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   ABSTRACT   
 

Developing advanced control strategies is a relevant pathway to achieve energy savings in heating, ventilation, and air conditioning 
systems. Nevertheless, the studies presenting these controls usually quantify the potential energy savings by analysing a single housing 
configuration: a thermal envelope, a behavioural scenario and a type of external conditions. By doing this, the study omits that these 
savings highly depend on the material and behavioural environments. Sensitivity studies are helpful but insufficient to characterize the 
vast variability of housing situations. This research proposes a methodology that describes the relevance of automation in the living 
spaces in which they are installed and thus improves the social and technical relevance of the abundant literature on this topic. The 
methodology is divided into three parts. First, a database of representative housing situations is constructed. Second, the theoretical 
energy savings through advanced control are estimated using thermal simulation. Third, the database on energy savings and housing 
situation is segmented through a factorial analysis. This clustering is then used to identify the housing situations where the 
implementation of controls is most favourable. The article presents first the methodology and then an example of implementation. The 
computation is based on the TABULA database and studies the use of predictive control of heating systems in French housing situations. 
The results underline that the housing type, the insulation level, and the surface are significant determinants of the automation interest. 
The large segment of estimated average gains (between 1.8% and 17% of the reference energy consumption) underlines the high need 
to improve the targeting of the field. 
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1. Introduction 

 
1.1. Context 

 
In accordance with the national strategy for greenhouse gas 

emissions reduction, France is committed to becoming carbon neutral 
by 2050. From this perspective, the building sector offers particularly 
promising prospects for energy saving and emission reduction, since 
they account for around 20% of national GHG emissions and 40% of 
national primary energy consumption (MTES,2015). The residential 
housing stock in France is still predominantly made of buildings that 
have not yet been renovated and the annual renovation rate for the 
building stock is still well below the target recommended by the 
Energy Performance of Buildings Directive (EPBD) in order to achieve 
the 2050 neutrality objectives (1.7% of the stock compared with the 
recommended 3%). A supplementary solution may be the addition of 
suitable energy management systems that provide energy savings 
and, more specifically, the management of heating, ventilation, and 
air-conditioning (HVAC) systems, which account for almost 40% of a 
home's average energy consumption. 
 

1.2. Advanced control of HVAC systems in buildings 
 

The literature provides a wide range of strategies in order to 
manage HVAC systems [1]. They all aim to meet the comfort needs of 
users (indoor air quality, thermal comfort) while offering the best 
performance from an energy point of view. These two objectives are 
contradictory, and improving one criterion without degrading the 
other is a complex task [2]. The most common algorithms are 
hysteresis (ON/OFF) and PID control [3]. Although effective in 
maintaining the desired thermal comfort, these controls were 
designed without explicit energy criteria, unlike more recent 
advanced control strategies. Among them, the most popular strategy 
is predictive control. It utilizes models that, over time, incorporate the 
evolution of disturbances (such as external temperature, solar gains, 
and occupancy) and controlled variables (such as indoor air 
temperature) [4]. At each time step, an optimization problem is solved 

in order to determine the control sequence that minimizes a cost 
function defined over this future horizon, while considering a set of 
process constraints. The first element of this sequence is then sent to 
the controlled system, and the process is iterated.  

Following this principle, numerous energy management 
strategies have been developed in the field of building management, 
encompassing a diverse array of advanced control approaches. These 
approaches vary in several aspects, including the methods used to 
predict the evolution of indoor air temperature and system 
disturbances. Among the most recent observed works, there are 
control approaches based on the use of white-box, pseudo-physical 
models [5], as well as models relying on machine learning methods 
[6], [7]. Other studies have explored direct HVAC system control based 
on collected data from sensors [8]. Hybrid control approaches have 
also emerged, including fuzzy cooperative predictive control [9] or 
adaptive predictive control [10], which aim to address specific 
limitations of predictive control. Furthermore, the selection of criteria 
for management strategies is a distinguishing characteristic of 
advanced control methods. The authors of [11] evaluate the influence 
of environmental factors and occupant thermal comfort based on the 
minimized criterion, such as emitted CO2, final energy consumption, 
or energy tariffs. Other studies consider room-by-room occupancy of 
buildings occupant, energy storage, and energy prices for multi-zone 
air temperature [12]. Furthermore, other research work has focused 
on control approaches aimed at minimizing energy expenses by 
considering energy prices or photovoltaic production [13]. 

The previous works assessed the performance of their control 
approaches using two primary metrics: the achievement of the 
desired thermal comfort for occupants and the reduction of energy 
consumption associated with the implemented energy strategy. These 
metrics can be evaluated through implementation on a real building 
or through simulation.   

To our knowledge, one of the first field implementation of 
predictive control for energy management in a building was carried 
out during the winter period of 2009 in a building at the Czech 
Technical University [14]. This experiment demonstrated promising 
energy savings estimated at 40% compared to the previous HVAC 
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management control. Since then, more recent works have 
implemented predictive controls on real buildings, showing observed 
savings ranging from 17% to 58% [6], [15], [16], [17]. 

While in-situ experiments provide valuable practical insights, 
most studies emphasize the benefits of control strategies through 
thermal simulation [5], [10], [11], [13], [18], [19], [20], [21]. These 
works demonstrate energy savings ranging from 0.2% to 40%. 
 
What emerges from this literature review, aside from the wide 
diversity of approaches, is that the associated energy savings are 
estimated for a single housing situation. However, these gains depend 
on the characteristics of the building (geometry, surface area, 
insulation), the climate, and the behaviours. Sensitivity studies on the 
thermal envelope [22], occupancy [12], [23], and outdoor temperature 
[24] have shown the dependency of gains on the observed housing 
situation. In the meantime, the extreme diversity of dwellings, 
climates, and behaviours on a great large scale questions the reliability 
of sensitivity studies to enable us to characterise the gains. 

This leads us to raise the following question: How can we 
quantify the energy-saving potential of a heating management 
strategy at the housing stock level?  

 
1.3. Assessment of the energy-saving potential of renovation 

measures on a housing stock scale. 
 

In France, the housing stock is composed of millions of buildings, 
subject to a high variety of climates, materials, and housing types.  

In the scientific literature, several studies aim to quantify the 
energy-saving potential of technical solutions for a large-scale 
assessment of environmental impact reduction in the building sector. 
The significant differences among these works primarily lie in the 
choice of the energy consumption prediction model. Three types of 
models stand out: data-driven models, physical models, and hybrid 
models [25]. The first and third categories cannot be employed to 
address the issue identified in the previous subsection. Data-driven 
models are still specialised: they provide reasonable predictions for a 
given set of dwellings. Furthermore, as far as we know, no data-driven 
models are capable of simulating a diverse range of dwellings with 
good accuracy. 

Physics-based models, on the other hand, require simulating 
thermally both before and after renovation for each case study to 
estimate its energy potential. To address the challenge of studying the 
entire housing stock, several studies have incorporated 
methodologies based on archetypes [25], [26], [27], [28]. Indeed, 
archetypes represent virtual buildings, households, or climates that 
are representative of homogeneous segments. The assumption is 
made that the study of an archetype provides similar results on each 
building, household, or climate included in its segment. Therefore, 
only the archetypes are simulated. The authors of [25] integrated 
behavioural household archetypes to assess the impact of energy 
renovation techniques. The authors concluded that the cost-
effectiveness of technical solutions depends on household behaviour. 
Geographical zone archetypes have also been integrated into large-
scale thermal studies, synthesizing the entire area by examining four 
climatic time series (external temperature, solar gains) from examples 
of cities [26].  

Additionally, twenty-four archetypes of the Greek housing stock 
have been used to generate scenarios quantifying heating energy 
demand at the scale of the housing stock [27]. Thus, the impact of 
renovating the housing stock has allowed the creation of an ambitious 
scenario assessing the evolution of consumption if the entire housing 
stock is renovated. 

However, the parameters of the thermal models for archetypes are 
virtual and represent the average of the studied segment of situations. 
Prediction errors in consumption may occur. To compensate for these 
errors, it is necessary to use many archetypes. The authors of [28] 
proposed a methodology based on the housing archetypes from the 
TABULA project [29] to assess consumption following the renovation 

of a medium-sized city. They achieved results close to an approach 
combining statistical analysis and building-level thermal simulation, 
highlighting the potential of a based archetypal methodology.  The 
authors of [30] combined, based on the degree-hour method, 
representative housing archetypes of the Albanian housing stock with 
climate archetypes to propose a methodology optimizing the 
thickness of insulation materials within the scope of renovation 
measures. However, they do not incorporate variability in building 
usage. 

Previous studies primarily target public decision-makers, urban 
planners, and industrial stakeholders by providing decision-support 
tools for renovation. These tools can be categorized into several 
categories: generating consumption scenarios on a large scale for the 
housing stock, evaluating the profitability of renovation measures, 
providing sizing tools, or quantifying the impact of renovation on a 
territorial scale. To our knowledge, these studies need to incorporate 
advanced management algorithms. Furthermore, no works combine 
climate archetypes and building archetypes for diverse building uses. 

 

As mentioned, the energy gains from HVCA control depend on 
housing, climate and behaviour. Drawing on the archetype-based 
approaches presented in this section we propose to use a 
segmentation of housing situations which are defined as a 
combination of a dwelling, a household, and climate conditions [31]. 

With this paper review, the question posed in paragraph 1.2 is 
completed: Which housing situations, are most favourable or 
unfavourable for the implementation of these strategies? 

 
 

1.4. Objective and structure of this work 
 

Therefore, this work aims to propose a methodology for exploring 
the savings potential of an advanced energy control algorithm for a 
representative number of housing situations. 

This article is structured as follows. In the first section, we propose 
a methodology based on classification works to construct a 
representative panel of housing situations defined by the combination 
of housing archetypes, climate archetypes, and diversity of household 
behaviour. The novelty of this classification is that it incorporates the 
energy-saving potentials of advanced control obtained through 
simulation to describe each situation. The second section presents an 
implementation of this methodology to single-family houses, 
considering model predictive control with explicit consideration of 
occupancy intermittency as the heating management algorithm, thus 
highlighting the potential of this methodology. For this 
implementation, results are presented and discussed in Section 4. The 
final section concludes and offers future perspectives. 
 
2. Methodology 
 
 In this first part, we introduce a methodology in order to compute 
a robust estimation of the energy-saving potential of a heating 
management algorithm. The main steps are presented in the figure 1. 
This methodology is divided into two parts. 

 First, a database of housing situations is constructed by 
associating four types of variables. The housing situations are 
generated by the combination of three types of variables: a typology 
of residential buildings, a classification of outdoor conditions, and 
behavioural scenarios. These inputs are based on the results of 
existing classification works. The fourth type of variable is the energy-
saving potential which is estimated through thermal simulation for 
each housing situation of the database. 
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 The second step consists of analysing the results of the database 
of housing situations. The computation is done using Principal 
Component Analysis (PCA). The results obtained from this algorithm 
feed into an agglomerative hierarchical clustering algorithm. The 
objective of this clustering is to introduce a classification that groups 
together housing situations in which the implementation of a 
management algorithm offers similar energy-saving potential. 
 

2.1. Construction of the database of housing situations 
 
2.1.1. Inputs 

 
 Three key factors have been identified that significantly impact 
residential energy consumption: the thermal envelope, external 
conditions (outdoor temperature), and occupant behaviour. To 
streamline the housing simulation process, we choose these inputs as 
archetypes based on classification studies. Utilizing archetypes as 
inputs within our methodology significantly diminishes the number of 
simulations required, given that each archetype delineates a 
homogeneous segment. The set of representative housing situations 
investigated is defined by all the combinations between the three 
inputs. However, these archetypes must encompass all essential 
information required for thermal simulations in heating management. 
In Section 3, we will present an example of classification work that fits 
our methodology. 
 

2.1.2. Generation of the thermal model of the building 
archetype 

 
 The estimation of energy-saving potential through thermal 
simulation requires thermal models of the archetypes. The housing 
input provides information on the thermal envelope of each 
archetype, including the materials used, their thickness, and the type 
of windows and doors. Using these parameters, a thermal model of the 
archetypes can be constructed using dynamic thermal simulation 
software. The most recognised software for thermal simulation 
includes EnergyPlus [32], TRNSYS [33], and other methods such as 
using the Aixlib library [34] developed in the Modelica language or 
Simulink in MATLAB SimScape. These software packages model the 
dwelling using the thermal/electrical analogy. To summarize, these 
models describe the temperature evolution using the following 
discrete state equation: 
 

𝑋𝑘+1 = 𝑓(𝑋𝑘, 𝑢ℎ𝑘 , 𝑇𝑜𝑢𝑡𝑘 , 𝑤𝑘) 
(1) 

𝑇𝑖𝑘
= 𝐶𝑋𝑘 

 
Considering:  
 

- 𝑋 : State vector composed of the relevant temperatures 
in the thermal simulation software model 

- 𝑢ℎ : Heating power  
- 𝑇𝑜𝑢𝑡  : Outdoor air temperature 
- 𝑇𝑖  : Indoor air temperature  
- 𝑤 : Any other disturbances (solar irradiations, … ) 

FIG. 1.   Flowchart of the presented methodology 
 

 
2.1.3. Identification of a reduced-order thermal model 

 
The methodology can be directly applied to the thermal models from 

the previous section. However, the combination of the three inputs, 
defining all the housing situations to be addressed results in a significant 
number of thermal simulations, further compounded by the 
implementation of advanced control. 

To address this difficulty, the use of reduced-order thermal models, 
whose parameters are identified from the thermal model of the housing 
archetypes, is proposed. The choice has been made to use second-order 
"grey box" models of the 2R2C type, which are sufficient to characterize 
the dynamic thermal behaviour of the building air indoor temperature 
[35]. The parameters of this model are identifiable [36]. The 2R2C 
models offer a time-saving advantage, facilitating the numerical 
processing of the entire set of housing situations. Even though these are 
reduced-order models, they remain physically interpretable, due to their 
pseudo-physical nature. The thermal capacity 𝐶𝑖 characterises the fast 
dynamics of the indoor air, while the thermal capacity 𝐶𝑠 describes the 
internal masses and the thermal envelope. Additionally, the thermal 
resistances 𝑅𝑖 and 𝑅𝑠 model the heat exchanges between the external air 

temperature 𝑇𝑜𝑢𝑡 , the surface temperature 𝑇𝑠 , and the indoor air 
temperature 𝑇2𝑅2𝐶𝑖

 (Figure 2). The temperature evolution is described 

by the following discrete state model: 
 

𝑋2𝑅2𝐶 𝑘+1
= 𝐴𝑋2𝑅2𝐶𝑘

+ 𝐵𝑢𝑘 + 𝐸𝑇𝑜𝑢𝑡𝑘
  

(2) 
𝑇2𝑅2𝐶𝑖𝑘

= 𝐶𝑋2𝑅2𝐶𝑘
 

 

 

FIG. 2. 2R2C grey-box model of the housing thermal envelope. 

The 2R2C parameters are obtained through an identification 

process using thermal models from the DTS software. Initially, heat 
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power and outdoor temperature disturbances are applied as inputs to 

the open-loop DTS model, allowing for the excitation of all the 

frequencies present in the building. The air temperature at each 

iteration, heat power, and outdoor temperature are extracted and used 

as training data. The identification of the 2R2C model is performed 

using external software. The model parameters are identified by 

considering the following optimization problem for a number N of 

training data samples.: 

min 𝐽(𝑅𝑖 , 𝑅𝑠, 𝐶𝑖 , 𝐶𝑠) = ∑(𝑇2𝑅2𝐶𝑖𝑘
− 𝑇𝑖𝑘)2

𝑁−1

𝑘=0

 

(3) 

submit to: 𝑇2𝑅2𝐶𝑖0
= 𝑇𝑖0

 

 0 < 𝑅𝑖 ≤  𝑅𝑖𝑚𝑎𝑥
 

 0 < 𝑅𝑠 ≤ 𝑅𝑠𝑚𝑎𝑥
 

 0 < 𝐶𝑖 ≤ 𝐶𝑖𝑚𝑎𝑥
 

 0 < 𝐶𝑠 ≤ 𝐶𝑠𝑚𝑎𝑥
 

 

This problem can be solved using any suitable method (e.g. 

nonlinear solver, genetic algorithms, …) The maximum constraint 

imposed on the search for each parameter is estimated based on the 

physical interpretation of the parameters and the materials described 

in the housing archetype descriptions. The reliability between the 

2R2C model and the DTS software model is estimated by calculating 

the mean squared error (MSE) and the percentage of fit (Fit%) between 

the evolution of the indoor air temperature predicted by the 2R2C 

model and the DTS software model for the training data considered. 

This can be expressed as follows: 

𝑀𝑆𝐸 =  
∑ (𝑇2𝑅2𝐶𝑖𝑘

− 𝑇𝑖𝑘
)2𝑁−1

𝑘=0

𝑁
 (4a) 

𝐹𝑖𝑡% = 100. (1 −
√𝑀𝑆𝐸

|𝑇𝑖𝑚𝑎𝑥
− 𝑇𝑖𝑚𝑖𝑛|

) (4b) 

Once the 2R2C parameters are obtained, the potential energy 

savings of the heating management algorithm can be determined using 

the reduced-order models, speeding up the processing of multiple 

housing situations. 

2.1.4. Determination of energy savings through advanced 
control 

The simulation environment is defined by the variables associated 

with the inputs described in section 2.1.1. It allows for the estimation 

of the potential of the observed control strategy for a given housing 

situation. Two thermal heating management simulations are 

computed. The first simulation estimates the energy consumption for a 

reference algorithm, denoted as 𝐸𝑟𝑒𝑓 . The second simulation is 

conducted for the investigated algorithm and estimates the energy 

consumption, denoted as 𝐸𝑎𝑙𝑔𝑜 . In addition, three quantitative metrics 

of interest complement the housing situation description, which are 

the Energy-saving potential variables represented in Figure 1. 

 The « Consumption (kWh/m2) » (𝐸𝑟𝑒𝑓): this variable 

quantifies the consumption per square meter for the 

reference algorithm. 

 The « Energy saving (kWh/m2 )» (Δ𝐸𝑘𝑊ℎ): this variable 

quantifies the energy saving per square meter in comparison 

with the reference algorithm. 

Δ𝐸𝑘𝑊ℎ = 𝐸𝑟𝑒𝑓 − 𝐸𝑎𝑙𝑔𝑜 

 The « Energy saving (%) » (Δ𝐸%): this variable quantifies 

the energy saving in comparison with the reference 

algorithm in percentage. 

  Δ𝐸% = 100.
𝐸𝑟𝑒𝑓−𝐸𝑎𝑙𝑔𝑜

𝐸𝑟𝑒𝑓
 

 
2.2. Database of housing situations 

 
 As specified in subsection 2.1.1., the entirety of the housing 

situations comprising the database is constructed from thermal 
simulations of all possible combinations of the various inputs. As a result, 
these situations are described by both the energy-saving potential 
variables and the descriptive variables of the different inputs. The set of 
variables used to analyse the database will be detailed in the 
implementation section (number 3). 

  
2.3. Processing of the study case database 

 
2.3.1. Principal Component Analysis 

A first treatment of the database is performed using Principal 

Component Analysis (PCA) [37]. This initial representation allows for 

the exploration of the relationships between the variables defining the 

housing situations and the energy-saving potential variables 

determined by thermal simulation. Furthermore, representing the data 

along the two axes that exhibit the highest variability enables the 

visualization of all the housing situations in a two-dimensional space. 

This provides a comprehensive view of the entire set of housing 

situations and facilitates the identification of any patterns or groupings 

among them. 

This algorithm synthesizes the information contained in the 

database into a reduced-dimensional space where the axes are 

constructed as linear combinations of the different variables while 

being pairwise orthogonal. PCA takes the quantitative data from the 

previous table as input. 

From a methodological standpoint, the data is normalized and 

centred around its mean. A covariance matrix is then calculated to 

assess the relationship between the variables. The eigenvectors 

represent the directions of maximum variance, while the associated 

eigenvalues represent the amount of variance in the data. The 

eigenvectors with the highest eigenvalues are defined as the principal 

components. The data is then projected onto these components, 

creating a new reduced-dimensional space while preserving their 

information as best as possible by determining the projection 

coefficients that maximize the variance of the dataset. 

 

2.3.2. Hierarchical clustering 

Agglomerative hierarchical clustering is an unsupervised analysis 

method used to group similar individuals into hierarchical clusters 

[38]. The clustering algorithm is fed with the resulting coordinates 

from the PCA. In the first step, a distance matrix is calculated. For the 

proposed methodology, the distance is defined as the Euclidean 

distance between the housing situations in the PCA-derived space. The 

algorithm then groups similar housing situations into the same cluster. 

The process is repeated until a single cluster is formed. Once all 

iterations are completed, the optimal number of clusters is determined 

based on the resulting dendrogram from hierarchical clustering, which 

minimizes the similarity between two clusters. 

Regarding the posed problem, agglomerative hierarchical 

clustering aims to classify the housing situations based on their overall 

profile and not only the energy-saving potential variables. The 

objective is to observe whether there exists any link between the 

housing situations and the energy-saving potential of the management 
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algorithm within the same cluster. If such links exist, it would be 

possible to estimate the range of energy-saving potential for an 

algorithm in a housing situation defined by the type of housing, the year 

of construction, the insulation level, the climatic zone, and the 

occupancy of the dwelling, without the need for a case-by-case study to 

assess the energy efficiency of its implementation. 

3. Implementation – case application 

 The proposed implementation aims to illustrate the potential of 

the methodology. Thus, the energy-saving potentials of each housing 

situation are not accurately calculated due to the choices of the inputs 

defining the housing situations. However, the results will lead to 

observed trends between the inputs defined and the energy-saving 

potential variables. Figure 3 details the tools used to implement the 

methodology and the inputs used. Each choice made is detailed in the 

following section. The structure of this flowchart is similar to that 

shown in Figure 1. The implementation choices made are highlighted 

in purple.   

 

FIG. 3.    Flowchart of the implementation. The implementation choices made are detailed in purple for each block of the methodology flowchart. 

 
3.1. Definition of the inputs and generation of a database of housing 

situations 
 

3.1.1. Inputs 
 

 For the input housing archetype, we use the dataset produced in the 
TABULA project. This European project classifies the housing stock of 20 
countries into homogeneous segments [29]. These segments are the 
result of classifying national data on energy consumption in existing 
dwellings. The dwellings included in the same segment are characterized 
by their year of construction and housing type (single-family house, 
semi-detached house, multi-family dwelling, apartment building). Each 
segment is represented by an archetype, which represents the 
characteristics of the dwellings within that segment (Table 1). For each 
range of construction years, an archetype is proposed for single-family 
houses, terraced houses, multi-family dwellings, and apartment blocks. 
The collection of these archetypes forms a representation of the overall 
typology of the housing stock. Thus, each existing dwelling can be 
associated with its corresponding TABULA archetype.  
  
Table 1. Examples of housing segments in the stock and associated 
TABULA archetypes. 

 

Segment Housing type Archetype 

[1919 ;1948] Single-Family House 

 

 
 

[1969 ;1978] Terraced House 

 

 
 

[1984 ;1994] Multi-Family House 

 

 
 

 

The methodology presented in the previous section was applied to 

9 TABULA archetypes of German single-family houses, covering 

dwellings built between 1919 and 2015. Three insulation levels, 

provided by TABULA, labeled 0, 1, and 2, were considered to explore 

the impact of thermal envelope renovations on the energy-saving 

potential of advanced control strategies, except for the archetypes 

representing the most recent single-family houses built after 2001. For 

each combination of archetype and insulation level of the house, a 

sensitivity analysis of the house's surface area is conducted. Despite the 

thermal models used normalizing the consumption per square meter 

for the same dwelling, this sensitivity analysis enhances the robustness 

of the archetype identification process. In the end, the database of 

housing situations consists of 115 thermal envelopes. Table 2 

summarizes the various combinations considered. For archetypes 

SFH08 and SFH09, only insulation level 1 is considered. For the rest of 

the archetypes, additional insulation levels 2 and 3 are considered. The 

total number of generated housing situations for this application is 

1035. 

Table 2. Summary of the composition of the database of thermal 

envelopes for single-family houses concerning the variables of 

archetypes and insulation levels. 

 
Housing  

archetype [29] 
Year of 

construction 
Insulation 

level 
Floor area (m2) 

SFH01 [1919 ;1948] 0 [115,144,176,201,230] 

1 [115,144,176,201,230] 

2 [115,144,176,201,230] 

SFH02 [1949 ;1957] 0 [115,144,176,201,230] 

1 [115,144,176,201,230] 
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2 [115,144,176,201,230] 

 
SFH03 

[1958 ;1968] 0 [115,144,176,201,230] 

1 [115,144,176,201,230] 

2 [115,144,176,201,230] 

SFH04 [1969 ;1978] 0 [115,144,176,201,230] 

1 [115,144,176,201,230] 

2 [115,144,176,201,230] 

SFH05 [1979 ;1983] 0 [115,144,176,201,230] 

1 [115,144,176,201,230] 

2 [115,144,176,201,230] 

SFH06 [1984 ;1994] 0 [115,144,176,201,230] 

1 [115,144,176,201,230] 

2 [115,144,176,201,230] 

SFH07 [1995 ;2001] 0 [115,144,176,201,230] 

1 [115,144,176,201,230] 

2 [115,144,176,201,230] 

SFH08 [2002 ;2009] 0 [115,144,176,201,230] 

SFH09 [2010 ;2015] 0 [115,144,176,201,230] 

  
As France is usually divided into eight climatic zones, we propose to 

use them to model the influence of the outdoor conditions as external 
conditions archetypes. Weather data from three cities over one month 
during the winter period are used as inputs for outdoor conditions. The 
cities are selected considering the three main climatic zones of the 
French topological geography. Table 3 summarizes the information 
about the representative cities of the time series used, as well as the 
values of the average temperatures of the series. 
 
Table 3. Climatic zones and values of the associated average outside 
temperature variable during the heating period. 

Climatic zone City 
Average outdoor 
temperature (°C) 

H1 Nancy 1.2 

H2 La Rochelle 5.4 

H3 Nice 8.02 

Several studies explored the use of time use survey data to 

characterize household occupancy. Nevertheless, a sensitivity analysis 

of household behaviour is suggested to observe its influence on the 

energy-saving potential, defined by the input household behaviour 

scenario.  Three deterministic scenarios are generated: the first one is 

associated with an absence from the dwelling between 8 am and 7 pm, 

the second one is associated with an absence from the dwelling 

between 10 am and 4 pm, and the last one represents an average 

absence of 3 hours between 1 pm and 4 pm. These simplified scenarios 

have been defined to represent diversity in the household behaviour of 

the different housing situations. Table 4 presents the information for 

the three absence scenarios. 

 

Table 4. Deterministic occupancy scenarios for the household behaviour 
scenario input and the value of the average occupancy variable 
 

Time of 
departure  

Time of 
return  

Average occupancy (h) 

13 16 21 

10 16 18 

8 18 14 

 
3.1.2. Building thermal models  

To our knowledge, work has yet to develop thermal models for the 

French housing stock archetypes. Therefore, we used thermal models 

from the German housing stock obtained through the TEASER 

software. Indeed, the TEASER software is an open-source tool that 

extracts white-box thermal models in the Modelica language from the 

German housing archetypes provided by TABULA [39]. The 

consumption prediction of these models is scientifically validated 

through comparison with simulations under TRNSYS. Furthermore, the 

German housing stock has developed thermal building regulations 

similar to the French housing stock [40].  

These models are constructed using the AIXLIB library and consist 

of the thermal capacity of the air, two envelope resistances, and a 

thermal capacity representing each building element, such as external 

walls, ceiling, and floor. All housing models are exported to the 

Modelica language based on the data from Table 2. For each TEASER 

thermal model, the identification process described in subsection 2.1.3 

is carried out under OpenModelica with a time step of 6 minutes, for a 

training period of 14 days. The frequencies and amplitudes of the 

external temperature and heating power noise are estimated to 

provide rich training data for identifying the 2R2C model. 

3.1.3.  Identification of 2R2C reduced thermal model 

The identification process (described in 2.1.3) is performed using 

MATLAB with a genetic algorithm using the GA function. Discretization 

is carried out using the Euler method. Figure 4 presents the 

distribution of the identified parameters normalized per unit area for 

each housing archetype. The variability of the parameters is linked to 

variations in the surface and thermal renovation levels. For the same 

archetype, thermal renovation increases the values of resistance 𝑅𝑖 and 

𝑅𝑠. However, it has little impact on the values of the thermal capacities, 

which remain almost the same regardless of the observed insulation 

level. However, the thermal capacity of the air is sensitive to the 

identification process, as shown by significant standard deviations.  
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FIG. 4.  Average identified parameters normalized per unit area for each single-family house archetype considering the sensitivity on the floor 

area. Red: Insulation level 0, green: Insulation level 1, blue: Insulation level 2  

 

The performance of the identification process is evaluated by 

calculating the fit percentage for each building (Figure 5). The average 

minimum fit percentage is 95 % for the SFH07 archetype with an 

insulation level of 2. For all buildings, the average fit percentage is 97 

% (σ=1.6 %). Furthermore, all mean squared errors are below 0.3°C for 

the insulation level 1 of the SFH03 archetype. Overall, the observation 

of fit percentages and mean squared errors are sufficiently high to 

validate the parameters. Each building is retained for the generation of 

test cases 

 

 

FIG. 5.  (a) average fit percentage for each housing archetype and 

degree of isolation. (b) mean squared error per housing archetype 

and degree of isolation. 

 
3.1.4. Determination of energy saving through linear model 

predictive control 
 

The heating control algorithm studied is a linear predictive control 
with intermittent management [39]. At each time instant k, the 
controller determines the control sequence of heating power 𝑢𝐾|𝑘  over a 

prediction horizon of length 𝐾, minimizing an optimization criterion. 
Only the first element of the sequence is applied to the heating system, 
and a new calculation is performed at the next time step. The constraint 
to be respected is related to the comfort when the occupant is present in 
the dwelling, which is indicated by the occupancy matrix 𝑂𝐶𝐶𝐾|𝑘. To 

ensure the feasibility of the optimization problem, this constraint is 
relaxed by a deviation variable, denoted 𝜀𝑇𝐾|𝑘

, and penalized by the 

variable 𝑝𝑒𝑛𝑇. The optimization problem takes the following form: 
 

min  𝐽 (𝑢𝐾|𝑘, 𝜀𝑇𝐾|𝑘
) = 1𝑁𝑝

𝑇 𝑢𝐾|𝑘+ 𝑝𝑒𝑛𝑇  1𝑁𝑝
𝑇 𝜀𝑇𝐾|𝑘

 (5) 

(a) 

(b) 
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submit to:  0 ≤ 𝑢𝐾|𝑘 ≤  𝑢𝑚𝑎𝑥 

 𝑇2𝑅2𝐶𝑖𝐾|𝑘
 + 𝜀𝑇𝐾+1|𝑘

≥  𝑂𝐶𝐶𝐾+1|𝑘𝑊𝑇𝐾+1|𝑘
 

 𝜀𝑇𝐾+1|𝑘
≥ 0 

 

The propagation of the state model (2) allows expressing the 

predicted outputs as a function of the current state 𝑋2𝑅2𝐶𝑘
, which is 

the air temperature over the entire prediction horizon: 

𝑇2𝑅2𝐶𝑎𝑖𝑟𝐾+1|𝑘
= 𝐹2𝑅2𝐶 𝑋2𝑅2𝐶𝑘

+ 𝐻𝑢𝑐
𝑢𝑐𝐾|𝑘 + 𝐻𝑇𝑇𝑒𝑥𝑡𝐾|𝑘

 (6) 

The prediction matrices are obtained recursively, and we denote the 
number of prediction horizon iterations as 𝑁𝑝 = 𝐾 − 𝑘 : 
 

𝐹2𝑅2𝐶 = (
𝐶𝐴

⋮
𝐶𝐴𝑁𝑝 

) 

 

𝐻𝑢𝑐
= (

𝐶𝐵 0 0 ⋯ 0
𝐶𝐴𝐵 𝐶𝐵 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮
𝐶𝐴𝑁𝑝−1𝐵 𝐶𝐴𝑁𝑝−2𝐵 𝐶𝐴𝑁𝑝−3𝐵 ⋯ 𝐶𝐵

) 

 

𝐻𝑇 = (

𝐶𝐵 0 0 ⋯ 0
𝐶𝐸𝐵 𝐶𝐵 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮
𝐶𝐸𝑁𝑝−1𝐵 𝐶𝐸𝑁𝑝−2𝐵 𝐶𝐸𝑁𝑝−3𝐵 ⋯ 𝐶𝐵

) 

 
The maximum heating power 𝑢𝑚𝑎𝑥 is defined in such a way that it can 
maintain a steady-state temperature difference between 𝑇2𝑅2𝐶𝑖

=20 °C 

and 𝑇𝑜𝑢𝑡=-5 °C, which is given by: ∆EkWh 
 

𝑢𝑚𝑎𝑥 =
𝑇2𝑅2𝐶𝑖

− 𝑇𝑜𝑢𝑡

𝑅𝑠 + 𝑅𝑖
 (7) 

  
For the proposed implementation, the penalty 𝑝𝑒𝑛𝑇 and the heating 

power are adjusted to minimize energy consumption while ensuring 
user comfort at all times. The prediction of the household occupancy is 
perfect. Thus, the energy-saving potentials of different housing 
situations are comparable because they all exhibit the same comfort 
index. These settings place this implementation in estimating the 
maximum potential of the control without compromising comfort. 

The variables related to the energy saving potential, such as energy 
saving (kWh/m2), energy saving (%) and consumption (kWh/m2), 
are determined through thermal simulation over 31 days using MATLAB 
with a frequency of 6 minutes, corresponding to an adapted trade-off 
between the accuracy of the air temperature prediction and the 
computation time.  

The reference algorithm used is a heating management algorithm 
without occupancy and outdoor temperature prediction. It solely 
compensates for heat losses to maintain the indoor air temperature at 
the set point determined by the behaviour variables, fixed at 20°C. Figure 
6 shows the evolution of the indoor air temperature (a) for both the 
predictive linear control (blue curve) and the reference (red curve) 
algorithms, the control sequences for the heating management algorithm 
and the reference (b), the outdoor temperature for the Nancy climatic 
zone (d), and the occupancy scenario with an absence from 10 am to 4 
pm for 7 days (c). The housing situation corresponds to archetype SFH05 
with a floor area of 140 m2. All disturbances are perfectly predicted, so 
there is no thermal discomfort. The predictive linear control strategy 
involves waiting until the last moment to preheat the air and reach the 
desired set point of 20°C when occupants return at 4 pm. 

 
  

 
 

  

FIG. 6. Control sequences of the predictive control algorithm (in blue) and the reference algorithm (in red) for the SFH05 archetype, a 140 m2 

surface area, an outdoor temperature of Nancy, and an occupancy scenario with an absence between 10 a.m. and 4 p.m. 

 

The energy consumptions of the buildings for the reference 
algorithm 𝐸𝑟𝑒𝑓  and the predictive control 𝐸𝑎𝑙𝑔𝑜 are obtained by 

integrating their respective control sequences over the entire simulation 
time 𝑡𝑐𝑜𝑛𝑡 , as follows: 

 

 𝐸𝑟𝑒𝑓 = ∫ 𝑢𝑟𝑒𝑓(𝑡). 𝑑𝑡
𝑡𝑐𝑜𝑛𝑡

0
 

 𝐸𝑀𝑃𝐶 = ∫ 𝑢𝑀𝑃𝐶(𝑡). 𝑑𝑡
𝑡𝑐𝑜𝑛𝑡

0
 

From the energy consumption values for each housing situation, 

the potential energy savings variables are calculated as defined in 

subsection 2.1.4. 

3.2. Construction of the database of housing situations 

For the analysis of the results proposed in the following section, the 
external conditions are limited to the outside temperature. It is defined 
qualitatively by the climatic zone and its time series average, which 
constitutes useful quantitative information for the database processing, 
as follows: 
 

 « Average outdoor temperature»:  𝑇𝑜𝑢𝑡
̅̅ ̅̅ ̅ average outdoor 

temperature for the considered outdoor conditions 
archetype.  

 

(a)  (b) 

(c) (d) 



9 

 

 

 The household behaviour is represented by its occupancy of the 
dwelling, characterized by its daily average: 

 « Average occupancy »:  𝑡𝑜𝑐𝑐̅̅ ̅̅ ̅ Average occupancy time of the 
dwelling for the considered scenario. 

 
In addition, for the database processing, a variable synthesizes 

information regarding the thermal envelope quality of the TABULA 
archetype based on the identified 2R2C parameters and the floor area of 
the dwelling, 𝑆𝑓𝑙𝑜𝑜𝑟 . 

 « Thermal performance »: 𝑃𝑡 = (𝑅𝑖 + 𝑅𝑠). 𝑆𝑓𝑙𝑜𝑜𝑟 

 
The energy-saving potential of each housing situation is quantified 

using the metrics described in the previous subsection. Table 5 
summarizes all the variables considered.  
 
Table 5. Summary and description of variables defining a housing 
situation used for the following application. The list can be expanded. 

 

Variable 
Type of 
variable 

Description 

TABULA Archetype 

Archetype qualitative TABULA denomination 

Type of housing qualitative Type of housing 

Insulation level qualitative 
Level of renovation of the 
thermal envelope for the 
considered archetype 

Thermal parameters / 
Useful thermal parameters for 
the building of the STD model 

Outdoor conditions archetype 

Climate zone qualitative Name of the archetype city 

Outdoor temperature / Time series 

Average outdoor 
temperature 

quantitative 𝑇𝑜𝑢𝑡
̅̅ ̅̅ ̅ 

Household behaviour scenario 

Occupancy scenario qualitative Occupancy scenario type 

Average occupancy quantitative 𝑡𝑜𝑐𝑐̅̅ ̅̅ ̅ 

Energetic criteria 

Thermal performance quantitative 𝑃𝑡 

Consumption (kWh/m2) quantitative 𝐸𝑟𝑒𝑓 

Energy saving (kWh/m2) quantitative Δ𝐸𝑘𝑊ℎ
 

Energy saving  (%) quantitative Δ𝐸% 

 

3.3. Processing of the database of housing situations 
 

3.3.1. Principal component analysis  
 

As presented in subsection 2.2.1, the Principal Component Analysis 
(PCA) algorithm takes the quantitative values from Table 2 as input. PCA 
is performed in R using the PCA function from the FactoMiner package. 
The first two axes are retained, synthesizing 74 % of the variance in the 
dataset. The thermal performance, energy saving (kWh/m2), energy 
saving (%) and consumption (kWh/m2) contributed to the 
construction of the horizontal axis, while average occupancy, average 
outdoor temperature, consumption (kWh/m2), and energy saving 
(%) contributed to the construction of the vertical axis (Table 6). The 
correlation circle shows that the thermal performance and the 

average outdoor temperature variable are negatively correlated with 
the energy savings potential variables. On the other hand, the average 
outdoor temperature is positively correlated with the energy savings 
potential variables (Figure 7). 

 
Table 6. Contribution in per cent of variables to the construction of the 
two resulting axes from PCA. 

Variable Symbol Dimension 1 Dimension 2 

Thermal performance 
(K/kW.m2) 

𝑃𝑡 19.60 8.37 

Average occupancy (h) 𝑡𝑜𝑐𝑐̅̅ ̅̅ ̅ 4.21 38.25 

Average outdoor 
temperature (°C) 

𝑇𝑜𝑢𝑡
̅̅ ̅̅ ̅ 0.01 23.01 

Energy saving (%) Δ𝐸% 24.84 13.21 

Energy saving (kWh/m2) Δ𝐸𝑘𝑊ℎ 28.86 0.13 

Consumption (kWh/m2) 𝐸𝑟𝑒𝑓  22.48 17.01 

 

 

FIG. 7.  Correlation circle between qualitative variables and the two 

principal component axes. 

Figure 8 depicts the representation of data points in the principal 

components space. Insulation levels and TABULA archetypes are 

plotted with colour codes to support an analysis of the result. In Figure 

(8a) we observe that non-renovated buildings have the best energy-

saving potential. This is coherent with the fact that the thermal 

performance 𝑃𝑡  is negatively correlated with the first component. In 

the meantime, the dispersion of the housing situations for non-

renovated dwellings indicates significant variability in the energy-

saving potential. In conjunction with the observation of Figure (8b), the 

archetypes corresponding to buildings constructed after 1995 that 

have not undergone renovations are close to older buildings that have 

undergone a first level of renovation in the PCA space.  

In a nutshell, the analysis of this work suggests that not only the 

housing type but also the renovation insulation and the surface are 

major determinants of the automation interest. The methodology 

proposes to go a bit further by describing segments of housing 

situations discriminated by their potential energy savings. 
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FIG. 8.  (a) The insulation level of the housing situations in the resulting PCA database. (b) The archetypes of the housing situations in the 

resulting PCA database. 

 
 

3.3.2. Ascending hierarchical clustering 

The resulting coordinates from the PCA (Principal Component 

Analysis) feed into an ascending hierarchical clustering algorithm to 

group the different housing situations into clusters. The first step is to 

select the desired number of clusters. For this purpose, the elbow 

method is used to estimate the optimal number of clusters based on 

intra-cluster inertia [34]. Intra-cluster inertia represents the coherence 

of data within the same group. The more clusters there are, the lower 

the intra-cluster inertia becomes, indicating homogeneity among the 

housing situations in the groups. The elbow method involves choosing 

a number of clusters that show a significant drop in inertia. In this 

study, significant inertia drops are observed for the number of clusters 

equal to 3, 4, 7, 9, and 10. The choice has been made to use 9 clusters. 

Figure 9 represents the dendrogram of the housing situations for 

classification into 9 groups.  

 

 

FIG. 9. Dendrogram resulting from ascending hierarchical clustering.  

4. Results and discussions  

We observe significant variability in the energy-saving potential 

variables. Indeed, the minimum gain in kWh/m2 (respectively, %) 

among all the housing situations is 0.04 kWh/m2 (respectively, 0.7%), 

while the maximum is 12 kWh/m2 (respectively, 23 %). In terms of 

kWh/m2, this represents a ratio of 300 between the housing situation 

with the highest gain and the one with the minimal gain. Figure 10 

shows the distribution of the predictive control gain for the 9 generated 

clusters in the form of boxplots. The median distribution of the gain per 

kWh/m2 increases from group 1 to 9. The analysis of the clusters allows 

us to differentiate clusters 1 to 6 as low interest for automation and 

clusters 7 to 9 as high-interest cases for automation. Observing the 

variables defining the housing situations within the groups leads to the 

identification of housing profiles.  

 

 

FIG. 10.  (a) Box diagram of the Energy saving in kWh/m2, Δ𝐸𝑘𝑤ℎ,  

achieved by each cluster of clusters of housing situations. (b) Box 

diagram Energy saving in %, Δ𝐸%,  achieved by each cluster of  

housing situations 

Cluster 1: This group consists of dwellings that have undergone a third 

level of renovation associated with the climatic zones of La Rochelle 

(50%) and Nice (50%), and are predominantly of low and medium 

occupancy (46%). The average gain in this group, in terms of 

percentage, is 1.8% (σ=0.9%), and in terms of kWh/m2, it is 0.14 

(σ=0.07 kWh/m2). 

Cluster 2: This cluster consists of dwellings that have undergone a 

second level of renovation. 100% of the housing situations have a 

temperature scenario associated with the city of Nancy. The 

(b) (a) 

(a) 

(b) 
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households are of low or medium occupancy. The average gain in this 

group, in terms of percentage, is 1.40% (σ=0.64%), and in terms of 

kWh/m2, it is 0.16 (σ=0.07 kWh/m2). 

Cluster 3: This cluster consists of homes that fall into three categories:  

non-renovated dwellings built after 1968, dwellings with a first level of 

renovation constructed between 1918 and 1948, and dwellings with a 

second level of renovation constructed between 1958 and 1968. The 

households are predominantly of low or medium occupancy. Among 

them, 47% have an absence of 6 hours and 53% have an absence of 3 

hours. These distributions are identical for temperature scenarios 

between La Rochelle and Nice. The average gain in this group, in terms 

of percentage, is 2.80% (σ=1.5 %), and in terms of kWh/m2, it is 0.61 

(σ=0.50 kWh/m2). 

Cluster 4: This cluster consists of two types of dwellings: non-

renovated dwellings after 1978 and all dwellings that have undergone 

a first level of renovation. Additionally, the households are highly 

present in the housing (100%). The climate zone for all housing 

situations is Nancy (100%). The average gain in this group is 2.17% 

(σ=0.97%), and in terms of kWh/m2, it is 0.62 (σ=0.50 kWh/m2). 

Cluster 5: This cluster consists of two types of dwellings: non-

renovated dwellings built after 1994 and dwellings renovated 1 or 2 

times built before 1994. All households in this group have an average 

daily absence of 10 hours. The average gain in this group, in terms of 

percentage, is 5.70% (σ=1.4 %), and in terms of kWh/m2, it is 0.79 

(σ=0.40 kWh/m2). 

Cluster 6: The housing situations in this group consist of dwellings 

located in Nancy (100%) with a very significant daily absence of 10 

hours per day (100%). These dwellings are energy-efficient: they 

include non-renovated dwellings built after 1994 and dwellings built 

before 1994 that have undergone thermal renovation. The average gain 

in this group, in terms of percentage, is 3.67% (σ=1.7 %), and in terms 

of kWh/m², it is 0.90 (σ=0.76 kWh/m2). 

Cluster 7: This group consists of non-renovated dwellings built 

between 1919 and 1968. The households are predominantly very 

sparsely occupied. Specifically, 70% of the housing situations have a 

daily absence of 3 hours. Regarding the climate conditions, we found 

that these dwellings are located near Nancy (60 %). The average gain 

in kWh/m2 for this group is in percentage, lower than that of groups 9 

and 10 but it still has an average gain of 3.5 kWh/m2. 

Cluster 8: This cluster consists of non-renovated dwellings built 

between 1919 and 1994 (100%). The geographical zone associated is 

either La Rochelle (46.8%) or Nice (46.8%), with an average daily 

absence of 6 hours (48%) or 10 hours (45%). Regarding the gain 

variables, we observe an average gain in percentage of 11 % (σ=2.4%), 

and in terms of kWh/m2, it is 4.8 (σ=1.3 kWh/m2). 

Cluster 9: This group consists of dwellings built between 1919 and 

1968 that have not undergone any renovation (100% of the cases in 

the cluster). Additionally, all the households are sparsely occupied 

(100%). The geographical zone is not a dominant variable in the 

construction of this group. One-third of the housing situations have an 

outdoor temperature scenario in Nancy, La Rochelle, or Nice. The 

average gains are 9.7 kWh/m2 and 17 %. It is mainly the outdoor 

temperature variable that generates a significant standard deviation of 

1.7 kWh/m2 and 4.2 %. The housing situations in this group represent 

the highest potential for energy savings through heating management. 

 

The analysis of the previous clusters and Figure 10 allows for the 

characterization of the impact of different variables on the energy-

saving potential of dwellings. 

In the first instance, non-renovated buildings constructed between 

1919 and 1968 stand out from others due to their low thermal 

performance. Coupled with extended periods of household absence, 

these dwellings represent the most significant energy-saving potential 

among all clusters. A closer examination of cluster 8 reveals that 

outdoor temperature generates significant variability in gains both in 

percentage and in kWh. Furthermore, even when associated with 

medium or short absences, these buildings still show interesting 

energy savings (clusters 7 and 8). In contrast, recent buildings or 

renovated dwellings combined with predictive control exhibit 

relatively low energy-saving potential, especially in terms of kWh/m2 

(clusters 1 to 6). This trend is amplified when occupants are highly 

present in the dwelling (cluster 3). Additionally, very high thermal 

performance indicates that managing intermittence has very little 

impact on consumption (clusters 1, 2, and 3), except in cases where the 

absences are extended.  

Furthermore, clusters associated with warmer temperatures 

(clusters 3-5-8) stand out in terms of percentage gain. This is due to 

lower energy requirements to raise the temperature during the return 

to the dwelling, as there is a smaller temperature drop during the 

heating cutoff, requiring lesser heating time before the occupants 

return. In terms of kWh/m2, the best algorithm performances for non-

renovated homes built before 1979 are associated with outdoor 

temperatures linked to the city of La Rochelle, owing to a better balance 

between overall dwelling consumption and the percentage gain 

associated with preheating shortly before the occupants' return. This 

trend changes as the thermal performance of homes improves. From 

cluster 6 and lower (renovated buildings or those constructed after 

1994), with equivalent absence scenarios and housing conditions, the 

best heating management gains are observed for an outdoor 

temperature associated with the city of Nancy. 

 This classification and its subsequent analysis present two main 

advantages. First, it shows that not all housing situations offer a 

significant theoretical potential for energy savings. Even more, the 

computation n offers a first approximation of the potential energy 

savings. Second, it allows to identify patterns of situations where the 

deployment of advanced heating control is most favourable (clusters 7, 

8 and 9). Each housing situation is defined by simple metrics: 

construction period of the dwelling, type of dwelling, degree of 

insulation, outdoor temperature, and average daily household absence 

time. This information is readily accessible. This classification can be 

useful for associating real housing situations with one of the 9 clusters 

and extracting an estimate of their energy-saving potential through 

predictive control heating management. 

   

5. Conclusion 

5.1.  Proposed work 

 This work brings forth three main contributions. First, a 

methodology has been developed to generate a database of housing 

situations coupled with their energy-saving potential through heating 

management. This is achieved through the combination of 

classification works on housing and climate with a variety of occupancy 

scenarios. The methodology is based on the creation of thermal models 

for housing archetypes and the identification of reduced-order thermal 

models to simplify the treatment of multiple combinations of housing, 

external temperature and household absence. These simulations allow 

for the extraction of identified metrics characterizing the algorithm's 

energy-saving potential for each housing situation. The processing of 

the database is done through a combination of Principal Component 

Analysis (PCA) and hierarchical clustering. This processing of the 

database helps to identify the influence of variables on the energy-

saving potential for all housing situations. Additionally, hierarchical 
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clustering allows for the grouping of similar situations together, which 

facilitates the extraction of patterns. The second main contribution is 

the implementation of the developed methodology to individual 

housing situations, based on the DTS models developed by the TEASER 

software in order to estimate the potential of a linear predictive 

control. This implementation highlights the potential of the 

methodology by emphasizing the variability of the predictive control’s 

energy savings, the identification of patterns within the clusters, and 

the influence of renovation. The results for the variables used are 

coherent with the literature.  

5.2.  Limitations and future work 

 The use of German TABULA archetypes is a primary limitation. 

Utilizing this data may introduce errors in the identified housing 

patterns. To enhance this aspect, it is essential to employ thermal 

models using data from the French housing stock sourced from 

TABULA or to compare French archetypes with those of Germany. 

Furthermore, the use of deterministic household occupancy scenarios 

constitutes a major limitation of the proposed work. While they allow 

us to observe the influence of household absence, these scenarios are 

not directly linked to existing households, preventing the 

interpretation of the composition of households defining the housing 

situations. Another limitation is the perfect prediction of disturbances 

for linear predictive control. This assumption leads to an inaccuracy of 

the energy-saving potential for each housing situation in the proposed 

application. However, it enables only the estimation of the maximum 

potential for energy-saving through heating management for each 

situation. Additionally, the absence of any discomfort situations is 

observed, which means the management algorithm is not evaluated 

from that perspective. 

 Based on the previous limitations, interdisciplinary work 

prospects seem very interesting. The methodology can be 

strengthened by using household behaviour classifications. It would 

then be possible to identify patterns enabling us to target households 

whose behaviour represents a rich source of potential energy savings 

through advanced control. Behavioural archetypes based on French 

data are available. They quantify additional variables of interest for the 

problem addressed in this study, such as the desired thermostat 

temperature of households and their ability to adopt regulatory 

behaviours (e.g., lowering heating when absent). However, the 

occupancy of each archetype is not quantified at every moment of the 

day but as an average tendency of households to be more or less absent. 

Therefore, these archetypes cannot be directly integrated into our 

methodology [40]. Several studies have treated this challenge by 

classifying time-use survey data and extracting a small number of 

typical profiles of activity scenarios [41]. This methodology was 

applied by the authors of [42] to evaluate the influence of these profiles 

on energy consumption.  However, in the context of our work and from 

an interdisciplinary perspective, household behaviour classifications 

require the descriptive variables of the households making up each 

group to be linked to their activity time series. To our knowledge, this 

link has not been made in existing studies. Finally, the analysis of 

energy-saving potentials of the housing situations of groups 1 and 2 

raises questions about the environmental life cycle profitability of the 

control devices (sensor, microcontroller) necessary for implementing 

such heating control (0.14 kWh/m2 for group 1, 0.16 kWh/m2 for the 

second). It would be interesting, therefore, to couple this methodology 

with a life cycle assessment to quantify the environmental benefits of 

managing heating systems in this way [43], [44]. 
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