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1 Introduction

The prices of drugs that are negotiated by healthcare authorities (HAs hereafter) typically depend

on the expected demand for the treatment and the value it brings for the particular medical

condition being treated. In a world where chronic diseases are being treated by regular treatments,

the trade-offs faced by healthcare authorities do not change much over time. However, new and

innovative treatments can change these trade-offs, especially when they have the potential to

cure chronic conditions. This can present a challenge for healthcare authorities when it comes

to setting budgets, as the cost of treating a large number of patients may be out of reach. This

problem is likely to become more frequent in the future as gene and cell therapies can bring drastic

innovations in medical treatment, and potentially provide a cure to otherwise incurable diseases

with long term chronic treatments.

These potentially valuable innovations shed light on the diffi culty faced by health authorities

to optimally allocate their budget intertemporally when a large stock of patients becomes curable.

Even absent credit market imperfections, the health authority problem of optimal intertemporal

allocation of an initial budget depends on the decreasing effi ciency of treatment with the number of

patients to be treated but also on the rate of transmission and infection in the untreated population

in the case of communicable diseases. While a myopic budget allocation decision seems suboptimal,

value based pricing which justifies high prices for pharmaceuticals with life saving curative values

can challenge the short term “affordability”of health care budgets (Danzon, 2018).

The question on how to allocate an intertemporal budget when innovative curative medical

treatments become available against a communicable disease has not been addressed in the liter-

ature even if the smoothing of payments over time based on performance may be useful (Danzon,

2018, Brennan and Wilson, 2014). The literature on pharmaceutical pricing and spending con-

centrates on the role of price regulation and price setting (Lakdawalla, 2018) in terms of access

and incentives for innovation. Little is known about the intertemporal allocation of curative drug

treatments when treatments affect future needs.

In this paper, we set up a Susceptibles-Infected-Recovered (SIR) model for an epidemy, and we

analyze in a simple set-up, the optimality conditions of the sequence of cure expenses decided by

healthcare authorities when the curative drug treatment appears in the market. In most European

countries, bargaining over drug prices between health authorities and pharmaceutical firms are
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annual without long-run commitment. However, long-run optimal planning could generate benefits

for all parties (see Alvarez, Argente and Lippi, 2021 or Assenza, al., 2020, for a recent application

to Covid).

These gains admittedly depend on diseases and drugs characteristics. We focus in this paper on

the case of a grave sickness, Hepatitis C, whose treatment underwent a major upheaval when deci-

sive curative drugs were introduced in 2014. Hepatitis C is informative because the management

of the introduction on the market of therapeutic innovations illustrates well the intertemporal

trade-off between expending money for treating patients with new drugs in the present or waiting

and treating them in the future. These new drugs however were quite expensive, and set off the

question of the optimal policies to be chosen over time to master the epidemy in a cost effi cient

way. HAs usually manage the budget impact of treating the accumulated patient stock by pri-

oritizing patients at high risk and delaying treatment of stable patients as was done in France

(Dessauce et al., 2019). Mouterde et al. (2016) describes how France restricted access to the new

drugs called Direct Acting Antiviral agents (DAAs) based on a selection of patients depending

on virus genotypes, disease stages and comorbidities in spite of all these treatments obtaining a

European Union marketing authorization regardless of the patient’s profile. Berdud et al. (2018)

show how the in-class competition for DAAs had a positive impact on uptake and adoption of

DAAs in the top-5 European countries.

The SIR model we consider is standard although it allows for undetected and asymptomatic

infected patients, a quite common occurrence with Hepatitis C. Furthermore, we assume that

the transmission rate is low so that the long-run equilibrium is disease-free as was the case for

Hepatitis C in France after the 2000s. The inheritance of a stock of infected in 2010 had built

up from the uncontrolled usage of syringes before the 2000s among drug-addicts, from unsafe

blood transfusion, and from any contact, among medical professions, between blood of infected

and susceptibles. Those causes of infection were at least partly under control in 2010.

We further assume that the new drug policy cures the disease with decreasing returns to scale,

that is, an additional euro per patient is less and less likely to be effective on the rate at which

patients are cured. It has various justifications given either by biological or economic reasons that

we develop in the text. We also assume that the function describing the impact of new drugs

remain constant over time or at least, this is what is anticipated by the HAs. We indeed mainly

focus on what HAs decide at the onset of the new drug introduction on the market.
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Our first contribution is to derive analytical results that characterize optimal policies using the

calculus of variations in the dynamic problem. We show that indeed moving backward expenses

in new drugs holding constant the intertemporal budget of HAs, reduces infection in the short-run

although there are rebound effects of the epidemy in the medium run. This rebound effect seems

particularly important in the case in which there are many asymptomatic patients who could not

be administered the new treatment since they remain undetected.

Our second contribution is to simulate optimal policies using parameters that are calibrated

to the epidemiologic and economic characteristics of Hepatitis C in France. We confirm the

conclusions we set out above about the short-run gains as well as the rebound effects. The latter

effect questions the intertemporal credibility of giving to HAs an endowment they are free to

expend in the short run if additional resources can be renegotiated in the medium run.

Section 2 sets up the model, states our assumptions and describes how we calibrate parameters

in our policy simulations. Section 3 develops analytical results and show that most are indicative,

and remain generally inconclusive. Section 4 characterizes optimal policies obtained by simulations

of a dynamically controlled SIR model and the last section concludes.

2 The set up

We start with setting up a Susceptible-Infected-Recovered (SIR) model with linear incidence (Het-

hcote, 2000) that allows for the existence of asymptomatic or undetected infected persons as is the

case for some patients with Hepatitis C. We then turn to the description of an exogenous innova-

tion process of drugs curing this disease with some probability. We discuss our main assumption

that expenses in the current period are less and less effective when the treatment is scaled up.

We end up presenting our specification for welfare as well as the calibrated values for parameters

that we retain from the literature.

2.1 The SIR model

In a population whose size is independent of time and normalized to 1, we denote st the share of

susceptibles, it is the share of identified infected referred to infected, and ut the share of undetected

infected referred to undetected. We set up the model in discrete time and write the laws of motion

of shares as follows.

First, susceptibles can get infected in a way proportional to the infected rate in the population
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or can die and be replaced by newborns:

∆st+1 = −β(it + ut)st + ν(1− st). (1)

in which β is the strength of infection due to both infected groups, assumed equal across those

groups, and ν is the natural death rate in this population.

Infection is first undetected and thus the share of undetected infected behaves as:

∆ut+1 = β(it + ut)st − (ζ + ν)ut, (2)

in which ζ is the rate at which the undetected infected are identified. The share of detected

infected thus behaves as:

∆it+1 = ζut − (ρt + ν)it, (3)

in which the healing rate ρt ≤ 1 − ν, is the channel through which the health authorities aim

at controlling the spread of infection by the administration of available drugs. We define more

thoroughly below the impact of policies. Moreover, we do not report the evolution of the share of

recovered individuals which is obtained by deduction, i.e. 1− st − ut − it.

As an approximation, the mortality rate, ν, is assumed to be the same in all sub-populations

because there exists a standard drug that does not fully cure the disease although it maintains

patients in life (as was the case with interferon-based treatments before the arrival of direct-acting

antivirals for Hepatitis C). The state variables are not only the SIR variables (st, it, ut), but also

the endowment of public funds aimed at financing a policy of expenses that affect the healing rate

ρt. Given a specification of social welfare, the issue of optimal control can then be set up as the

choice of an optimal policy among any infinite sequence of expenses over time.

In the following, we will assume that the only stable stationary equilibrium, without any in-

tervention, is the disease-free one, st = 1, ut = it = 0, because this seems a reasonable assumption

for the epidemy of Hepatitis C at least in western European countries, and even if in-migrations

which are not modelled here might delay the process. A suffi cient condition is that β < ν, as

shown in Appendix A following Hethcote (2000). In addition, the domain of variation of the state

variables is the set: st ≥ ν, ut ≥ 0, it ≥ 0 and st + it + ut ≤ 1.

2.2 Policies and intertemporal budgets

The policy implemented by health authorities (HAs) is described by the average expenses per

(detected) infected patient at period t, bt, and full expenses are denoted Bt = btit. As it is
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observed, setting policies in terms of bt or Bt is equivalent. In this section, we do not include in bt

the incompressible costs of traditional drugs used to support the infected that health authorities

expend, and we assume that bt refers to expenses of the new generation of effective drugs only.

Traditional drug expenses just add a passive element to bt e.g. bt + c0, and have no impact on our

analysis until the empirical simulation of Section 4. We also describe those expenses and their

relationship with the costs of the new drugs in the descriptive Section 2.4.

Those average expenses, bt, affect the healing rate of the infected through the remission rate,

ρt = ρ(bt) only. 1

Overall, this function satisfies the following characterization:

Assumption D(ecreasing Returns to Scale)

1. ρ(0) = ρ(0), ρ(+∞) = 1− ν

2. ρ(.) is C1 and increasing,

3. ρ(.) is concave.

In Assumption D.1, the natural remission rate is denoted ρ(0) and defines the healing rate in

the case health authorities do not use new drugs. The upper limit of their intervention is given

by the fraction of non-deceased, 1− ν. Assumption D.2 posits the existence of new and effective

drugs and their continuous and regular impact. Assumption D.3 implies that for any fixed full

expenses Bt but different shares of infected, i
(1)
t < i

(2)
t , the effectiveness of average expenses,

b
(1)
t = Bt

i
(1)
t

> Bt

i
(2)
t

= b
(2)
t , is larger in the second case, ρ

′(b
(1)
t ) < ρ′(b

(2)
t ).

This can be justified by medical and economic reasons. The first medical reason is coming

from the heterogeneity of treatment effects. As different genotypes of the virus react differently to

the new drugs (Berdud et al. 2018), spending more and more on average makes the treatment less

and less effective. Second, better targeting of heterogenous patients makes the treatment more

effective but organizational costs of administering the new drugs are likely to be convex in the

number of infected, since some are more diffi cult to approach or convince than others. Mouterde

et al. (2016) explain the organizational constraints involved by the treatment of sick individuals.

These medical reasons can be argued to be stable over time at least at the first order since the

infected population is continuously renewed as undetected patients are detected.

1The function ρ() is assumed time independent. Taking into account the expected drug innovation process by
competing drug producers is left for future research. All trade-offs over time are here summarized by the marginal
impacts of moving expenses across time periods.
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Among economic reasons, the presence of multiple drugs on the market produced by different

firms whose prices are bargained over with the health authorities leads to such a decreasing return

function of drug usage. We leave for future work how this mechanism precisely works.

The intertemporal budget is given by a sequence of budgets (B1, ., Bt, ...) such that their sum

discounted by the interest rate, r, is∑∞

t=1

Bt

(1 + r)t
=
∑∞

t=1

btit
(1 + r)t

≡ A1, (4)

the total endowment received by the health authorities in the first period, and affected to drug

expenses.2 We do not take a stance on how A1 is decided by the political authorities, and health

authorities take it as a given. What interests us is the choice by the health authorities among

different sequences of expenses e.g. between front-loaded, constant or back-loaded sequences

among many others, which all have the same discounted total value equal to A1.

2.3 Social welfare and optimal policy

In order to select a policy optimally, we have to evaluate whether a sequence (b1, ., bt, ...) is better

in some sense than another sequence (b̃1, ., b̃t, ...) when
∑∞

t=1
btit
(1+r)t

=
∑∞

t=1
b̃tit
(1+r)t

= A1. This

evaluation is derived taking as given a social welfare function, W , that depends on state variables

(A1, s1, i1, u1) in the first period as well as on the sequence of a given policy followed over time,

b = (b1, ., bt, ...). We assume that social welfare, W , is additively separable over time in each

period instantaneous welfare, v(.), which depends only on the end-of-the-period share of infected,

it+1:

W (At, st, it, ut; b) =
∑∞

τ=t
δτ−tv(iτ+1). (5)

In this expression, δ is the discount rate used by health authorities. We normalize v(0) = 0 and

assume that v(x) is decreasing and concave for x ≥ 0. It expresses that HAs dislike infection

and the more so, the higher it is, and the simplest example of such a specification is a quadratic

function, v(it+1) = −(it+1)
2/2.

The optimal policy is then obtained by solving the intertemporal program:

W ∗(A1, s1, i1, u1) = max
b
W (A1, s1, i1, u1; b) = max

b

∑∞

τ=1
δτ−1v(iτ+1),

subject to ρt = ρ(bt), (1), (2), (3)

and At+1 = (1 + r)At − btit, for all t.
2Let us mention again that traditional drugs supporting the infected are not yet counted in those expenses.
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Because all objects are stationary, this is equivalent by the Bellman principle to solving:

W ∗(A1, s1, i1, u1) = max
b1

(v(i2) + δW ∗(A2, s2, i2, u2)) (6)

subject to ρ1 = ρ(b1), (1), (2), (3) at time t = 1,

and A2 = (1 + r)A1 − b1i1.

In this formulation, notice that all parameters are known by HAs and that for instance, the

rate of undetected ut is supposed to have been learned in the past.

Alternatives to this setting could first entertain the idea that HAs also care about the unde-

tected, and not only the infected who were detected although it is not clear why the undetected,

if affected by the disease, would not seek medical advice and be detected. The HAs however could

internalize the fact that the undetected are going to induce more infections in the future. Second,

it could be more realistic to assume that the infection rate β evolves over time in a probabilistic

way, agents becoming aware of the danger of the disease, and thirdly that ut is unknown with

some prior distribution. We leave these alternatives for further research.

2.4 Descriptive statistics and calibrated parameters

We gathered various statistics from different sources that allow us to calibrate the values of para-

meters of interest using data from France. We start with parameters related to the epidemiological

model, and next turn to the calibration of the effi ciency of the new drugs.

Parameters of the SIRmodel A recent review of characteristics of the infection in Europe and

the world can be found in Roudot-Thoraval (2021). Figures we extract from this paper are related

to the French population aged 18-75 or 18-80. In 2004, the prevalence of anti-HCV antibodies

was estimated at 0.53% with a confidence interval of [0.40-0.70] (Meffre et al., 2010) but the sero-

prevalence was 0.84% (Roudot-Thoraval, 2021, p5). According to Roudot-Thoraval (2021), the

respective estimates for 1994 are 1.1% for the anti-HCV prevalence and the sero-prevalence was

0.86%.3 The HCV antibodies prevalence had decreased in 2011 to 0.42% with a 95% confidence

interval of [0,33-0,53] and in 2016, was estimated at 0.30% with a confidence interval of [0.13-0.70]

(Brouard et al., 2019). The decrease after 2004 was brought about by a much better control of the

blood transfusion channel while transmissions through intravenous drug use and mother-to-infant

3A survey by Bruggmann et al. (2004) roughly reports the same numbers.
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remained important (Roudot-Thoraval, 2021) while the decrease after 2014 was caused by the

adoption of direct acting antiviral (DAA) drugs.

This is why our main scenario retains pre-2014 initial values of u0+ i0 = 0.8%, and s0 = 98.8%

so that the recovered rate is 0.4% of the population. Furthermore, in Brouard et al., (2019), it was

estimated that the share of people knowing their current infection was equal to 80.6% although

with a large confidence interval [44.2-95.6]. In other surveys, this figure can be much lower (57%

on Bruggman et al., 2014) and as low as 50% (Bottero et al., 2016). This is why we calibrate

ζ = 0.03 in order to obtain a ratio of i0/(u0 + i0) equal to roughly 60% and thus choose to have

u0 = 0.3% and i0 = 0.5%.

The incidence rate, and the strength of the infection β, are more diffi cult to nail down. As

the prevalence is decreasing over the years before the introduction of the new drugs, we assume

that the SIR model that we consider has a single stable equilibrium which is disease-free. It is

shown in the Appendix, adapting Hethcote (2000) to our specific SIR model, that the condition on

parameters is that β < ν. Given that the reference population is above 19 years old and assuming

that at 19, life expectancy is 60, it gives to ν a value approximately equal to 1/60 = 0.017. If we

assume that the newly infected are observed, the incidence rate in Western Europe is estimated

in Hill et al. (2017, Table 1) to be equal to β ' 35, 440/2, 364, 430 = 0.015 in agreement with the

decrease between 1994 and 2011.4 The fact that this is a combination of two transitions, from

susceptibles to undetected and then to infected is not important in the absence of treatment of

the infected since we can aggregate the two states in this case.

As for interest rates, we adopt the average value of long-run rates in 2014 which was around

2%5.

Parameters of the effi ciency of new drugs We calibrate parameters governing function ρ(b)

as follows:

ρ(b) = ρ(0) + (1− ν − ρ(0)) [1− exp(−λbα)] , (7)

which satisfies Assumption D when α ≤ 1, because it is concave, ρ(0) = ρ(0) and ρ(∞) = 1 − ν

but parameters λ and α should be calibrated.

We first retain a value for the natural remission rate of ρ(0) = 0.03, slightly less than what

4This also agrees with rough figures gathered on French websites of 5,000 newly infected for a stock of 350,000
infectives.

5See https://data.oecd.org/fr/interest/taux-d-interet-a-long-terme.htm#indicator-chart.
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Roudot-Thoraval (2021) reports for severe developments of the disease.6 In this paper, the share

of the treated by new drugs is roughly estimated to constitute 7% of the infected in 2014 and 19%

in 2017 which means that strong restrictions are in place.

In the simulation exercises below, we also consider expenses related to traditional interferon

treatments. We here start by assessing the costs of the new drugs (Direct-Acting Antivirals, DAAs)

vs. the traditional ones. The share of infected that are not treated by new drugs are assumed

to receive the interferon-based treatments that allow to maintain patients with chronic Hepatitis

C alive. Denote cold the per period cost of the latter treatment and cnew (ρt) the cost of the

innovative one, which is increasing and convex in ρt as assumed in Section 2.2. The full treatment

per infected is the sum of the costs cnew (ρt) for the treated with the new drug, (ρt − ρ(0)), and of

the costs, cold, of the treated with the old one, (1− ν − ρt):

cnew (ρt) (ρt − ρ(0)) + (1− ν − ρt)cold = (cnew (ρt)− cold) (ρt − ρ(0)) + (1− ν − ρ(0))cold.

In our model, the budget per infected patient treated with the new drug, bt, is the additional cost

over (1− ν − ρ(0))cold, that is

b (ρt) = (cnew (ρt)− cold) (ρt − ρ(0)).

Note that the traditional treatment, whose costs are (1−ν−ρ(0))cold, does not affect the remission

rate ρt.

Inverting equation (7) should match the last equation so that we obtain:

b(ρt) =

[
−1

λ
log(1− ρt − ρ(0)

1− ν − ρ(0) )
]1/α

= (cnew (ρt)− cold) (ρt − ρ(0)), (8)

which delivers function cnew (ρt):

cnew (ρt)− cold =

[
− 1
λ

log(1− ρt−ρ(0)
1−ν−ρ(0) )

]1/α
ρt − ρ(0)

. (9)

We now calibrate
(
cnew

(
ρ(0)
)
− cold

)
which leads to the calibration of λ given α. The ratio

of differential cost and outcome in terms of quality of life which evaluated by health authorities

writes cnew−cold
QALYnew−QALYold (called in French, RDCR - "ratio différentiel coût-résultat"). In our model

a cured patient is like a non-infected person, and thus enjoys a value of one QALY, while a sick

6When experimenting different values with simulation, we found that larger values are driving the epidemy more
quickly to zero than what seems to be.
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patient has a QALY evaluated at around 0.5 on average (HAS 2014, Avis d’Effi cience Sovaldi

(Sofosbuvir)) implying that QALYnew −QALYold = 0.5. The ratio RDCR is around 20 000 euros

per QALY for Sofosbuvir, the cheapest for most genotypes. This leads to an average differential

cost of treatment of cnew(ρ(0))− cold = 20000× 0.5 = 10 000 euros. By equation (9), we can derive

when ρt → ρ(0) and using that log(1− x) ∼ −x when x is small:

(cnew(ρ(0))− cold)α =
1

λ

1

1− ν − ρ(0) (ρt − ρ
(0))1−α,

that leads to:
1

λ
= (1− ν − ρ(0)) ∗ 10000α

(0.001)1−α
,

using the previous calibrated parameters, and a small level of treatment ρt − ρ(0) = 0.001.

Another important budget parameter is the cost of the old treatment. Indeed bt+
(
1− ν − ρ(0)

)
cold

is the average budget per infected that allows to cure ρ(bt) patients while treating other infected

patients with the old treatment. According to Bronowicki et al. (2003) page 204, we can approx-

imate cold with 9,000 €. Given the other calibrated parameters of the epidemic, the budgetary

discounted cost of the traditional treatment is slightly less than 1,000 € per inhabitant. The

initial endowment that we consider is set to around 5,000 € and we shall assess the sensitivity of

our results to some of those budget parameters.

3 Analytical results

Before turning to simulations that allow to go deeper in the understanding of the principles under-

lying the setting of optimal policies, we first provide some analytical results based on variational

calculus. We first disentangle the effect of varying the sequence of budgets on the shares of

susceptibles and infected. We then turn to the effects on welfare.

3.1 Controlling the infection

Fix a benchmark policy b and consider an alternative which is in the neighborhood of b, and such

that the budget constraint (4) is satisfied. We investigate the consequences of a change of policy

b into the alternative policy in terms of susceptibles, st, and infected, ut and it. Formally, let

Bt = btit (resp. Bt + dB) and Bt+1 (resp. Bt+1 − (1 + r)dB) implying the same intertemporal

budget

Bt +
Bt+1

1 + r
= Bt + dB +

Bt+1 − (1 + r)dB

1 + r
,
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and consider the sequences (B1, ..., Bt−1, Bt, Bt+1, Bt+2...) and (B1, ..., Bt−1, Bt + dB,Bt+1 − (1 +

r)dB,Bt+2, ...) which are intertemporally equivalent in terms of endowments.

To study the differential effect of the two sequences we fix state (st, ut, it). Histories diverge

afterwards; and we denote dX the variation in a variable X with respect to the benchmark given

by policy b holding fixed (At, st, ut, it). Specifically, in terms of expenses per patient bt we can

write: 
dBt = dB = dbtit,

dBt+1 = −(1 + r)dB = dbt+1it+1 + bt+1dit+1,
For k > 1, dBt+k = 0 = dbt+kit+k + bt+kdit+k.

so that: 
dBt = dB = dbtit,
dbt+1it+1 = −(1 + r)dB − bt+1dit+1,
dbt+kit+k = −bt+kdit+k.

(10)

We now look at the effect that this change has on infected in the short-run at t+ 1 and t+ 2

and next turn to the effects on other subpopulations at later periods.

The short-run effects Without loss of generality, suppose dB > 0. At period t + 1, we have

by equation (3) :

dit+1 = −(dρt)it, (11)

= −ρ′titdbt = −ρ′tdB < 0.

The share of infected decreases at period t when the budget is larger. Moreover, by equations (1)

and (2), susceptibles and undetected are not affected, dut+1 = dst+1 = 0 and therefore ut+1 = ut

and st+1 = st.

At period t+ 2, things are different. Differentiating exactly equation (3) gives:

dit+2 − dit+1 = −(dρt+1)it+1 − (ρt+1 + ν)dit+1,

which implies

dit+2 = −ρ′t+1dbt+1it+1 + (1− ρt+1 − ν)dit+1

= ρ′t+1((1 + r)dB + bt+1dit+1) + (1− ρt+1 − ν)dit+1

= (ρ′t+1(1 + r)− (bt+1ρ
′
t+1 + 1− ρt+1 − ν)ρ′t)dB

=
[
(ρ′t+1 − ρ′t)(1 + r) + (r + ν + ρt+1 − bt+1ρ′t+1)ρ′t

]
dB. (12)

using equations (10) and (11) between lines 1, 2 and 3.

11



Equation (12) delivers a clear interpretation. First, if bt ' bt+1, implying ρ′t+1 ' ρ′t, we can

show that there is a rebound effect of the share of infected at t+ 2:

dit+2 ' (r + ν + ρt+1 − bt+1ρ′t+1)ρ′tdB > 0,

and the infection is strengthened by moving expenses from the future to the present when expenses

at the two periods are roughly equal. This has three sources. First, a positive interest rate makes

expenses larger if earlier. Second, a later higher mortality affects the effi ciency of the cure. The

third term, ρt+1− bt+1ρ′t+1 > 0 because ρ(.) is concave and the larger the budget, the less effi cient

the cure.

This positive rebound effect is also true if bt > bt+1. This is not necessarily the case, however,

if bt < bt+1 because ρ′t+1 < ρ′t and the rebound effect, dit+2, could be negative. It is only in this

case that moving expenses to the present is always favorable since a lower infected rate at t+ 2 is

reinforced by the dynamic effects going through the infection of susceptibles.

Before looking at these dynamic effects, it is interesting to look into the impact under a different

angle that makes the share of infected return to the benchmark path, dit+2 = 0, notwithstanding

further impacts at t+ 3, and beyond. Considering equation (12), we get:

dit+2 = ρ′t+1(1 + r)− (1− ν − (ρt+1 − bt+1ρ′t+1))ρ′t, (13)

thus

dit+2 = 0 =⇒ ρ′t = ρ′t+1
1 + r

1− ν − (ρt+1 − bt+1ρ′t+1)
. (14)

By Assumption D, ρt+1 ≤ 1 − ν, ρt+1 − bt+1ρ
′
t+1 is positive and increasing from ρ(0) to a limit

strictly lower than 1−ν, and the denominator is positive and lower than 1−ν−ρ(0). A budgeting

rule that would make dit+2 = 0 —so that infection returns to its previous level in period t+2 —sets

ρ′t to a larger value than ρ
′
t+1, and therefore a bt lower than bt+1. Nonetheless, this rule neglects

the dynamic returns to the change of policy, and further values dit+h for h > 2 are remaining

constant.

The infection channel The infection channel through infections delivers more complex dy-

namics. Equation (1) yields that the population is less infected because:

dst+2 = −β(dit+1)st = βstρ
′
tdB > 0,
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since dst+1 = 0 as seen above. This also affects ut+2 by the opposite amount:

dut+2 = β(dit+1)st = −βstρ′tdB < 0.

Through this channel, the shock propagates further down. Indeed, we how have:

dit+3 − dit+2 = ζdut+2 − (ρt+2 + ν)dit+2 − dρt+2it+2.

Recomposing, using the equations above, and line 3 in equation (10) yields:

dit+3 = ζdut+2 + (1− ρt+2 − ν)dit+2 + ρ′t+2bt+2dit+2,

= −ζβstρ′tdB + (1− ρt+2 − ν + ρ′t+2bt+2)dit+2.

Note that the first term is negative while the second term is positive if dit+2 > 0 under the

conditions stated above and in particular if ρ′t+1 ' ρ′t. If we set dit+2 = 0, as at the end of the

previous development leading to equation (14) then there is an additional decrease of dit+3 because

of the dynamic term in dB that affects ut+2.

Nonetheless if we proceed in a similar way, and instead of setting dit+2 to zero, we set dit+3 = 0

to return to the original path at t+ 3, we get:

dit+2 =
ζβstρ

′
t

1− ν − (ρt+2 − ρ′t+2bt+2)
dB > 0,

so that using equation (13):

(ρ′t+1(1 + r)− (1− ν − (ρt+1 − bt+1ρ′t+1))ρ′t) =
ζβstρ

′
t

1− ν − (ρt+2 − ρ′t+2bt+2)
. (15)

Denote

a(ρt+k) = 1− ν − (ρt+k − bt+kρ′t+k) ∈ (0, 1− ν − ρ(0)), (16)

where bt+k is such that ρt+k = ρ(bt+k) and note that a(ρt+k) is decreasing with ρt+k because of the

concavity of ρ(.) and a(0) = 1− ν − ρ(0) and a(∞) ≥ 0.

Rewrite equation (15) as:

ρ′t+1(1 + r)− a(ρt+1)ρ
′
t =

ζβstρ
′
t

a(ρt+2)
,

so that:

ρ′t = ρ′t+1
1 + r

a(ρt+1) + ζβst
a(ρt+2)

.

Note in this case, the effect that we found at the end of the previous subsection is attenuated,

depending on the value of bt+2 and thus ρt+2. It can even be the case that a(ρt+1) + ζβst
a(ρt+2)

> 1 + r

so that the recommendation at the end of the previous section, and derived from incomplete

premises, that the optimal schedule of bt is increasing with time can be no longer true.
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Further dynamics We can continue down the line by writing:

dst+3 = −β(dit+2 + dut+2)st+2 − β(it+2 + ut+2)dst+2 − νdst+2,

and this also affects ut+3:

dut+3 = −β(dit+2 + dut+2)st+2 − β(it+2 + ut+2)dst+2 − ζdut+2.

In consequence,

dit+4 − dit+3 = ζdut+3 − (ρt+3 + ν)dit+3 − dρt+3it+3,

= ζdut+3 − (ρt+3 + ν)dit+3 + ρ′t+3bt+3dit+3,

or:

dit+4 = ζdut+3 − (ρt+3 + ν)dit+3 − dρt+3it+3,

= ζdut+3 + (1− ν − ρt+3 + ρ′t+3bt+3)dit+3,

= ζdut+3 + a(ρt+3)dit+3.

and we can proceed as before. Thus, the structure of the optimal expenses over time depends on

the parameters of the model in a very complex way, and we should build up realistic simulations

to go further.

3.2 Welfare evaluation

Turning to welfare, as defined in equation (5), its variation is given by:

dW =
∑∞

τ=t
δτ−tv′(iτ+1)diτ+1.

Given results in Section 3.1 and equation (16) defining function a(.), we have:

dit+1 = −ρ′tdB,

dit+2 = (ρ′t+1(1 + r)− a(ρt+1)ρ
′
t)dB,

dit+3 = −ζβstρ′tdB + a(ρt+2)dit+2,

dit+4 = ζdut+3 + a(ρt+3)dit+3, .

...

Even if dB is infinitesimal and rates (r, ζ, ν) are small, the attenuation of effects over time is

slow if a(ρt+k) is not small.
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Short run welfare gains In the following, we assume that δ = 1/(1 + r) so that the interest

rate reflects preferences for the present of health authorities.

Consider the impact in the short-run as defined by:

dWt,t+1 =
∑t+1

τ=t
δτ−tv′(iτ+1)diτ+1,

= (−ρ′tv′(it+1) + v′(it+2)(ρ
′
t+1 − δa(ρt+1)ρ

′
t))dB.

Assuming that the instantaneous utility is v(it+1) = − (it+1)2

2
, we have v′(it+1) = −it+1 and:

dWt,t+1 = (ρ′tit+1 − it+2(ρ′t+1 − δa(ρt+1)ρ
′
t))dB,

=
[
ρ′t(it+1 − it+2) + it+2(ρ

′
t − ρ′t+1) + δit+2a(ρt+1)ρ

′
t

]
dB.

We can distinguish different cases according to conditions it+1 ≷ it+2 and ρ′t ≷ ρ′t+1 (e.g.

bt+1 ≷ bt).

• If it+1 = it+2: the observed infection is stable

— if bt = bt+1 and thus ρ′t = ρ′t+1 : there is a gain in short-term welfare if dB > 0 i.e. if we

reallocate budget from the future to the present. This gain is due to the term δa(ρt+1)ρ
′
t

and is decreasing with the value of ρt+1 since a(ρt+1) and ρ
′
t are both decreasing.

— bt > bt+1 and thus ρ′t < ρ′t+1 : the previous gain is attenuated and disappears eventually

— bt < bt+1 and thus ρ′t > ρ′t+1 : the previous gain is amplified

In conclusion, in this case, a solution bt > bt+1 is optimal in the short-run.

• If it+1 > it+2: the observed infection is in a decreasing swing

— bt = bt+1 and thus ρ′t = ρ′t+1 : there is a gain in welfare if dB > 0 i.e. we reallocate

budget from the future to the present. This gain is due to two terms ρ′t(it+1− it+2) and

δa(ρt+1)ρ
′
t.

— bt > bt+1 and thus ρ′t < ρ′t+1 : the previous gain is attenuated and disappears eventually

— bt < bt+1 and thus ρ′t > ρ′t+1 : the previous gain is amplified

Here also, a solution bt > bt+1 is optimal in the short-run.

• If it+1 < it+2: the observed infection is in an increasing swing
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— bt = bt+1 and thus ρ′t = ρ′t+1 : there is a gain in welfare if dB > 0 depending on the two

terms ρ′t(it+1 − it+2) and δa(ρt+1)ρ
′
t.

It is the only case in which a solution bt > bt+1 might not be optimal in the short-run.

Medium-term welfare gains Consider the impact in the medium-run as defined by:

dWt,t+2 =
∑t+2

τ=t
δτ−tv′(iτ+1)diτ+1,

= (−ρ′tv′(it+1) + v′(it+2)(ρ
′
t+1 − δa(ρt+1)ρ

′
t))dB,

+v′(it+3)(−ζβstρ′tdB + a(ρt+2)dit+2),

= (−ρ′tv′(it+1) + (v′(it+2) + v′(it+3)a(ρt+2))(ρ
′
t+1 − δa(ρt+1)ρ

′
t))dB,

−v′(it+3)ζβstρ′tdB.

With v′(it+1) = −it+1 we get:

dWt,t+2 = (ρ′tit+1 − (it+2 + it+3a(ρt+2))(ρ
′
t+1 − δa(ρt+1)ρ

′
t))dB,

+it+3ζβstρ
′
tdB.

The last term contributes as a positive effect due to the retroaction of a decrease in infection

among susceptibles. There is however also a negative effect due to the decrease in treatment

at period t + 1 and contributing through the term it+3a(ρt+2). Overall, it seems intractable to

assess the relative magnitude of these effects and we now turn to the formal description of optimal

policies.

3.3 Optimal policies: Formal Characterization

We now characterize the conditions under which the sequence of expenses is optimal. In other

words, we provide the first order condition derived from the Bellman equation that is necessary

for optimality.

As described by equation (6), HAs maximize social welfare with respect to a sequence of

expenses b(t): ∑∞

τ=t
δτ−tv(iτ+1),

under the constraints of a SIR model, equations (1), (2) and (3) and a budget constraint:

At+1 = (1 + r)At − btit − cold(1− ν − ρ(0))it,
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in which cold(1 − ν − ρ(0)) are the incompressible drug expenses. For simplicity, we assume that

δ = 1
1+r

and we denote xt = (At, st, ut, it) the vector of state variables and xt+1 = Ft(xt) their law

of motion.

The Bellman equation writes as:

Wt(xt) = max
bt
{v(it+1) + δWt+1(xt+1)} (17)

s.t. xt+1 = Ft(xt).

If Wt+1(xt+1) is a concave function in At, the necessary and suffi cient first order condition of this

program writes:

v′(it+1)
dit+1
dbt

+ δ∇Wt+1
dxt+1
dbt

= 0,

as a function of the gradient ∇Wt+1 = (∂Wt+1

∂At+1
, ∂Wt+1

∂st+1
, ..) yielding:

−v′(it+1)ρ′tit + δ

[
∂Wt+1

∂At+1
(−it) +

∂Wt+1

∂it+1
(−ρ′tit)

]
= 0,

since dst+1
dbt

= dut+1
dbt

= 0. The first order condition thus writes:

−v′(it+1)ρ′t = δ

[
∂Wt+1

∂At+1
+
∂Wt+1

∂it+1
ρ′t

]
, (18)

in which the LHS is positive. Assuming that v′(it+1) = −it+1 and rearranging yields:

(it+1 − δ
∂Wt+1

∂it+1
)ρ′t = δ

∂Wt+1

∂At+1
.

This expresses that the sum of the marginal benefits of investing one additional euro per

patient, in the current period, it+1ρ′t, and in the future periods, −δ
∂Wt+1

∂it+1
ρ′t (positive since

∂Wt+1

∂it+1
<

0) is equal to the marginal value of an additional euro next period.

Unfortunately, this equation, as well as the backward induction equations relating future and

current marginal values of the state variables, do not lead to a tractable characterization through

an Euler condition relating current and next period observables. The Euler equation involves four

periods of observations and we let these developments for Appendix C. Furthermore, the second

order condition is more involved and we will assume that it holds to ensure that the previous

program has a unique solution. Further developments are relegated to Appendix C.

4 Counterfactual Empirical Analysis: Simulations

Because it is diffi cult to draw unambiguous formal conclusions from the dynamic model that

we analyzed above despite its simplicity, we proceed now by simulation. We first capture the
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diffusion of the epidemy by simulating the SIR model forward using the calibrated parameters

that we presented in Section 2.4. In subsection 4.1, we describe the impact of a policy of expenses

and illustrate the principle of variational calculus that underpinned Section 3.1. We then turn in

subsection 4.2 to the simulation of the value function and the optimal policy.

4.1 Forward simulation: Controlling the epidemy

In those simulations, we mimic what has happened in 2014 for hepatitis C when a new generation

of drugs, that was curing some patients for good, was introduced, while previous drugs were not

leading to a significant remission rate before 2014.

Over a time span of 20 years, we simulate a trajectory such that a traditional drug (based

on interferon based treatments), is used until t = 5, when a new drug family (DAAs) is intro-

duced. Parameters are calibrated as presented in Section 2.4 and the original profile of the budget

(B8, ., Bt, .) is increasing at rate r. Results are presented in Figure 1. The infection (observed and

unobserved) is decreasing slowly over the time span. The policy intervention at t = 5 strongly

affects the share of infected. Nonetheless, the evolution of undetected, and more generally non-

susceptibles, is more muted because the impact is only indirect. This means that the channel of

infection through undetected remains widely open.

We next analyze the effect of a change in the budget between time t + 1 and time t, when

t = 8, keeping the total budget constant to illustrate the analytical results developed in Section

3.1. In this example presented in Figure 2, the reallocation is full so that the budget at time

t + 1 is set to 0, and feeds in the budget at time t at the appropriate discounted value. In other

words, the discounted value of the intertemporal budget remains constant. The impact at time t

on the share of infected is strong and negative as expected while the rebound effect upwards at

time t+ 1 is also marked. Infection afterwards starts to slowly decrease, and asymptotically gets

almost back to the value given by the initial budget sequence. The impact on the share of the

undetected is similar with the difference that the decrease towards the asymptote is much slower

than the infected. Overall, the effect on the share of non-susceptibles is as expected the exact

opposite of the two previous impulse function responses.

The conclusion of this analysis is that front loading expenses is improving a lot the infection

rate in the short run although a rebound effect exists in the medium run. This analysis remains

partial since we are looking at changes in policies that are not what an optimal planner would
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have chosen. To extend this variational analysis, we use simulations of the optimal policy and

compare it to other policies.

4.2 Value functions and optimal policies

We now turn to the simulation of value functions and the derivation of optimal policies. We start

by explaining how the simulation proceeds and then describe results of these simulations. Note

that we now take into account the cost of curing patients who do not get access to the new drugs

(DAAs) using traditional drugs. We assume that the cost per patient of this cure is constant and

equal to cold = 9000 € (see Section 2.4 for calibration details). The accumulation rule for the

budget is now written as:

At+1 = (1 + r)At − (bt + cold)it. (19)

Nonetheless, this modification to the decision program is not enough because of constraints At ≥ 0

for all t since provisions should be made for expenses on traditional drugs after period t. Since

the new drug cure is effective, it is enough to compute the provisions assuming that no expenses

on new drugs are made after period t and that only the cost of traditional drugs matter. Denote

those provisions:

κt(zt) = cold
∑∞

n=t

in
(1 + r)n−t+1

, (20)

in which zt = (st, ut, it), and replace the constraint At ≥ 0 by the constraint At ≥ κt(zt) for all t

in the decision program.

Because the environment is asymptotically stationary, we adopt the strategy of iterating over

the value function until it converges to the unique fixed point of the dynamic Bellman operator.

Imposing that HAs prefer the present to the future e.g. δ(1 + r) < 1 is a suffi cient condition for

the existence and uniqueness of the fixed point as the Bellman equation is a contraction.7 The

algorithm used is detailed in appendix B.

4.2.1 Results

Using those simulations, we compare three budgetary policies:

• the (very) conservative policy of spending the interest revenues of the endowment, e.g. for

all t, Bt = r(At − coldit), subtracting the cost of the traditional treatment. This policy is

7Additional conditions are required for the contractive property when δ(1 + r) = 1 (Stachursky, 2009).
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called the interest-only policy in the following. Given that it necessarily covers the cure by

traditional drugs, it yields a decreasing endowment that is however not fully used up.

• the optimal policy given the social welfare function we have posited, and called the optimal

policy from now on.

• an ad-hoc fixed budget policy whose expenses are constant over time and such that after 40

periods the level of assets is the same as with the optimal policy. It is meant to replicate

what HAs are currently able to do under strict one-period budgets.

Figure 3 reports the trajectories of assets under these three different policies. By construction,

the interest-only policy is conservative and does not fully use up the endowment in contrast with

the two other policies. Figure 3 shows that the optimal policy front-loads expenses with respect

to the fixed budget policy. In other words, it is optimal to spend more in the first time periods

while optimal expenses are much lower when approaching the 40-period horizon.

Front-loading is caused by the short-run effect that it has on the infected rate. The evolution of

this infected rate is reported under the three different policies by Figure 4. The interest-only and

the fixed budget policies are much less effi cient at least until period 25 (fixed budget policy) or 33

(interest-only policy) in terms of lowering the rate of infected. All benefits of the optimal policy

with respect to a fixed budget come before period 25 when the two curves of rates of infection

cross. Costs of the optimal policy come afterwards. This means that the eradication of the disease

is taking longer than the other policies in order to minimize the rate of infection in the short-run.

As optimality is geared towards infected, it is not surprising that the gains in terms of un-

detected patients are much less impressive as they appear in Figure 5. This is also true for

susceptibles a graph that is not displayed here. Differences are minor in the former comparison

while in the latter, the curve of susceptibles when the optimal policy is implemented is below the

curve when the fixed budget policy is, and they intersect after period 40. Here also, the main gains

appear at the beginning. Overall, these small effects on undetected means that the epidemy is

continuously fueled in by new comers from this subpopulation, and this prevents a better control

of the epidemy.

It illustrates what we have found in previous sections: it is optimal to front-load expenses

because there are short-run advantages to do so. There exists however a rebound effect in the

20



medium-run which postpones the time of eradication of the disease and this rebound is due to the

presence of undetected infected persons who cannot be treated.

4.2.2 Robustness

In Tables 1 to 5, we report sensitivity to changes in some parameters of interest: the preference

for the present of HAs, δ, the differential cost of the new treatment with respect to the old one (as

defined in equation (9)), the cost of the old treatment (cold), the Weibull coeffi cient α of the ρ(.)

function affecting its concavity and its calibration (see equation (7)) and finally the initial level

of the endowment, a0.

In every Table, the baseline evaluation is reported in the middle column which is the same in

all Tables. In rows, we report the evolution of the endowment over time (at period 5, 15 and 40)

under the optimal policy when compared to the fixed budget and interest-only policy. We also

report in these Tables the relative welfare and relative cost of the traditional treatment under the

three policies of interest. We end up comparing the relative impacts of these policies in terms of

infected and undetected rates in the population.

Table 1 compare these statistics when preference for the present of HAs increases: we set

δ = 1/(1 + r+ iδ) in which iδ varies between 0.005 and 0.07. As expected, it is optimal to increase

the front-loading of expenses, and period-0 welfare also increases. This increase of early expenses

has the expected negative impact on infected and undetected, especially in the short-run. It is

to be noted that the relative cost of the traditional treatment is negative since less patients are

treated with the old treatment. The effect of varying preferences for the present on these costs is

small. This is also the case for the effects on the rate of undetected which is never above 10%.

The impact of an increasing differential cost of the new treatment on expenses is moderately

negative as displayed in Table 2 in rows 1 to 6. Its impact on the difference between infected

rates across policies, is however magnified when the new treatment is less costly. This is also at

a much lower level for the rates of undetected. The overall effect on welfare at period-0 of the

optimal policy is much higher as a result when differential costs are low. The effects of the costs

of the old treatment as shown in Table 3 are more non-linear and no clear patterns arise. Table

4 displays the impact of a decreasing curvature of function ρ(.). This decrease in the concavity

increases slightly the front loading of policies and the effects on the infected and undetected rates
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are becoming much bigger and slightly unstable8 when the curvature decreases across different

values of this parameter. The welfare of a front loading policy is also very much magnified when

the curvature is smaller.

Finally, Table 5 displays results when the initial endowment of HAs varies. The pattern, with

some variation, is that the optimal front loading is magnified when the endowment is low, probably

because it is more diffi cult to attain a lower rate of infection with moderate expenses. There are

non linear effects however for example in the welfare at period-0 and the impact on the various

rates of infection.

All those results confirm what we have found in previous exercises, and show that those

conclusions are robust to the variation in some important parameters of interest.

5 Conclusion

In the case of a disappearing epidemy like Hepatitis C, an equal budget policy is dominated by a

front loaded policy in terms of welfare although it does not accelerate the full eradication of the

disease. It is fair to say that this result is calibrated and is diffi cult to prove in a formal model.

It depends on the main trade-off that we have been focussing on. Spending more today implies

not only less infection tomorrow, and some dynamic externalities but also less effective cures.

There is much to be done to understand better the robustness of the optimal policy rules that

we have derived in this paper. First, the rebound effect that we find sets the question of time

inconsistencies of optimal policies since future budgets could be renegotiated in case of a rebound

of the epidemy. Second, results should be also sensitive to the evolution with time of the trade-

offs across periods that are summarized in this paper by the ρ(.) function, and in particular, all

trade-offs arising because of changing prices over time. Third, we set aside the issue of innovation

in drug discovery which was of utmost importance in the Hepatitis C case. When innovation is

expected by HAs or firms in the near future, it certainly becomes an important element in the

debate since it involves a trade-off between differentially effective drugs over time. Danzon (2018)

reminds us that HAs can delay treatment until competing treatments become available. Lothan

et al. (2020) shows that the price of Hepatitis C treatments can also affect health authorities

8This is probably due to the various approximations we have used when setting up our solving algorithm. We
use many tolerance parameters so as to solve the optimal program, the length of the period of interest, as well as
quadratic approximations.
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in terms of screening strategies in addition to treatment strategies. We leave these questions of

bargaining and negotiations between companies and health authorities for further research.
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A Stationary equilibria and stability

We follow Hethcote (2000).

In the absence of policy, ρt = ρ0 or equivalently bt = 0, we can derive the stationary equilibria

by solving:

0 = rAt

0 = −β(it + ut)st + ν(1− st),

0 = β(it + ut)st − (ζ + ν)ut,

0 = ζut − (ρ0 + ν)it.

Replacing the value of it from the fourth equation (it = ζut
ρ0+ν

) in the third one yields:

0 = ut(β(
ζ

ρ0 + ν
+ 1)st − (ζ + ν)).

In consequence, the disease-free equilibrium is obtained by setting ut = 0 which by the system

above yields it = At = 0 and st = 1.

Another possible equilibrium assumes that ut 6= 0. We then derive from the previous equation

that:

β(1 +
ζ

ρ0 + ν
)st = ζ + ν =⇒ st = s∗ =

(ζ + ν)(ρ0 + ν)

β(ζ + ρ0 + ν)
.

One condition of existence of the endemic equilibrium is therefore that s∗ < 1 or β ≥ β∗ =

(ζ+ν)(ρ0+ν)
β(ζ+ρ0+ν)

. Note that as (ζ+ν)(ρ0+ν)
β(ζ+ρ0+ν)

≥ ν, equal when ρ0 = 0, the condition β ≤ ν for the absence

of such an equilibrium as in the original development by Hethcote (2000).

If s∗ < 1, we derive from the second, third and fourth system equations that the endemic

equilibrium is given by:

(ζ + ν)ut = ν(1− st) = ν(1− s∗)

=⇒ ut =
ν

ζ + ν
(1− s∗), it =

ζν

(ζ + ν)(ρ0 + ν)
(1− s∗).

and these equations satisfy the conditions on the state variables.

The stability condition of the disease-free equilibrium can be analyzed, (e.g. Heer and Mauss-

ner, 2009) using the Jacobian of the system of equations describing the SIR model (i.e. zt+1 =
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f(zt)) that is J0 = ∇f evaluated at z(0)t = (s
(0)
t , u

(0)
t , i

(0)
t ) = (1, 0, 0).

J0 =

 1− ν −β −β
0 1 + β − ζ − ν β
0 ζ 1− ρ0 − ν

 .
Its eigenvalues are obtained by solving:

0 = det(J0 − λI) = (1− ν − λ)((1 + β − ζ − ν − λ)(1− ρ0 − ν − λ)− βζ)

= (1− ν − λ)
[
(1− ν − ρ0 − λ)2 + (β − ζ + ρ0)(1− ρ0 − ν − λ)− βζ

]
.

One root is λ = 1 − ν and the other two are obtained by solving (1 − ρ0 − ν − λ)2 + (β − ζ +

ρ0)(1− ρ0 − ν − λ)− βζ = 0 in x = 1− ν − λ. The discriminant is equal to:

(β − ζ + ρ0)
2 + 4βζ > 0.

so that the roots are x± =
−(β−ζ+ρ0)±

√
(β−ζ+ρ0)2+4βζ
2

and distinct. The roots of the original problem

are thus λ± = 1− ρ0 − ν + x±.

In the particular case of ρ0 = 0, x± are x± = −(β−ζ)±(β+ζ)
2

and thus equal to β or ζ. As non

negative ν and ζ are such that ν + ζ < 1, the eigenvalues of J0 have an absolute value less than

one if and only if β < β∗ = ν if ρ0 = 0. This can be generalized to the case ρ0 > 0. In sum, if

β < β∗, the only stationary equilibrium is the disease-free equilibrium which is stable.

B Simulation Algorithm

Since the state space is formed by continuous variables, we should either discretize the state space

or use a sieve space of functions. We do both by evaluating the value functions on a discrete grid

of functions and using quadratic approximations (see e.g. Han, 2018). We use different steps that

are described in more details below.

We start in Step 1 by computing the value function when HAs do not intervene in which case

the epidemy develops according to the SIR model. In Step 2 we extend this setting to the case

in which HAs can intervene in the current period only. Step 3 extends Step 2 by solving the first

order condition of the Bellman equation when HAs spend their endowment in a finite number k

of periods. Step 4 describes how we choose to stop the iteration process at step K when there is

no change in the computed value function.
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1. This is the benchmark step in which we evaluate the value function in the absence of inter-

vention by HAs and approximate it by a quadratic function in the state space. For different

values z0 = (s0, u0, i0) on a grid of values, denoted z
(s)
0 , covering the initial range of values of

the processes we are interested in. We then forward simulate {z(s)t }t≥1 using the SIR model,

in the absence of a policy until T is suffi ciently large and we evaluate W (T )
0 (z

(s)
0 ) as:

W
(T )
0 (z

(s)
0 ) =

∑T

t=1
δt−1v(it) = −

∑T

t=1
δt−1

(it)
2

2
< 0.

We test the stability of W (T )
0 (z

(s)
0 ) with respect to T and choose T such that :

d(W
(T )
0 (z

(s)
0 ),W

(T+1)
0 (z

(s)
0 )) =

1

#{z(s)0 }
(
∑
z
(s)
0

(W
(T )
0 (z

(s)
0 )−W (T+1)

0 (z
(s)
0 ))2∣∣∣∣ 1

#{z(s)0 }

∑
z
(s)
0
W

(T )
0 (z

(s)
0 )

∣∣∣∣ )1/2 < εTOL

with a suffi ciently small tolerance level, εTOL. We chose this formulation to balance absolute

and relative concerns and using the fact that the value function is always negative.

As this function is given only on the grid, z(s)0 , we interpolate it by a quadratic function:

W
(T )
0 (z

(s)
0 ) = c0 + c′1z

(s)
0 + z

(s)′
0 C2z

(s)
0 + ε(z

(s)
0 ),

where c0 is a constant, c1 a vector of size 3, and C2 a symmetric matrix of size 3. Denote

C(0) the underlying vector of parameters whose estimates, ĉ0, ĉ1 and Ĉ2 are obtained by an

OLS regression.9 For any value z, we approximate W (T )
0 (z) by

Ŵ0(z) = ĉ0 + ĉ′1z + z′Ĉ2z.

We also at this step evaluate the cost of the traditional treatment for each value, z(s)0 .

Equation (20) yields:

κ(z
(s)
0 ) = cold

∞∑
t=0

it(z
(s)
0 )

(1 + r)t
,

when it(z
(s)
0 ) is the infection rate when HAs never use the new treatments.

2. We now extend the same grid of values, z(s)0 , to allow for expenses for the new treatment by

considering x(s)0 = (A
(s)
0 , z

(s)
0 ), in which A(s)0 is itself a grid of values for assets that health

authorities are endowed with. This grid is bounded from below by 0 and bounded from

9Any approximating method can be used here. Sieves, as we do here with quadratic terms, might be preferable
to kernel methods because the grid retained for the kernel might not be self-consistent.
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above by the maximum value of assets. We won’t consider any policy such that the level of

assets increases at any period.

In a first step, we consider that the available endowment is fully expended by the new

treatment for some and the traditional drug for others. We write that:

W ∗
1 (x0) = W ∗

1 (A0, z0) = v(i1) + δŴ0(z1),

in which Ŵ0(z1) is the approximate value function derived at Step 1 and z1 is the ex-post

value of the state variables. The value function, W ∗
1 (x0), corresponds to the case when after

time 1 there is no endowment left to spend to control the disease and the process is left to

its own and converges to the unique stationary equilibrium of the eradication of the disease

without intervention.

Note that under the budget rule in equation (19), and that assets are depleted in one period,

A1 = κ1(z1), the provisions made for the traditional drug at period 1 and therefore:

κ1(z1) = (1 + r)A0 − b0i0 − coldi0.

Using equation (20), we have that κ1(z1) + coldi0 = (1 + r)κ0(z0) so that b0 is a function of

x0 = (A0, z0):

b0 =
(1 + r)(A0 − κ0(z0))

i0
,

and i1 is obtained as a result (as well as the rest of z1). As before, function W ∗
1 (x0) is

evaluated only on a grid of points, x(s)0 , and we approximate it by a quadratic function:

W ∗
1 (x

(s)
0 ) = c0 + c′1x

(s)
0 + x

(s)′
0 C2x

(s)
0 + ε(x

(s)
0 ),

where, by using the same notation as before, c0 is a constant, c1 a vector of size 4, and

C2 a symmetric matrix of size 4. Denote C(1) the underlying vector of parameters whose

estimates are obtained by an OLS regression, Ĉ(1). Again we approximate W ∗
1 (x0) by its

OLS predicted value Ŵ ∗
1 (x0).

3. Building on Step 2 and Ŵ ∗
1 (x0), we consider at the k + 1th iteration step the same grid,

x
(s)
0 = (A

(s)
0 , z

(s)
0 ), and solve:

V (k+1)(x
(s)
0 ) = max

A
(s)
1

(v(i
(s)
1 ) + δŴ ∗

k (x
(s)
1 )),
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under the laws of motion of the SIR model, Ŵ ∗
k is the k

th step prediction of the value function

and A(s)1 = (1 + r)A
(s)
0 − (b

(s)
0 + cold)i

(s)
0 in which A(s)1 ≥ κ(z

(s)
1 ). As in step 2, we can rewrite

the equality and inequality constraint as:

(1 + r)A
(s)
0 − (b

(s)
0 + cold)i

(s)
0 ≥ κ(z

(s)
1 ),

which leads to :

(b
(s)
0 + cold)i

(s)
0 ≤ (1 + r)A

(s)
0 − coldi

(s)
0 − κ(z

(s)
1 )

= (1 + r)(A
(s)
0 − κ(z

(s)
0 ))

using equation (20). Next, we use either the maximization of the Bellman equation (17) or

the first order condition (18) to solve this program under the last inequality constraint. This

delivers the value function of a policy which uses up the full endowment in at most k + 1

periods (given the provisions made for the traditional treatment).10

4. The previous iteration process can be described by the evolution over time of policy functions,

value functions or parameters describing the quadratic approximation of the value functions

Ĉ(k). For the latter, we have:

Ĉ(k+1) = Φ(Ĉ(k)),

in which Φ is described by the previous steps. Because δ(1+r) ≤ 1, Φ() is a contraction with

modulus less or equal to δ(1 + r). The Banach theorem implies that there is a single fixed

point and that Ĉ(k) converges to this fixed point say Ĉ, (e.g. Stachurski, 2009). Therefore,

value and optimal policy functions can be simulated.

10Alternatively, we could have backward simulation and endogenous grids that might solve partly for the issues of
grid choices and quality of approximations. Set x1 = (A1, z1) and solve for b0 using v′(i1)+δ dV

(k)

di1
= 0, see equation

(18) as a function of ρ′(b0). Then solve for x0 by inverting xt+1 = f(xt) (see Appendix C.5 in the Supplementary
Appendix available upon request).
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Online Supplementary Appendix

C Additional theoretical results

C.1 Second-order condition

The second order condition is more involved and we will assume that it holds to ensure that the

previous program has a unique solution. Differentiating equation (18) (in the case−v′(it+1) = it+1)

and dividing by it) yields an equivalent condition:

0 >
∂

∂bt

(
it+1ρ

′
t − δ

∂Wt+1

∂At+1
− δ∂Wt+1

∂it+1
ρ′t

)
=

ρt”(it+1 − δ
∂Wt+1

∂it+1
) + δ

∂2Wt+1

∂(At+1)2
it

+δ
∂2Wt+1

∂At+1∂it+1
ρ′tit + δ

∂2Wt+1

∂(it+1)2
(ρ′t)

2it.

The first term is negative because of the concavity of ρt and it+1 − δ ∂Wt+1

∂it+1
= δ 1

ρ′t

∂Wt+1

∂At+1
> 0 by

equation (18) and the presumption that ∂Wt+1

∂At+1
> 0 since if not, the budget constraint would not be

saturated. A suffi cient condition for the other three terms to be negative is that Wt+1 is concave

in At+1 and it+1, which would be the consequence of the concavity of ρ and v(it+1).

C.2 State equations

At the previous optimal value, consider the gradient ∇Wt defined by:

∇Wt = v′(it+1)
dit+1
dx>t

+ δ∇Wt+1
dxt+1
dx>t

.

We get ∇Wt+1 from:

dAt+1
dxTt

= (1 + r, 0, 0,−bt),

dst+1
dxTt

= (0, 1− β(it + ut)− ν,−βst,−βst)

dut+1
dxTt

= (0, β(it + ut), 1 + βst − (ζ + ν), βst)

dit+1
dxTt

= (0, 0, ζ, 1− ν − ρt).
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We thus get:

∂Wt

∂At
= δ(1 + r)

∂Wt+1

∂At+1
,

∂Wt

∂st
= δ(1− β(it + ut)− ν)

∂Wt+1

∂st+1
+ δβ(it + ut)

∂Wt+1

∂ut+1
,

∂Wt

∂ut
= −ζit+1 − δβst

∂Wt+1

∂st+1

+δ(1 + βst − (ζ + ν))
∂Wt+1

∂ut+1
+ δζ

∂Wt+1

∂it+1
,

∂Wt

∂it
= −it+1(1− ν − ρt)− bt

∂Wt+1

∂At+1
− δβst

∂Wt+1

∂st+1

+δβst
∂Wt+1

∂ut+1
+ δ(1− ν − ρt)

∂Wt+1

∂it+1
,

that can be written as:

∇Wt = Rt∇Wt+1 (21)

in which Rt is a 4× 4 matrix that we assume to have full rank.11

C.3 Euler equations

The first order condition (18) writes:

it+1 = δ

(
1

ρ′t

∂Wt+1

∂At+1
+
∂Wt+1

∂it+1

)
= mt∇Wt+1.

To write an Euler equation we have to "invert" this equation. This is possible if we consider

dt = (it−3, it−2, it−1, it) and notice that:

it−3 = mt−3∇Wt−2 = mt−3Rt−2Rt−1Rt∇Wt+1,

We can then write

dt = Mt∇Wt+1

in which Mt =


mt

mt−1Rt

mt−2Rt−1Rt

mt−3Rt−2Rt−1Rt

 is supposed to be full rank. This yields that

∇Wt+1 = M−1
t dt,

11It certainly shows that if Wt+1 is concave in At+1 then Wt also is as a function of At. It is slightly more
diffi cult to show that Wt+1 is concave in it+1.
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and therefore equation (21) yields

M−1
t−1dt−1 = RtM

−1
t dt,

which is the Euler equation.

C.4 Preferences

Even if short-run preferences are known, it remains to set up long-run preferences encoded by the

welfare function Wt.

One possible set of axioms on preferences relative to the vector (st, ut, it, rt), conditional on a

fixed value of At that we can impose is the following:

1. If recovered persons are immune, then a change in st, dst > 0, compensated by an increase

of rt, drt = −dst while dut = dit = 0 (because st +ut + it + rt = 1) affects welfare negatively.

Writing:

dWt =
∂Wt

∂st
dst +

∂Wt

∂ut
dut +

∂Wt

∂it
dit,

=
∂Wt

∂st
dst < 0,

implies that ∂Wt

∂st
< 0.

2. Furthermore, it is always welfare-improving to have less infected than recovered. Fixing st,

we get

dWt =
∂Wt

∂ut
dut +

∂Wt

∂it
dit,

where drt = −(dut + dit). This implies that ∂Wt

∂ut
< 0 and ∂Wt

∂it
< 0.

3. It is also always welfare improving to have dst = −dit > 0 at fixed ut and rt or to have

dst = −dut > 0 at fixed it and rt so that:

∂Wt

∂st
− ∂Wt

∂it
> 0,

∂Wt

∂st
− ∂Wt

∂ut
> 0,

4. Finally, it is (weakly) welfare improving to have more identifiable infected than undetected

infected since health policies do not reach the latter group. Keeping st, rtm constant and

imposing dit = −dut > 0 should then be welfare improving. This means

∂Wt

∂it
− ∂Wt

∂ut
> 0.
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These four axioms imply that:

0 >
∂Wt

∂st
>
∂Wt

∂it
>
∂Wt

∂ut
.

For instance the welfare function

Wt = ws(
1− st

3
)2 − wu(ut)2 − wi(it)2,

in which ws < wi < wu, satisfies the condition when 1−st
3
, ut and it are of the same orders of

magnitude.

C.5 Inversion of xt+1 = f(xt)

We set a value xt+1 ∈ X and to solve for xt, we consider the four equations:

∆At+1 = rAt − btit

∆st+1 = −β(it + ut)st + ν(1− st),

∆ut+1 = β(it + ut)st − (ζ + ν)ut,

∆it+1 = ζut − (ρt + ν)it.

as well as the first order condition (18) that presupposes that we know the derivatives of the value

function at t+ 1 with respect to At+1 and it+1.

First, by the latter, bt and consequently ρt are derived.

Second, we consider the two last equations in which we set, σt = ut + it so as to obtain:

yt+1 =

(
ut+1
it+1

)
=

(
1− (ζ + ν) 0

ζ 1− (ρt + ν)

)
yt +

(
βstσt

0

)
,

which yields:

yt =
1

(1− (ζ + ν))(1− (ρt + ν))

(
1− (ρt + ν) 0
−ζ 1− (ζ + ν)

)(
yt+1 −

(
βstσt

0

))
. (22)

Condition: As both elements in yt should be positive, we must have:

(1− (ρt + ν))(ut+1 − βstσt) ≥ 0,−ζ(ut+1 − βstσt) + (1− (ζ + ν))it+1 ≥ 0.

Furthermore, imposing that (1, 1)yt = ut + it = σt yields :

σt =
(
m 1

1−(ρt+ν)

)
yt+1 −mβstσt, (23)
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in which m = 1−(ρt+ν)−ζ
(1−(ζ+ν))(1−(ρt+ν))

.

Third, reconsidering the second equation of the system above yields:

st+1 = st − βσtst + ν(1− st) = st(1− βσt − ν) + ν, (24)

and summing this equation multiplied by m with equation (23) to get rid of stσt yields

ct+1 =
(
m 1

1−(ρt+ν)

)
yt+1 +m(st+1 − ν) = σt +m(1− ν)st. (25)

From this equation, derive the expression for σt and plug it equation (24) to obtain:

st(1− βct+1 + βm(1− ν)st − ν) + ν − st+1 = 0.

The discriminant writes,

∆ = (1− βct+1 − ν)2 + 4βm(1− ν)(st+1 − ν),

so that because βm(1− ν)(st+1 − ν) ≥ 0 we have two solutions:

−(1− βct+1 − ν)±
√

∆

2βm(1− ν)
.

Because βm(1− ν) > 0, we have only one solution such as st > ν:

−(1− βct+1 − ν) +
√

∆

2βm(1− ν)
.

This delivers σt by equation (25) and (ut, it) by equation (22). Finally, the first equation of

the system identifies At.

Remark: A sanity check, in the absence of policy, b = 0, proves that f−1((0, 1, 0, 0)) =

(0, 1, 0, 0) at the stationary and stable solution
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Table 1: The impact of preferences for the present (δ)

δ = 1/(1 + r + iδ) iδ −→ 0.0050 0.0213 0.0375 0.0537 0.0700
t = 5 -6.97 -6.97 -12.6 -12.6 -13.3

∆opt/fixa t = 15 -28.6 -28.6 -32 -32 -32.1
t = 40 -2.07 -2.07 -1.76 -1.76 -1.74
t = 5 -12.1 -12.1 -17.7 -17.7 -18.5

∆opt/ira t = 15 -49.2 -49.2 -52.6 -52.6 -52.7
t = 40 -80.4 -80.4 -80.3 -80.3 -80.3

∆R
opt/fixw 10.8 10.6 15.8 15.3 15.3

∆R
opt/irw 28 26.9 31.7 29.8 28.6

∆R
opt/fixcold -3.58 -3.58 -4.66 -4.66 -4.76

∆R
opt/ircold -9.68 -9.68 -10.9 -10.9 -11

t = 5 -5.81 -5.81 -10.3 -10.3 -10.7
∆R

opt/fixi t = 15 -32.1 -32.1 -33.9 -33.9 -33.5

t = 40 70.3 70.3 71.5 71.5 71.6
t = 5 -11.6 -11.6 -16.4 -16.4 -16.8

∆R
opt/iri t = 15 -68.1 -68.1 -70.5 -70.5 -70

t = 40 39.3 39.3 41.8 41.8 41.9
t = 5 -0.0739 -0.0739 -0.303 -0.303 -0.332

∆R
opt/fixu t = 15 -1.72 -1.72 -2.27 -2.27 -2.31

t = 40 -0.486 -0.486 -0.475 -0.475 -0.475
t = 5 -0.233 -0.233 -0.463 -0.463 -0.493

∆R
opt/iru t = 15 -3.56 -3.56 -4.13 -4.13 -4.18

t = 40 -8.23 -8.23 -8.24 -8.24 -8.24

Note: Variation across iδ values in which δ = 1/(1 + r + iδ)
(Rows 1-3 and 4-6) ∆opt/.a : Absolute difference between assets under the optimal policy (opt) vs
the fixed budget (fix) or interest-only (ir) after t = 5, 15, 40 periods.
(Rows 7-10) ∆R

opt/.
w, ∆R

opt/.
cold : Relative difference between welfare (resp. cost of old treatment)

under the optimal policy (opt) vs the fixed budget (fix) or interest-only (ir).
(Rows 11-22) ∆R

opt/.
i, ∆R

opt/.
u : Relative difference between infected share (resp. undetected one)

under the optimal policy (opt) vs the fixed budget (fix) or interest-only (ir) after t = 5, 15, 40
periods.
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Table 2: The impact of the differential cost of the new treatment

dcost → 1000e 5750e 10500 15250e 20000e
t = 5 -16.2 -12.4 -12.6 -12.7 -12.8

∆opt/fixa t = 15 -35.9 -31.1 -32 -31.5 -32.9
t = 40 -1.76 -1.61 -1.76 -1.94 -2.1
t = 5 -22.2 -17.9 -17.7 -17.6 -17.6

∆opt/ira t = 15 -59.4 -52.7 -52.6 -51.3 -52.1
t = 40 -90.8 -83.9 -80.3 -78 -76.2

∆R
opt/fixw 30.5 18.6 15.8 13.8 12.5

∆R
opt/irw 55.2 37.7 31.7 27.5 24.7

∆R
opt/fixcold -37.9 -10.7 -4.66 -2.03 -0.487

∆R
opt/ircold -39.2 -18.2 -10.9 -6.85 -4.25

t = 5 -61.8 -14.4 -10.3 -8.42 -7.33
∆R

opt/fixi t = 15 -19.5 -55.5 -33.9 -24.8 -21.1

t = 40 76.9 78.6 71.5 63.3 57.1
t = 5 -106 -23.8 -16.4 -13.1 -11.2

∆R
opt/iri t = 15 -150 -129 -70.5 -49.8 -40.7

t = 40 72.5 59.7 41.8 32.2 28
t = 5 -1 -0.384 -0.303 -0.261 -0.234

∆R
opt/fixu t = 15 -2.73 -2.61 -2.27 -2 -1.89

t = 40 -0.978 -0.997 -0.475 -0.132 0.234
t = 5 -1.5 -0.606 -0.463 -0.39 -0.344

∆R
opt/iru t = 15 -5.57 -5.03 -4.13 -3.54 -3.23

t = 40 -4.21 -8.25 -8.24 -7.51 -6.61

Notes: Variation across the differential cost of the new treatment dcost.
(Rows 1-3 and 4-6) ∆opt/.a : Absolute difference between assets under the optimal policy (opt) vs the

fixed budget (fix) or interest-only (ir) after t = 5, 15, 40 periods.

(Rows 7-10) ∆R
opt/.w, ∆R

opt/.cold : Relative difference between welfare (resp. cost of old treatment)

under the optimal policy (opt) vs the fixed budget (fix) or interest-only (ir).
(Rows 11-22) ∆R

opt/.i, ∆
R
opt/.u : Relative difference between infected share (resp. undetected one) under

the optimal policy (opt) vs the fixed budget (fix) or interest-only (ir) after t = 5, 15, 40 periods.

37



Table 3: The impact of the cost of the old treatment

cold → 1000e 5750e 10500 15250e 20000e
t = 5 -6.42 -3.48 -12.6 -9.33 -16

∆opt/fixa t = 15 -19.1 -17.8 -32 -26.8 -39.8
t = 40 -3.46 -2.98 -1.76 -1.09 0.362
t = 5 -13.1 -9.41 -17.7 -13.7 -19.6

∆opt/ira t = 15 -45 -41 -52.6 -44.6 -55
t = 40 -98.2 -89.6 -80.3 -71.3 -61.5

∆R
opt/fixw 7.88 5.83 15.8 13.3 20.7

∆R
opt/irw 25.1 21.5 31.7 27.4 33.9

∆R
opt/fixcold 0.0928 -1.16 -4.66 -6.18 -8.76

∆R
opt/ircold -7.33 -7.94 -10.9 -11.5 -13.2

t = 5 -5.19 -2.96 -10.3 -8.02 -13.5
∆R

opt/fixi t = 15 -19.9 -19.7 -33.9 -29.9 -46.2

t = 40 68.9 67.5 71.5 67.6 66.8
t = 5 -12.4 -9.32 -16.4 -13.2 -18

∆R
opt/iri t = 15 -59.2 -55.7 -70.5 -61.6 -77.4

t = 40 35.2 32.9 41.8 34.8 34.7
t = 5 -0.168 -0.101 -0.303 -0.247 -0.397

∆R
opt/fixu t = 15 -1.11 -0.927 -2.27 -1.93 -2.97

t = 40 -0.949 -0.775 -0.475 -0.652 -0.167
t = 5 -0.366 -0.28 -0.463 -0.386 -0.514

∆R
opt/iru t = 15 -3.28 -2.93 -4.13 -3.59 -4.44

t = 40 -9.27 -8.84 -8.24 -8.08 -7.15

Notes: Variation across the cost of the old treatment cold.
(Rows 1-3 and 4-6) ∆opt/.a : Absolute difference between assets under the optimal policy (opt) vs the

fixed budget (fix) or interest-only (ir) after t = 5, 15, 40 periods.

(Rows 7-10) ∆R
opt/.w, ∆R

opt/.cold : Relative difference between welfare (resp. cost of old treatment)

under the optimal policy (opt) vs the fixed budget (fix) or interest-only (ir).
(Rows 11-22) ∆R

opt/.i, ∆
R
opt/.u : Relative difference between infected share (resp. undetected one) under

the optimal policy (opt) vs the fixed budget (fix) or interest-only (ir) after t = 5, 15, 40 periods.
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Table 4: The impact of the Weibull coefficient

α → 0.3 0.4 0.5 0.6 0.7
t = 5 -11.1 -10.6 -12.6 -15.9 -19.8

∆opt/fixa t = 15 -35 -35.2 -32 -34.8 -39.6
t = 40 -3.39 -2.93 -1.76 -1.19 -1.46
t = 5 -14.6 -14.8 -17.7 -21.8 -25.9

∆opt/ira t = 15 -50 -52.3 -52.6 -57.7 -64
t = 40 -65 -70.7 -80.3 -88.7 -92.9

∆R
opt/fixw 1.39 4.99 15.8 36.2 48.6

∆R
opt/irw 3.07 10.6 31.7 67.3 86.5

∆R
opt/fixcold 0.511 0.636 -4.66 -29.8 -80.8

∆R
opt/ircold 1.74 1.02 -10.9 -40.5 -78.7

t = 5 -0.952 -2.84 -10.3 -49 -707
∆R

opt/fixi t = 15 -2.68 -9.26 -33.9 -83.3 -2.73

t = 40 11.2 29 71.5 85.4 53.5
t = 5 -1.41 -4.43 -16.4 -79.3 -1604

∆R
opt/iri t = 15 -4.44 -16 -70.5 -580 -7.11

t = 40 6.63 14.7 41.8 81.7 52.3
t = 5 -0.0263 -0.0721 -0.303 -1.01 -2.1

∆R
opt/fixu t = 15 -0.322 -0.898 -2.27 -3.88 -2.64

t = 40 0.573 0.688 -0.475 -1.32 -2.01
t = 5 -0.0415 -0.122 -0.463 -1.45 -3.07

∆R
opt/iru t = 15 -0.516 -1.52 -4.13 -7.81 -5.09

t = 40 -0.597 -2.77 -8.24 -6.54 -4.46

Notes: Variation of the Weibull coefficient of the ρ(.) function

(Rows 1-3 and 4-6) ∆opt/.a : Absolute difference between assets under the optimal policy (opt) vs the
fixed budget (fix) or interest-only (ir) after t = 5, 15, 40 periods.

(Rows 7-10) ∆R
opt/.w, ∆R

opt/.cold : Relative difference between welfare (resp. cost of old treatment)

under the optimal policy (opt) vs the fixed budget (fix) or interest-only (ir).
(Rows 11-22) ∆R

opt/.i, ∆
R
opt/.u : Relative difference between infected share (resp. undetected one) under

the optimal policy (opt) vs the fixed budget (fix) or interest-only (ir) after t = 5, 15, 40 periods.
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Table 5: The impact of the heatlth authority endowment

a0 → 2000e 3500e 5000e 6500e 8000e
t = 5 -28.6 -20.6 -12.6 -4.62 -8.05

∆opt/fixa t = 15 -31.2 -51 -32 -5.96 -11.7
t = 40 -1.58 -1.49 -1.76 -2.82 -2.19
t = 5 -29.4 -24.6 -17.7 -10.3 -14

∆opt/ira t = 15 -36.4 -67.6 -52.6 -28.3 -34.8
t = 40 -32.6 -67.4 -80.3 -86.8 -88.6

∆R
opt/fixw 14.7 20.8 15.8 6.21 11.2

∆R
opt/irw 18.3 33.5 31.7 22.5 29.4

∆R
opt/fixcold -1.17 -1.14 -4.66 -5.29 -9.54

∆R
opt/ircold 0.672 -4.77 -10.9 -12.5 -17.4

t = 5 -13.5 -13.3 -10.3 -4.56 -8.13
∆R

opt/fixi t = 15 -8.34 -34.9 -33.9 -4.56 -11.9

t = 40 39.7 66.4 71.5 47.5 20.6
t = 5 -14.1 -17.4 -16.4 -11.8 -16.8

∆R
opt/iri t = 15 -13.1 -58.6 -70.5 -42.2 -61.1

t = 40 21.5 40 41.8 -8 -54.1
t = 5 -0.497 -0.418 -0.303 -0.146 -0.312

∆R
opt/fixu t = 15 -2.44 -3.5 -2.27 -0.833 -1.39

t = 40 2.27 2.23 -0.475 -1.12 -1.33
t = 5 -0.51 -0.526 -0.463 -0.341 -0.534

∆R
opt/iru t = 15 -2.76 -4.86 -4.13 -2.98 -3.77

t = 40 -0.904 -4.44 -8.24 -8.96 -8.9

Notes: Variation across the health authority endowment, a0, per population member.
(Rows 1-3 and 4-6) ∆opt/.a : Absolute difference between assets under the optimal policy (opt) vs the

fixed budget (fix) or interest-only (ir) after t = 5, 15, 40 periods.

(Rows 7-10) ∆R
opt/.w, ∆R

opt/.cold : Relative difference between welfare (resp. cost of old treatment)

under the optimal policy (opt) vs the fixed budget (fix) or interest-only (ir).
(Rows 11-22) ∆R

opt/.i, ∆
R
opt/.u : Relative difference between infected share (resp. undetected one) under

the optimal policy (opt) vs the fixed budget (fix) or interest-only (ir) after t = 5, 15, 40 periods.
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Figure 1: Infection and policy impact
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Figure 2: Variational budget impact on state variables
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Figure 3: Profile of asset decumulation over time
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Figure 4: Profile of infected over time
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Figure 5: Profile of unchecked over time
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