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2EDF R&D

SIAM UQ 24, Trieste, Italy,
February 29, 2024

1 / 23



Table of Contents

Background on Quantile Set Inversion

Improving the QSI-SUR strategy

Numerical experiments

Conclusion



2/23

Background on QSI Improving the QSI-SUR strategy Numerical experiments Conclusion

Consider an expensive-to-evaluate numerical simulator, with inputs:

▶ x ∈ X (deterministic design choices).

▶ s ∈ S (stochastic factors).

Deterministic inputs x

Stochastic inputs s

Simulator Outputs z

For simplicity we assume a deterministic simulator f : X× S 7→ Rq.

2 / 23



2/23

Background on QSI Improving the QSI-SUR strategy Numerical experiments Conclusion

Consider an expensive-to-evaluate numerical simulator, with inputs:

▶ x ∈ X (deterministic design choices).

▶ s ∈ S (stochastic factors).

Deterministic inputs x

Stochastic inputs s

Simulator Outputs z

For simplicity we assume a deterministic simulator f : X× S 7→ Rq.

2 / 23



3/23

Background on QSI Improving the QSI-SUR strategy Numerical experiments Conclusion

Given:

▶ C ⊂ Rq is a critical/failure region.

▶ α ∈ (0, 1) a threshold.

▶ S ∼ PS a known distribution on S,

We focus on the QSI problem, where the goal is to estimate the set of
all x ∈ X such that

P (f (x ,S) ∈ C ) ≤ α,

by only using a given, small, number of evaluation points

{(X1,S1), ... , (XN ,SN)}.
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Estimate the quantile set:

Γ(f ) = {x ∈ X : P (f (x ,S) ∈ C ) ≤ α} ,

Example:

▶ f simulator representing the production of a wind farm,

▶ x geometrical design of the wind turbines,

▶ s meteorological conditions,

▶ C = (−∞,T ].

Then Γ(f ) is the set of all designs x ∈ X such that the production of the
wind farm is greater than T kWh with high probability.
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Estimate the quantile set:

Γ(f ) = {x ∈ X : P (f (x ,S) ∈ C ) ≤ α} ,

Example of function and associated quantile set, with C = (−∞, 7.75]
and α = 5%.
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Figure: Representation of the function (middle), the density of PS (left) and
associated quantile set (right).

5 / 23



6/23

Background on QSI Improving the QSI-SUR strategy Numerical experiments Conclusion

QSI problem is related to the estimation of the excursion set

γ(f ) = {(x , s) ∈ X× S : f (x , s) /∈ C}

Indeed, Γ(f ) = {x ∈ X : P((x ,S) ∈ γ(f )) > 1 − α}.

Knowing γ(f ) =⇒ knowing Γ(f ).

Bayesian approach: consider ξ ∼ GP(µ, k) a prior on f . We denote:

▶ Pn the distribution of ξ given {(Xi ,Si , f (Xi ,Si )), i ≤ n}.
▶ En the expectation w.r.t. Pn.

▶ pn(x , s) = Pn(ξ(x , s) /∈ C ) the cond. probability of (x , s) ∈ γ(ξ).
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Several Bayesian methods exist for this estimation problem, taking into
account the expensive nature of f . For example:

▶ Maximum misclassification probability [Bryan et al. (2005)]:

(Xn+1,Sn+1) ∈ argmax
(x,s)∈X×S

min(pn(x , s), 1 − pn(x , s))

▶ ’Joint-SUR’ [Bect et al. (2012); Chevalier et al. (2014)]:

(Xn+1,Sn+1) ∈ argmin
(x,s)∈X×S

En(Hn+1 | (Xn+1,Sn+1) = (x , s))

with Hn =
∫
X×Smin(pn(x , s), 1 − pn(x , s))dxds.

▶ [Ranjan et al. (2008); Picheny et al. (2010); Echard et al. (2011);

Marques et al. (2018), ... ]
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To estimate Γ(f ), one only needs to focus on ’interesting parts’ of γ(f ).

We denote:

▶ πn(x) = Pn(x ∈ Γ(ξ)),

▶ Qn =
∫
X
min(πn(x), 1 − πn(x)) dx .

QSI-SUR sampling criterion [Ait Abdelmalek-Lomenech et al. (2023)]:

(Xn+1,Sn+1) ∈ argmin
(x,s)∈X×S

En(Qn+1 | (Xn+1,Sn+1) = (x , s)),
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The implementation proposed in [Ait Abdelmalek-Lomenech et al. (2023)]

produces good results on moderately difficult examples.
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Figure: Median of the proportion of misclassified points vs. number of
iterations, for 100 repetitions of the algorithms on two test functions.

9 / 23



Table of Contents

Background on Quantile Set Inversion

Improving the QSI-SUR strategy

Numerical experiments

Conclusion



10/23

Background on QSI Improving the QSI-SUR strategy Numerical experiments Conclusion

QSI-SUR criterion is based on min(πn(x), 1 − πn(x)).

=⇒ Nescessity of a collection of points x ∈ X such that this
misclassification probability is non-null.

Previously:

A simple approach (importance sampling) allowed good estimation of the
quantile set in ’simple’ cases.

Main issue:

If Γ(f ) is ’small’ (α small or/and C big), difficulty to sample relevant
points in the set X.

=⇒ {x ∈ Γ(f )} is a rare event w.r.t. the uniform distribution.
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Idea: Multilevel splitting/subset simulation [Kahn and Harris (1951); Au

and Beck (2001)].

Sequentially estimate a sequence of decreasing quantile sets

Γ0(f ) ⊃ Γ1(f ) ⊃ ... ⊃ ΓK (f ) = Γ(f ).

Such sets can be defined by setting

Γk(f ) = {x ∈ X : P(f (x ,S) ∈ Ck) ≤ αk},

with αk ≥ αk+1 and Ck ⊂ Ck+1.
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We now assume C = (−∞,T ].

We propose a SMC-based algorithm inspired by the BSS algorithm
[Bect et al. (2017)]

It alternates two distinct phases:

▶ Estimation phase
▶ Define a new quantile set to estimate.
▶ Select the points to evaluate using approximated QSI-SUR criterion.

▶ Resample/move phase
▶ Concentrate the particles towards the previously estimated set

(resampling + MHRW).
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Given αk , Ck and a collection X̃k of particles targeting Γk(f ).
We denote qn,k a density targeting Γk(f ) at step n.

Estimation phase:

▶ Set Ck+1 and αk+1 such that ESS
(

qn,k+1

qn,k
(x)

)
≊ 30%.

▶ Until a stopping condition is satisfied:
▶ Select point (Xn, Sn) according to argmin Jn(x , s)
▶ Evaluate f at (Xn,Sn).

with Jn an approximated QSI-SUR criterion targeting Γk+1(f ).

13 / 23



14/23

Background on QSI Improving the QSI-SUR strategy Numerical experiments Conclusion

Resampling phase:

When stopping condition is met:

▶ Residual resampling of the particles.

▶ Move the particles to Γk+1(f ) according to a Metropolis-Hastings
with Gaussian random walk and target density qn,k+1.

▶ Adapt variance of the steps to target acceptation rate ≊ 25%.
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Figure: Temporary quantile set (blue line), final quantile set (green line),
particles (blue dots) and projection of the initial design (black dots). - n = 0.
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Figure: Temporary quantile set (blue line), final quantile set (green line),
particles (blue dots), projections of the initial design (black dots) and
sequential design (red dots). - n = 4.
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Figure: Temporary quantile set (blue line), final quantile set (green line),
particles (blue dots), projections of the initial design (black dots) and
sequential design (red dots). - n = 5.
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Choice of the target densities:

Natural idea (in the spirit of BSS): set

qn,k(x) = πk
n (x)

= Pn(x ∈ Γk(ξ))

▶ Does not admit a closed-form expression.

▶ Expensive to estimate.

Idea: Let us define the ’quantile’ process, with β ∼ 1:

ξ+n (x , s) = µn(x , s) + Φ−1(β)σn(x , s),

where µn and σn are the posterior mean and standard deviation of ξ.

16 / 23



16/23

Background on QSI Improving the QSI-SUR strategy Numerical experiments Conclusion

Choice of the target densities:

Natural idea (in the spirit of BSS): set

qn,k(x) = πk
n (x)

= Pn(x ∈ Γk(ξ))

▶ Does not admit a closed-form expression.

▶ Expensive to estimate.

Idea: Let us define the ’quantile’ process, with β ∼ 1:

ξ+n (x , s) = µn(x , s) + Φ−1(β)σn(x , s),

where µn and σn are the posterior mean and standard deviation of ξ.

16 / 23



17/23

Background on QSI Improving the QSI-SUR strategy Numerical experiments Conclusion

’Quantile’ process:

ξ+n (x , s) = µn(x , s) + Φ−1(β)σn(x , s) β ∼ 1,

Because C = (−∞,T ], we can interpret P(ξ+n (x ,S) ∈ Ck) as a very
optimistic (low) estimation of Pn(ξ(x ,S) ∈ Ck).

We define the target densities as

qn,k(x) ∝ 1(x ∈ Γ(ξ+n ))

=⇒ The MHRW step becomes a simple constrained Gaussian walk.

17 / 23



17/23

Background on QSI Improving the QSI-SUR strategy Numerical experiments Conclusion

’Quantile’ process:

ξ+n (x , s) = µn(x , s) + Φ−1(β)σn(x , s) β ∼ 1,

Because C = (−∞,T ], we can interpret P(ξ+n (x ,S) ∈ Ck) as a very
optimistic (low) estimation of Pn(ξ(x ,S) ∈ Ck).

We define the target densities as

qn,k(x) ∝ 1(x ∈ Γ(ξ+n ))

=⇒ The MHRW step becomes a simple constrained Gaussian walk.

17 / 23



Table of Contents

Background on Quantile Set Inversion

Improving the QSI-SUR strategy

Numerical experiments

Conclusion



18/23

Background on QSI Improving the QSI-SUR strategy Numerical experiments Conclusion

For illustration purposes, we take interest in two examples functions of
the form

f (x , s) = g(x1, x2) + s
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Figure: Representation of Γ(f ) (red curve) for the examples functions.
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We can first observe that the strategy indeed concentrates the particles
and sample relevant points.
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Figure: Temporary quantile set (blue line), final quantile set (green line),
particles (blue dots), projections of the initial design (black dots) and
sequential design (red dots). - n = 2, 10, 20.
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Figure: Temporary quantile set (blue line), final quantile set (green line),
particles (blue dots), projections of the initial design (black dots) and
sequential design (red dots). - n = 2, 15, 35.
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We compare againt BSS (which focus on the estimation of γ(f )) the
accuracy of the prediction obtained step after step.
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Figure: Median of the proportion of misclassified points vs. number of steps.
(100 runs)

21 / 23



Table of Contents

Background on Quantile Set Inversion

Improving the QSI-SUR strategy

Numerical experiments

Conclusion



22/23

Background on QSI Improving the QSI-SUR strategy Numerical experiments Conclusion

Conclusion:

▶ The proposed method allows to accurately estimate small quantile
sets.

▶ The simple target densities chosen efficiently concentrate the
particles in X towards regions of interest.

▶ The criterion permits ’pseudo-batchs’ sequential designs.

▶ However, this strategy remains computationaly complex.

▶ For now, the QSI-SUR criterion is not adapted to threshold α ∼ 0.
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Thank you for your attention!
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Approximated QSI-SUR criterion:

To reduce the cost, we define Jkn (x , s) as the SUR criterion based on

Qk
n =

∫
X

min(πk
n (x), 1 − πk

n (x))dx ,

where πk
n (x) = Pn

(
x ∈ Γk(ξ̃)

)
and, given a subset of simulation points

Θsim ⊂ X× S,

ξ̃(x , s) = En[ξ(x , s) | ξ(Θsim)].

NB: a close idea is exploited in [Azzimonti et al. (2016)].
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Extension to ’pseudo-batchs’:

Given a batch size parameter b, for 1 ≤ j ≤ b:

▶ Select (Xn+j ,Sn+j) according to QSI-SUR criterion.

▶ Sample a random realization zj of ξ(Xn+j ,Sn+j) according to
Pn+j−1.

▶ Consider zj as value of f (Xn+j ,Sn+j)) until j = b.

When j = b: evaluate f at {(Xn+j ,Sn+j , 1 ≤ j ≤ b)}.
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