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aLab. LIRIS, UMR CNRS 5205, University of Lyon, F-69003

University of Claude Bernard Lyon 1

43 Bd du 11 Novembre 1918, F-69622, Villeurbanne, France.

Abstract

Dominating sets in graphs are often used to model some monitoring of the graph: guards are posted
on the vertices of the dominating set, and they can thus react to attacks occurring on the unguarded
vertices by moving there (yielding a new set of guards, which may not be dominating anymore). A
dominating set is eternal if it can endlessly resist to attacks.

From the attacker’s perspective, if we are given a non-eternal dominating set, the question is
to determine how fast can we provoke an attack that cannot be handled by a neighboring guard.
We investigate this question from a computational complexity point of view, by showing that this
question is PSPACE-hard, even for graph classes where finding a minimum eternal dominating set
is in P.

We then complement this result by giving polynomial time algorithms for cographs and trees,
and showing a connection with tree-depth for the latter. We also investigate the problem from a
parameterized complexity perspective, mainly considering two parameters: the number of guards
and the number of steps.

Keywords: eternal dominating set, tree-depth, PSPACE-completeness, parameterized complexity

1. Introduction

Let G = (V,E) be a graph and D ⊆ V be a set of vertices called guards. The mobile domination
game is played by two players: Attacker and Defender. At each turn, Attacker chooses a non-
guarded vertex v (we say that Attacker attacks v). Then, Defender has to move a guard along
an edge uv incident to v (we say that Defender defends against the attack); see Figure 1 for an
illustration. If she cannot move such a guard (that is v had no neighbor u in D), Attacker wins.
Otherwise, the game continues with the set D∪{v}\{u} of guards. If Defender can defend against
any infinite sequence of attacks, the initial set of guards D is called an eternal dominating set.
The eternal domination number γ∞(G) is the size of the smallest eternal dominating set of G.
This notion has been widely studied, see e.g. [27] for a recent survey. Many variants have been
introduced in the literature, for example when all the guards can move at each attack [19]. This
leads to similar notions of m-eternal dominating set and m-eternal domination number γ∞m (G).

For every graph G, we have α(G) ≤ γ∞(G) ≤ θ(G) [11] and γ∞(G) ≤
(

α(G)+1
2

)

[25]. The latter
inequality has been proved to be tight for an infinite class of graphs [20]. Several existing works
also focus on classes of graphs for which γ∞(G) = θ(G), see e.g. [11, 1, 26].

1This research was supported by the ANR project P-GASE (ANR-21-CE48-0001-01).
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Figure 1: Above, an example of a winning strategy for Attacker in 3 turns, depending on the answer of Defender.
Each number represents a guard, and the attack is circled. Below, an eternal dominating set with 3 guards. Each
guard protects its own clique.

One can naturally wonder if these parameters can be easily computed. This motivates the
introduction of the following problem.

Eternal-Dominating-Number

Input: A graph G, an integer k ≥ 1
Question: γ∞(G) ≤ k?

This problem lies in EXP and is coNP-hard [3] but the exact complexity class this problem
belongs to remains open. However, on restricted graph classes, there exist some polynomial time
algorithms such as on perfect graphs. Indeed, for perfect graphs, we have α(G) = γ∞(G) = θ(G),
which yields a polynomial algorithm for Eternal-Dominating-Number [11].

Deciding m-Eternal-Dominating-Number is harder since deciding if γ∞m (G) ≤ k is already
NP-hard even on Hamiltonian split graphs [4]. However, polynomial time algorithms have been pro-
posed on trees [26], unit interval graphs [8], interval graphs [30] and cactus graphs [6]. Moreover,
great attention has been paid to the study of lower and upper bounds for the m-eternal dominating
number in grids. See for example [28, 23]. The spy game, a generalization of m-eternal domination
has been proved PSPACE-hard on directed graphs and NP-hard on (non-directed) graphs [12]. An-
other generalization of m-eternal domination, the guarding game, has been proved E-complete [31].

Surprisingly, the situation is quite different for the following seemingly close problem.

Eternal-Dominating-Set

Input: A graph G, a set of guards D ⊆ V
Question: Is D an eternal dominating set of G?

It is not clear that this problem is easier than the first. Indeed, there is nothing preventing
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graphs to have an easy-to-find eternal dominating set of size k but such that some other such
sets are much harder to determine. In particular, on perfect graphs, the complexity of Eternal-
Dominating-Set is still open contrary to the complexity of Eternal-Dominating-Number.

In this paper, we are not only interested to determine whether a configuration of guards is
an eternal dominating set but also to find, in the negative case, a winning strategy for Attacker
that minimizes the number of steps. This question naturally arises for board games, like Chess
or Go, but has also attracted a lot of attention in the combinatorial game theory literature: for
the domination game [9], maker-breaker games [18, 22], the non-planarity game [2] and the spy
game [12]. Recently, this problem has been studied for m-eternal domination on trees [5]. The
authors prove if Defender has less than the necessary number of guards to m-eternally dominate a
graph G, then Attacker can win in at most d turns where d is the diameter of G.

Informally, we say that Attacker wins in t turns on (G,D) if he has a strategy that makes
Defender lose before the t-th turn, regardless of her strategy. We denote by tG(D) the minimum
t such that Attacker wins in t turns on (G,D) (We postpone the formal definitions to the next
section.) In particular, tG(D) is +∞ if and only if D is an eternal dominating set of G.

The goal of this paper is to study the complexity of computing tG(D), that is of the following
problem.

Fast-Strategy

Input: A graph G = (V,E), a set of guards D ⊆ V , an integer t ≥ 1
Question: is tG(D) ≤ t?

Our results and organization of the paper.. In Section 3, we show that Fast-Strategy is coNP-
hard on bipartite and split graphs. On the positive side, we show that Eternal-Dominating-Set

can be decided in polynomial time on bipartite graphs. In Section 4, we show that Fast-Strategy
is PSPACE-hard even restricted to perfect graphs (recall that Eternal-Dominating-Number can
be decided in polynomial time on perfect graphs). More specifically, we prove that the problem is
PSPACE-complete on 2-unimodal graphs with a reduction from Unordered-CNF.

Then, we give two positive results: we prove that Fast-Strategy can be decided in polynomial
time on trees (Section 5) and on cographs (Section 6). For trees, the main step of the proof consists
in introducing arenas, which are special subtrees and proving that Attacker can win in at most k
steps if and only if there exists an arena for which some treedepth-related parameter is at most
k. We finally prove that the polynomial time algorithm for computing the treedepth on trees can
be adapted for this new parameter. For cographs, we use their decomposition as disjoint unions
or joins of smaller cographs and analyze the strategies of Attacker and Defender in each case to
provide a recursive algorithm for Fast-Strategy.

Finally, in Section 7, we study the parameterized complexity of Fast-Strategy for several
classes of graphs.

Related work. The notion of k-secure dominating set has been introduced Burger et al. [10]. In
their setting, a dominating set is k-secure if it remains dominating after a sequence of k attacks,
which looks like the problem we are considering in this paper. However, in their setting, that the
sequence of attacks is known in advance (oblivious adversary) whereas, in our case, Attacker can
adapt his moves according to how Defender defends the attacks (adaptative adversary).
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2. Preliminaries

For an integer n > 0, [n] represents the set {1, 2, . . . , n}. All graphs considered in this paper
are finite, loopless, and simple. Let G = (V,E) be a graph. Given a vertex v ∈ V , N(v) denotes
the neighborhood of v, i.e., the set {y ∈ V : vy ∈ E}. The degree d(v) of v is |N(v)|. A set S ⊆ V is
an independent set of G if there is no edge uv for every u, v in S. The independence number α(G)
is the size of a largest independent set of G. A clique is a subset of pairwise adjacent vertices. The
clique covering number θ(G) is the minimum number of cliques in which V can be partitioned. A
vertex cover of G is a set S ⊆ V such that every edge e in E has an endpoint in S. A matching of G
is a set of edges of G that pairwise do not share an endpoint. A graph G is perfect if α(H) = θ(H)
for every induced subgraph H of G.

A rooted tree T is a tree with a distinguished vertex r called the root. Consider the orientation
of T such that every vertex is reachable from r. u is a child of v if there is an arc vu in this
orientation and u is a descendant of v if there is an oriented path from v to u along this orientation.
A rooted subtree of T is a subtree of T induced by a node and all its descendants. The height of
T is the number of vertices in a longest directed path starting at r.

A td-decomposition of a connected graph G = (V,E) is a rooted tree T with set of vertices V
such that u is a descendant of v or v is a descendant of u for every uv ∈ E. The tree-depth of G is
the minimum height of a td-decomposition of G (see Figure 2).

1 2 3 4 5 6 7 4

2 6

1 3 5 7

Figure 2: On the left, the graph P7 of tree-depth 3. On the right, an optimal td-decomposition of P7

Let G = (V,E) be a graph and D ⊆ V be a set of g vertices called guards. In the eternal
domination game, a strategy for Attacker is a function mapping each set S of g vertices to a vertex
of V \ S. A strategy for Defender is a partial function mapping pairs (S, v) where S is a set of g
vertices and v ∈ V \ S to some vertex of N(v) ∩ S if it exists.

Given two strategies f, g for Attacker and Defender, we say that Defender can resist t attacks
on (G,D) using (f, g) if either t = 0, or g(D, f(D)) is defined, and she can resist t − 1 turns on
(G,D ∪ {g(D, f(D))} \ {f(D)}) using (f, g). We extend this notion: Defender can resist t attacks
on (G,D) when Attacker plays according to f if she has a strategy g so that the previous condition
is satisfied.

We are interested in the fastest way for Attacker to win (if he can), that is the minimum t
such that Attacker has a strategy f such that Defender cannot resist t attacks on (G,D) when
Attacker plays according to f . We denote this number t by tG(D). Note that tG(D) might be +∞
if Defender can eternally answer to Attacker’s move, i.e. if Attacker has no winning strategy.

3. Bipartite and split graphs

The goal of this section is to study the complexity of the problems Eternal-Dominating-

Set and Fast-Strategy on bipartite graphs. Recall that bipartite graphs are perfect, hence
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determining the smallest eternal dominating set can be done in polynomial time [19]. We extend
this result to Eternal-Dominating-Set.

Theorem 1. Eternal-Dominating-Set is in PTime on bipartite graphs.

On the opposite, we show that determining the smallest number of moves in a winning strategy
is significantly harder, as summarized by the following statement.

Theorem 2. Fast-Strategy is in PSPACEand coNP-hard on bipartite graphs.

Both these statements are based on the following lemma, which gives some insights about the
shape of winning strategies for the eternal domination game on bipartite graphs.

Lemma 3. Let G be a bipartite graph and D be a set of guards. If Attacker wins in t turns on
(G,D), then he can win in at most t turns by always attacking the same side of the bipartition.

Proof. We prove this result by induction on t. The result holds when t = 1. Hence, we can assume
that t > 1.

Denote by (A,B) a bipartition of G. Let v be the first move of Attacker in a winning strategy.
By symmetry, we can assume that v ∈ A. Let u ∈ N(v) ∩D be the answer of Defender. Let us
denote by D′ = (D \ {u}) ∪ {v} the new set of guards.

By assumption on v, Attacker has a winning strategy in t− 1 steps on (G,D′). By induction,
there exists such a strategy consisting in playing only on A or only on B. In the first case, the
conclusion follows. So we may assume that Attacker has a winning strategy in t−1 turns on (G,D′)
by playing only in B.

Assume by contradiction that, in (G,D), Defender can resist to t− 1 attacks on B. Then she
can also resist to t−1 attacks on B in (G,D′) by answering v if Attacker plays on u, and answering
with a guard from D ∩A otherwise, following her strategy on (G,D).

This is a contradiction, hence Attacker can win in t− 1 turns on (G,D) by playing only on B,
which concludes.

An important consequence of this result is the following kernelization statement.

Lemma 4. Let G be a bipartite graph and D be a set of guards. Then, one can compute in
polynomial time a bipartite graph G′ on the same set of vertices such that tG(D) = tG′(D) where
D and V (G′) \D form a bipartition of V (G′).

Proof. Let G′ be the graph obtained from G by removing the edges between two guarded vertices,
and between two unguarded vertices. G′ is a bipartite subgraph of G with bipartition (D,V (G)\D).

It remains to show that tG(D) = tG′(D). Since G′ is a subgraph of G, any winning strategy of
Attacker on (G,D) is also winning in (G′,D), hence tG(D) > tG′(D). For the converse direction, let
A∪B be a bipartition of G. In particular, it is also a bipartition of G′, and by Lemma 3 there exists
a winning strategy for Attacker in (G′,D) in tG′(D) turns which consists in only playing in the
same side of the bipartition, say B. We claim that following this strategy, Attacker wins in tG′(D)
turns on (G,D). More precisely, we claim that whenever Attacker attacks a vertex, Defender has
the same possible answers in G and G′.

Since Attacker never plays in A, guards are only moved from A to B. In particular, guards on
B cannot move and unguarded vertices in A stay unguarded during the whole game. Therefore,
if Attacker attacks b ∈ B, then b /∈ D. Moreover, if a ∈ A is a guarded neighbor of b in G then
a ∈ D, hence ab ∈ E(G′).

Therefore, Attacker wins in tG′(D) turns on (G,D), hence tG(D) = tG′(D).
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We are now ready to prove the main results of this section.

Proof of Theorem 1. Let G = ((A,B), E) be a bipartite graph and D be a set of guards. By
Lemma 4, we can modify the instance in order to assume that B = D. We claim that D is an
eternal dominating set of G if and only if G admits a matching saturating A (i.e. such that all the
vertices of A are matched). Proving this claim is enough to conclude since this criterion can be
tested in polynomial time.

Let us now prove the claim. If G has a matching M saturating A then the edges of M and
the unmatched vertices in B form a clique cover of G where each clique contains a guarded vertex.
Hence, G can be eternally dominated (Defender always defend an attack with a guard on the same
clique of the clique cover).

For the converse direction, assume there is no matching saturating A. By Hall’s marriage
theorem (see e.g.[15]), there is a set of vertices S ⊆ A such that |N(S)| < |S|. In particular,
Attacker wins in at most |N(S)| + 1 turns by successively attacking vertices in S which can only
defended by vertices of N(S).

The rest of this section is devoted to the proof of Theorem 2. The fact that is belongs to
PSpace is actually an easy consequence of Lemma 4, since it gives a polynomial bound (namely
the number of guards plus one) on the number of minimum number of turns of a winning strategy
for Attacker.

It remains to show that Fast-Strategy is coNP-hard on bipartite graphs. To this end, we
reduce the problem Independent-Set to co-Fast-Strategy. Let G be a graph and k be an
integer such that (G, k) is an instance of Independent-Set. We assume that vertices of G are
labeled by integers from [n]. We build an instance (G′,D, t) of co-Fast-Strategy as follows (see
Figure 3):

1. We create in G′ a graph Kk,n, and denote by U = {u1, . . . , uk} and V = {v1, . . . , vn} the
vertices of each part.

2. For each edge e ∈ E(G), we create a new complete bipartite graph Kk+1,k, with bipartition
Se, Te.

3. For each edge e = ij ∈ E(G), we connect each vertex of Se to vi and vj.

4. The set D of guards contains V and all the Te’s.

Let t = 2k + 1. The graph G′ is bipartite and can be constructed in polynomial time. Now,
Theorem 2 boils down to prove the following.

Lemma 5. The graph G has no independent set of size k if and only if Attacker wins in at most
t turns on (G′,D).

Proof. If G has no independent set of size k, then, Attacker can win as follows. Attacker first attack
all the vertices of U one by one. Defender must choose k vertices vj1 , . . . , vjk in V to defend these
attacks. Since G has no independent set of size k, Defender must have chosen two vertices vi, vj of
V that are connected by an edge e = vivj in G. Attacker then attacks the k + 1 vertices of Se one
after another. Since both vi and vj have been slid on U , Defender can only defend these attacks
by sliding guards from Te to Se. Since Se has size k+1 and Te only has size k, Attacker wins in at
most t = 2k + 1 turns.

For the converse direction, assume that G has an independent set S = {j1, . . . , jk} of size k. By
Lemma 3, we can assume that Attacker only plays on U or vertices in Se (since the other side of the
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v1 v2 v3 v4

k S1,2: k + 1 vertices

T1,2: k vertices

S2,3: k + 1 vertices

T2,3: k vertices

Figure 3: A partial representation of the reduction from (G, k) where G is a graph with 4 vertices {v1, v2, v3, v4} and
two edges v1v2 and v2v3 and k = 3. Every vertex in S2,3 is connected to v2 and v3. The vertices above the dashed
line are guarded. The length of the game is t = 2k + 1 = 7.

bipartition only contains guarded vertices). We claim that Defender can defend against Attacker
during t turns with the following strategy:

1. If Attacker plays on ui, Defender moves the guard vji .

2. If Attacked attacks a vertex in Se and that at least one other vertex of Se has not been
attacked, then Defender moves a guard from a vertex of Te.

3. If Attacker and attacks a vertex in Se with e = vivj and all the other vertices of Se have been
attacked then Defender moves a guard from {vi, vj} \ S to defend the attack if such a vertex
exists.

This strategy indeed permits to defend against all the attacks on U . So if Defender cannot defend,
it is at Step 3. Since S is an independent set, {vi, vj} \ S is not empty for every edge and then
Defender can defend against the attack of the last vertex of Se at least once. So Attacker cannot
win in t turns on (G′,D).

This completes the proof of Theorem 2. We can actually easily adapt this reduction to obtain
the same result on split graphs.

Theorem 6. Fast-Strategy is coNP-hard on split graphs.

To do so, we define the graph G′′ as the graph obtained from G′ by adding a new vertex s and
all edges between s, V and the vertices of each Te. Fix also D′ = D∪{s}. Now we get the following
analogue of Lemma 5.

Lemma 7. G has no independent set of size k if and only if Attacker wins in at most t turns on
(G′′,D′).

Proof. If G has no independent set of size k, then Attacker wins in t turns on (G′′,D′) using the
same strategy as in Lemma 5.

Conversely, if G has an independent set of size k, then Defender can also resist t turns with a
very similar strategy to Lemma 5, except that if Attacker plays on V ∪ {s} or some Te, she then
answers by moving the guard initially posted on s.

7



4. Perfect graphs

Let us now prove that Fast-Strategy is PSpace-hard on 2-unipolar graphs. A graph is
unipolar if its vertices can be bipartitioned into a clique V1 and a disjoint union of cliques V2. It is
moreover k-unipolar if the cliques in V2 have size at most k. Since unipolar graphs are perfect [16],
Fast-Strategy also is PSPACE-hard on perfect graphs. Moreover, 2-unipolar are weakly chordal,
hence the problem also is actually PSPACE-complete on weakly chordal graphs.

Theorem 8. Fast-Strategy is PSPACE-hard on 2-unipolar graphs.

The rest of this section is devoted to prove Theorem 8. We make a reduction from Unordered-

CNF. An instance of Unordered-CNF consists of two sets of variables X,Y with |X| = |Y | and
a CNF formula ϕ with variables X ∪ Y . The output is true if and only if Satisfier has a winning
strategy in the following game: Two players, called Falsifier and Satisfier, successively choose a
variable (Falsifier in X and Satisfier in Y ) and assigns it a truth value, until no variable remains.
Satisfier wins if the assignment satisfies the formula ϕ. Schaefer proves that Unordered-CNF is
PSPACE-complete [32].

Our reduction. Let (X,Y, ϕ) be an instance of Unordered-CNF and let k = |X| = |Y | and
M = 8k2. Without loss of generality, we can assume that k > 2 and every clause of ϕ contains
at least one variable from Y . We create an instance (Gϕ,Dϕ) of Fast-Strategy as follows (see
Figure 4 for an illustration). Let us denote by X (resp. Y ) the set {x, x ∈ X} (resp. {y, y ∈ Y }).

• For each x ∈ X, we create two adjacent vertices ux and ux̄ in Gϕ.

Let us denote by U the union of all these vertices.

• For each x ∈ X and y ∈ Y , we create four vertices vx,y, vx,ȳ, vx̄,y and vx̄,ȳ, that are all in Dϕ.
For every y ∈ Y , we denote by V ∗

y = {va,b with b ∈ {y, y}}. Note that V ∗

y has size 4k.

• For every a ∈ X ∪X and b ∈ Y ∪ Y , we create an edge between ua and va,b.

• For each variable y ∈ Y , we create two new sets of vertices Vy, V
′
y of size respectively M and

M−4k+1. We add a complete bipartite graph between Vy and V ′
y called the variable checker

of y.

We add all the possible edges between Vy and V ∗
y and we put guards on all the vertices of V ′

y .

• For each clause Ci =
∨

j ℓi,j, let Li be the set of vertices vℓ,ℓ′ where neither ℓ nor ℓ′ appears
in Ci.

We create two new sets Wi,W
′

i of size respectively M and M − |Li|+ k− 1 and all the edges
between Wi and W

′

i . This bipartite graph is called the clause checker of Ci.

We finally connect all the vertices of Wi to all vertices of Li, and put a guard on each vertex
of W ′

i .

• We create a last guarded vertex s.

• We add an edge between every pair of guarded vertices.

8



s

ux1
ux1

ux2
ux2

vx1,y1

vx1,y1

vx1,y2

vx1,y2

vx1,y1

vx1,y1

vx1,y2

vx1,y2

vx2,y1

vx2,y1

vx2,y2

vx2,y2

vx2,y1

vx2,y1

vx2,y2

vx2,y2

...

...

Vy2 : M vertices

V ′

y2
: M − 4k + 1 vertices

...

...

F2: M vertices

F ′

2: M − |L2|+ k − 1 vertices

Figure 4: A partial representation of the reduction from the formula (x1 ∨ y1)∧ (x1 ∨x2 ∨ y2). Only two checkers are
represented, one for the variable y2 and the other for the clause C2 = x1 ∨ x2 ∨ y2. The vertices above the dashed
line are guarded and forms a clique. All vertices of Vy2 are connected to the 8 vertices in the thick rectangle. All
vertices of F2 are connected to the vertices in the hatched zones. The length of the game is t = k +M = 34.

The graph Gϕ is 2-unipolar since removing the clique induced by the guarded vertices leaves
isolated vertices or isolated edges. Moreover, the construction can be carried out in polynomial
time. It remains to show that the reduction is correct. We split this result in two lemmas.

Lemma 9. If Falsifier wins Unordered-CNF on ϕ, then Attacker wins the mobile domination
game on (Gϕ,Dϕ) in at most k +M turns.

Proof. Assume that Falsifier has a winning strategy on (X,Y, ϕ). We construct a winning strategy
for Attacker in k +M turns on (Gϕ,Dϕ).

The strategy of Attacker will consist in only attacking vertices of U until he has a simple winning
strategy. One of them is the following:

• If at most k attacks were already performed and if there exists y such that V ∗
y contains at

most 4k − 2 guards then Attacker successively attacks the vertices of Vy.

Since V ′
y has sizeM−4k+1 and Vy has sizeM , Vy is defended by at mostM−4k+1+(4k−2) < M

guards. And then Attacker has a winning strategy in at most M rounds. So we can assume that,
during the k first steps, if Attacker chooses a vertex of U , Defender should move at most one vertex
in each set V ∗

y .
During the first k turns, Attacker will either play the strategy described above or attack a vertex

u in {ux, ux} for some x ∈ X. By construction of the instance, Defender can only defend such an
attack by moving a vertex from some vertex vℓ,ℓ′ to u with ℓ ∈ {x, x̄}.

Let us denote respectively by uai and va′i,bi the attacked vertex at step i and the vertex where
the guard defending the attack was posted. Note that because of the strategy explained above, we

9



can assume that, for every i, j ≤ k, bi 6= bj and bi 6= bj (otherwise, two vertices of some V ∗

y were slid
to U and then V ∗

y contains at most 4k− 2 guards). So the sequence of the j first rounds provides a
partial truth assignment where j variables of X are given a truth value as well as j variables of Y .

So the strategy of Attacker during the first k rounds consists either in playing the simple strategy
if he can or following the strategy of Falsifier in (X,Y, φ) by playing on ux whenever Falsifier sets
the variable x to true in the partial truth assignment described above.

Since Falsifier wins on (X,Y, ϕ), the resulting truth assignment does not satisfy some clause
Ci of ϕ. In particular, during each of the k first turns, Defender moved a guard from Li to some
uℓ, so only |Li| − k guards remain on Li. Now the M vertices of Wi are defended by at most
|Li| − k+ |W

′

i | =M − 1 guards, hence Attacker can win in M turns by successively attacking each
vertex of Wi.

Lemma 10. If Satisfier wins Unordered-CNF on ϕ, then Defender can resist k+M attacks in
the mobile domination game on (Gϕ,Dϕ).

Proof. Assume that Satisfier has a winning strategy on ϕ. We call the guard posted initially on s
the special guard. The strategy of Defender on (Gϕ,Dϕ) consists in applying the following rules:

1. If Attacker attacks a vertex v that was guarded, then Defender moves the special guard to v.
Defender never moves the special guard outside N [s] and then the move is possible since the
set of guarded vertices form a clique2.

2. If Attacker attacks an (initially unguarded) vertex of a (variable or clause) checker, Defender
defends, if she can, by moving a vertex initially guarded in the same checker (hence not
the special guard). If she cannot, we say that Attacker engaged this checker, and Defender
defends by moving a guard from V ∗

y (for the variable checker (Vy, V
′
y)) or Li (for the clause

checker (Wi,W
′

i )).
Note that, by construction and since guards in checkers will only be used to defend vertices
in the checker, Attacker has to attack at least M − 4k + 1 times a variable checker and at
least M − |Li| + k − 1 > M − 4k2 times a clause checker to engage the checker. Therefore,
Attacker can engage at most one checker in M + k turns, by our choice of M . Note that a
checker can be engaged several times.

3. If Attacker attacks the vertex uℓ for some literal ℓ and a token is already on uℓ̄, then Defender
moves the guard from uℓ̄ to uℓ.
In the rest of the strategy, if we move a guard on a vertex of the pair {uℓ, uℓ̄}, the guard will
stay on that pair of vertices (note that by 1., it cannot be the special guard).

4. Assume now Attacker attacks the vertex uℓ for some literal ℓ and no token is already on uℓ̄
and no variable checker has been engaged. In this case, let ℓ′ be the literal set to true by
Satisfier when Falsifier sets ℓ to true (this is a valid move in the Unordered-CNF game
by the previous rule). Observe that the guard initially on vℓ,ℓ′ did not move before, hence
Defender defends by moving it.

5. Finally, assume that Attacker attacks the vertex uℓ for some literal ℓ and no token is already
on uℓ̄ and a checker has been engaged. Then Defender answers by moving a non-special
guard from some vertex vℓ,ℓ′ not adjacent to the engaged checker. In particular, this is always

2One can easily remark that this strategy is compatible with the remaining rules.
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possible if the engaged checker is a variable checker since k > 2, or if it is a clause checker
since each clause contains a literal from Y .

Observe that the moves played by the second-to-last rule yield a partial truth assignment for
the variables of X ∪ Y . Moreover, since Satisfier wins, one can extend this assignment so that ϕ
becomes true.

Since, by construction, the vertices initially guarded and the vertices uℓ for every ℓ can always
be defended during the M + k steps, it simply remains to show that Defender can always answer
attacks in an engaged checker.

Assume that Attacker engaged the variable checker (Vy, V
′

y) for the (r + 1)-th time. Note that
after engaging the checker for the first time, no guard from V ∗

y will leave V ∗
y ∪ Vy ∪ V

′
y by Rule 5.

Moreover, before the checker is engaged, Rule 4 ensures that at most one non-special guard from
V ∗
y has been moved (to some uℓ). Each time the checker is engaged, one non-special guard from
V ∗
y is moved to Vy. Therefore, in the current situation, there are at least 4k − r − 1 non-special

guards in V ∗
y . Note that the number of unguarded vertices in Vy is |Vy| − |V

′
y | − r = 4k − 1 − r.

Since there is an unguarded vertex in Vy (because Attacker played on it), we have 4k − r − 1 > 1,
hence there is a non-special guard on V ∗

y that Defender can move.
A similar argument holds when the engaged checker is a clause checker (Wi,W

′

i ). Indeed, assume
that at some point k non-special guards of Li have been moved to some uℓ. This means that Rule 5
never applied and Rule 4 was applied k times. Moreover, all the literals set to true by Rule 4 do not
appear in Ci, hence Ci (and furthermore ϕ) is not satisfied, a contradiction since Defender played
following Satisfier’s winning strategy on (X,Y, ϕ). Therefore, at most k − 1 non-special guards of
Li have been moved to some uℓ, so at least |Li| − k + 1 remain at any time. Therefore, Defender
can answer attacks on Wi by playing a vertex in Li every time there is no guard in W ′

i .

5. Trees

The goal of this section consists in proving the following theorem:

Theorem 11. Fast-Strategy can be solved in polynomial time on trees.

In a first part, given G and D, we will introduce the concept of arenas, and we will show that,
when G is a tree, tG(D) is related to the maximum possible treedepth of an arena of G. We will
then prove that this parameter is exactly the parameter of interest to decide Fast-Strategy on
trees. We then recall an algorithm from Iyer et al. [24] to compute the treedepth of a tree, and
adapt it in a last part to compute tG(D) in polynomial time.

5.1. The right parameter

The main concepts introduced in this section are arenas.

Definition 12. Let T be a tree and D ⊆ V (T ) be a set of guards. An arena of (T,D) is a subtree
X of T such that:

1. V (X) ∩D and V (X) \D both are independent;

2. the guarded vertices in X have degree exactly 2 in X (in particular no leaf is guarded);

3. there is no vertex in V (X) \D with a neighbor in D \ V (X).
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For the ease of notation, we identify a subtree X with its set of vertices, so that X ∩D denotes
the set of guarded vertices in X.

Equivalently (even if we will not prove it since we will not use it), an arena is a set satisfying
the following properties:

• |D ∩X| < α(T [X]);

• there is no unguarded vertex in X with a guarded neighbor outside X (that is, there is no
edge between X \D and D \X);

• X is minimal for these properties.

Figure 5: Above, a tree with an arena of contracted tree-depth 3. Each grayed vertex is guarded, and the attack is
circled. Below, the same tree after the Defender has moved the guard from left to the attack. A smaller arena of
contracted tree-depth 2 is created (its contracted tree is a path on three vertices).

Definition 13. Let T be a tree, D ⊂ V (T ) and X an arena of (T,D). The contracted tree of X
is obtained from X by replacing each vertex from V (X) ∩D by an edge between its neighbors. The
contracted treedepth of X, denoted by ctd(X), is the treedepth of this contracted tree.

In the rest of this part, we will prove the following:

Theorem 14. Given a tree T and a set of guards D, tT (D) is the minimum value of ctd(X) over
all arenas X of (T,D).

In particular, Theorem 14 ensures that tT (D) = +∞ if and only if (T,D) has no arena.
Let T be a tree and D be a set of guards. We split the proof of Theorem 14 into two independent

lemmas.
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Lemma 15. If (T,D) has an arena X of contracted tree-depth t, then tT (D) ≤ t.

Proof. We proceed by induction on t. If t = 1, then, since in the construction of the contracted tree,
we only remove vertices of degree 2, the contracted tree should initially contain only one vertex
v. The vertex v should be unguarded by (2) and has no guarded neighbor in T by (3). Hence,
Attacker wins in one turn by attacking v.

Assume that t > 1, and take a td-decomposition T ∗ of T [X] of depth t. The strategy of the
Attacker is as follows: he attacks the root v of T ∗. Denote by u the vertex of D moved by Defender
(if Defender cannot defend the conclusion follows). Note that u ∈ D and then u has degree 2 in
T [X]. Let w be the other neighbor of u in X.

Consider X ′ the component of T [X] − uw containing w. Observe that X ′ is an arena of
(T,D ∪ {v} \ {u}). Indeed, X ′ is a subset of X which contains neither u nor v so (1) holds. Since
w is at even distance from the root, (2) holds. Finally, by (3) and the fact that u has been moved
on v ensures that (3) holds. Moreover, the contracted tree of X ′ is a subtree of T ∗ \ {v}, therefore
it has depth at most t− 1 and ctd(X ′) 6 t− 1. By induction, Attacker wins on (T,D ∪ {v} \ {u})
in at most t− 1 turns and thus, wins on (T,D) in at most t turns.

In particular, Attacker wins the eternal domination game if and only if there is an arena.

Lemma 16. If tT (D) = t < +∞, then there exists an arena of contracted tree-depth at most t.

Proof. We proceed again by induction. If t = 1, then there exists an unguarded vertex v without
neighbor in D. In particular, it is an arena of contracted tree-depth 1.

Assume that t > 1, and let v be the first attack of Attacker in a shortest winning strategy. Let
u be a guarded neighbor of v. Assume that Defender moves the guard of u to answer the attack on
v. By induction, after the move, Attacker wins in t− 1 turns at most, hence there exists an arena
Xu of contracted tree-depth at most t− 1 in (T,D′) (where D′ = D ∪ {v} \ {u}).

Assume that v ∈ Xu. By definition v has degree 2 in Xu, hence it has a neighbor w 6= u. The
subtree containing w in Xu \ {vw} is an arena in (T,D) of contracted tree-depth at most t − 1,
contradicting tT (D) = t by Lemma 15. Therefore, v /∈ Xu and by definition of arenas, u /∈ Xu

either.
Note that Xu must contain an unguarded neighbor of u, otherwise it is an arena in (T,D),

again a contradiction with tT (D) = t.
Now consider the set X = {v}∪

⋃

u∈N(v)∩D(Xu∪{u}). Observe that it is an arena of contracted
tree-depth at most t (since removing v and its guarded neighbors from X yields components of
contracted tree-depth at most t− 1).

This concludes the proof of Theorem 14. Note in particular that, since the treedepth of a tree
is logarithmic in its number of vertices, if tT (D) is finite, then it is at most logarithmic in |V (T )|.

It remains to show that we can compute the minimum contracted treedepth of an arena in
polynomial time. This is the goal of the rest of this section.

5.2. Ranking lists

Our algorithm is built upon the algorithm for computing the treedepth of a tree by Iyer et
al. [24]. We start by presenting (a rephrased version of) their algorithm, and stating some of their
results about its correctness.
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Definition 17. Given two non-increasing lists of integers L1 and L2, we define the merged list
L1 ⊕ L2 as the concatenation of L1 and L2 sorted by decreasing order.

Definition 18. [24] Let T be a rooted tree. The ranking list of T is

rl(T ) =

{

∅ if T is empty

(td(T ))⊕ rl(T − T ′) otherwise

where T ′ is the unique inclusion-wise minimal rooted subtree of T with td(T ′) = td(T ).

The uniqueness of T ′ is guaranteed by the following lemma, since two rooted subtrees are either
disjoint or contained one in the other.

Lemma 19. [24] Let T be a tree and V1, V2 be two disjoint subsets of V (T ). If td(T [V1]) =
td(T [V2]) = d, then td(T ) > d.

The algorithm from Iyer et al. actually computes the ranking list of a given rooted tree T in
polynomial time, and then outputs its first element (namely, td(T )). More precisely, they give
a procedure RankRoot that computes the ranking list of a tree T from the ranking lists of the
subtrees rooted at children of its root. We rephrase their algorithm in a way more suited to our
purposes, using two operations: the merge ⊕ of two sorted lists, and the closure of a list.

Definition 20. Given a non-increasing list L, we define its closure ↑L as follows. Let Ls the
longest suffix of L which is either empty or satisfies Ls ≥lex (k, k − 1, . . . , 1) where k is the first
element of Ls. Then, ↑L is build from L by replacing Ls by the 1-element list (k + 1) (or by (1) if
Ls is empty).

Example 21. ↑(7, 6, 4, 3, 2, 2) = (7, 6, 5) since the largest suffix we can find is (4, 3, 2, 2). Moreover,
↑(4, 3, 2) = (4, 3, 2, 1).

The following lemma states the recurrence relation used in [24] to compute the ranking list of
a given tree.

Lemma 22. [24] Let T be a tree rooted in r and T1, . . . , Tk the subtrees of T rooted at the children
of r. Then rl(T ) = ↑(rl(T1)⊕ · · · ⊕ rl(Tm)).

5.3. Computing tT (D)

The main part of our algorithm is a recursive procedure that takes as input a tree T rooted at
an unguarded vertex and determines the smallest contracted treedepth of an arena containing its
root (if such an arena exists). Following the steps of Iyer et al., computing contracted tree-depth
is not sufficient for the recursion to carry out. We actually compute the contracted ranking list of
an arena, that is the ranking list of its contracted tree.

To compute tT (D), we just have to apply this procedure to all possible ways of rooting T at
an unguarded vertex, and output the minimum contracted treedepth we encountered which can
indeed be done in polynomial time.

First observe that we can simplify the tree T by trimming some parts that will never be in
any arena. Namely, we can remove all the edges between two guarded (resp. unguarded) vertices.
Moreover we can also remove every guarded leaf of T together with its neighbor. Note that this
may disconnect T , but since arenas are connected, we can just handle each connected component
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separately. Without loss of generality, we may thus assume that no such operation can be applied,
that is T is rooted at an unguarded vertex r, the sets D and V (T ) \D are both independent, and
all leaves of T are unguarded. In that case, we say that T is nice.

Denote by u1, . . . , uk the children of r, which must thus be guarded. Moreover, for 1 6 i 6 k,
let vi,1, . . . , vi,ℓi be the children of ui (which are unguarded). Note that any arena of T containing
r must contain u1, . . . , uk, and for every 1 6 i 6 k, exactly one vi,j. Moreover, the restriction of X
to the subtree Ti,j of T rooted at vi,j is an arena of this subtree containing its root.

Finding an arena of smallest contracted tree-depth thus amounts to choosing the right children
of each ui. We proceed in a greedy way, each time choosing vi,j with the (lexicographically) smallest
contracted ranking list. Any of these move will force Defender to move a guard from the arena to
one of its two neighbors. The previously guarded vertex will then be unguarded and adjacent to
another unguarded vertex, therefore, this will create an arena of smaller contracted tree-depth in
the first one. With these notations, we obtain the following algorithm.

Data: A nice tree T rooted at r, a set of vertices D with r /∈ D.
Result: An arena of minimal contracted ranking list (w.r.t. ≤lex) among arenas of (T,D)

containing r, together with its contracted ranking list.
if |V (T )| = 1 then

return {r}, (r) ;
else

for i = 1 to k do

for j = 1 to ℓi do
(Ai,j , Li,j)← Comp-Arena(Ti,j ,D ∩ V (Ti,j)) ;

end

(Ai, Li)← the pair (Ai,j , Li,j) with minimum Li,j (w.r.t. ≤lex) ;

end

return {r} ∪
⋃

i(Ai + ui), ↑(L1 ⊕ · · · ⊕ Lk) ;

end

Algorithm 1: Comp-Arena

This algorithm clearly runs in polynomial time. It remains to show that it is correct. Note
that the list we output is indeed the contracted ranking list of the arena we output, by Lemma 22.
The hard part is to show that the result has actually minimal contracted treedepth. This is a
consequence of the following lemma.

Lemma 23. Let T be a rooted tree with a rooted subtree Ts, T
′

s be a rooted tree and T ′ obtained
from T by replacing Ts with T ′

s. If rl(Ts) ≤lex rl(T ′

s), then rl(T ) ≤lex rl(T ′).

Note that by transitivity, it is enough to show the Lemma when Ts is rooted at a children of
the root of T . Observe then that rl(T ) = ↑(rl(Ts)⊕ L) and rl(T ′) = ↑(rl(T ′

s)⊕ L) for some list L.
We can easily see that ⊕ is compatible with ≤lex as summarized in the following fact.

Fact 24. Let L1, L2 and L be three non-increasing lists such that L1 ≤lex L2. Then L1 ⊕ L ≤lex

L2 ⊕ L.

Therefore, we only have to show that ↑ is also increasing w.r.t. ≤lex.

Lemma 25. Let L1, L2 be two non-increasing lists such that L1 ≤lex L2. Then ↑L1 ≤lex ↑L2.
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Proof. Let P be the largest common prefix of L1 and L2, so that L1 = P, x1, . . . and L2 = P, x2, . . .
with x1 < x2. For i = 1, 2, let Si be the suffix of Li used when computing ↑Li, that is the longest
suffix of Li such that Si ≥lex (ki, ki − 1, . . . , 1) where ki is the first element of Li.

If S1 does not intersect P , then ↑L1 ≤lex P, x1 + 1 ≤lex L2 since x2 > x1 + 1. This concludes
since L ≤lex ↑L for every non-increasing list L.

Otherwise, we have k1 ∈ P . In particular, k1 appears in L2 and the suffix of L2 starting at the
position k1 is larger than S1, hence than (k1, . . . , 1). Therefore ↑L2 = P ′, k2+1 where P ′ is a prefix
of P , and ↑L1 starts with P ′, k2, hence ↑L1 ≤lex ↑L2 again.

6. Cographs

In this section, we will prove the following.

Theorem 26. Fast-Strategy is computable in polynomial time on cographs.

A cograph is either an isolated vertex, or is obtained by taking the disjoint union (denoted by
∪) or the complete join (denoted by ✶) of two smaller cographs. This inductive definition naturally
provides a representation of each cograph as a decomposition tree called cotree, whose leaves are
the vertices of the cograph, and the internal nodes are either join nodes or union nodes3. We can
recover the adjacency between the vertices of a cograph G from its cotree as follows: two vertices
uv are adjacent in G if and only if their closest ancestor lca(u, v) in the cotree is a join node.

Our polynomial time algorithm for Fast-Strategy on cographs will compute tG(D) using
a recursive procedure applied to the cotree of G. Note that this is not restrictive since one can
compute the cotree of a given cograph in linear time [13]. We actually consider a more general
game, the eternal domination game with reservists, defined as follows.

This game is played on a board (G,D, r) where G is a graph, D is a set of guards and r ≥ 1
is a number of reservists. Attacker plays as usual by attacking a non-guarded vertex v. Now
Defender defends by either moving a guard from a neighbor of v to v, or by adding a new guard
on v and decrease r by one. Attacker wins when r reaches 0, that is when Defender moves her last
reservist on G. We denote by tG(D, r) the smallest number of turns required for Attacker to win.
In particular, observe that tG(D, 1) = tG(D). By convention, we assume that tG(D, 0) = 0.

Theorem 26 relies on the three following results, that handle respectively the leaves, the join
nodes and the union nodes of a cotree. For the base case, observe that Attacker can only win on
an isolated vertex if it is not guarded and there is only one reservist, and in that case he wins in
one turn. Therefore we get the following.

Fact 27. Let G be a graph containing only an isolated vertex. Then,

tG(D, r) =

{

1, if D = ∅ and r = 1

+∞, otherwise

We now state two recursion formulas satisfied by tG(D, r) that allow us to compute tG(D). Note
that the computation only uses the values of the form tH(D ∩ V (H), r) for some cograph H whose
cotree is a subtree of the cograph of G and for some integer r between 0 and |V (G)|. Therefore,
the computation can be done in polynomial time, which proves Theorem 26.

3Note that this decomposition is not necessarily unique but, for algorithmic purposes, we only need that such a
decomposition tree exists and can be computed in polynomial time which is indeed the case.
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Proposition 28. Let G1, G2 be two cographs and D1,D2 be sets of guards on G1 and G2. We
have:

tG1∪G2
(D1 ∪D2, r) = min

06i6r
(tG1

(D1, i) + tG2
(D2, r − i))

and
tG1✶G2

(D1 ∪D2, r) = min{tG1
(D1, r + |D2|), tG2

(D2, r + |D1|)}.

The rest of this section is devoted to proving this statement. Each of the two equalities is proved
by showing two inequalities. We start with the easiest ones, stated in the two following lemmas.

Lemma 29. Let G1, G2 be two cographs, r > 0 and D1,D2 be sets of guards on G1 and G2. We
have:

tG1∪G2
(D1 ∪D2, r) ≤ min

06i6r
(tG1

(D1, i) + tG2
(D2, r − i)).

Proof. Let G = G1 ∪ G2 and r1, r2 be two integers. If, for i = 1, 2, Attacker wins on (Gi,Di, ri)
in ti turns, then he can also win on (G,D, r1 + r2) in t1 + t2 turns by first playing t1 turns on
(G1,D1, r1) (so that Defender is forced to play her r1-th reservist), and then playing t2 turns on
(G2,D2, r2) so that Defender plays her (r1 + r2)-th reservist.

Lemma 30. Let G1, G2 be two cographs, r > 0 and D1,D2 be sets of guards on G1 and G2. We
have:

tG1✶G2
(D1 ∪D2, r) ≤ min{tG1

(D1, r + |D2|), tG2
(D2, r + |D1|)}.

Proof. Let G = G1 ✶ G2. Observe that if Attacker plays only on G1, the board is equivalent to
(G1,D1, r+|D2|) since Defender can use the guards of D2 as reservists. In particular, attacking only
in G1 or only in G2 gives a winning strategy for Attacker in min{tG1

(D1, r+|D2|), tG2
(D2, r+|D1|)}

turns.

To prove the remaining inequalities, we consider an arbitrary order ≤G over the vertices of
G and introduce S∗ as the following strategy of Defender: if Attacker attacks the vertex v, then
Defender answers (if possible) with a guarded vertex u ∈ N(v) whose common ancestor lca(u, v)
in the cotree of G is the deepest. If several such vertices exist, she picks the smallest with respect
to the order ≤G. If no such vertex exists (i.e. if v has no guarded neighbor), Defender calls a
reservist. We denote by t∗G(D, r) the smallest number of turns required for Attacker to win on
(G,D, r) against this strategy S∗. Notice that this strategy does not depend on the number of
available reservists, nor on the connected components of G that do not contain v.

Observe that if Attacker wins in k turns on (G,D, r), then he also wins in at most k turns
against S∗. Therefore, we get the following.

Fact 31. Every cograph G satisfies t∗G ≤ tG.

In the following, we will show by induction that this inequality is actually an equality, meaning
that S∗ is an optimal strategy for Defender.

For the base case, Fact 27 clearly remains true when Attacker plays against the strategy S∗.

Fact 32. Let G be a graph containing only an isolated vertex. Then,

t∗G(D, r) =

{

1, if D = ∅ and r = 1

+∞, otherwise
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To prove the inductive step, we will show that the converse inequalities of Lemmas 29 and 30
hold when replacing tG by t∗G. More precisely, we show the two following lemmas.

Lemma 33. Let G1, G2 be two cographs, r > 0 and D1,D2 be sets of guards on G1 and G2. We
have:

t∗G1∪G2
(D1 ∪D2, r) ≥ min

06i6r
(t∗G1

(D1, i) + t∗G2
(D2, r − i)).

Lemma 34. Let G1, G2 be two cographs, r > 0 and D1,D2 be sets of guards on G1 and G2. We
have:

t∗G1✶G2
(D1 ∪D2, r) ≥ min{t∗G1

(D1, r + |D2|), t
∗

G2
(D2, r + |D1|)}.

Before proving these results, let us show how to use them to conclude the proof of Proposition 28.

Proof of Proposition 28. We prove by induction on cographs that every cographG satisfies tG(D, r) =
t∗G(D, r) for any set of guards D and r > 0. The base case is already provided by Fact 27 and
Fact 32.

Now, let G be a cograph defined as the union of two cographs G1 and G2. Let r > 0 and D be
a set of guards, and Di = D ∩ V (Gi) for i = 1, 2. Applying successively Lemma 29, the induction
hypothesis on G1, G2 and Lemma 33, we get

tG(D, r) ≤ min
06i6r

(tG1
(D1, i) + tG2

(D2, r − i))

= min
06i6r

(t∗G1
(D1, i) + t∗G2

(D2, r − i))

≤ t∗G(D, r)

This concludes using Fact 31. The case of joins is similar, we only use Lemmas 30 and 34 instead.

It thus remains to prove Lemmas 33 and 34. We start with the case of unions.

Proof of Lemma 33. Let G = G1∪G2, D = D1∪D2 and A be a winning strategy in t∗G(D, r) turns
on (G,D, r) against the strategy S∗. Since the strategy of Defender is prescribed, we may assume
that A is just a sequence of moves.

Let A1 (resp. A2) be the subsequence of attacks of A played on G1 (resp. G2) and r1 (resp. r2)
be the number of reservists called in G1 (resp. G2). Denote by a1 (resp. a2) the length of A1 (resp.
a2), so that r1 + r2 = r and a1 + a2 = t∗G(D, r). Since the strategy S∗ of Defender only depends on
the connected component of the attacked vertex, for i = 1, 2, Ai is a sequence of attacks on (Gi,Di)
that moves ri reservists when Defender plays according to S∗. In particular, ai ≥ t

∗

Gi
(Di, ri).

Consequently, t∗G(D, r) = a1 + a2 ≥ t
∗

G1
(D1, r1) + t∗G2

(D2, r2), which concludes.

We end this section with the case of joins. Lemma 34 relies on the following result.

Lemma 35. Let G = G1 ✶ G2 be a cograph, D be a set of guards and r ≥ 1 be an integer. Then,
Attacker can win on (G,D, r) in t∗G(D, r) steps against the strategy S∗ by only playing on G1 or by
only playing on G2.

Lemma 35 states that (up to exchanging G1 and G2) Attacker has a winning strategy in
t∗G1✶G2

(D, r) turns on (G1 ✶ G2,D, r) against the strategy S
∗ where he plays only on G1. Since ver-

tices of G2 have the highest possible common ancestors with vertices of G1 in the cotree of G1 ✶ G2,
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this is equivalent to playing on (G1,D1, r + |D2|) against the strategy S∗ where Di = D ∩ V (Gi)
for i = 1, 2. In particular, t∗G(D, r) > t∗G1

(D1, r + |D2|), and we get Lemma 34 by symmetry.
The proof of Lemma 35 is based on this trade-off between increasing the number of reservists

and playing only on one side of a join. We first summarize this in the following fact.

Fact 36. Let G1 and G2 be two cographs, each one having a set of guards D1 and D2. Assume
that Attacker wins in k turns against S∗ on (G1 ✶ G2,D1 ∪ D2, r) by playing only on G2. Then
k > t∗G2

(D2, r + |D1|).

Another observation is given below. It formalizes the intuition that defending using a reservist
instead of a guard already in a graph does not slow down Attacker.

Claim 37. Let G be a graph, D a set of guards on G and r ≥ 1. For every x ∈ D, we have
t∗G(D, r) ≤ t

∗

G(D \ {x}, r + 1).

Proof. We proceed by induction on t∗ = t∗G(D \ {x}, r+1). If t∗ = 1, then we must have r = 0 and
in that case t∗G(D, 0) = 0, which concludes.

Assume now that t∗ ≥ 2. Let (D, r) be the current configuration and x ∈ D. We denote by
P1 = (D, r) and P2 = (D \ {x}, r + 1). Let u be the first vertex played by Attacker in P2, and
denote by P ′

2 the configuration obtained after Defender answered using S∗. Similarly, denote by P ′

1

the configuration obtained after Defender used S∗ to defend u in P1. By definition, observe that
t∗ = t∗G(P2) = 1 + t∗G(P

′

2) and that t∗G(P1) 6 1 + t∗G(P
′

1). Consider the following cases:

• Assume that Defender moves the guard from x to defend u in P1, and that u has no guarded
neighbor in P2. So Defender uses a reservist in P2 and then the resulting instances P ′

1 and
P ′

2 are (D ∪ {u} \ {x}, r) so the conclusion follows immediately.

• Assume that Defender moves the guard from x to defend u in P1 and a guard from a vertex v
to defend u in P2. Then P

′

1 = (D \ {x} ∪ {u}, r) and P ′

2 = (D \ {x, v} ∪ {u}, r+1). Applying
the induction hypothesis with D replaced by D \{x}∪{u} yields t∗G(P

′

1) 6 t∗G(P
′

2) and we get

t∗G(P1) 6 1 + t∗G(P
′

1) 6 1 + t∗G(P
′

2) = t∗.

• Otherwise, Defender defends with strategy S∗ against the attack on u in P1 without moving
the guard from vertex x. In this case, the strategy S∗ performs the same move in P2, and we
may conclude applying induction as in the previous item.

We are now ready to conclude the proof of Lemma 35.

Proof of Lemma 35. We proceed by induction on t∗ = t∗G(D, r). If t∗ = 1, the result follows since
Attacker wins against S∗ in a single move.

Assume now that t∗ ≥ 2, and let u be the first vertex attacked by Attacker in a winning strategy
in t∗ turns against S∗. Without loss of generality, assume that u is in G1 and let v be the answer
from Defender according to S∗. On the obtained instance (G,D\{v}∪{u}, r) (or (G,D∪{u}, r−1)
if a reservist has been used), Attacker has a winning strategy in t∗ − 1 turns when Defender uses
S∗. So, by induction, Attacker has a winning strategy against S∗ playing only in G1 or in G2. We
can assume that it is in G2 (since otherwise we are done), and we may thus apply Fact 36.

Setting Di = D ∩ V (Gi), we consider three cases depending on v:
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• If v is a reservist, then t∗ − 1 > t∗G2
((D ∪ {u}) ∩ V (G2), r − 1 + |(D ∪ {u}) ∩ V (G1)|) =

t∗G2
(D2, r + |D1|).

• If v is in G1, we similarly get t∗ − 1 > t∗G2
(D2, r + |D1|).

• Otherwise v is in G2 and we get t∗ − 1 > t∗G2
(D2 \ {v}, r + |D1|+ 1). By Claim 37, this is at

least t∗G2
(D2, r + |D1|).

In each case, there is a winning strategy for Attacker on (G2,D2, r+ |D1|) against S
∗ in at most

t∗ − 1 turns. But this is also a strategy for Attacker on (G,D, r) against S∗ where he plays only
on G2. This is a contradiction by definition of t∗, which concludes the proof.

7. Parameterized complexity

In this section, we study the parameterized complexity of Fast-Strategy. We consider two
parameters: t the number of turns and g the number of guards. We first consider generic results,
then study restricted classes of graphs.

7.1. Generic graphs

As a first result, we will show the following theorem.

Theorem 38. Fast-Strategy parameterized by g is in XP.

Proof. Let G = (V,E) be a graph. We will compute all the values tG(D) for each subset D ⊂ V of
size g in time O(n2g+2).

We first build an auxiliary directed graph G that models the moves available for each player.
For every subset D of g vertices of G, and for every vertex v ∈ V , G has a vertex labeled by D,
and one labeled by (D, v). Moreover, G contains the arcs:

• D → (D, v) for every set D and v ∈ V , and

• (D, v)→ (D ∪ {v}) \ {u} for every set D, v ∈ V \D and u ∈ D ∩N(v).

We now label all vertices (D, v) such that D ∩N(v) = ∅ with 0. Then we apply the following
rules while it is possible.

• We label each non-labeled vertexD with ℓ+1 where ℓ is the minimum label of its out-neighbors
(if at least one such out-neighbor is labeled).

• If every out-neighbor of an non-labeled vertex (D, v) is labeled, we label it with the maximum
label of its out-neighbors.

At the end, all non-labeled configurations are labeled +∞.
Note that each rule can be applied in linear time with respect to G. Moreover, each application

of these rules labels at least one new vertex (and these labels do not change afterward), hence the
total procedure is at most quadratic in G. Since G has O(ng+1) vertices and O(ng+1) arcs, this
yields an XP algorithm.

We now claim that afterward, each vertex D is labeled with tG(D). Indeed, if D is labeled with
+∞, then so are all its out-neighbors and in particular, for every v /∈ D, (D, v) has an out-neighbor
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(D∪{u}) \ v labeled with +∞. Therefore, Defender can eternally defend by answering to Attacker
in such a way the set of guards stays labeled with +∞.

Similarly, one can easily see by induction on ℓ that if a set D of guards is labeled with ℓ, then
Attacker wins in at most ℓ turns and Defender can resist to ℓ− 1 attacks on D, hence tG(D) = ℓ.
The main point of the induction is that at any moment of the game, Attacker has a move available
from a position D to a position (D, v) which decreases the label by one, while Defender has a move
available from a position (D, v) to a position D′ which has the same label.

Theorem 39. Fast-Strategy is W[1]-hard when parameterized by t+ g.

Proof. Let (G, k) be an instance of Independent-Set. We build an instance of Fast-Strategy
as follows. Let G′ be the graph obtained from G by adding a set D of k − 1 guarded vertices
u1 . . . , uk−1, each of them connected to all vertices of G. We claim that (G, k) is a positive instance
of Independent-Set if and only if (G′,D, k) is a positive instance of Fast-Strategy.

IfG admits an independent set I of size k, then Attacker wins in k turns by attacking successively
the vertices in I. Indeed, at each turn, Defender has to move a guard from D (she cannot move a
guard twice since I is independent). Therefore, she loses at the k-th turn since no guard is available
in D.

Conversely, assume that Attacker can win in k turns. If Defender manages to move the same
guard twice during the game, then either she can answer the last attack with a guard in G, or one
guard is still on D at the beginning of the k-th turn, and she can use it to answer the last attack, a
contradiction. Therefore, the k vertices played by Attacker must induce an independent set of G,
which concludes.

7.2. Bipartite graphs

It is easily seen that the reduction in Theorem 2 is an FPT-reduction when parameterized by t
(but not by g). Since Independent-Set is W [1]-complete when parameterized by the size of the
independent set, we obtain the following result.

Theorem 40. Fast-Strategy parameterized by t is co-W [1]-hard on bipartite graphs.

The behavior of Fast-Strategy becomes quite different when parameterized by g instead, as
shown by the following result.

Theorem 41. Fast-Strategy parameterized by g is FPT on bipartite graphs.

Proof. Let (G,D, t) be an instance of Fast-Strategy where G is a bipartite graph (A ∪ B,E).
By Lemma 3 and Lemma 4, we can assume that B = D and that Attacker plays only in A. In
particular, tG(D) 6 |B|+ 1 = g + 1.

We build a kernel (G′,D, t) of (G,D, t) as follows: for every set of at least g + 1 twins in A,
delete all but g + 1 of them. Observe that G′ has at most g + (g + 1)2g vertices. We claim that
tG(D) = tG′(D).

Recall that Attacker always has a shortest winning strategy where he plays only on initially
unguarded vertices by Lemma 3. In particular, if he wins in t turns on (G′,D), he can just use the
same strategy to win in t turns on (G,D).

Conversely, if Attacker wins in t turns on (G,D), then mimicking his strategy on (G′,D) is
also making him win in at most t turns (note that each time he plays on a vertex v of G that was
deleted, there is at least one unguarded twin of v in G′).
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Finally, we prove that Fast-Strategy is FPT when it is parameterized by n− g, the number
of non-guarded vertices. First, we state a useful lemma inspired by crown decompositions [14].

Lemma 42. Let G = (A ∪ B,E) be a bipartite graph. Assume that there is no isolated vertex in
B and |A| < |B|. Then one can compute in polynomial time a non-empty set A′ ⊆ A and a set
B′ ⊆ B such that

• there is a matching M between A′ and B′ that covers A′;

• there is no edge between B′ and A \A′.

Proof. By Kőnig’s theorem [15], there exist a matching M and a vertex cover C such that |C| =
|M | ≤ |A|. Set A′ = C ∩ A and B′ = B \ C. Observe that A′ 6= ∅, otherwise C ⊂ B, and since B
has no isolated vertex, C = B, a contradiction since |A| ≥ |C| = |B| > |A|.

Now observe that every edge e in M has exactly one endpoint in C, hence the edges of M
intersecting A′ have their other endpoint in B′. Thus, these edges form a matching between A′ and
B′ that covers A′.

Finally, by definition of a vertex cover, (A ∪ B) \ C is an independent set of G. In particular,
there is no edge between B′ = B \ C and A \A′ = A \ C.

Using Lemma 42, we can prove the following theorem.

Theorem 43. Fast-Strategy admits a kernel of size 2(n− g) on bipartite graphs.

Proof. Let G = (A∪B,E) be a bipartite graph and D be a set of guards. By Lemma 3 and Lemma
4, we can assume B = D and Attacker plays only in A. We use the following two reduction rules.

• Remove isolated vertices in B.

• If |A| < |B|, let A′, B′ the sets obtains by Lemma 42. Then remove A′ and B′ from G and
remove B′ from D.

After iterating these two rules while we can, we end up with a kernel (G′,D′) with less guarded
vertices than unguarded, hence it has size at most 2(n− g), as requested. It remains to show that
these rules are correct. The first rule clearly preserves tG(D) since guarded isolated vertex cannot
be attacked or used to defend another vertex.

Consider now the second rule, and assume that |A| < |B|. Let A′, B′ the set obtained by
applying Lemma 42, and (G′,D′) the new instance. We claim that tG(D) = tG′(D′).

If Attacker has a winning strategy in t turns on (G′,D′), then he can apply the same strategy
on (G,D) since, by construction, Defender has the same available moves on (G,D) and on (G′,D′).
Therefore, tG(D) ≤ tG′(D′).

Conversely, assume that Defender has a strategy to resist to t attacks on (G′,D′). Then she can
resist t attacks on (G,D) using the following: if Attacker plays on a vertex in A \A′, then she uses
the same strategy as on (G′,D′). Otherwise, let M be a matching between A′ and B′ saturating
A′. When Attacker plays on a vertex v in A′, Defender answers with the guard on B′ matched with
v in M .
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7.3. First-order definability

In this subsection we show that Fast-Strategy can be expressed with a first-order formula.
This directly implies complexity upper bounds using well-known meta-theorems. The first one
comes from the complexity of FO-model-checking in the generic case [17].

Theorem 44. Fast-Strategy parameterized by t is in AW[∗].

It is well-known that this complexity drops when considering restricted classes of graphs, for
example nowhere-dense graph classes [21] and bounded twin-width graph classes [7]. Notice that
nowhere-dense graph classes include planar graphs, bounded degree graphs, and graphs with an
excluded minor [29].

Theorem 45. Fast-Strategy parameterized by t is FPT on nowhere-dense graph classes.

One can note that the same holds for bounded twin-width graphs when we are given a contrac-
tion sequence.

This result relies on the following.

Lemma 46. For every t > 0, there is a first-order formula ϕt(X) such that G |= ϕt(D) if and only
if tG(D) ≤ t.

Proof. Let X be a set of guards and k < t. Our goal is to define a formula ψt,k(X, a1, d1, . . . , ak, dk)
that holds if Attacker can win in at most t turns when the first k turns were already played on
a1, d1, . . . , ak, dk. In particular, we will have ϕt = ψt,0.

First observe that the set Xk of guards obtained from X after playing these k turns can be
defined in FO. Indeed, the formula guardsk defined by guards0(X,x) = x ∈ X and

guardsk(X, a1, d1, . . . , ak, dk, x) = (x = ak) ∨ (guardsk−1(X, a1, d1, . . . , ak−1, dk−1, x) ∧ x 6= dk)

holds if and only if x ∈ Xk.
Observe that Attacker wins in at most t turns after k < t turns are played if either Xk is not a

dominating set or k+1 < t and there is a position ak+1 such that for every answer bk+1 of Defender,
ψt,k+1 holds. Therefore, denoting by

domk(X, a1, d1, . . . , ak, dk) = ∀x∃y(x− y) ∧ guardsk(X, a1, d1, . . . , ak, dk, y)

the formula stating that Xk dominates G, we have ψt,t−1 = ¬domt and

ψt,k(X, a1, d1, . . . , ak, dk) = ¬domk(X, a1, d1, . . . , ak, dk)

∨∃ak+1∀bk+1(ak+1 − bk+1 ∧ guardsk(X, a1, d1, . . . , ak, dk, bk+1))⇒ ψt,k+1(X, a1, d1, . . . , ak+1, bk+1),

which concludes.

8. Conclusion

We give a summary table of the different complexity results.
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Eternal-Domination-

Number

Eternal-Dominating-

Set
Fast-Strategy

Trees P[19] P(Th 1) P(Th 11)

Cographs P[19] P(Th 26) P(Th 26)

Bipartite P[19] P(Th 1) coNP-hard (Th 2)

Split P[19] ? coNP-hard (Th 6)

Perfect P[19] ? PSPACE-hard (Th 8)

General coNP-hard [3] ? PSPACE-hard (Th 8)

In addition, we obtained several results on the parameterized complexity of Fast-Strategy.

class of graphs parameter complexity

General t AW[∗] (Th 44)

General g XP(Th 38)

General g + t W[1]-hard (Th 39)

Bipartite t co-W[1]-hard (Th 40)

Bipartite g FPT(Th 41)

Bipartite n− g linear kernel (Th 43)

Nowhere dense t FPT(Th 45)

Bounded twin-width t+ tww FPT(Th 45)

Quite often in the literature, game problems are either in PTime or PSpace-hard. Motivated
by Theorem 2, we propose the following conjecture.

Conjecture 47. Fast-Strategy is PSpace-complete on bipartite graphs.

Besides Conjecture 47, we enumerate some open questions for future work.

1. Are there other graph classes where Fast-Strategy is polynomial? Good candidates are
unit interval graphs. We think that the notion of arena (defined for trees) can be adapted to
these graphs.

2. In this paper, we have only considered the case where there is at most one guard per vertex.
One can allow multiple guards on the same vertex i.e. the guards now form a multiset.
There is a generic reduction to the case considered here, roughly consisting in adding twins.
More precisely, given a graph G and a multiset of guards D, consider the graph G′ and set
of guards D′ obtained by replacing k guards on a vertex v into a set of k true twins, all of
them being guarded. One can see that tG(D) = tG′(D′). Cographs are preserved by this
transformation since they are closed under adding true twins. Thus, Theorem 26 still holds.
However, this is not true for trees and adapting the proof of Theorem 11 does not seem
straightforward.

3. For perfect graphs, we know that Eternal-Dominating-Number is in Pand Mobile-

Domination-Game is PSPACE-hard. What is the complexity of Eternal-Dominating-

Set on such graphs?

4. From a parameterized complexity perspective, we showed that Mobile-Domination-Game

parameterized by the number of guards is FPT on bipartite graphs. A natural extension
consists in looking for a polynomial kernel.
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5. Can our results be adapted in the “all guards move” variant of eternal domination (where
Defender can move more than one guard at each turn)? An upper bound on the number of
moves for Attacker to win has been given in [5].
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[7] E. Bonnet, E. J. Kim, S. Thomassé, and R. Watrigant. Twin-width I: Tractable FO model
checking. Journal of the ACM, 69(1), 2021.

[8] A. Braga, C. C. de Souza, and O. Lee. The eternal dominating set problem for proper interval
graphs. Information Processing Letters, 115(6):582 – 587, 2015.

[9] B. Brešar, P. Dorbec, S. Klavžar, G. Košmrlj, and G. Renault. Complexity of the game
domination problem. Theoretical Computer Science, 648:1–7, 2016.

[10] A. Burger, E. Cockayne, W. Grundlingh, C. Mynhardt, J. Van Vuuren, and W. Winterbach.
Finite order domination in graphs. Journal of Combinatorial Mathematics and Combinatorial
Computing, 49:159–176, 2004.

[11] A. Burger, E. Cockayne, W. Gründlingh, C. Mynhardt, J. V. Vuuren, and W. Winterbach.
Infinite order domination in graphs. Journal of Combinatorial Mathematics and Combinatorial
Computing, 50:179–194, 2004.

[12] N. Cohen, N. A. Martins, F. Mc Inerney, N. Nisse, S. Pérennes, and R. Sampaio. Spy-game
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