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Two Longitudinal Fault Tolerant Control Architectures for
Autonomous Vehicle

M.R. Boukhari1, A. Chaibet2, M. Boukhnifer2 and S. Glaser1

*

Abstract

Two Fault Tolerant schemes for more reliable spacing control of an autonomous vehicle are presented in this paper. The nonlinear
longitudinal model of the vehicle is tackled by mean of the Lipschitz representation. Based upon this representation, a state
feedback integral controller is designed, as well as, a fault estimation observers. The Lyapunov theory is used ensuring H∞
criterion and L2-gain norm in the developement of the Linear Matrix Inequality constraints. Simulation results are addressed to
validate the proposed FTC schemes in different autonomous vehicle scenarios.

Keywords:
Autonomous Driving, Fault-Tolerant Control, Fault Estimation, Linear Matrix Inequality.

1. Introduction

Driverless vehicles have received an important consideration by the scientific community in the two last decades.
In fact, the self-driving technologies offer a more effective transportation systems. Thus, the passengers and road
users safety is enhanced, the traffic jam is handled more efficiently and the fuel consumption is decreased. However,
such an achievements need to improve more safety and reliability in case of fault occurrence. From this perspective, a
significant research efforts have been conducted and have advanced the vehicle fault tolerant control [1]. Further, the
topic of longitudinal fault tolerant control appears to enhance reliability for application as the collision avoidance [2],
the spacing control [3] and the variants of the adaptive cruise control [4, 5].

Indeed, the longitudinal fault tolerant control to track desired velocity of an Automated Highway System (AHS) in
presence of actuator and parametric faults is presented in [6, 7]. Thus, a nonlinear controller is designed based upon
the Dynamic Surface Control (DSC) to ensure closed-loop stability by passive manner. Furthermore, a switching
logic, using Fault Detection and Diagnosis (FDD) and Fault Managment System (FMS), swaps from the passive to
the active approach when the stability can not be achieved. In [8], authors presented a passive fault tolerant control,
based upon Sliding Mode Control (SMC), to overcome actuator faults affecting the engine and brake systems in AHS
application. The aim was to use a Constant Time Headway Policy [9] to ensure collision avoidance in faulty scenarios,
and reducing oscillations caused by slinky effects which may propagate along a string of following vehicles. In [10],
a multi-sensor switching strategy for longitudinal spacing control to guarentee fault tolerance was introduced. The
sensors considered were the camera, the Lidar sensor and the Radar sensor. Thus, every sensor had its corresponding
estimator and feedback controller, in such a way that the loop satisfaying the minimum cost function is switched on. In
[11], the Cooperative Adaptive Cruise Control (CACC) system subjected to communication latency between vehicles
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was studied. The CACC is based upon wireless communication in the platooning application, therfore, the authors
aim to apprehend the latencies effect in wireless link taking advantage of the robustness of the H∞ passive controller.

The autonomous vehicle must be able to ajust its speed and to mantain a safe distance with the front vehicle, in
such a way that the autonomous vehicle can stop safely in case of emergency. Furthermore, inter-distance policies
for longitudinal control are based upon information about the vehicle velocity [12, 13, 14]. Thus, it is clear that
inaccuracies or faults in the vehicle speed sensor can corrupt the inter-distance reference leading to injurious control
actions. Thereby, a fault tolerant control strategy must be carried out to deal with faults in the speed sensor, and
enhance vehicle safety.

The main contribution of this paper is to handle the vehicle speed sensor’s additive faults, by adopting a fault tol-
erant control strategy. The vehicle longitudinal dynamic nonlinearity satisfied the Lipschitz condition which permitted
us to use the Descriptor Observer [15, 16, 17, 18], and the Proportional and Integral Observer techniques [19, 20].
These techniques lead us to estimate accurately the sensor additive faults. Furthermore, the advantage of the proposed
strategies is the avoidance of control structure reconfiguration.

The present paper is organized as follows: in section 2 vehicle longitudinal and inter-distance models are ad-
dressed. In the section 3, the description and the design of the Fault Tolerant Control (FTC) strategy is given. While
the validation of these techniques by some simulation examples were devoted on the section 4. Concluding remarks
and perspective of this work are presented in the section 5.

Throughout this paper, some specific notations are used for more clearness. Thus, we summarize:

• I, O are the identity matrix and the zero matrix of appropriate dimentions respectively;

• The symbol ”*” in the matrices represents the transposed element in the symmetric position ;

• Subscript ”T” indicates matrix transposition ;

• The notationH(.) denotes the Hermitian of the matrix, for exampleH(A) = AT + A.

2. Vehicle and Inter-Distance Modeling

2.1. Vehicle dynamics

The following assumptions are made to describe the vehicle longitudinal model [21, 22] (see Fig. 1):

• The road is supposed to be plane (no slope and no inclination);

• The vehicle longitudinal behaviour is decoupled from the lateral one, thus the steering is null;

• The yaw, pitch and roll dynamics are not considred;

• The tire radius is supposed to be constant;

• There is no longitudinal slip between the tire and the road.

Considring the above assumptions, the longitudinal vehicle dynamic can be expressed by the following equations:
mV̇x(t) =

∑4
i=1 Fxi (t) − Fa(t)

J̄riω̇ri (t) = Tm(t) − rFxi (t) − rFri (t) − Tbi (t), i = 1, 2
Jriω̇ri (t) = −rFxi (t) − rFri (t) − Tbi (t), i = 3, 4

(1)

Adopting a single track modeling by defining :

Tb f = Tb1 + Tb2 ,Tbr = Tb3 + Tb4 ,Tr f = r(Fr1 + Fr2 ),Trr = r(Fr3 + Fr4 ), Fx f = Fx1 + Fx2 , Fxr = Fx3 + Fx4 , ω̇r f =

ω̇r1 = ω̇r2 , ω̇rr = ω̇r3 = ω̇r4 , J̄r = J̄r1 + J̄r2 , Jr = Jr3 + Jr4

2
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TABLE 1: Vehicle Parameters

Notation Definition Unit
m Vehicle mass Kg
Vx Vehicle speed ms−1

Fxi Tire/road force of the ith wheel N
Fa Aerodynamic force N
J̄r Global inertia of the front axle Kg.m2

J̄ri Inertia of ith front wheel Kg.m2

ω̇ri Acceleration of the ith wheel rad.s−2

Tm The engine torque Nm
r The tire radius m

Fri The rolling force of the ith wheel N
Tbi The braking torque of the ith wheel Nm

Tr f /Trr The rolling torque of front/rear axle Nm
Jr Global inertia of the rear axle Kg.m2

Jri Inertia of ith rear wheel Kg.m2

We obtain the following equation:
mV̇x(t) = Fx f (t) + Fxr (t) − Fa(t)
J̄rω̇r f (t) = Tm(t) − rFx f (t) − Tr f (t) − Tb f (t)
Jrω̇rr (t) = −rFxr (t) − Trr (t) − Tbr (t)

(2)

FIGURE 1: Vehicle longitudinal dynamics

Substituting Fx f and Fxr in equation (1) leads to:

mV̇x(t) =
1
r

[Tm(t) − Tb f (t) − Tbr (t) − Tr f (t) − Trr (t) − J̄rω̇r f (t) − Jrω̇rr (t)] − Fa(t) (3)

The longitudinal slip ratio hypothesis can be written as:

λ =
rωr − Vx

max(rωr,Vx)
= 0

Leads to rωr = Vx, then rω̇r = V̇x. Substituting ω̇r in (3), we obtain:

(m +
J̄r + Jr

r2 )V̇x(t) =
1
r

[Tm(t) − Tb f (t) − Tbr (t) − Tr f (t) − Trr (t)] − Fa(t) (4)

Denoting Tb = Tb f + Tbr , Tr = Tr f + Trr , we get:

JeqV̇x(t) = Teq(t) − aVx(t) − bV2
x (t) (5)

3
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Where Jeq = (rm +
J̄r + Jr

r
), Teq = Tm − T f − Tr, Fa = aVx + bV2

x and a and b are aerodynamic coefficients. Teq

is the torque given by the engine and the brake system, its dynamic is subjected to loss and to decay rate, to overcome
this problem we assume a first order dynamic, with a time constant τ [23]:

Ṫeq(t) =
1
τ

(−Teq(t) + u(t)) (6)

Finally, the vehicle longitudinal dynamic is given in the quadratic form by combining (5) and (6) as follows:

[
V̇x(t)
Ṫeq(t)

]
=


−a
Jeq

1
Jeq

0
−1
τ


[

Vx(t)
Teq(t)

]
+

01
τ

 u(t) +

−b
Jeq
0

V2
x (7)

The model (7) can be written in the following Lipschitz nonlinear form:ẋ(t) = Ax(t) + Bu(t) + Gg(x(t))
y(t) = Cx(t)

(8)

With:

x =

[
Vx

Teq

]
, A =


−a
Jeq

1
Jeq

0
−1
τ

, B =

01
τ

, G =

−b
Jeq
0

, g(x) = V2
x , C =

[
1 0
]
.

Taking into account the exogenous disturbances:ẋ(t) = Ax(t) + Bu(t) + Gg(x(t)) + Wd(t)
y(t) = Cx(t)

(9)

Where d(t) is the disturbance signal, and W the disturbance distribution matrix of appropriate dimension.

2.2. The inter-distance model
The control objective is to ensure a safe distance between the leader vehicle and the follower (the controlled) one.

This distance must be dynamic, in such a way that the follower vehicle adjusts automatically its speed and maintains
a safe distance from the leader vehicle. Furthermore, in order to avoid possible vehicle instability due to sensor faults,
a FTC control is designed to ensure the insensitivity against the occurring faults. While the fault tolerance is achieved
by maintaining an acceptable performance and stability properties without changing the structure of the controller.
This control technique requires the estimation of this fault. In [13], authors define the desired inter-distance dist(Vx)
policy as follows (see Fig. 2):

dist(Vx) = dstop + hVx (10)

Where dstop represents the inter-distance while stopping and h corresponds to the headway time.

FIGURE 2: The inter-distance model

4
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3. Fault Tolerant Control Strategy

The active Fault Tolerant Control accomodation strategy is based upon the separation principle. This method
requires the fault estimation by an observer in order to compensate the faults effect in the closed loop control. This
principle is depicted in Fig. 3. Thus, the feedback controller uses the output signal obtined by sustracting the measur-
ment signal and the estimated faults [24].

FIGURE 3: The Fault Tolerant Control strategy

To apply this design method, we have to synthesize a state feedback controller and an observer, for that the
following assumptions are helpful:

Assumption 1. The nonlinear terms are considered to be a smooth Lipschitz function satisfying the following relation:

‖g(x1) − g(x2)‖ ≤ L‖x1 − x2‖ (11)

Where x1, x2 ∈ Rn, and L is a positive Lipschitz constant.

Assumption 2. The faults fs(t) / the disturbances d(t) are assumed to be bounded additive signals affecting the
measurments / the system: ‖ fs(t)‖ ≤ fmax

‖d(t)‖ ≤ dmax
(12)

Where fmax and dmax are constant scalars.

Lemma 1 (Schur Complement). Given the matrices S ∈ Rn×n, M ∈ Rn×m, and Γ ∈ Rm×m, thus the following implica-
tion holds [25]:

S + MΓ−1MT ≤ 0,Γ < 0⇔
[

S M
MT Γ

]
≤ 0 (13)

Lemma 2. Consider matrices A, and B, and scalar δ the following inequality holds [26]:

AT B + BT A ≤ δAT A + δ−1BT B (14)

Lemma 3. Consider the positive scalar α (called also decay rate) and the Lyapunov function V , the derivative of V
can be bounded by α as follows [27]:

V̇(t) ≤ −2αV (15)

5
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3.1. Controller design
For the nonlinear Lipschitz model (9), the robust and stabilisable control with integral action has the following

form:

un = −
[
K KI

] [ x
xI

]
(16)

Where K,KI are the proportional and integral gains respectively, x is state vector of system (9) and xI =
∫

yc(t) − y(t)
(y(t) is the output signal, yc(t) is the reference signal). From (9) and (16) an augmented system can be written as fol-
lows:  ˙̄X(t) = ĀX̄(t) + B̄u(t) + Ḡg(x(t)) + W̄d(t) + Λyc(t)

y(t) = C̄X̄(t)
(17)

Where:

X̄ =

Vx

Teq

xI

, Ā =


−a
Jeq

1
Jeq

0

0
−1
τ

0

−1 0 0

, B̄ =


0
1
τ
0

, Ḡ =


−b
Jeq
0
0

, g(x) = V2
x , C̄ =

[
1 0 0

]
, Λ =

001
,

and W̄ =

[
W
O

]
. We obtain the following augmented controller:

u = −K̄X̄ (18)

Substituting (18) in (17), one can obtain the following closed-loop model:

˙̄X = (Ā − K̄B̄)X̄ + Ḡg(x(t)) + W̄d(t) (19)

The control pupose is to design a gain K̄ ensuring the vehicle stability, such that the unknown disturbances are
minimized by the following H∞ criterion:

Criterion 1. The effect of the external disturbances d are minimized using a criterion γ such that [28]:∫ ∞
0

(X̄T X̄ − γ2dT d)dt ≤ 0 (20)

Theorem 1. The augmented closed-loop Lipschitz system (19) is asymptotically stable by the state feedback controller
(18), if there exists a symmetric definite positive matrix P−1, matrix Y , and positive scalars γ, λ, α and δ, such that the
following LMI holds: 

Ω O W̄P−1 ḠP−1 P−1 P−1

∗ −γ2I O O O O
∗ ∗ −λ2I O O O
∗ ∗ ∗ −δ−1I O O
∗ ∗ ∗ ∗ −I O
∗ ∗ ∗ ∗ ∗ −I


≤ 0 (21)

Where Ω = H(P−1Ā) +H(B̄Y) + (δL2 + 1 + 2)I + 2αP−1

Proof. Consider the following Lyapunov function, where P = PT > 0 is a symmetric difinite matrix:

V(X̄) = X̄T PX̄ (22)

6
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Adopting Criterion. 1, and an L2-gain form, minimizing the transfert from the known input u to the state vector
X̄, we obtain:

V̇(X̄) + 2X̄T X̄ − γ2dT (t)d(t) − λ2uT (t)u(t) < 0 (23)

Using Lemma. 3:

V̇(X̄) + 2X̄T X̄ − γ2dT (t)d(t) − λ2uT (t)u(t) + 2αV < 0 (24)

Substituting V and its derivative in (24), and using Assumption. 1 and Lemma. 2, implies the following quadratic
form:

X̄ud


T  Ω1 O PW̄
O −λ2I O

W̄T P O −γ2I


X̄ud
 < 0 (25)

Where Ω1 = H((Ā − B̄K̄)P) + δL2I + δ−1PḠḠT P + 2I + 2αP

Using the Schur Complement, and pre-post multiplying by diag
[
P−1 I I I

]
:

Ω2 O W̄P−1 ḠP−1

O −λ2I O O
P−1W̄T O −γ2I O
P−1ḠT O O −δ−1I

 < 0 (26)

Where Ω2 = H(P−1Ā) +H(B̄Y) + δL2P−1P−1 + 2P−1P−1 + 2αP−1, and Y = KP−1.

Using twice the Schur Complement, we obtain the LMI constraint of (21).

3.2. Proportional and Integral Observer Fault Estimation (PIO)

The system (9) subjected to sensor faults is written as follows:

ẋ(t) = Ax(t) + Bu(t) + Gg(x(t)) + Wd(t)
y(t) = Cx(t) + F fs(t)

(27)

Where fs(t) is the sensor fault signal, and F the fault distribution matrix.

The proportional and Integral observer of the system (27) are given as the form proposed in [29]: ˙̂x(t) = Ax̂(t) + Gg(x̂(t)) + Bu(t) + Lp(y −Cx̂ − F f̂s)
˙̂f (t) = LI(y −Cx̂ − F f̂s)

(28)

The aim is to calculate the observer’s proportional and integral gains ensuring the asymptotic convergence. For
that we consider the states error e = x − x̂, the faults error e f = f − f̂ , and the free fault case residual signal

7
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r = N(y − ŷ) = NC0e(t) (N is a weighting matrix, and C0 =
[
C O

]
). Implies the error dynamics (29).

ė(t) = (A − LpC)e(t) + Gg̃ + Wd(t) − LpFe f (t)
ė f (t) = ḟs(t) − LICe(t) − LI Fe f (t)

(29)

Where g̃ = g(x(t)) − g(x̂(t)). Based upon (28) and (29), the augmented system (30) is written.

Ż1(t) = (A∗ − L∗C∗)Z1(t) + G∗g̃ + W1d(t)
Ż2(t) = A∗Z2(t) + L∗C∗Z1(t) + G∗g(x̂(t)) + B∗u(t) + W2 ḟs(t)

(30)

Where Z1(t) =

[
e(t)
e f (t)

]
, Z2(t) =

[
x̂(t)
f̂s(t)

]
, A∗ =

[
A O
O O

]
, L∗ =

[
Lp

LI

]
, C∗ =

[
C F

]
, B∗ =

[
B
O

]
, G∗ =

[
G
O

]
, W1 =

[
W
O

]
,

W2 =

[
O
I

]
The signal r must be insensitive to external disturbance signal d, for that we adopte the following criterion:

Criterion 2. The H∞ criterion ensuring the disturbances rejection is written as follows:∫ ∞
0

(rT r − γ2dT d)dt ≤ 0 (31)

Therefore, the PIO (28) and the dynamics (29) are asymptotically stable via the Criterion. 2, if the LMI condition
summarized in the Theorem. 2 holds.

Theorem 2. The nonlinear Lipschitz Proportional and Integral Observer (28) is asymptotically stable, if there exist
positive definite matrices P1 and P2, matrices N and U1, and positve scalars δ, λ and γ, such that the following LMI
is verified: 

∆1 C∗L∗P2 O O P1W1 P1G∗ CT
0 NT O

∗ ∆2 P2B∗ P2W2 O O O P2G∗

∗ ∗ −λ2I O O O O O
∗ ∗ ∗ O O O O O
∗ ∗ ∗ ∗ −γ2I O O O
∗ ∗ ∗ ∗ ∗ −δ−1I O O
∗ ∗ ∗ ∗ ∗ ∗ −I O
∗ ∗ ∗ ∗ ∗ ∗ ∗ −δ−1I


< 0 (32)

Where:

∆1 = H(P1A∗ − U1C∗) + δL2I + I
∆2 = H(P2A∗) + δL2I + I

Proof. Consider the following multiple Lyapunov function, where P1 = PT
1 > 0 and P2 = PT

2 > 0 are symmetric
definite positive matrices:

8



/ Mathematics and Computers in Simulation (2017) 1–15 9

V = ZT
1 P1Z1 + ZT

2 P2Z2 (33)

Deriviting (33) and using Criterion. 2, and the L2-gain form, we get:

V̇ + rT r + ZT
2 Z2 − λ

2uT u − γ2dT d ≤ 0 (34)

Using Assumption. 1, and Lemma. 2, one have the quadratic form of (35).


Z1
Z2
u
ḟs

d



T 
∆′1 C∗T L∗T P2 O O P1W1
∗ ∆′2 P2B∗ P2W2 O
∗ ∗ −λ2I O O
∗ ∗ ∗ O O
∗ ∗ ∗ ∗ −γ2I




Z1
Z2
u
ḟs

d

 ≤ 0 (35)

Where:

∆′1 = H(P1(A∗ − L∗C∗)) + δL2I + δ−1P1G∗G∗T P1 + CT
0 NT NC0 + I

∆′2 = H(P2A∗) + δL2I + δ−1P2G∗G∗T P2 + I (36)

Using three times the Schur Complement, and denoting U1 = P1L∗, yields the LMI constraint of (32).

3.3. Descriptor Observer Fault Estimation (DO)

From (9) an augmented system can be written as follows:E ˙̄x(t) = Āx̄ + Ḡg(x(t)) + B̄u(t) + W̄d(t) + F̄ f̄s

y = C̄ x̄ = C0 x̄ + f̄s
(37)

x̄ =

[
x
fs

]
, E =

[
I O
O O

]
, Ā =

[
A O
O O

]
, Ḡ =

[
G
O

]
, B̄ =

[
B
O

]
, W̄ =

[
W
O

]
, F̄ =

[
O
I

]
, f̄s = F fs, C̄ =

[
C F

]
, and

C0 =
[
C O

]
.

The nonlinear Lipschitz Descriptor Observer leading to estimate the system’s states and the sensor faults is written
as follows : Ēż = S z + Ḡg(x̂(t)) + B̄u(t)

ˆ̄x = z + Ly
(38)

S =

[
A O
−C −I

]
, L =

[
O
I

]
, Ē =

[
I + ΘC Θ

RC R

]
, and Θ, and R are chosen in such a way that Ē is nonsingular [30].

Let us define the error e = x̄− ˆ̄x, and the free faults residual r = M(y− ŷ) = MC0e (where M is a wheiting matrix),
yields the following error dynamic:

ė(t) = S̃ e(t) + G̃g̃ + W̃d(t) (39)

9
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With g̃ = g(x(t)) − g(x̂(t)), S̃ = Ē−1S =

[
A + ΘR−1C ΘR−1

−CA − (R−1 + CΘR−1)C −R−1 −CΘR−1

]
, G̃ = Ē−1Ḡ =

[
G
−CG

]
,

W̃ = Ē−1W̄ =

[
W
−CW

]
From (9) and (39), we have the following augmented system:

[
ė(t)
ẋ(t)

]
=

[
S̃ O
O A

] [
e(t)
x(t)

]
+

[
G̃ O
O G

] [
g̃

g(x(t))

]
+

[
O
B

]
u(t) +

[
W̃
W

]
d(t) (40)

The stability of the system (40) is ensured, using the Criterion. 2, and the L2-gain form, if the LMI condition
summarized in the Theorem. 3 holds.

Theorem 3. The nonlinear augmented Lipschitz Descriptor System is asymptotically stable, if there exist positive
definite matrices P11, P12, and P2, matrices N1, N2, and M, positive scalars λ, γ, and δ, such that the following LMI
condition is satisfied: 

Φ11 Φ12 O O P11W P11G CT MT O
∗ Φ21 O O −P12CW −P12CG O O
∗ ∗ Φ31 P2B P2W O O P2G
∗ ∗ ∗ −λ2I O O O O
∗ ∗ ∗ ∗ −γ2I O O O
∗ ∗ ∗ ∗ ∗ −δ−1I O O
∗ ∗ ∗ ∗ ∗ ∗ −I O
∗ ∗ ∗ ∗ ∗ ∗ ∗ −δ−1I


< 0 (41)

With:

Φ11 = H(P11A) +H(N1C) + δL2I + I
Φ12 = N1 − AT CT PT

12 −CT NT
2

Φ21 = −H(N2) + I
Φ31 = H(P2A) + δL2I + I (42)

The estimated fault is written as follows:

f̂s = −(FT F)−1FT ˆ̄fs (43)

Where:

ˆ̄fs =
[
O I

]
ˆ̄x (44)

Proof. Consider the following Lyapunov function, where P1 = PT
1 > 0 and P2 = PT

2 > 0 are symmetric definite
positive matrices, of appropriate dimensions:

V(e(t), x(t)) =

[
e
x

]T [P1 O
O P2

] [
e
x

]
(45)

Deriviting (45) and using Criterion. 2, and the L2-gain form, we get equation (46).

V̇(e(t), x(t)) + rT r + xT x − γ2dT d − λ2uT u (46)

10
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Using Assumption. 1, and Lemma. 2, yields the equation (47).
e
x
u
d


T 

Γ1 O O P1W̃
∗ Γ2 BT P2 P2W
∗ ∗ −λ2I O
∗ ∗ ∗ −γ2I



e
x
u
d

 < 0 (47)

With:

Γ1 = H(P1S̃ ) + δL2I + δ−1P1G̃G̃T P1 + CT
0 MT MC0 + I

Γ2 = H(P2A) + δL2I + δ−1P2GGT P2 + I

Using the Schur Complement twice, yields equation (48).

Γ′1 O O P1W̃ P1G̃ CT
0 MT

∗ Γ2 BT P2 P2W O O
∗ ∗ −λ2I O O O
∗ ∗ ∗ −γ2I O O
∗ ∗ ∗ ∗ −δ−1I O
∗ ∗ ∗ ∗ ∗ −I


< 0 (48)

And Γ′1 = H(P1S̃ ) + δL2I + I.

Substituting S̃ , G̃, and W̃ by their values, and taking P1 =

[
P11 O
O P12

]
, N1 = P11ΘR−1, and N2 = P12(R−1+CΘR−1),

Implies equation (49). 

Φ11 Φ12 O O P11W P11G CT MT

∗ Φ21 O O O O O
∗ ∗ Γ2 BT P2 P2W O O
∗ ∗ ∗ −λ2I O O O
∗ ∗ ∗ ∗ −γ2I O O
∗ ∗ ∗ ∗ ∗ −δ−1I O
∗ ∗ ∗ ∗ ∗ ∗ −I


< 0 (49)

Using the Schur Complement yields the LMI constraint of (41).

4. Simulation results

In this section, simulations have been performed in order to show the effectiveness of the proposed FTC structures
of vehicle driving scenarios. The LMI conditions devlopped above for such the controller and the observers were
resolved using the penlab solver which run under the Yalmip environment [31]. Thus, the LMIs developed are solved,
and give the following solutions:

• For the Controller :

K = 104
[
−1.7399
1.5747

]
, KI = −0.3727∗104; with P−1 = 103 ∗

1.0574 0.9293 0.1645
0.9293 1.2497 0.3350
0.1654 0.3350 0.9532

, λ = 0.0055, γ = 0.0033,

α = 0.0002

11
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• For the Proportional and integral observer:

Lp =

[
−2.8605
5.6037

]
, LI =

[
22.7274
−0.5799

]
, and P1 =


38.7735 1.7723 10.6408 0.4298
1.7723 15.4934 1.5384 1.9737

10.6408 1.5384 13.0298 1.1650
0.4298 1.9737 1.1650 23.1656

, λ = 0.3662, γ = 0.023,

P2 =


6.5789 −4.6569 −0.0800 0.0266
−4.6569 18.8529 −0.1052 −0.1294
−0.0800 −0.1052 0.0318 0.4454
0.0266 −0.1294 0.4454 17.8108


• For the Descriptor observer:

Ē =


0.2968 0 −0.7032 −0.2672
−1.1999 1.0000 −1.1999 0.0240
2.3570 0 2.3570 −0.8756
−0.3328 0 −0.3328 0.8898

, and R =

[
0.4158 2.8839
0.7453 −1.2691

]
, Θ =

[
−0.7174 0.2841
−0.8577 −1.9111

]
,

P11 =

[
3.4789 1.2250
1.2250 3.5056

]
, P12 =

[
4.2255 2.0013
2.0013 3.4122

]
, P2 =

[
4.5470 2.2896
2.2896 3.7373

]
, γ = 0.0619, and λ = 0.3833.

TABLE 2: Vehicle parameters
parmeter value Unit

Jeq 480 Kg.m
a 17.45 Kgm−1

b 0.019 Kgs−1

τ 0.05 s
h 1 s

The additive sensor fault used in this simulation has the following form:

fs(t) = (0.01t − 2) + sin(2πt) (50)

The Stop and Go maneuver is considered in this work. This scenario is summarized as follows:
The vehicle leader moves with an initial speed of 20ms−1, the following vehicle evolves with initial velocity of

25ms−1. Since the desired longitudinal distance is around 40m. In order to control this distance, the follower must
decrease. While decelerating to reach the speed of 20ms−1. At t = 15s, the additive sensor fault is occurred (in the
form of (50)), we can notice that the following vehicle maneuver without FTC could lead to loss of vehicle control
and stability, while its behavior with FTC is kept stable, and the desired spacing is preserved. At t = 24s, the vehicle
follower carries out a deceleration until to stop, and thereafter at t = 40s the vehicle accelerates to reach a velocity of
20ms−1. At t = 65s, the leader deccelerates until to stop.
The comparison of speed profiles are given on Fig. 6. Furthermore, the vehicle follower maneuver is carried out
with success with respect to the passengers comfort where the reasonable boundaries in acceleration range are from
−0.3ms−2 to 0.3ms−2 as depicted on Fig. 7. Moreover, the DO and PIO observers are designed to estimate the
longitudinal vehicle speed the Figs. 4, 5 and the additive sensor fault Fig. 8 show the good estimation. Fig. 9 shows
the additive sensor fault influence in the inter-distance, while the applied torque is depicted in Fig. 10. The Fig. 11
shows output control signal, displaying the performance of the proposed FTC control in comparison with vehicle
without FTC.

12
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FIGURE 4: Vehicle estimated speed with DO observer
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FIGURE 5: Vehicle estimated speed with PI observer
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The following remarks can be summarized:

• The estimated vehicle speeds converge quickly toward the real one;

• The estimated fault converges to the real one;

• The performances obtained are good as well in dynamics as in statics;

• The observation errors are steered to zero in finite time.

The fruitful simulation results presented above, prove the effectiveness of the FTC strategy in managing the
occurrence of additive sensor faults. In addition, the additive fault is well estimated, and the fault accommodation
maintains the vehicle stability in faulty cases.

5. Conclusion

In this paper, the reliability of the spacing control for an autonomous vehicle was performed. The emphasis is
to give on sensor fault tolerant controller scheme. Furthermore, the design of the proposed fault-tolerant scheme
is based upon a state feedback integral controller ensuring robustness against disturbances, and a fault estimation
observer. Indeed, two observers techniques were designed, the Descriptor Observer and the Proportional and Integral
Observer. The controller and observers gains were done by solving the LMI constraints that ensure the H∞ criterion
and the L2-gain form. To illustrate the ability of the proposed FTC architectures, computation simulations have been
carried out to give well performance of the fault detection and control law design in some scenarios of automated
driving where the performances and the vehicle stability are kept with respect of the passenger comfort. In future
work, experimental tests should therefore be implemented on prototype vehicle.
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