c).
Recall that, without denoising, these values are 102 km and higher than 1000 km, respec-
tively. As with the spectra of the SSH fields, the spectrum of the velocity and vorticity
field of the Gomez filter likewise seems to better fit the spectra of the ground truth (cf.
Figure 11b,c), but the resolved wavelengths belie this. The energy of the Gomez filter is not
as well-restored as the U-Net filter. As for the SSH field, the longest wavelengths are better
restored by the U-Net.

5. Robustness of the Model
5.1. Method Applied to Test the Robustness

The data used in this study are simulated by the SWOT simulator. Even if it reproduces
all the known errors, there is a possibility that the data are idealized: the KaRIn noise might
not be exactly as described or might be transformed by several operations at level 1 or
level 2 of the altimetric processing. The purpose of this section is to test the robustness
of the U-Net model. Three scenarios are tested: a more intense KaRIn noise, a correlated
KaRIn noise and a KaRIn noise impacted by the residuals of corrections of systemic errors.
Another uncertainty is the description of the small structures present in the ocean. The
ocean model used previously is regional and the phenomenon particular to other regions
could impact the denoising.
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To verify that our denoising model is effective in these various cases, the following
method is applied:

1. A new dataset is generated either with the modified KaRIn noise or with another
ocean model. As before, the year 2010 is used. The objective of this step is to simulate
data which would have different properties from those of the SWOT simulator.

2. When the real SWOT data are available, the ground truth will not be accessible. Thus,
the U-Net is applied in inference on this new dataset without training.

3. The scores are calculated from the output of the model.

This same method will also be applied to the first SWOT observations and the U-Net
must provide good results for unseen data. Hereafter, the U-Net applied to the eNATL60
model and without modification of the noise is considered as our baseline.

5.2. Scenario: 50% More Noise

This scenario is the simplest. The objective is to ensure that more intense noise will be
correctly removed. The KaRlIn noise previously presented is multiplied by 1.5 to obtain
the new KaRIn noise. Recall that the KaRIn noise depends on the SWH and the along-
track distance.

The results are shown in Table 3. The scores are higher than the baseline: the RMSE of
SSH is 0.24 cm, i.e., a noise reduction of 18 dB (factor 63). The RMSE of the geostrophic
current is 0.05 m/s (i.e., 95% lower than before denoising) and the RMSE of the relative
vorticity is 0.40 (i.e., 97% lower). The variance of SSH residuals is equal to 0.062 cm? (ie.,
98% lower). The high-variability areas have the highest variance. Nevertheless, these
values remain very low even if the KaRIn noise is higher. Furthermore, the resolved scale
remains unchanged regardless of the field. Thus, noisier data are correctly denoised by the
U-Net and the elevated noise has little effect on the result.

Table 3. Offshore (>10 km to the coast) scores of four scenarios. The scores before denoising are also
indicated for each scenario. The scores are calculated on the entire domain.

50% More Noise Correlated Noise XCal Residuals Glorys Data
No Filter U-Net No Filter U-Net No Filter U-Net No Filter U-Net
RMSE (cm) 1.91 0.24 0.97 0.20 1.65 0.91 1.33 0.13
Mean of SSH residuals (mm) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Variance of SSH residuals (cm?) 3.67 0.06 0.94 0.04 2.78 0.81 1.83 0.02
RMSEy (m/s) 1.22 0.05 0.60 0.04 0.85 0.13 0.84 * 0.02*
RMSE; (-) 15.75 0.40 8.35 0.39 10.82 0.58 11.72* 0.12*
Resolved scale of SSH (km) 56 10 42 22 46 10 57 22
Resolved scale of V (km) >1000 10 102 20 171 10 >1000 * 21*
Resolved scale of ¢ (km) >1000 10 >1000 85 >1000 >1000 >1000 * 46 *

* Values calculated on the entire domain of Glorys except between 6°N and 6°S.

5.3. Scenario: Correlated Noise
5.3.1. Generation of the Correlated Noise

SWOT consists of two antennas, each composed of one KaRIn instrument. Each KaRIn
instrument is formed by nine beams that are reflected off the surface with an approximate
angle of 0.1°. The approximate resolution is 250 m. For most oceanographic products, a
two-dimensional smoothing will be applied to the nine-beam product. The final product
will have a resolution of 2 km on an Earth-fixed grid as in this study. For more details,
please refer to Appendix B of Chelton et al. [9]. As of yet, the filter of this smoothing has
not been chosen by the SWOT community [36]. At the SWOT Science Team meeting in June
2022, Molero et al. [37] presented a method using a Hamming filter with a half-power filter
cutoff wavelength of 4 km. This filter generates a two-dimensional correlated noise even
with decorrelated waves as input.

To generate this correlated noise, a method similar to the one implemented in the
SWOT simulator is used. The Gaussian zero-centered distribution is replaced by a random
realization based on the Hamming spectrum with a variance of 1 cm?. In this scenario, the
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correlated noise also depends on the SWH to compare it to the baseline. The resolved scale
of the SSH field remains the same i.e., 42 km. Figure 12 shows the PSD of the SSH with a
correlated noise, with the white noise and the ground truth. The correlated noise impacts
wavelengths under 20 km; the longest wavelengths remain unchanged.
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Figure 12. PSD of true SSH (in blue), noisy SSH (red), SSH with correlated noise (green) and denoising
of the latter by U-Net (orange).

5.3.2. Results

The results of this second scenario are summarized in Table 3. As in the previous
scenario, the scores are slightly higher than the baseline. The KaRIn noise reduction is 14 dB
(factor 23). The RMSEs decreased by around 90% after the denoising by the U-Net. The
variance of SSH residuals approaches 0.041 cm? (i.e., 96% lower than before denoising). The
mean of the SSH residuals is higher than the U-Net with the classic KaRIn noise but remains
lower than 0.1 mm. The resolved scale of the SSH field does not meet the requirement of
SWOT observability [6]. The resolved scales computed for the first two derivatives are
also higher than the baseline, especially for the relative vorticity. Note that if the U-Net is
retrained on the correlated noise these values can be reduced and meet the requirements;
the resolved scales of SSH field, geostrophic current, and relative vorticity become 12 km,
10 km, and 85 km, respectively. However, the model without retraining can be used for
new types of noise even in inference as a first guess.

5.4. Scenario: XCal Residuals
5.4.1. XCal Residuals

Before filtering the KaRIn noise, another step consists of eliminating the systematic
instrumental errors, i.e., the roll, the phase, the baseline dilation, the timing and the
orbital errors. This step is called crossover calibration (referred to as XCal hereafter).
Dibarboure et al. [38] developed a method based on the inversion of the swath crossings. In
the fast-sampling phase, the time step between two swaths is small at crossovers. Therefore,
the ocean state remains almost unchanged and the values of the systematic errors can
be deduced from these crossings. By interpolating the result in time and space, the XCal
correction is obtained by applying the standard crossover algorithm to the ground segment.
However, some residuals of these errors will remain and will be present in the following
steps such as the filtering. The objective of this scenario is to test our model on KaRIn noise
to which XCal residuals are added. One of the objectives of the denoising is to only remove
the small scales (i.e., KaRIn noise