
HAL Id: hal-04500872
https://hal.science/hal-04500872v1

Submitted on 12 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LibAFL QEMU: A Library for Fuzzing-oriented
Emulation

Romain Malmain, Andrea Fioraldi, Aurélien Francillon

To cite this version:
Romain Malmain, Andrea Fioraldi, Aurélien Francillon. LibAFL QEMU: A Library for Fuzzing-
oriented Emulation. BAR 2024, Workshop on Binary Analysis Research, colocated with NDSS 2024,
Mar 2024, San Diego (CA), United States. �hal-04500872�

https://hal.science/hal-04500872v1
https://hal.archives-ouvertes.fr

LibAFL QEMU: A Library for
Fuzzing-oriented Emulation

Romain Malmain, Andrea Fioraldi, Aurélien Francillon
EURECOM

{firstname.lastname}@eurecom.fr

Abstract—Despite QEMU’s popularity for binary-only fuzzing,
the fuzzing community faces challenges like the proliferation of
hard-to-maintain QEMU forks and the lack of an up-to-date,
flexible framework well-integrated with advanced fuzzing engines.
This leads to a gap in emulation-based fuzzing tools that are both
maintainable and fuzzing-oriented.

To cope with that, we present LIBAFL QEMU, a library written
in Rust that provides an interface for fuzzing-based emulation by
wrapping around QEMU, in both system and user mode. We focus
on addressing the limitations of existing QEMU forks used in
fuzzing by offering a well-integrated, maintainable and up-to-date
solution. In this paper, we detail the design, implementation, and
practical challenges of LIBAFL QEMU, including its APIs and
fuzzing capabilities and we showcase the library’s use in two case
studies: fuzzing an Android library and a Windows kernel driver.

We compare the fuzzers written for these 2 targets with the
state-of-the-art, AFL++ qemu mode for the Android library, and
KAFL for the Windows driver. For the former, we show that
LIBAFL QEMU outperforms AFL++ qemu mode both in terms
of speed and coverage. For the latter, despite KAFL being built
above hardware-based virtualization instead of emulation, we
show we can run complex targets such as Windows and still
reach comparable performance, with an overhead expected by a
software emulator.

I. INTRODUCTION

Fuzzers are popular tools for software security assessment
both in a software testing perspective, to catch defects before
production, and in an adversarial context, in which a security
researcher targets third-party codebases, in some cases without
having access to the source code.

Fuzzing binary code is an important problem for the security
community, with many challenges to address [9], [18], [37], [53].
For a long time, QEMU [7] has been one of the most popular
choices for binary-only fuzzing, with the pioneering work of
AFL qemu mode [64] to fuzz Linux userspace programs and
TriforceAFL [30] to fuzz operating systems with coverage
feedback. QEMU, the Quick Emulator, is a popular choice
for various reasons in comparison to emulators written from
scratch. In particular, QEMU supports a wide number of
CPU architectures, emulates extensive difficult-to-develop and
maintain hardware, and regularly supports new features, often
before they are available on real hardware [26].

Over the years, many frameworks offered fuzzing capabili-
ties on top of a modified version of QEMU, such as Qiling [3]
or PANDA [19], introducing a growing number of forks of
QEMU that are hard to maintain up to date with upstream. The
set of APIs to control the emulator is often, like in the case of
Qiling, based on low-performance languages, such as Python,
unsuited for fuzzers development, or the framework does not
offer a tight integration with fuzzing engines.

As a result, new improvements in the field of emulation-
based fuzzing with QEMU do not have an up-to-date framework
that bridges the latest versions of QEMU to the world of fuzzing.
So, researchers are often stuck to old versions, or they have to
spend a considerable engineering effort to build custom forks
of QEMU for their specific need [28], [49].

What is missing is a flexible solution that does not require
the user to patch QEMU, a minimal variation to the upstream
codebase so that it can be maintained up to date easily. It
should also be well integrated with a state-of-the-art fuzzing
framework that offers performance and scalability as first-class
design choices.

To address these needs, in this paper, we proposed LIBAFL
QEMU, a library written in Rust that wraps QEMU as a static
library with most of the codebase for instrumentation and
fuzzing written out of the main source tree of QEMU for ease
of maintenance. It is integrated with LIBAFL, the modular
framework for fuzzers development and it is not a standalone
tool. It offers a wide range of instrumentation options and
fuzzing capabilities for both userspace and system emulation
such as a powerful hooking system, a ready-to-use collection of
instrumentation like AddressSanitizer for binaries and support
for snapshot fuzzing.

Our approach puts genericity, modularity, and maintainabil-
ity in the foreground. Treating QEMU as a library makes it
possible to interact with the emulator at various moments of
the execution of the target with minimal overhead. Having
an API to control QEMU, it is no longer necessary to write
C code into QEMU’s codebase for instrumentation. Unlike
PANDA [19], we created a thin wrapper around QEMU’s
codebase to maximize performance and minimize maintenance
hassles: we only needed to modify around 2K lines of code
in the core QEMU code. Although we modified QEMU with
LIBAFL [23] applications in mind, our API could be used for
other purposes.

When compared to the most used solution for userspace
fuzzing, AFL++ [22] QEMU, it not only offers an advantage in
terms of fuzzer development with a customizable interface, but
it can also outperform it in terms of speed, uncovered coverage

Workshop on Binary Analysis Research (BAR) 2024
1 March 2024, San Diego, CA, USA
ISBN 979-8-9894372-0-7
https://dx.doi.org/10.14722/bar.2024.23xxx
www.ndss-symposium.org

and bugs. In this paper, we described a use case on how to fuzz
an Android library with both tools and compared the outcome
of the fuzzing campaigns.

In addition to userspace applications, we make use of
QEMU’s features to the fullest by handling full system targets.
Our implementation not only runs most x86 binaries, just like
with KAFL [51], but it can also execute embedded applications
or full virtual machines that require the most recent versions of
QEMU. We make multiple tools available, greatly facilitating
harness development without compromising performance. We
evaluate this LIBAFL QEMU system emulation feature with
fuzzing Windows 10’s NTFS kernel driver and compare it to
the state-of-the-art - KAFL [51] / Nyx [50].

In short, the contributions of this paper are:

• We developed a library for fuzzing-oriented emulation
with a powerful interface and many different built-in
capabilities;

• We present two use cases on how to fuzz an Android
library and a Windows kernel driver and compare our
library with the state-of-the-art;

• We release the framework and the examples as open-source
software;

II. BACKGROUND

In this section, we introduce binary-only fuzzing and its
usage. Then, we discuss the available solutions for harnessing,
instrumenting and fuzzing binary code.

A. Binary-only Fuzzing

Multiple purposes of fuzzing binary code justify the
adversarial setup in testing software without all the information
that a source-level engine may have.

Firstly, the straightforward reason is that security researchers
need to test third-party software to report vulnerabilities without
working for the company developing the software. But, not
limited to that, companies themselves use binary-only fuzzers
on third-party software to test unmaintained dependencies –
e.g., a library in the supply chain is buggy but the developing
company is now closed – and eventually patch them at the
binary level, or even to test the code produced by the company
itself but that can only compile under complex build systems
or non-conventional compilers. As the last reason, binary-only
fuzzing is also a complement to source-level fuzzing as the
latter is used to test the code in a debug environment, while
the former can be used to test directly the production binaries
that are going to be released and uncover bugs that may stay
silent in the debug environment due to, for instance, different
compiler optimizations.

B. Static or Dynamic Emulation?

Emulation The main purpose of an emulator is to reproduce,
to some extent, the behavior of a given execution environment.
While some emulators can only execute simple snippets
of assembly code, others can accurately reproduce entire
instruction sets for a wide range of architectures. In addition,
more complex emulators must take into account some kind of
environment: the operating system for executables, the hardware

and devices running underneath for full-system emulation, etc.
Many different emulators are still being actively maintained
as of today [7], [8], [11], [29], [33], [41]. One of the most
important features of an emulator, alongside correctness, is
speed: we often expect an emulator to run with reasonable
overhead. Naive approaches are unable to achieve acceptable
execution time for real-world programs. Different approaches
have been developed over the years to address this issue. When
the host and the target architecture are similar, a hardware-
assisted approach like virtualization [56] has shown to be
particularly efficient in getting near-native performances (when
the ISA supports it). However, this technique cannot be used
to emulate foreign architectures. It also restricts the control we
have over the target at runtime, since the hypervisor must wait
for the virtual machine to stop before performing introspection.
On the other hand, software-based emulation can fully control
the target at any point in time. For those reasons, it remains a
relevant option to run and test various programs. We mainly
find two major software-powered emulator families in the wild:
Dynamic Binary Translation and Static Binary Translation.

Dynamic Binary Translation Dynamic Binary Translation
(DBT) is an emulation technique that translates a target binary’s
code into host instructions at runtime. The input code is either
directly translated into native instructions or goes through an
intermediate representation (IR) before the final translation.
Various DBT-based emulators actively maintained as of today
are available [7], [11], [36]. A vast range of techniques have
been developed over the past decades to improve their accuracy
and performance [46]. A widely used method [7], [36] is
JIT compilation: code is translated per chunk at runtime. It
is quite common for many emulators to include some kind
of linking between these chunks to avoid going out of the
target whenever possible. Once the translation is over, the
resulting native code is often cached to allow reuse if the
corresponding code block must be executed again. Ideally,
frequently executed code should be kept in the cache and reused
often. This approach presents multiple advantages compared
to interpretation: execution can be greatly sped up (use of host
hardware features, translation-time optimizations), it is very
flexible (code can be easily analyzed or injected), and it can
make use of runtime information to improve performances
further.

Static Binary Rewriting Contrary to Dynamic Binary
Translation (DBT), Static Binary Translation (SBT) transforms
the target binary before it starts running. A static binary rewriter
takes a binary as input, rewrites it entirely (while applying any
desired transformations), and outputs another executable binary,
potentially for a foreign ISA. The final binary can be run as-is
without the need for any extra work. This technique may be used
to modify a binary whose source code is potentially unavailable
for optimization [42], [57] and hardening [43], [45], [58], [59]
purposes or to port it from one ISA to another [48], [62], [63].
It also makes it possible to add custom instrumentation to any
existing binary. Nowadays, a common and widely used method
is to lift the input binary into the intermediate representation
of a modern compiler like LLVM [16], [17] or GCC [25]. An
SMT solver can thus use many features already implemented by
the compiler (optimizations, instrumentation, cross-architecture
compilation, etc). It is only natural for many fuzzers [16]–[18],
[38], [44], [65] to make use of static binary rewriting.

2

C. Pros and Cons of both Approaches for Fuzzing

SBT is a promising technique for fuzzing: since it instru-
ments the target statically, most of the extra work is done
ahead of time. It can run natively on the target hardware, the
only overhead being the (lightweight) fuzzer’s feedback code
(contrarily to DBT, which must also run its engine at runtime).
As stated in the previous section, SBT can make use of the
full power of modern compilers, further improving the quality
of the final instrumentation.

However, DBT presents multiple advantages that have not
been, to our knowledge, overcome by existing static rewriters.
First, we are unaware of any tool being able to rewrite full-
system binaries for any existing architecture so far. It is a huge
issue, excluding a lot of security-sensitive code. Static rewriters
also tend to focus on a small number of architectures (mostly
x86 and ARM). Meanwhile, many emulators can completely
emulate a lot of architectures, including x86, ARM, MIPS,
PowerPC, RISC-V, etc. As a result, emulator-based fuzzers
can target every supported architecture without any additional
effort. On the other hand, static rewriting often requires writing
complex extra code to interface with a given ISA. In addition, a
lot of static rewriters often presume target binaries enforce some
kind of structure when emulators do not make any assumption.
Emulators also have full access to precious runtime information,
which static rewriters cannot get easily. SBT also faces a
theoretical problem: disassembly is undecidable [27], [60].
Thus, SBT will never be able to rewrite any binary. DBT
is not concerned by this issue since it translates the binary
along the execution flow. Static Binary Translation not only
requires rewriting the target software but also every runtime
dependency (e.g. libraries) it may have. This is especially
true when instrumentation must propagate information like
for tainting [13]. Indeed, not instrumenting some parts of the
code would most likely result in a loss of symbols that would
degrade the quality of the final result. Previous work like
MetaEmu [14], UnicoreFuzz [35], SAFIREFUZZ [53], and
Icicle [15] have already shown that DBT can be used for fuzzing
purposes. However, we believe working with an easy-to-merge
QEMU fork directly, in addition to high speed, would highly
benefit from the community’s efforts: making a performant yet
complete emulator is no easy task.

D. QEMU and the Tiny Code Generator

QEMU [7] (Quick Emulator) is an emulator capable of
both user-mode and full-system emulation. While QEMU user
mode runs Linux and BSD binaries written for any supported
architectures by performing syscall translation, QEMU system
mode emulates an entire machine, including many devices.
QEMU is also able to run multiple threads in parallel. Although
QEMU can make use of hardware-assisted virtualization by
leveraging KVM, we will solely focus on emulation. Emulation
is roughly done in two steps. First, the target code is translated
into an intermediate representation called TCG (Tiny Code
Generator). After passing through the optimization pipeline,
the intermediate code is translated into the host architecture’s
machine language. The compilation unit of TCG is a translation
block (TB), the equivalent of a basic block in most modern
compilers. QEMU has multiple layers of TB caches used
extensively to improve performance drastically. As a result, a
TB is generated on the fly if it is not already cached. QEMU also

links TB together whenever possible to speed up the execution
and links back to the emulator when further translation must
be performed. QEMU also allows the execution of any C code
directly during the target emulation, called helper functions.
They are often used to perform complex operations or change
QEMU’s internal state. QEMU embeds a large number of
device implementations, including various display, audio, and
input drivers. They enable running complex full-system targets
in an environment close to bare-metal hosts. QEMU has a
large and active community, meaning it should continue to be
maintained in the coming years.

III. DESIGN

As discussed in the previous section, the fuzzing community
is still using emulators that are either not at the state of the art
or with limited instrumentation capabilities. It is also common
to find many specialized QEMU forks for a specific fuzzer that
cannot be easily reused or that are quickly abandoned and not
kept up-to-date with the QEMU project.

In this section, we present the design of LIBAFL QEMU,
the library we developed to write emulation-based harnesses
to fuzz Linux user space programs as well as whole systems.

A. General Overview

Writing a library using QEMU as a binary translation engine
for fuzzing was the first practical challenge that we had to
overcome: to transform QEMU, a standalone tool, into a library
and expose its inner workings to Rust.

Thus, qemu-libafl-bridge, our forked version of
QEMU, which we maintain up to date with the master branch
upstream, can produce a shared object instead of a binary.
However, due to the nature of Rust crates in which the libraries
are included statically, we opted to avoid dynamic linking and
so we engineered two helper libraries to build QEMU as a
Rust crate and expose its API to Rust via C FFI bindings (a
way to call native C functions from Rust) [1], for a total of 3
Rust libraries:

• libafl_qemu_build is the library that offers an API
to build QEMU and generate automatically bindings with
bindgen.

• libafl_qemu_sys is the library exposing the C FFI
bindings to Rust. It invokes the libafl_qemu_build
API during the build process, notably responsible for
generating the code available in libafl_qemu_sys.

• libafl_qemu is the main library which has
libafl_qemu_sys as a dependency and wraps
it in a Rust-friendly API with the capabilities that will be
discussed later in the section.

Including libafl_qemu as a dependency in a fuzzer crate
will result in the automatic building and linking of QEMU as a
library using only the cargo build command as any other
Rust crate.

We divided the functionalities of the main library into 3
levels of abstractions in terms of design:

1) The low-level API, exposed by the Emulator singleton.
The API is close to libafl_qemu_sys but wrapped
in safe Rust.

3

TCG Guest Code

Code Hooks
(cmps, load/store, …)

User mode System mode

Syscall Hooks

Thread Hooks

Crash Handling

Fast Snapshot

Soft
MMU Devices

LibAFL Components

Instrumentation

breakpoints

monitor

(sync) backdoor

Harness

Fuzzer QEMU (library)

LibAFL QEMU Process

vCPUs

Fig. 1: LIBAFL QEMU interactions between Fuzzer and
Guest

2) The high-level API is an abstraction built on top of the low-
level ones. This API offers hooking capabilities that can
interact with the LIBAFL fuzzer’s state and with the other
hooks to implement systems like AddressSanitizer.

3) The fuzzing-oriented capabilities, built on top of the low
and high-level APIs, implement a set of pre-made instru-
mentations such as AddressSanitizer or coverage
tracking called instrumentation helpers that are useful to
build a fuzzer without writing any hook from scratch.

LIBAFL QEMU supports any architecture supported by
QEMU for at least the basic functionalities, while many
additional fuzzing-oriented capabilities are available only for
x86, x86 64, ARM, AArch64, MIPS, PPC and Hexagon.
Each architecture has a module defining the registers, the
disassembler and the cdecl calling convention. The target
architecture can be specified either using a feature flag or
an environment variable. Adding an architecture to LIBAFL
QEMU requires around 100 lines of code in C and 300 lines
of code in Rust, and only requires moderate knowledge of the
target architecture.

Besides the architecture, the user can choose to use user
mode or system mode QEMU. Enabling one or the other will
result in some shared APIs being exposed that are specific to
the chosen emulation mode. For instance, listing the memory
mapping is available only in user mode and the TLB (QEMU’s
emulated virtual memory translations from virtual to physical
addresses) query only in system mode.

The different layers of abstraction offer the possibility to
set up a working fuzzer with a few lines of Rust code using
the helpers and also to write an optimized tracer using the
low-level API defining C FFI functions from Rust that are
directly called from the JITted code. The goal of the library is
to provide a DBI-like API tailored for fuzzing using QEMU
and its wide support for different hardware.

B. Low-Level API

The low-level APIs are mainly exposed as part of
Emulator, the singleton instance in Rust that interacts with
QEMU. The main functionalities exposed are the management
of the state of all the running CPUs – that have their
corresponding objects wrapped from C that can be used to
access registers and memory, save and restore the CPU state,
verify the validity of an address and query the TLB in full
system mode – the various API to manage breakpoints and

hooks and the custom GDB commands and hypercalls. Of
course, this component is used also to run the emulator until
the next breakpoint.

In user mode, it is extended with memory mapping retrieval
and modification with an API similar to mmap, guest to host
and backward address translation routines and ELF path and
base address information. An ELF parser is available in the
library to locate symbols and thus set breakpoints by name.

In system mode, the additional facilities allow the user
to query the MMU for physical addresses, and snapshot the
emulator state with the QEMU built-in snapshots and the list
of available devices. QEMU built-in snapshots are too slow to
be used in fuzzing but useful to restore a VM without running
the very slow boot phase every time.

A summary of the interactions between a LIBAFL QEMU
fuzzer and the guest running in QEMU is displayed in Fig. 1.

Hooking System

It is important for an instrumentation engine to allow
the definition of custom hooks for events such as memory
operations or execution of specific instructions. In LIBAFL
QEMU, hooks are inserted as QEMU helpers (introduced in
II-D) with some patched code in the QEMU fork to produce
helpers on the fly, and thus these hooks are functions with a C
ABI. There are several types of hooks in place:

• Instruction hooks: as the name suggests, to hook a specific
instruction given its address;

• Blocks hooks: to run code before the execution of each
basic block in the target;

• Edges hooks: to run code between two basic blocks, for
instance, to log the execution of an edge in the CFG. In
detail, it is implemented by emitting an intermediate block
when chaining 1 two blocks with more than one exit;

• Read and write hooks: executed every memory read or
write;

• Comparisons hooks: executed before every comparison
instruction, carrying information about the operands;

• Thread creation hook: triggered when a new thread is
spawned in user mode;

• Syscalls and post-syscalls hooks: they are triggered before
or after syscalls in user mode and can be used as filters;

• Crash hooks: to hook crashes in the virtual CPU in user
mode;

Specific events happening in the guest trigger hooks that are
executed as callbacks without changing the execution flow of
the program. Thus, they can trigger breakpoints and suspend the
guest execution to give control back to the host-side harness.

To communicate with the host to inform the fuzzer of some
actions to perform, such as the memory ranges that must be
considered for instrumentation, we created a custom instruction:
the “backdoor”. We crafted an instruction that is invalid for
all the architectures supported by QEMU. QEMU interprets it
as a hypercall and uses it to trigger the backdoor hook in the
host.

In addition to the backdoor instruction, we also developed
a similar custom instruction, the sync backdoor. While the

1https://www.qemu.org/docs/master/devel/tcg.html#direct-block-chaining

4

https://www.qemu.org/docs/master/devel/tcg.html#direct-block-chaining

backdoor instruction makes it possible to run Rust code
during the execution of the VM, the sync backdoor stops
the VM and makes the emulator return to the host-side harness.
This difference is necessary because not every action can be
performed while the VM is running, e.g., saving and restoring
a snapshot.

Execution Control

The wide variety of targets in both user mode and system
mode makes harnessing a non-trivial problem to tackle: the
general memory layout can significantly change from one
architecture to another, some systems work with complex virtual
memory systems, the final memory layout can be randomized
at runtime, etc.

When designing how the execution of the guest should be
controlled by the fuzzer, we considered 3 different scenarios and
developed 3 execution control systems for LIBAFL QEMU:

• The user knows in advance at which instruction address
fuzzing should start and stop and thus the fuzzer can tell
the emulator where to give back the control. In this case,
we propose the use of breakpoints to harness the target;

• The addressing model is more complex, and the instruction
address at which fuzzing should start and stop cannot
be easily determined before running the target. This is
commonly the case in systems that randomize the virtual
address space of both the kernel and processes at runtime
(Linux, Windows, MacOS, etc.). Kernel fuzzing perfectly
illustrates this situation where it is usually easy to integrate
custom (userland) code but difficult to determine precisely
at which address this code will be located. In this case,
the guest must inform the emulator to stop and give back
control to the fuzzer. This is the use case of the sync
backdoor, a version of the backdoor designed to stop the
target, while backdoors execute code without going out of
the VM. It makes it possible to perform operations that
can only be done when QEMU does not run, like snapshot
and restore;

• The user wants to dynamically explore the target with a
debugger, and control the fuzzer within the debugging
context as a usability feature. To allow this scenario,
LIBAFL QEMU offers an extensible interface to add
custom monitor commands2 that can be called from
GDB. This allows the user to directly issue commands
to the fuzzer such as snapshot or start fuzzing from the
debugger;

All of these are different ways to do the same thing: drive
the fuzzer’s target. We developed a generic operation handling
mechanism that makes it possible to create commands handled
similarly, regardless of the method used. We also make available
a helper C header file reusable in different harnesses, making
it possible to call a sync backdoor with few lines of code. For
now, x86, x86 64 and ARM architectures are supported by
this helper header file, but we plan to port it to the remaining
target architectures supported by QEMU. However, the rest of
LIBAFL QEMU features fully work with the 7 aforementioned
architectures.

The design of the breakpoint system is different between

2https://qemu-project.gitlab.io/qemu/system/monitor.html

user mode and system mode as the design of QEMU differs a
lot in how the virtual CPUs are executed.

In user mode, we exploit the exception system in TCG
adding a custom exception for our breakpoints. When a
breakpoint is inserted, the block of the target instruction is
retranslated with a callback on the instruction that jumps outside
the CPU loop. Then, for every architecture-specific CPU loop,
we return to the caller – Emulator::run in most cases – if
the exception is our custom breakpoint exception. While being
extremely fast, in user mode, breakpoints are thread-local. For
system mode, as there are at least two threads, one for the
CPUs and one for the events, we reuse the system debug events
in QEMU to append a breakpoint event to the event thread
that will be processed as soon as possible and issue a VM stop
command to freeze all the CPUs of the virtual machine.

C. High-Level API

The high-level API is an abstraction integrated with LIBAFL
built on top of the low-level ones. Using the QemuHooks
object hooks can be registered as Rust functions or closures, not
just C ABI functions, and have the fuzzer state as a parameter.

These hooks can alter the LIBAFL State, which is persistent
across crashes and timeouts, to store relevant information for the
instrumentation. For instance, an edge coverage hook can store
the mapping between the addresses describing an uncovered
edge in the CFG to the unique ID used to log the execution of
such edge in the coverage map.

These hooks also make it possible to interact with the in-
strumentation helpers, which we will introduce in the following
section.

Instrumentation Helpers

The purpose of the instrumentation helpers, represented with
the QemuHelper trait in the library, is to group hooks and data
related to the same implementation of specific instrumentation,
for instance, call stack logging or an emulated filesystem
hooking the relevant system calls.

These helpers live in the QemuHooks object in a compile-
time tuple list that enables queries by type with a compile-time
cost only, like the observers in the core library of LIBAFL [23].
High-level hooks must query the correct helper they are made
for and use it like any other Rust method using the self
parameter.

D. Fuzzing oriented capabilities

On top of the previously discussed API, LIBAFL QEMU
offers some ready-to-use components and instrumentations with
fuzzing capabilities. Here we introduce them starting from the
executor to the snapshot capabilities in both user mode and
system mode.

The QemuExecutor

The Executor component responsible for running
the test harness is an extension of the LIBAFL’s
InProcessExecutor 3. This executor keeps the original

3https://aflplus.plus/libafl-book/core concepts/executor.html#
inprocessexecutor

5

https://qemu-project.gitlab.io/qemu/system/monitor.html
https://aflplus.plus/libafl-book/core_concepts/executor.html#inprocessexecutor
https://aflplus.plus/libafl-book/core_concepts/executor.html#inprocessexecutor

timeout handler to catch SIGALRM and restart the fuzzing
process on timeouts as LIBAFL does with source-based
instrumentation executors. The difference is that this executor
notifies the helpers when the first execution is about to be
performed – so that helpers can do pre-harness initialization
things such as taking a memory snapshot of the guest process –
and the crash handler, in case of user mode, is kept the original
QEMU handler as QEMU uses SIGSEGV to execute RWX
guest code and so not every crashing signal is a real crash
for the fuzzer. In this case, the executor installs a crash hook
that is called from the emulator context and not from a signal
handler allowing both the execution of RWX code and getting
only true positive crashes.

Another executor offered by the library is the
QemuForkExecutor that forks the process before
each fuzz case, making it resistant to destructive changes
such as memory exhaustion in a simple but inefficient way,
superseded by the snapshot helper.

Coverage Tracking

Coverage tracking is one of the important features in
coverage-based fuzzing and requires dedicated instrumenta-
tion. Several helpers in LIBAFL QEMU implement different
strategies.

One helper provides the classic edge coverage using AFL-
like instrumentation with a fixed-size map. It instruments each
block and keeps track of the previously executed block to
create a hash of the edge (the two addresses used) to index a
fixed-size coverage map.

To avoid collisions [10], another helper exists that makes
use of edge hooks and assigns at each new translated edge a
unique ID. This allows not only collision-free edge coverage
but also to have a dynamically growing coverage map, with a
large performance gain in the case of small targets.

This helper has, however, some limitations: (1) like normal
source-level collision-free edge coverage (with SanitizerCover-
age [31]) it cannot track indirect branches; (2) it cannot track
cross-pages branches in system mode because pages can be
remapped by the emulated MMU. Therefore, the AFL-style
edge coverage is preferred for system mode.

CmpLog for Instructions and Routines

CmpLog is an instrumentation introduced by WEIZZ [20]
to log comparison instructions and routines and later used
in AFL++ to implement REDQUEEN [6], which originally
instrumented the target via breakpoints. LIBAFL offers several
observers to collect the values used inside comparison instruc-
tions and as parameters in comparison functions and some of
them are employed for source-based fuzzing.

LIBAFL QEMU implements two helpers that bridge the
LIBAFL observers with an instrumentation of the guest code
to log these values. The helper that logs the instructions
registers a comparison hook and fills the CmpLog map in
a very straightforward way calling the same routines offered
by LIBAFL for source-level fuzzing. The other one, made to
log the parameters of the routines, is quite more complex.

Our library does not offer a direct hooking system for
function calls as they are architecture-specific constructs. To do

so, this helper installs a block generation hook executed before
the translation of each basic block and scans the instructions in
the block, using the capstone [5] disassembler, to find call
instructions and then installs an instruction hook on such
addresses. The instruction hooks are executed before the call
instruction and they are responsible for logging the parameters,
following the calling convention described in each architecture-
specific module.

Callstack Tracing

The very same method used for comparison routines logging
is used by another fuzzing-oriented helper in LIBAFL QEMU,
the call stack tracer. In addition to call instructions, it scans
also for return instructions and it adds additional instruction
hooks to log the return address.

This tracer supports several subcomponents that define how
to use the collected call stack, for instance for context-sensitive
coverage [10], [12] or for debugging purposes.

User mode: Binary-only AddressSanitizer

AddressSanitizer [54] is a compiler-based instrumentation
to catch silent memory corruptions introduced by LLVM. It
instruments the creation of memory objects (on heap, stack,
globals and more) and checks the validity of every memory
access using a shadow memory.

To achieve a similar goal on binaries, AFL++ employs
QASan [21] to catch heap-based silent bugs. QASan is
composed of a runtime library that is injected in the target
that hooks the allocator to report the heap objects and various
common functions to insert validity checks. The other part of
QASan lives in the QEMU code, keeping track of the validity
of the objects thanks to the shadow memory while getting
updates from the guest via a custom syscall.

In user mode LIBAFL QEMU, we implemented a QASan
runtime in Rust and an instrumentation helper that inserts
validity checks at each memory load and store. We utilize the
very same runtime library of AFL++, while reimplementing the
host code in Rust instead of a patch to QEMU itself.

Support for system-wide sanitization is planned for the
future, alongside other sanitizers such as MSan [55].

User mode: Memory Snapshots

In-process fuzzing targets, such as the LIBFUZZER [32]
harnesses, must be stateless so that each execution of the
target function is independent of the previous. In binary-only
targets, this is often impossible as the stateful code cannot be
removed or changed, and so it is common practice to use a
snapshot primitive in this case instead of simply iterating over
the harness.

As previously introduced, LIBAFL QEMU offers the fork
executor that, like AFL, uses fork to snapshot the state of the
host and guest at the same time as a simple snapshot primitive.
This is, as shown by Xu et al. [61], a roadblock for scalability
and cannot work with multiple threads.

To cope with this issue, we created a memory snapshot
helper for user space targets. It works by instrumenting every
memory store operation to track dirty pages with an internal
tree data structure and every memory mapping-related syscall

6

to maintain an overview of what changed during execution.
To roll back the memory snapshot, newly created mappings
are deleted and unmapped and dirty pages are restored. In
addition, the helper can avoid unmapping pages and cache
memory mappings served by mmap in the next execution to
speed up the process and avoid kernel interaction.

System mode: Fast VM Snapshots

As for user mode targets, system mode targets must
completely reset their state to keep each run deterministic.
However, as identified by Schumilo et al. [50], three different
parts must be taken care of to restore the initial state of the target
entirely. We decided to opt for a more modular and architecture-
agnostic approach. In addition, our implementation is stack-
based, allowing for fast saving and restoration of intermediate
states of the target.

System Memory QEMU adopts a hierarchical model to
represent the system’s memory. A priority system allows QEMU
to decide which subsystem should handle a read or a write at
a given address. As a result, a virtual machine may possess
different blocks of memory called RAM Blocks (RB), depend-
ing on the devices of the system. When fuzzing starts, each
RB is completely saved and stored in a hashmap. Leveraging
the SoftMMU, we can, in an architecture-independent manner,
track writes to memory. A push operation saves every dirty page
in a dedicated hashmap (linked to the precedent increment in a
linked list) and flushes the dirty page tracker. Thus, restoring a
target to a previous state consists of restoring every dirty page
by going through the linked list.

Devices Full-system targets heavily rely on multiple
machine-agnostic devices, implementing their internal logic.
Thus, they embed a state that must be restored alongside
the system memory. We leverage existing QEMU’s device
snapshotting in our implementation. At the core of the save &
restore system resides a complex recursive function, serializing
basic types, pointers, and nested structures. It also runs device-
specific code before and after operations. It makes it difficult
to perform a device-independent fast snapshotting system.
Contrary to Nyx [50], we keep it as-is (within a lightweight
wrapper), since it was never a performance bottleneck in our
experiments.

Block Devices QEMU handles Block Devices (BDs)
differently than other more standard devices. BDs mainly refer
to hard memory devices, which are usually much bigger than
the RAM available on a host machine: QCOW2 disks, raw
images, etc. Therefore, treating BD snapshotting like System
Memory snapshotting is not realistic. Instead, we solved the
problem differently: nothing should ever be saved to BDs
directly; instead, it should be written in RAM. The approach
is quite similar to Nyx [50] approach for the basic idea: a
hashmap stores each write to a BD to ensure data integrity.
During reading, QEMU first tries to find the corresponding data
in the hashmap and falls back to the BD if nothing is found.
Besides the performance gains, it conveniently allows opening
the BD in read-only, allowing the reuse of the same BD file
for different QEMU instances. We also started implementing
the push and pop features, to remain consistent with the RAM
snapshot.

Once assembled, those basic blocks result in a target-
independent, host-independent, lightweight full-system incre-

mental snapshot mechanism compatible with the latest version
of QEMU. We plan to make use of incremental snapshotting
for potential future work [34], [52]. We developed our fast VM
snapshotting system with modularity as a priority. We, therefore,
consider potentially unifying Nyx’s snapshotting with our
implementation to also support hardware-based virtualization
accelerators like KVM in the future.

IV. PRACTICAL CHALLENGES

During the development of LIBAFL QEMU we faced sev-
eral practical challenges while trying to design an architecture
that allows writing fuzzers in Rust while easily maintaining
the QEMU fork up to date.

The first challenge was to transform QEMU, a standalone
tool, into a library and use it from Rust. To do this, we modified
the build system to produce a shared object instead of an ELF
executable. In libafl_qemu_build when we invoke the
configure command we replace the linker with a logger keeping
track of the linker invocation and then its output is used by the
library to produce a single object file containing all the QEMU
code with partial linking. The object file is then included in
the Rust linker command statically and the logged command
line is parsed to output the correct Rust build.rs directives
to include the needed libraries.

The other important challenge was to avoid changing too
much the original QEMU codebase to keep the number of
conflicts minimal when merging from a more recent commit
upstream. To do so, we placed all the self-contained code such
as the system snapshot and the hooks in a separate folder in the
QEMU fork and marked the minimal changes to the codebase
with comments encapsulating the changes that we performed
to the original code. By design, we also opted to develop in
Rust as much as possible, for instance, the QASan runtime is
entirely located in the LIBAFL QEMU crate while in AFL++

it is hardcoded as a patch to its QEMU fork.

V. USE CASES

We now show how to write fuzzers with LIBAFL QEMU on
two examples and compare them with AFL++ and KAFL. We
only show here the code relevant to LIBAFL QEMU, complete
code can be found in the artifact, and the baby fuzzer with
LIBAFL tutorial [4] can be used as a reference.

A. Android Library Fuzzing

We first show the usage of LIBAFL QEMU in
user mode for the ARM64 architecture to fuzz the
libimagecodec.quram.so, a well-known closed-source
image parsing library present on Samsung devices. This library
was previously fuzzed by Project Zero [47] with some custom
hacks to QEMU. Later @flankerhqd [24] fuzzed it with a
custom fuzzer based on Unicorn [39] and a different harness,
we base our fuzzer on those ideas.

Harnessing

Using Ghidra, and information from Flanker’s slides [24],
we created two harnesses to fuzz the library. The first
harness reads the image from a file, then gets the ba-
sic information such as image width and height using the
QuramGetImageInfoFromFile2 API and then reads the

7

metadata using QrParseMetadata. The second harness
is more complex and invokes image decoding using the
QrDecodeDNGFile routine. We compiled and linked the
harnesses with the Android toolchain version r21d.

Building a Simple Fuzzer

Fuzzing with a LIBAFL QEMU-based fuzzer starts with
setting up QEMU and executing until our harness executes. We
load the binary, get the harness function address by parsing
its symbols, set a breakpoint to the harness and, execute until
execution reaches the harness. MAGIC_FILENAME is the name
of the file we will use to write our fuzzer-generated input.

1 const MAGIC_FILENAME: &’static str = "SLASTI_MORMANTI";
2 const HARNESS_NAME: &str = "harnessSimple";
3

4 pub fn fuzzer() -> Result<(), Error> {
5 // ...
6

7 let mut args = vec!["qemu".into(), "./harness".into(),
8 MAGIC_FILENAME.into()];
9 let mut env: Vec<(String, String)>

10 = env::vars().collect();
11

12 let emu = Emulator::new(&mut args, &mut env)?;
13

14 let mut elf_buffer = Vec::new();
15 let elf = EasyElf::from_file(emu.binary_path(),
16 &mut elf_buffer)?;
17

18 let harness_ptr = elf
19 .resolve_symbol(HARNESS_NAME, emu.load_addr())
20 .expect(&format!("Symbol {} not found", HARNESS_NAME));
21 println!("{} @ {:#x}", HARNESS_NAME, harness_ptr);
22

23 emu.set_breakpoint(harness_ptr);
24 unsafe { emu.run() };

After reaching the target function, using the low-level API,
we read the return address and snapshot the registers’ state
with CPU::save_state. We set a breakpoint at the return
address, which will be hit when the target function completes
its execution.

1 let ret_addr: u64 = emu.read_reg(Regs::Lr)?;
2 println!("Return address = {:#x}", ret_addr);
3

4 emu.remove_breakpoint(harness_ptr);
5 emu.set_breakpoint(ret_addr);
6

7 let saved_cpu_states: Vec<_> = (0..emu.num_cpus())
8 .map(|i| emu.cpu_from_index(i).save_state())
9 .collect();

We can now write the Rust harness function which: (1)
writes the input to the file and, (2) restores the state of the
registers. This part of the harness calls the part of the harness
in the binary, using the emulator API.

1 let mut harness = |input: &BytesInput| {
2 input.to_file(MAGIC_FILENAME).unwrap();
3

4 unsafe { let _ = emu.run() };
5

6 for (i, s) in saved_cpu_states.iter().enumerate() {
7 emu.cpu_from_index(i).restore_state(s);
8 }
9

10 ExitKind::Ok
11 };

In order to bypass coverage roadblocks we choose to build
a CmpLog-based fuzzer, we follow LIBAFL examples4.

To execute our harness in QEMU, in the context of a
LIBAFL fuzzer, we need to set up an executor with the right

4https://github.com/AFLplusplus/LibAFL/tree/main/fuzzers

instrumentation options. So we create the QemuHooks object
with one helper to trace collision-free edge coverage and another
one to trace cmp instructions for CmpLog.

1 let mut hooks = QemuHooks::new(
2 emu.clone(),
3 tuple_list!(
4 QemuEdgeCoverageHelper::default(),
5 QemuCmpLogHelper::default(),
6),
7);
8

9 let executor = QemuExecutor::new(
10 &mut hooks,
11 &mut harness,
12 tuple_list!(edges_observer, time_observer),
13 &mut fuzzer,
14 &mut state,
15 &mut mgr,
16)
17 .expect("Failed to create QemuExecutor");

All the components of a LIBAFL-based fuzzer, as the reader
can see in the arguments of QemuExecutor::new, must be
created according to the techniques that we want to use, as
described in the LIBAFL book [4].

By tracing syscalls (using QEMU’s -strace option) we
observed calls to rt_sigprocmask and a lot of unnecessary
stdout output. Therefore, as a small optimization, we eliminated
both syscalls using a hook and telling LIBAFL QEMU to skip
those syscalls and return a provided value.

1 hooks.syscalls(Hook::Closure(Box::new(
2 |_, _, sys_num, arg0, _, arg2, _, _, _, _, _| {
3 match sys_num as i64 {
4 SYS_write => {
5 if arg0 == 1 || arg0 == 2 {
6 // arg2 is the ‘count‘ parameter
7 return SyscallHookResult::new(
8 Some(arg2 as u64));
9 }

10 }
11 SYS_rt_sigprocmask => {
12 return SyscallHookResult::new(Some(0));
13 }
14 _ => (),
15 };
16 SyscallHookResult::new(None)
17 })));

We now have a working minimal fuzzer for this Android
library that can be run setting the QEMU_LD_PREFIX envi-
ronment variable to the device root file system from which the
target library comes. This filesystem was obtained from the
vendor’s website. Several further optimizations are possible to
increase the coverage, bug-finding performance and scalability
over multiple cores.

A Better Fuzzer

For an optimized fuzzer, we want to hook the filesystem
syscalls involved in the application (using strace) and
provide the input from memory instead of using a file to avoid
any expensive kernel and device interaction. To increase the
ability to uncover silent memory corruptions, we add binary-
only ASan, and to avoid potential memory leaks and persistent
states of the application across multiple executions, we also
add the memory snapshot helper. To increase the performance,
we also add a filter to locate only the target library and harness
memory regions instrument for coverage and comparisons only
the interesting code.

8

https://github.com/AFLplusplus/LibAFL/tree/main/fuzzers

1 // This calls Emulator::new with the QASan runtime preloaded
2 let (emu, asan) = init_with_asan(&mut args, &mut env)?;
3

4 // ...
5

6 let mut allow_list = vec![];
7 for region in emu.mappings() {
8 if let Some(path) = region.path() {
9 if path.contains("imagecodec") ||

10 path.contains("harness") {
11 allow_list.push(region.start()..region.end());
12 }
13 }
14 }
15 let filter =

QemuInstrumentationFilter::AllowList(allow_list);
16

17 let mut hooks = QemuHooks::new(
18 emu.clone(),
19 tuple_list!(
20 QemuEdgeCoverageHelper::new(filter.clone()),
21 QemuFilesystemBytesHelper::default(),
22 QemuCmpLogHelper::new(filter.clone()),
23 QemuCmpLogRoutinesHelper::new(filter.clone()),
24 QemuSnapshotHelper::new(),
25 QemuAsanHelper::new(asan, filter.clone(),
26 QemuAsanOptions::Snapshot),
27),
28);

Note that the QemuFilesystemBytesHelper is a user-
written helper for this fuzzer. It hooks the various filesystem
syscalls used by the target and emulates them in memory to
provide the fuzzer test case without involving the disk thus
enhancing scalability. Only a few syscalls are implemented,
mostly returning constants gathered from strace, but a
generic helper emulating an entire in-memory filesystem is
possible and planned.

Comparison with AFL++ QEMU

The very same harness can be used with AFL++ and
its QEMU mode. In this section, we compare two similar
setups built with AFL++ with our two fuzzers testing the
QrDecodeDNGFile function with a simple DNG image as
seed. Firstly, we set the AFL++’s environment variables to
achieve persistent mode looping on the harnessDecode
harness function we wrote, then in the second fuzzer we add
QEMU AddressSanitizer [21] and fork-mode to replicate the
user space memory snapshot capabilities of our second fuzzer.

We let the simple fuzzers in persistent mode run for 48h,
the results are reported in Table I. No fuzzer found any crashing
test case, but the LIBAFL QEMU fuzzer outperforms the other
in terms of speed (2.86x) and block coverage over the harness
and the target libraries of the saved corpus (1.28x) while having
saved much fewer test cases as the collision-free coverage is
less sensitive compared to the AFL++ one.

TABLE I: First user space fuzzing campaign over 48h.

Fuzzer Block Coverage Corpus Size Execs/s
LIBAFL QEMU 8071 4374 6.6k
AFL++ 6277 7462 2.3k

In a second round, we took the corpus produced by both
fuzzers to continue the campaign, but we added the sanitization
and snapshot capabilities to both. The results of another 48h
campaign are reported in Table II. This time LIBAFL QEMU
is 1.92x faster than AFL++, a higher but similar block coverage
(1.02x) and 2 bugs were found while AFL++ found none. The
corpus size is reduced when compared to the first run, even if

the previous corpus was used as initial input. This is due to
the downgrade in terms of speed, causing many inputs in the
initial corpus to be classified as timeouts and thus not included
in the fuzzer corpus.

TABLE II: Second user space fuzzing campaign over 48h.
Fuzzer Block Coverage Corpus Size Execs/s Bugs
LIBAFL QEMU 8272 4063 248 2
AFL++ 8121 7855 72 0

The bugs found are one read and one write heap overflow
on heap chunks respectively allocated in the DNG decoder
parser and in the harness.

From this small experiment, we can devise that LIBAFL
QEMU is not only on par with the state-of-the-art in user space
emulation but it can be used to have an improved fuzzing
performance thanks to its speed and the advanced fuzzing
algorithms available in LIBAFL.

B. Windows Kernel Fuzzing

In our second test case, we fuzz the NTFS partition parser
in the Windows 10 kernel. NTFS has already been successfully
fuzzed in the past [51]. We tried to reproduce the same
experimental setup. Thus, the harnessing methodology is close
to the one used in the KAFL [51] experiment. Every experiment
from this section was run on a desktop machine with an Intel®
Core™ i5-1140 @ 4.40 GHz and 32GB of RAM.

Windows 10 in QEMU

We set up Windows 10 on the x86-64 architecture for
fuzzing using the latest available version online (Windows 10
22H2 build 19045.3636 at the time of writing) using QEMU.
To fully boot, the VM requires around 10 minutes on 1 vCPU
with 8Gio for memory on our virtual machine. The harness
was developed on another Windows VM and exported to the
target VM. The disks used to store Windows files are used in
snapshot mode to avoid polluting the disk across runs.

Fuzzing methodology

The methodology we follow to fuzz the NTFS driver used
in Windows 10 is conceptually rather simple: the harness uses
the fuzzing input to open a VHD (Virtual Hard Disk) that will
be handled like a normal disk. Since VHDs must be opened
from the filesystem to be used, we use a RAM Disk to write
the fuzzing input on it to speed up the process. The newly
created VHD is then opened and mounted using the win32
API. By using legitimate VHD images in the corpus, we can
quickly make the fuzzer test interesting parts of the driver.

Getting a working Harness in practice

The LIBAFL harness has been developed using the sync
backdoor feature. Setting breakpoints at the right location for a
fully emulated Windows image is troublesome: it is necessary to
retrieve the page corresponding to the harness process, resolve
the physical address, and finally set the breakpoint. These steps
would be hard to avoid if we could not use our harness in the
VM. Since we can inject our own code, we can make use of
backdoors instead.

The harnessing part of the fuzzer is simple to develop with
the default exit handler: after setting up the emulator with

9

the desired snapshot method and exit manager, we run the
run handle method and let it do all the low-level work for us.

1 let emu_snapshot_manager = FastSnapshotBuilder::new(false);
2 let emu_exit_handler:

StdEmuExitHandler<FastSnapshotBuilder> =
StdEmuExitHandler::new(emu_snapshot_manager); //
Create an exit handler. We choose the default one.

3 let emu = Emulator::new(&args, &env, emu_exit_handler)?;
4

5 match emu.run_handle(input) { // Run and get the result
given by the exit handler.

6 Ok(handler_result) => match handler_result {
7 HandlerResult::EndOfRun(exit_kind) => exit_kind, //

The current run finished
8 HandlerResult::Interrupted => { // Interrupted by

some signal.
9 std::process::exit(0);

10 },
11 _ => panic!()
12 },
13 Err(handler_error) => panic!() // The exit handler

returned an error
14 }

Most of the time, returning from an emulation run handled
by an exit handler will terminate the current run and return
an exit kind to the fuzzer (e.g., normal exit, crash, timeout).
The sync backdoor provides a higher-level and rusty way to
interact with the VM and removes the breakpoint’s boilerplate
code.

The default exit handler (replaceable with a custom one)
will take care of every command sent by the target-side harness
(including snapshot management, paging filtering).

From the target harness point of view, the use of the exit
is rather simple: import the LIBAFL header file containing all
the necessary code to execute a sync backdoor and use the API
as desired.

The target side of the harness communicating with the
fuzzer adds a lightweight code overhead.

1 int main() {
2 // Target-specific initialization code.
3 target_init();
4

5 // Signal to LibAFL the harness will start from now on.
6 // Snapshot also happens here.
7 uint64_t len = _libafl_exit_call2(LIBAFL_EXIT_START_VIRT,

(UINT64) input, INPUT_MAX_SIZE);
8

9 // Run the target and report the outcome (either ok or
10 // crash).
11 if (target_run(input, len)) {
12 _libafl_exit_call1(LIBAFL_EXIT_END, LIBAFL_EXIT_END_OK);
13 } else {
14 _libafl_exit_call1(LIBAFL_EXIT_END,

LIBAFL_EXIT_END_CRASH);
15 }
16 }

This harnessing method makes things simpler whenever it
is possible to run custom code in the VM. If the target cannot
be modified easily or the start address can be easily identified,
the breakpoint method may be a better option.

The same exit handler and the same commands can be used
both for synchronous backdoors and breakpoints. Thus, we
decorrelate handling logic from the harnessing method, making
most of the code reusable.

The target init function mainly sets things up to prepare the
RAM Disk. It also sends the address range used for feedback to
the fuzzer: we provided a set of Windows drivers from which
we want to collect the feedback (e.g., Ntfs.sys, partmgr.sys,

mountmgr.sys), merged the address ranges at which these
modules virtually reside into one bigger range and added it in
the allowed address range.

The target code running in the VM creates a file on the
RAM Disk, writes the fuzzer’s payload on it and tries to mount
the VHD and assign it a drive letter.

1 /// Target code. Simplified for brevity.
2 void target_run(uint8_t* buf, uint64_t len) {
3 DWORD lenWritten;
4 HANDLE vhdHandle;
5 VIRTUAL_STORAGE_TYPE storageType = ...;
6 OPEN_VIRTUAL_DISK_PARAMETERS openParameters = ...;
7 WCHAR physicalPath[MAX_PATH];
8 DWORD pathSize = MAX_PATH;
9

10 // Create Virtual Disk file.
11 HANDLE hVhdFile = CreateFile(TARGET_VHD_PATH_W,

GENERIC_READ | GENERIC_WRITE, ...);
12

13 // Write payload in newly created file
14 WriteFile(hVhdFile, buf, (DWORD) len, &lenWritten, NULL);
15

16 // Open the file as Virtual Disk.
17 OpenVirtualDisk(&storageType, TARGET_VHD_PATH_W,

VIRTUAL_DISK_ACCESS_ATTACH_RW |
VIRTUAL_DISK_ACCESS_GET_INFO,OPEN_VIRTUAL_DISK_FLAG_NONE,
..., &vhdHandle);

18

19 // Attach to the opened Virtual Disk.
20 AttachVirtualDisk(vhdHandle, ...);
21

22 // Get the path of the new disk
23 GetVirtualDiskPhysicalPath(vhdHandle, &pathSize,

physicalPath);
24

25 // Define the service
26 DefineDosDevice(DDD_RAW_TARGET_PATH, L"R:", physicalPath);
27

28 // Detach the disk
29 DetachVirtualDisk(vhdHandle,

DETACH_VIRTUAL_DISK_FLAG_NONE, 0);
30

31 // Cleanup
32 CloseHandle(vhdHandle);
33 }

Listing 1: Harness code for the Windows Driver.

Fuzzer

The LIBAFL [23] framework makes it easy to assemble our
QEMU harnessing techniques with existing well-tested fuzzing
logic. The feedback, as discussed above, can consist of either
block or edge coverage. It is also possible to instrument the TB
and the edges with the hook interface in Rust or by injecting
it in the TCG IR directly.

The rest of the fuzzer’s configuration and code are provided
by default in LIBAFL.

Challenges of Windows 10 Fuzzing

Fuzzing the Windows NTFS Kernel Module, and more
generally, Windows Kernel Fuzzing, comes with various
challenges.

• Toolchain Although a Linux-compatible toolchain for
Windows compilation exists [2], it is not an ideal drop-in
replacement for Visual Studio. Indeed, some parts are
outdated (like the virtdisk.h header file) and thus cannot
compile any possible target without changing the toolchain
itself (with the additional bugs it could introduce). We
thus decided to keep Visual Studio to develop the harness.
It makes developing the target incrementally complicated
and requires extra work.

10

• Windows low-level API Windows is infamous for its
difficult-to-use low-level API [40], but provides instead a
very stable DLL API. Indeed, finding which system calls
perform the desired action was not obvious and required
multiple attempts.

• Setup with QEMU-TCG Setting up Windows for TCG is
also non-trivial. Unfortunately, using a Virtual Machine set
up with QEMU-KVM did not work on our side, forcing us
to install everything with TCG (and its inherent slowness).
It did not work on the first attempt, and multiple tests
were necessary until we could use Windows correctly.

• Getting Kernel feedback address range Determining
which address range should be used as feedback was also
challenging. Since KAFL [51] does not support many
ranges, we compressed everything into one big address
range for both experiments (for fairness). We also had
to make some guesses on which kernel modules were
involved in installing a VHD. It is not a problem for our
experiment objective (showing it works as intended and is
not too slow), but it becomes critical for more ambitious
fuzzing campaigns.

Comparison with KAFL

We ran the previously presented fuzzer for 10 hours on 1
core and compared it with the state-of-the-art for this kind of
fuzzing, KAFL [51] / Nyx [50] with the latest version available
as of this writing. Our main objective was to showcase we
could make a complex full-system target run correctly. We
compared the performances in terms of executions per second
of our fuzzer in various cases with KAFL. We finally made
a comparison in terms of performance between the already
implemented QEMU snapshot implementation and our fast
VM snapshot method. The results are reported in Table III.

TABLE III: Windows NTFS Driver campaign over 10h.
Fuzzer Execs / Sec Fast VM Snapshot
KAFL 0.76 /
LIBAFL 0.016 ✗

LIBAFL 0.017 ✓

We first note that LIBAFL QEMU can perform fewer
executions per second compared to KAFL. This result was
expected since KAFL makes full use of hardware virtualization
thanks to QEMU-KVM, while LIBAFL QEMU runs QEMU
in TCG (emulation) mode. We believe the difference remains
within an acceptable margin considering this (∼50x slowdown).

Finally, we compare the concrete (average) difference
between QEMU Snapshot and Fast VM Snapshot in this
experiment both when the snapshot is created (Save) and when
the snapshot is restored (Restoration).

TABLE IV: Windows NTFS Driver Snapshots performance.
Snapshot Save Restoration
QEMU SNAPSHOT 137.52s 1.877
FAST SNAPSHOT 1.36s 0.163s

The results, reported in Table IV, show that our Fast
VM Snapshot implementation outperforms QEMU’s snapshot
mechanism by at least an order of magnitude in this experiment
in both cases. Although snapshot creation performance is not
so important here (since it is performed only once), snapshot
restoration must be as fast as possible because it will happen

at each run. We explain the small difference between QEMU
snapshot and LIBAFL QEMU snapshot in Table III by the huge
complexity of the target, which is most likely the performance
bottleneck here. Thus, even a few seconds to restore the target
does not weigh much compared with the target’s runtime (∼60s).
As a result, we believe our snapshot implementation makes a
bigger difference for less extreme targets.

VI. CONCLUSION

In this paper, we presented LIBAFL QEMU, a new library
for fuzzing with emulation based on QEMU. It is designed to
allow a flexible usage of the underlying emulator to run a wide
variety of targets, with ready-to-use instrumentations available
for your fuzzing needs. Fuzzers written with LIBAFL QEMU
are state-of-the-art and perform similarly or even better than
the available tools.

We share LIBAFL QEMU as free and open-source software
with the hope that it will be useful to advance the state of
binary-only fuzzing with new tools built on top of this library.
It can be downloaded as part of the LIBAFL repository at
https://github.com/AFLplusplus/LibAFL.

Artifacts are provided to improve replicability and to be used
as examples by practitioners. The associated repository is avail-
able at https://github.com/AFLplusplus/libafl qemu artifacts.

ACKNOWLEDGMENT

Above all, we want to thank the community around the
AFL++ organization. A special thanks to the friends involved
in the development of the other parts of LIBAFL and AFL++,
Dominik Maier, Dongjia Zhang, Addison Crump, s1341, Marc
Heuse and all the contributors of these amazing OSS projects.
We want also to thank the anonymous reviewers and Slasti
Mormanti for their suggestions to improve the final version
of this paper. This work has benefited from a government
grant managed by the National Research Agency under France
2030 with reference “ANR-22-PECY-0009”. This work was
supported in part by Beyond5G project. This material is based
upon work supported by the Air Force Office of Scientific
Research under award number FA8655-20-1-7048. Finally, part
of this work was performed while one of the authors was an
intern at Intel Labs.

REFERENCES

[1] “Foreign function interface,” https://doc.rust-lang.org/nomicon/ffi.html,
[Online; accessed March 6, 2024].

[2] “MinGW-w64 - a complete runtime environment for gcc & llvm for 32
and 64 bits windows,” https://www.mingw-w64.org/, [Online; accessed
March 6, 2024].

[3] “Qiling Framework,” [Online; accessed March 6, 2024]. [Online].
Available: https://qiling.io/

[4] Andrea Fioraldi and Dominik Maier and s1341 and Dongjia Zhang and
Addison Crump, “A Simple LibAFL Fuzzer,” https://aflplus.plus/libafl-
book/baby fuzzer.html?highlight=Fuzzer#a-simple-libafl-fuzzer, 2020,
[Online; accessed March 6, 2024].

[5] Q. N. Anh, “Capstone: Next generation disassembly frame-
work,” https://www.blackhat.com/us-14/briefings.html#capstone-next-
generation-disassembly-framework, [Online; accessed March 6, 2024].

[6] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz,
“REDQUEEN: fuzzing with input-to-state correspondence,” in 26th
Annual Network and Distributed System Security Symposium, NDSS,
2019. [Online]. Available: https://www.ndss-symposium.org/ndss-paper/
redqueen-fuzzing-with-input-to-state-correspondence/

11

https://github.com/AFLplusplus/LibAFL
https://github.com/AFLplusplus/libafl_qemu_artifacts
https://github.com/AFLplusplus/LibAFL/graphs/contributors
https://doc.rust-lang.org/nomicon/ffi.html
https://www.mingw-w64.org/
https://qiling.io/
https://aflplus.plus/libafl-book/baby_fuzzer.html?highlight=Fuzzer#a-simple-libafl-fuzzer
https://aflplus.plus/libafl-book/baby_fuzzer.html?highlight=Fuzzer#a-simple-libafl-fuzzer
https://www.blackhat.com/us-14/briefings.html#capstone-next-generation-disassembly-framework
https://www.blackhat.com/us-14/briefings.html#capstone-next-generation-disassembly-framework
https://www.ndss-symposium.org/ndss-paper/redqueen-fuzzing-with-input-to-state-correspondence/
https://www.ndss-symposium.org/ndss-paper/redqueen-fuzzing-with-input-to-state-correspondence/

[7] F. Bellard, “Qemu, a fast and portable dynamic translator,” in Proceedings
of the Annual Conference on USENIX Annual Technical Conference, ser.
ATEC ’05. Berkeley, CA, USA: USENIX Association, 2005, pp. 41–41.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1247360.1247401

[8] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5
simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, p. 1–7, aug
2011. [Online]. Available: https://doi.org/10.1145/2024716.2024718

[9] M. Boehme, C. Cadar, and A. Roychoudhury, “Fuzzing: Challenges and
reflections,” IEEE Software, vol. 38, no. 03, pp. 79–86, may 2021.

[10] P. Borrello, A. Fioraldi, D. Cono D’Elia, D. Balzarotti, L. Querzoni,
and C. Giuffrida, “Predictive context-sensitive fuzzing,” in NDSS 2024,
Network and Distributed System Security (NDSS) Symposium, 26
February-1 March 2024, San Diego, CA, USA, San Diego, 2024.

[11] E. Bugnion, S. Devine, M. Rosenblum, J. Sugerman, and E. Y. Wang,
“Bringing virtualization to the x86 architecture with the original vmware
workstation,” ACM Trans. Comput. Syst., vol. 30, no. 4, nov 2012.
[Online]. Available: https://doi.org/10.1145/2382553.2382554

[12] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled search,”
in 2018 IEEE Symposium on Security and Privacy (SP), 2018, pp.
711–725.

[13] S. Chen, Z. Lin, and Y. Zhang, “SelectiveTaint: Efficient data
flow tracking with static binary rewriting,” in 30th USENIX Security
Symposium (USENIX Security 21). USENIX Association, Aug. 2021,
pp. 1665–1682. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity21/presentation/chen-sanchuan

[14] Z. Chen, S. L. Thomas, and F. D. Garcia, “Metaemu: An
architecture agnostic rehosting framework for automotive firmware,”
in Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 515–529. [Online].
Available: https://doi.org/10.1145/3548606.3559338

[15] M. Chesser, S. Nepal, and D. C. Ranasinghe, “Icicle: A re-designed
emulator for grey-box firmware fuzzing,” in Proceedings of the
32nd ACM SIGSOFT International Symposium on Software Testing and
Analysis, ser. ISSTA 2023. New York, NY, USA: Association
for Computing Machinery, 2023, p. 76–88. [Online]. Available:
https://doi.org/10.1145/3597926.3598039

[16] A. Di Federico, M. Payer, and G. Agosta, “Rev.Ng: A unified
binary analysis framework to recover CFGs and function boundaries,”
in Proceedings of the 26th International Conference on Compiler
Construction, ser. CC 2017. New York, NY, USA: Association
for Computing Machinery, 2017, p. 131–141. [Online]. Available:
https://doi.org/10.1145/3033019.3033028

[17] A. Dinaburg and A. Ruef, “Mcsema: Static translation of x86 instructions
to llvm,” in ReCon 2014 Conference, Montreal, Canada, 2014.

[18] S. Dinesh, N. Burow, D. Xu, and M. Payer, “Retrowrite: Statically
instrumenting cots binaries for fuzzing and sanitization,” in 2020 IEEE
Symposium on Security and Privacy (SP), 2020, pp. 1497–1511.

[19] B. Dolan-Gavitt, T. Leek, J. Hodosh, and W. Lee, “Tappan zee
(north) bridge: mining memory accesses for introspection,” in 2013
ACM SIGSAC Conference on Computer and Communications Security,
CCS’13, Berlin, Germany, November 4-8, 2013, A. Sadeghi, V. D.
Gligor, and M. Yung, Eds. ACM, 2013, pp. 839–850. [Online].
Available: https://doi.org/10.1145/2508859.2516697

[20] A. Fioraldi, D. C. D’Elia, and E. Coppa, “WEIZZ: Automatic grey-box
fuzzing for structured binary formats,” in Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ser. ISSTA 2020. New York, NY, USA: Association for Computing
Machinery, 2020. [Online]. Available: https://doi.org/10.1145/3395363.
3397372

[21] A. Fioraldi, D. C. D’Elia, and L. Querzoni, “Fuzzing binaries for
memory safety errors with QASan,” in 2020 IEEE Secure Development
Conference (SecDev), 2020.

[22] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++: Combining
incremental steps of fuzzing research,” in 14th USENIX Workshop on
Offensive Technologies (WOOT 20). USENIX Association, Aug. 2020.

[23] A. Fioraldi, D. Maier, D. Zhang, and D. Balzarotti, “LibAFL: A
Framework to Build Modular and Reusable Fuzzers,” in Proceedings of

the 29th ACM conference on Computer and communications security
(CCS), ser. CCS ’22. ACM, November 2022.

[24] Flanker, “3rd Real World CTF: Blowing the cover of android binary
fuzzing,” https://www.youtube.com/watch?v=y05uja2o6GE, 2021, [On-
line; accessed March 6, 2024].

[25] N. Hasabnis and R. Sekar, “Lifting assembly to intermediate
representation: A novel approach leveraging compilers,” in Proceedings
of the Twenty-First International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS ’16.
New York, NY, USA: Association for Computing Machinery, 2016, p.
311–324. [Online]. Available: https://doi.org/10.1145/2872362.2872380

[26] R. Henderson, “[Qemu-arm] [PATCH 00/17] target/arm: Implement
ARMv8.5-MemTag,” https://lists.gnu.org/archive/html/qemu-arm/2019-
01/msg00182.html, [Online; accessed March 6, 2024].

[27] E. F. (https://www.labri.fr/perso/fleury/), “Why is disassem-
bly not an exact science?” Reverse Engineering Stack
Exchange, uRL:https://reverseengineering.stackexchange.com/a/15616
(version: 2024-01-05). [Online]. Available: https://reverseengineering.
stackexchange.com/a/15616

[28] S. Huster, M. Hollick, and J. Classen, “To boldly go where no fuzzer
has gone before: Finding bugs in linux’ wireless stacks through
virtio devices,” in 2024 IEEE Symposium on Security and Privacy (SP).
Los Alamitos, CA, USA: IEEE Computer Society, may 2024, pp.
24–24. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/
SP54263.2024.00024

[29] Imperas, “Ovpsim,” https://www.ovpworld.org/technology ovpsim, [On-
line; accessed March 6, 2024].

[30] T. N. Jesse Hertz, “TriforceAFL,” https://github.com/nccgroup/
TriforceAFL, [Online; accessed March 6, 2024].

[31] LLVM, “SanitizerCoverage,” https://clang.llvm.org/docs/
SanitizerCoverage.html, [Online; accessed March 6, 2024].

[32] LLVM Project, “libFuzzer – a library for coverage-guided fuzz test-
ing.” https://llvm.org/docs/LibFuzzer.html, Sep. 2018, [Online; accessed
March 6, 2024].

[33] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A full
system simulation platform,” Computer, vol. 35, no. 2, pp. 50–58, 2002.

[34] D. Maier, O. Bittner, M. Munier, and J. Beier, “Fitm: Binary-only
coverage-guided fuzzing for stateful network protocols,” in Workshop
on Binary Analysis Research (BAR), 2022, 2022.

[35] D. Maier, B. Radtke, and B. Harren, “Unicorefuzz: On the viability
of emulation for kernelspace fuzzing,” in 13th USENIX Workshop
on Offensive Technologies (WOOT 19). Santa Clara, CA: USENIX
Association, Aug. 2019. [Online]. Available: https://www.usenix.org/
conference/woot19/presentation/maier

[36] D. Mihocka, S. Shwartsman, and I. Corp, “Virtualization without direct
execution or jitting: Designing a portable virtual machine infrastructure,”
2008. [Online]. Available: https://api.semanticscholar.org/CorpusID:
15838836

[37] M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D. Balzarotti,
“What you corrupt is not what you crash: Challenges in fuzzing
embedded devices,” in NDSS 2018, Network and Distributed Systems
Security Symposium, 18-21 February 2018, San Diego, CA, USA, San
Diego, United States, 02 2018. [Online]. Available: http://www.eurecom.
fr/publication/5417

[38] S. Nagy, A. Nguyen-Tuong, J. D. Hiser, J. W. Davidson, and M. Hicks,
“Breaking through binaries: Compiler-quality instrumentation for better
binary-only fuzzing,” in 30th USENIX Security Symposium (USENIX
Security 21). USENIX Association, Aug. 2021, pp. 1683–1700.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity21/
presentation/nagy

[39] A. Q. Ngyuen and H. V. Dang. (2020) Unicorn: Next generation cpu
emulator framework. [Online]. Available: http://www.unicorn-engine.
org/BHUSA2015-unicorn.pdf

[40] D. Nisi, “Unveiling and mitigating common pitfalls in malware analysis,”
Ph.D. dissertation, 2021, thèse de doctorat dirigée par Dacier, Marc
Informatique, télécommunications et électronique Sorbonne université
2021. [Online]. Available: http://www.theses.fr/2021SORUS528

[41] Oracle, “Oracle vm virtualbox,” https://www.virtualbox.org/, [Online;
accessed March 6, 2024].

12

http://dl.acm.org/citation.cfm?id=1247360.1247401
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2382553.2382554
https://www.usenix.org/conference/usenixsecurity21/presentation/chen-sanchuan
https://www.usenix.org/conference/usenixsecurity21/presentation/chen-sanchuan
https://doi.org/10.1145/3548606.3559338
https://doi.org/10.1145/3597926.3598039
https://doi.org/10.1145/3033019.3033028
https://doi.org/10.1145/2508859.2516697
https://doi.org/10.1145/3395363.3397372
https://doi.org/10.1145/3395363.3397372
https://www.youtube.com/watch?v=y05uja2o6GE
https://doi.org/10.1145/2872362.2872380
https://lists.gnu.org/archive/html/qemu-arm/2019-01/msg00182.html
https://lists.gnu.org/archive/html/qemu-arm/2019-01/msg00182.html
https://reverseengineering.stackexchange.com/a/15616
https://reverseengineering.stackexchange.com/a/15616
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00024
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00024
https://www.ovpworld.org/technology_ovpsim
https://github.com/nccgroup/TriforceAFL
https://github.com/nccgroup/TriforceAFL
https://clang.llvm.org/docs/SanitizerCoverage.html
https://clang.llvm.org/docs/SanitizerCoverage.html
https://llvm.org/docs/LibFuzzer.html
https://www.usenix.org/conference/woot19/presentation/maier
https://www.usenix.org/conference/woot19/presentation/maier
https://api.semanticscholar.org/CorpusID:15838836
https://api.semanticscholar.org/CorpusID:15838836
http://www.eurecom.fr/publication/5417
http://www.eurecom.fr/publication/5417
https://www.usenix.org/conference/usenixsecurity21/presentation/nagy
https://www.usenix.org/conference/usenixsecurity21/presentation/nagy
http://www.unicorn-engine.org/BHUSA2015-unicorn.pdf
http://www.unicorn-engine.org/BHUSA2015-unicorn.pdf
http://www.theses.fr/2021SORUS528
https://www.virtualbox.org/

[42] M. Panchenko, R. Auler, B. Nell, and G. Ottoni, “Bolt: A practical
binary optimizer for data centers and beyond,” 2018.

[43] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smashing the
gadgets: Hindering return-oriented programming using in-place code
randomization,” in 2012 IEEE Symposium on Security and Privacy,
2012, pp. 601–615.

[44] E. Pauley, G. Tan, D. Zhang, and P. McDaniel, “Performant binary
fuzzing without source code using static instrumentation,” in 2022 IEEE
Conference on Communications and Network Security (CNS), 2022, pp.
226–235.

[45] M. Prasad, “A binary rewriting defense against stack-based buffer over-
flow attacks,” in 2003 USENIX Annual Technical Conference (USENIX
ATC 03). San Antonio, TX: USENIX Association, Jun. 2003. [On-
line]. Available: https://www.usenix.org/conference/2003-usenix-annual-
technical-conference/binary-rewriting-defense-against-stack-based

[46] M. Probst, “Dynamic binary translation,” in UKUUG Linux Developer’s
Conference, vol. 2002, 2002.

[47] Project Zero, “MMS Exploit Part 1: Introduction to the Samsung Qmage
Codec and Remote Attack Surface,” https://googleprojectzero.blogspot.
com/2020/07/mms-exploit-part-1-introduction-to-qmage.html, 2020,
[Online; accessed March 6, 2024].

[48] R. C. O. Rocha, D. Sprokholt, M. Fink, R. Gouicem, T. Spink,
S. Chakraborty, and P. Bhatotia, “Lasagne: A static binary translator
for weak memory model architectures,” in Proceedings of the 43rd
ACM SIGPLAN International Conference on Programming Language
Design and Implementation, ser. PLDI 2022. New York, NY, USA:
Association for Computing Machinery, 2022, p. 888–902. [Online].
Available: https://doi.org/10.1145/3519939.3523719

[49] T. Scharnowski, N. Bars, M. Schloegel, E. Gustafson, M. Muench,
G. Vigna, C. Kruegel, T. Holz, and A. Abbasi, “Fuzzware: Using precise
MMIO modeling for effective firmware fuzzing,” in 31st USENIX
Security Symposium (USENIX Security 22). Boston, MA: USENIX
Association, Aug. 2022, pp. 1239–1256. [Online]. Available: https://
www.usenix.org/conference/usenixsecurity22/presentation/scharnowski

[50] S. Schumilo, C. Aschermann, A. Abbasi, S. Wörner, and T. Holz, “Nyx:
Greybox hypervisor fuzzing using fast snapshots and affine types,” in
30th USENIX Security Symposium (USENIX Security 21). Vancouver,
B.C.: USENIX Association, Aug. 2021. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity21/presentation/schumilo

[51] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz,
“kAFL: Hardware-assisted feedback fuzzing for OS kernels,” in Pro-
ceedings of the 26th USENIX Conference on Security Symposium, ser.
SEC’17. USA: USENIX Association, 2017, pp. 167–182.

[52] S. Schumilo, C. Aschermann, A. Jemmett, A. Abbasi, and T. Holz,
“Nyx-net: Network fuzzing with incremental snapshots,” in Proceedings
of the Seventeenth European Conference on Computer Systems, ser.
EuroSys ’22, 2022.

[53] L. Seidel, D. Maier, and M. Muench, “Forming faster firmware fuzzers,”
in USENIX 2023, 2023.

[54] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
sanitizer: A fast address sanity checker,” in Proceedings of the 2012
USENIX Conference on Annual Technical Conference, ser. USENIX
ATC’12. USENIX Association, 2012, p. 28.

[55] E. Stepanov and K. Serebryany, “Memorysanitizer: Fast detector
of uninitialized memory use in c++,” in Proceedings of the 13th
Annual IEEE/ACM International Symposium on Code Generation and
Optimization, ser. CGO ’15. USA: IEEE Computer Society, 2015, p.
46–55.

[56] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. M. Martins, A. V.
Anderson, S. M. Bennett, A. Kagi, F. H. Leung, and L. Smith, “Intel
virtualization technology,” Computer, vol. 38, no. 5, p. 48–56, may
2005. [Online]. Available: https://doi.org/10.1109/MC.2005.163

[57] L. Van Put, D. Chanet, B. De Bus, B. De Sutter, and K. De Bosschere,
“Diablo: a reliable, retargetable and extensible link-time rewriting
framework,” in Proceedings of the Fifth IEEE International Symposium
on Signal Processing and Information Technology, 2005., 2005, pp.
7–12.

[58] M. Wang, H. Yin, A. V. Bhaskar, P. Su, and D. Feng, “Binary code
continent: Finer-grained control flow integrity for stripped binaries,”
in Proceedings of the 31st Annual Computer Security Applications
Conference, ser. ACSAC ’15. New York, NY, USA: Association

for Computing Machinery, 2015, p. 331–340. [Online]. Available:
https://doi.org/10.1145/2818000.2818017

[59] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary
stirring: Self-randomizing instruction addresses of legacy x86 binary
code,” in Proceedings of the 2012 ACM Conference on Computer and
Communications Security, ser. CCS ’12. New York, NY, USA:
Association for Computing Machinery, 2012, p. 157–168. [Online].
Available: https://doi.org/10.1145/2382196.2382216

[60] R. Wartell, Y. Zhou, K. W. Hamlen, M. Kantarcioglu, and B. Thuraising-
ham, “Differentiating code from data in x86 binaries,” in Machine
Learning and Knowledge Discovery in Databases, D. Gunopulos,
T. Hofmann, D. Malerba, and M. Vazirgiannis, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 522–536.

[61] W. Xu, S. Kashyap, C. Min, and T. Kim, “Designing new operating
primitives to improve fuzzing performance,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 2313–2328. [Online]. Available:
https://doi.org/10.1145/3133956.3134046

[62] S. B. Yadavalli and A. Smith, “Raising binaries to llvm
ir with mctoll (wip paper),” in Proceedings of the 20th ACM
SIGPLAN/SIGBED International Conference on Languages, Compilers,
and Tools for Embedded Systems, ser. LCTES 2019. New York,
NY, USA: Association for Computing Machinery, 2019, p. 213–218.
[Online]. Available: https://doi.org/10.1145/3316482.3326354

[63] Y.-P. You, T.-C. Lin, and W. Yang, “Translating aarch64 floating-point
instruction set to the x86-64 platform,” in Workshop Proceedings of
the 48th International Conference on Parallel Processing, ser. ICPP
Workshops ’19. New York, NY, USA: Association for Computing
Machinery, 2019. [Online]. Available: https://doi.org/10.1145/3339186.
3339192

[64] M. Zalewski, “American Fuzzy Lop - Whitepaper,” https://lcamtuf.
coredump.cx/afl/technical details.txt, 2016, [Online; accessed March 6,
2024].

[65] Z. Zhang, W. You, G. Tao, Y. Aafer, X. Liu, and X. Zhang, “Stochfuzz:
Sound and cost-effective fuzzing of stripped binaries by incremental
and stochastic rewriting,” in 2021 IEEE Symposium on Security and
Privacy (SP), 2021, pp. 659–676.

13

https://www.usenix.org/conference/2003-usenix-annual-technical-conference/binary-rewriting-defense-against-stack-based
https://www.usenix.org/conference/2003-usenix-annual-technical-conference/binary-rewriting-defense-against-stack-based
https://googleprojectzero.blogspot.com/2020/07/mms-exploit-part-1-introduction-to-qmage.html
https://googleprojectzero.blogspot.com/2020/07/mms-exploit-part-1-introduction-to-qmage.html
https://doi.org/10.1145/3519939.3523719
https://www.usenix.org/conference/usenixsecurity22/presentation/scharnowski
https://www.usenix.org/conference/usenixsecurity22/presentation/scharnowski
https://www.usenix.org/conference/usenixsecurity21/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity21/presentation/schumilo
https://doi.org/10.1109/MC.2005.163
https://doi.org/10.1145/2818000.2818017
https://doi.org/10.1145/2382196.2382216
https://doi.org/10.1145/3133956.3134046
https://doi.org/10.1145/3316482.3326354
https://doi.org/10.1145/3339186.3339192
https://doi.org/10.1145/3339186.3339192
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://lcamtuf.coredump.cx/afl/technical_details.txt

	Introduction
	Background
	Binary-only Fuzzing
	Static or Dynamic Emulation?
	Pros and Cons of both Approaches for Fuzzing
	QEMU and the Tiny Code Generator

	Design
	General Overview
	Low-Level API
	High-Level API
	Fuzzing oriented capabilities

	Practical Challenges
	Use Cases
	Android Library Fuzzing
	Windows Kernel Fuzzing

	Conclusion
	References

