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Abstract—Every year, for ten years now, the IPIN compe-
tition has aimed at evaluating real-world indoor localisation
systems by testing them in a realistic environment, with real-
istic movement, using the EvAAL framework. The competition
provided a unique overview of the state-of-the-art of systems,
technologies, and methods for indoor positioning and navi-
gation purposes. Through fair comparison of the performance
achieved by each system, the competition was able to identify
the most promising approaches and to pinpoint the most
critical working conditions. In 2020, the competition included
5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in
terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors
obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not
running on physical systems, but only as algorithms, these results represent impressive achievements.

Index Terms— Indoor positioning and navigation, evaluation, smartphone-based positioning, foot-mounted IMU,
positioning in industrial scenarios and factories, vehicle-positioning.
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I. INTRODUCTION

THE International conference on Indoor Positioning and
Indoor Navigation (IPIN), born in 2010, has been a ref-

erence for researchers and practitioners interested in systems,
methods, techniques and technologies for indoor positioning
and indoor navigation. In fact, estimating the location of a
mobile target still represents a challenging task in indoor
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environments. While solutions based on Global Navigation
Satellite System (GNSS) are successfully used outdoor, pin-
pointing the location of an indoor target requires the adop-
tion of technologies that most often cannot exploit satellites
because indoor obstacles, walls and, most of all, ceilings are
all factors that significantly reduce the strength of satellite sig-
nals. Indoor localisation systems, be they targeted at personal
navigation or other purposes, heavily rely on the use of a
wide variety of sensors. This is in sharp contrast with outdoor
localisation, which relies only on GNSS radio signals, at least
as far as consumer-grade applications are concerned.

Since its inception, IPIN’s core topics have been low-level
hardware and software techniques for positioning and naviga-
tion. In the last few years a growing interest has been observed
in topics regarding system evaluation, standardisation and
interoperability. In fact, reaching a wide consensus on the eval-
uation metrics for these systems is a fundamental step towards
filling the gap between prototypes and commercial systems.
In this paper we are particularly interested in testing and
evaluation of systems and, as a showcase, we fully describe the
IPIN 2020 competition. While the competition usually benefits
from the attendance of the congress, in 2020 the competition
was a solo event which nonetheless attracted 95 attendees to
the final event, which was held online.

Past editions of the IPIN competitions were organised by
hosting two different kinds of Tracks, namely on-site and
off-site. In the on-site Tracks, competitors demonstrate their
system by performing an assigned test in a given place.
An actor carries the competing system while walking in
and between multi-floor buildings. The system shall provide
position estimates in real time using local data processing
on opportunistic signals, without any ad hoc infrastructure.
In off-sites Tracks competitors calibrate their algorithms in
advance using a ground-truth reference database provided by
the committee, and compete using new unreferenced data. Due
to worldwide travel restrictions, the 2020 competition only
hosted off-site tracks for active indoor positioning systems.

This paper contains organisational aspects and highlights
the choices taken by the organisers. The core part of the
paper is the description of the competing systems. This edition
provided five off-site Tracks: Smartphone, Foot-mounted IMU,
xDR in manufacturing, On-vehicle smartphone and Channel
impulse response. Each Track is explained in a dedicated
section which also contains contributions and system descrip-
tions authored by the competitors. As a follow-up to [1], [2],
this work provides a unique overview on the state of the
art of systems, technologies and methods for indoor posi-
tioning and navigation purpose. Through a fair comparison,
the performance achieved by each system in a real-world
scenario helps understanding which are the most promising
approaches, under which working conditions. Comparison
is performed according to the Evaluating Ambient Assisted
Living (EvAAL) framework [3].

The paper is structured as follows. Section II summarises
the history of the IPIN competition and highlights possible
future directions for the next editions. Section III is an
overview of the five Tracks and their commonalities, which are
founded on the EvAAL framework. Sections IV to VIII report

the characteristics and final results for each Track and the
detailed descriptions of most competing systems. Section IX
is an attempt at identifying lessons to be learned from the
practical experience of competitors: even if the competition
was off-site, the algorithms used were stressed in a challenging
and competitive environment, which offered insight to both
competitors and attendees.

II. PAST, PRESENT AND FUTURE DIRECTIONS

Research in the area of indoor positioning and navi-
gation in the last decade has elicited a strong interest
from both academic and industrial communities. We expect
indoor Location-based services (LBS) to experience signifi-
cant growth and evolution and to be commonly available on
commercial devices in the future

Although impressive advances in the field of algorithms for
indoor localisation and tracking have been achieved, evaluation
frameworks are missing. Under this respect, the EvAAL
framework was a pioneer initiative devoted to compare, with a
rigorous methodology, the performance of indoor localisation
systems in real-world, non-trivial settings. Here we summarise
the 10-year-long journey of the EvAAL framework, from
the first EvAAL competition in 2011 to the recent IPIN
2020 competition, and we give a look at the next edition of
IPIN scheduled for late November 2021.

The EvAAL framework has been designed to test and com-
pare the performance of indoor localisation systems, following
a rigorous approach. It consists of four core criteria plus four
extended criteria, the latter being desirable ones which should
be applied as far as possible [3]. The core criteria, which are
necessary to define a competition as conformant to the EvAAL
framework, are:

1) Natural movement of an actor: an actor walks with
natural speed and attitude.

2) Realistic environment: the walking path is set in a
realistic setting; EvAAL competitions were done in a
living lab, IPIN competitions in wider settings, like a
congress centre, a university building, a shopping mall.

3) Realistic measurement resolution: final error measure-
ments below 50 cm in space and 0.5 s in time should
be considered as null, when indoor people’s movement
are considered; when the actor walks, the test should
be considered adequate if his/her time and space errors
when passing on the test points are not greater that the
above figures, which is easy for a trained person.

4) Third quartile of point Euclidean error: the accuracy
score is based on the third quartile of the point error.

Applicability of extended criteria to IPIN 2020 is discussed
in Section III.

Table I is an overview of the size of past competitions.
While the IPIN competitions aim to compare systems based
only on their accuracy performance, the early EvAAL editions
were characterised by a richer set of goals, including the
deployment complexity of the solution; the time required
to calibrate and configure the system; the impact of the
system in terms of the end-user’s perception. These indicators
were mainly driven by the Ambient Assisted Living (AAL)
application scenarios to which EvAAL was inspired [4].
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TABLE I
NUMBER OF TRACKS AND NUMBER OF COMPETITORS FOR ON-SITE

AND OFF-SITE INDOOR LOCALISATION COMPETITION TRACKS

In 2014, the EvAAL competition met the IEEE IPIN
conference, giving birth to the IPIN competition [5]. Such
partnership was the result of two complementary communities:
on the one hand, experience from the EvAAL competitions
provided a well-established evaluation framework; on the
other hand the IPIN provided a vibrant community composed
of academic and industrial attendants who every year share
advances in the area of indoor navigation and positioning.
The birth of the IPIN competition series extended the range
of potential competitors. Indeed, the IPIN competition has
seen a consistent increased of the number of competition
Tracks, each of which focused on specific constraints and
objectives, as shown in Table I. Tracks are split between
on-site and off-site. The on-site Tracks take place during
the IPIN conference and competitors do a live test of their
solutions. Off-site Tracks are performed remotely. For the
latter ones, competitors are required to test their solution by
following rules and data sets provided by the organisers.

During the last 7 IPIN competition editions, competitors
have had the opportunity to test their systems in shopping
malls, conference halls, university campus and large research
centres. Such a variety of locations is the distinguishing
feature of IPIN competitions with respect to similar ini-
tiatives. In fact, the confluence of EvAAL into the IPIN
conference refined the methodology adopted to assess the per-
formance, adding the following characteristics: no additional
instrumentation allowed, non-overlapping competition Tracks,
highly representative competition areas, easy-to-understand
measurement statistics to define the final ranking of the tested
systems.

Appreciation of this format by competitors (both from acad-
emy and industry) and sponsors is reflected in the consistently
growing attendance to the competition.

So far so good, but what’s next for the IPIN competition?
Organisers are looking at two growing trends:

• the increasing performance and diffusion of sensing units
available with commercial devices;

• the wide adoption of learning methodologies with a
never-seen-before statistical power.

As far as sensing is concerned, new short-range Radio-
Frequency (RF) technologies such as Wi-Fi Time-of-Flight
(TOF) measurements, Ultra-Wide Band (UWB) and Blue-
tooth 5.0 are the next obvious target to include in testing
by augmenting the existing Tracks or creating new ones.
In the future, medium- and long-range RF technologies 5G

and 6G may become drivers for localisation technology, but
currently it is not easy to set up a representative testbed:
telecommunication providers might play a crucial role for
indoor localisation; the IPIN competition is open to testing
and experiencing such disrupting technologies.

As far as the increasing pervasiveness of machine learning
is concerned, our prospect is to support such evolution by
offering always-more challenging data sets to the competitors,
in order to assess the performance of their systems, as it has
been done with the off-site Tracks. Under this respect, we con-
sider heterogeneity as one of the most challenging properties
of such data sets. Heterogeneity refers to the different nature
of data that can be simultaneously analysed, to improve the
performance of ML-based algorithms. Fingerprint data sets,
based on of Wi-Fi Received Signal Strength Indicator (RSSI)
readings, can be enriched with context information derived
from Bluetooth beacons, environmental or physiological sen-
sor readings, giving rise to unexpected possible correlations.
In turn, such data sets can be used as non-structured inputs to
multi-layer neural networks (e.g. Recurrent Neural Network
(RNN) based on Long Short-Term Memory (LSTM) and
Gated Recurrent Units (GRU) layers) to solve classification
and regression problems applied to indoor localisation. This
trend has been in place in both on-site and off-site Tracks in
the last years, and it is going to continue.

Another interesting topic where the IPIN competition could
promote new challenges is the adoption of a more accurate
and meaningful metric for computing the positioning error.
In fact, one of the objectives of IPIN is to define standard
procedures for evaluating positioning systems, in an effort
to improve over the recent ISO/IEC 18305 standard [6], [7].
Discussion is underway about using an alternative or additional
criterion for computing the error, that is, the distance from each
reference point in the ground truth to the position estimated by
the competing system. Currently, the IPIN competition series
defines the point error as the horizontal distance plus a fixed
penalty of 15 m per each wrong floor. Now times appear to
be mature for the adoption of a “real-world” distance, that
is, the length of the path that a person would need to travel
from the reference point to the estimated point. This is the
same as the Euclidean distance if the two points are in line
of sight, that is on the same floor and in the same room, but
can be very different otherwise. A complete discussion on the
benefits of this new method and of the possible algorithms to
use, complete with code, is available at [8].

A final consideration about the future of the IPIN compe-
tition refers to the integration of multiple indoor localisation
systems. More specifically, we envision a future where dif-
ferent indoor localisation services coexist in the same area.
Such systems will require to be integrated and orchestrated
so that to reproduce, as much as possible, the well-assessed
user experience of navigation in outdoor environments [9].
We consider two key challenges:

• to standardise Application Programming Interfaces
(APIs) designed to discover, access and use an indoor
localisation systems with a commercial device;

• to regulate the privacy consents asked of end-users in
order to provide location-based services in accordance
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with the EU General Data Protection Regulation (GDPR)
regulation framework.

III. ORGANISING AN OFFSITE COMPETITION

WITH MULTIPLE TRACKS

In the 2014–2019 editions the systems competing in on-site
Tracks were tested during the IPIN conference, in the same or
a nearby site. This way, competitors were able to both compete
with their system and attend the conference, and conference
attendees could come and look at how the competition was
done. Since the conference was cancelled in 2020, only off-site
Tracks were organised for this edition, under the supervision
of competition chairs Francesco Potortì and Sangjoon Park.

The institutions involved were the Institute of Information
Science and Technologies (ISTI) of the National Research
Council (CNR, IT), UBIK Geospatial Solutions S.L. (ES),
the GEOTEC laboratory of Universitat Jaume I (UJI, ES),
Consejo Superior de Investigaciones Científicas (CSIC, ES),
the IN3 of Universitat Oberta de Catalunya (UOC, ES) the
GEOLOC Team, University Eiffel (FR), the National Institute
of Advanced Industrial Science and Technology (AIST, JP),
University of Tsukuba (JP), Aerospace Information Research
Institute, (CAS, CH), IIS Fraunhofer (DE) and the Electronics
and Telecommunications Research Institute (ETRI, KR).

A. Preparing the Competition Areas
In contrast with the two previous editions where most

on-site and off-site Tracks took place in the same large
area (a shopping mall in 2018 [1] and a research centre
in 2019 [2]), in 2020 travel restrictions made it impractical
to gather together and take measurements in the same place,
so all Tracks were independent.

The set of evaluation scenarios cover a university library
building, the shopping mall from IPIN 2018 competition [1],
a manufacturing site, road-based tracks with different satel-
lite view conditions (including indoors) and an environment
resembling an industrial setting.

All the Tracks complied with the EvAAL framework [3]
by adopting its four distinguishing core criteria (described in
Section II):

1) Natural movement of an actor
2) Realistic environment
3) Realistic measurement resolution
4) Third quartile of point Euclidean error
Additionally, all the Tracks were compliant with most of the

extended criteria defined by the EvAAL framework, as detailed
below.

1) Secret Path: The final path is disclosed immediately
before the test starts, and only to the competitor whose system
is under test. This prevents competitors to design systems
exploiting specific features of the path. This criterion is always
respected in all Tracks given the way the off-site competition
Tracks are set up: competitors are provided with training sets,
ground truth and, in some Tracks, a map. When they have
finished tuning their systems, they ask the organisers for a path
without ground truth, and submit their estimate. The ground
truth is published only after the competition is finished.

2) Independent Actor: The actor is an agent not trained to
use the localisation system. This criterion is always respected,
given the way the off-site Tracks are set up.

3) IndependentLogging System: The competitor system esti-
mates the position at a rate of twice per second. . . . This
criterion is respected or exceeded in all Tracks.
. . . and sends the estimates on a radio network provided

by the committee. This prevents any malicious actions from
the competitors. The source code of the logging system is
publicly available. This criterion is not respected, because
the competitors may retry and further tune their systems
while trying to guess the correct ground truth. To avoid this,
the committee should ask the competitors to provide their
code, and run it locally in a real-time fashion, or provide
a real-time APIs. This is feasible, in principle, but would
require a non-trivial software infrastructure to be in place, and
a non-trivial additional effort from the competitors to comply
with it.

4) Identical Path and Timing: The actor walks along the same
identical path with the same identical timing for all competi-
tors, within time and space errors smaller than the above
defined measurement resolution. This is a natural consequence
of the fact that the same data are provided to all competitors.

B. Competition Results
For each submitted trial, the error was computed by com-

paring the estimated coordinates with the ground truth, that is,
reference coordinates of the key points marked on the ground
along the path. This metric combines the floor detection
accuracy and the horizontal positioning error.

ε = �PR − PE� + p · | fR − fE | (1)

where
• PR is the vector with the ground truth horizontal (2-D)

coordinates
• PE is the vector with the horizontal coordinates estimated

by the competitors
• �PR − PE� is the horizontal error, and it is computed as

the Euclidean distance between the ground truth and the
estimated position provided by the competitor in the 2D
space.

• p is the base floor estimation error penalty and is set to
15 m.

• | fR − fE | is the absolute difference between the actual
floor number and the estimated one.

The point error ε is computed for all key points marked on
the ground that define the path of a specific challenge. The
“accuracy score” s is given by the third quartile of ε:

s = 3rdquartile {ε} (2)

The team with the lowest score wins the challenge. Note
that each competitor had the opportunity to submit the results
for multiple trials. Table II shows the scores for all the five
Tracks. Some additional metrics included in the ISO/IEC
18305 standard are also reported in the table. Fig. 1 depicts
the cumulative distributions of the accuracy score s for the
winners and runners-up of the five Tracks.
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TABLE II
RESULTS FOR ALL TRACKS. THE FIRST COLUMN IS THE COMPETITION SCORE (EQUATION 2), WHILE THE REMAINING COLUMNS SHOW OTHER

COMPLEMENTARY RELEVANT METRICS (MEAN, RMSE. MEDIAN, 95th PERCENTILE AND FLOOR HIT RATE (IF AVAILABLE).
WE ALSO INCLUDE A REFERENCE TO THE SECTION WHERE THE SYSTEM IS DESCRIBED

Fig. 1. Cumulative distributions of point errors (Equation 1).

IV. TRACK 3: SMARTPHONE

A. Track Description
The goal of Track 3 is to evaluate the performance of

different integrated navigation solutions based on a regular
smartphone sensor fusion (magnetometer, barometer, wireless

communications, Attitude and Heading Reference Sys-
tem (AHRS) or micro-electro-mechanical systems (MEMS),
among others) in an off-site context. As done in the 2016–2019
editions [1], [2], [10], [11], the same data collection strategy
and evaluation procedure has been followed.
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TABLE III
INFORMATION OF THE SENSORS IN THE SAMSUNG

GALAXY A5 2017 (SM-A520F)

The competition data set was collected by the same actor
using a Samsung Galaxy A5 2017 (SM-A520F) phone with
Android 8.0. Despite being three years old, this model has
the advantage of having being used in Track 3 for 2018 and
2019 competitions. The main features of the embedded sen-
sors, including the maximum sampling frequency, are sum-
marised in Table III.

As in the previous competitions, we have used the Android
app “GetSensorData” [12] to record and store the smartphone
sensors data into a single text file, i.e. into a logfile. The data
set is split into three subsets, namely training, validation and
evaluation:

• The first set is devoted to calibration purposes and
covers most of the evaluation area; it contains 18 short
single-floor tracks (collected 4 times each), 4 long trajec-
tories across bookshelves and 2 floor transition tracks.
We placed key points at every relevant location, i.e.
initial/final locations, significant turns in the tracks and
the last step to arrive at a new floor. A total of 78 training
logfiles were provided to competitors.

• The second set is devoted to validation purposes, allowing
competitors to have an initial assessment of the position-
ing system, and contains 13 multi-floor long tracks. The
number of key points is arbitrary and significantly lower
than in the training set. A total of 13 validation logfiles
were provided to competitors.

• The last set is devoted to evaluation purposes, allowing
competitors to have an independent evaluation without
ground truth data, and contains just 1 multi-floor very
long track. In contrast to the systematic data collection
done in the training files, the evaluation logfile included
realistic movements (e.g. simulating a user that was
messaging or attending a phone call) and stops. Only 1
unlabelled logfile was provided to competitors.

We set the maximum allowed sampling frequency in “Get-
SensorData” for all sensors to record as much as possible
data. Additionally, the smartphone was not connected to any
cellular or Wi-Fi network as, for instance, the Wi-Fi sampling
frequency significantly drops when the phone is connected to
a Wi-Fi network. The logfiles and supplementary materials are
available in [13]. This package complements the ones from the
previous editions [14]–[17].

B. Competition Area
The environment selected for Track 3 is a modern

multi-storey library building located at Universitat Jaume I

Fig. 2. Floor plan of UJI’s Library.

(Castellón, Spain) and includes a small outdoor area near
the main entry. This environment covers the use case for a
smartphone application guiding students and staff to find the
location of a book.

Before collecting data, the library building was visually
inspected to identify the most challenging parts where com-
petitors could find it difficult to obtain accurate positioning.
We finally selected the main hall entry (≈300 m2), the second
floor (≈1000 m2), the third floor (≈900 m2), the floating fourth
floor (≈200 m2) and the fifth floor (≈700 m2) to collect data.
We discarded common areas on the first floor and zones with
restricted access. The library is composed by two intercon-
nected blocks, we mainly collected data in the first block,
except for the fifth floor, where part of the second block was
finally surveyed.

For the evaluation path, we considered a walk done by a
student that was doing some homework in the library. The
student starts sitting in his/her work place (on the third floor),
the student stands up and looks for a book, attends a phone
call –despite it not being allowed–, comes back to the main
workplace and stops for a while. Then, the student needs
additional materials that is on the fifth floor, and goes directly
there. The book is not in the place it was supposed to be,
and the student asks a mate. The book seems to be in the
new bookshelves located in the same floor but in the second
block (left side in Fig. 2). On the way to the second block,
the student meets a friend in the floating fourth floor (which
was not mapped). Our student gets the book, returns to the
work place, but the computer and other materials are gone.
The student has not realised being instead on the second
floor and starts to look around desperately. The student goes
out to notify the security staff about this event. When the
student goes back to the workplace on the third floor, he/she
realises everything is there and sits to continue working after
20 minutes walking. The path goes through 82 key points for
a total length of approximately 1000 m.

We have used geo-referenced indoor maps (ArcGIS engine)
and the ArcMap tool to calibrate all the reference points used
in the data set. We performed on-site local measurements
using a laser distance meter with respect to representative
points, such as walls, pillars and doors, which were already
well represented in the indoor maps. The inaccuracies deriving
from this procedure might be considered irrelevant as all the
information and indoor maps are provided to all competitors.
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Fig. 3. Tasks during the training stage of WHU-FIVE team system.

C. Indoor Positioning Solutions Provided by Competitors
1) Team WHU-FIVE: Just like many indoor positioning sys-

tems, the WHU-Five system includes two stages, the training
stage and the testing stage. In the training stage, the system
attempts to build fingerprints, train the models and extract
some information about the positioning environment. In the
testing stage, it deals with the testing data to form the
final trajectory, leveraging the trained information and fusion
algorithm.

a) Training stage: In the training stage, four tasks are
performed that can be seen in Fig. 3. The first one is the
feature map construction. In this task, the Wi-Fi finger-
print and geo-magnetic fingerprints map is built, and extract
the book-shelf layout from the book-shelf training data set.
The second task is the training of the step length model. The
third one is the extraction of the stair-steps’ number of each
two layers from the Floor-Transition data set. The last task is
training the motion pattern model to recognize some motion
types, such as up/down stairs, in/out doors, in-situ steering
motion and phone-holding posture.

In order to build the feature maps, the position of every
sampled signal features must be known. The reference points
are used in the training sets to optimize the Pedestrian Dead
Reckoning (PDR) algorithm to obtain a highly accurate trajec-
tory estimations. The model between PDR and reference points
can then be build. The model is optimized with the Levenberg-
Marquardt (LMA) optimal algorithm. With the optimal PDR,
the feature maps for Wi-Fi and geomagnetic can be build.
Also, the book-shelf layouts can be extracted. As for the step
length model, a leverage linear regression is used to train the
model parameters. For the stair-step number between each
layer, the average steps of each stair on the stair training data
set is used. The motion recognition is performed by training a
multi-layer perceptron neural network model. The time domain
and frequency domain characteristics are extracted from the
original data of the Inertial Measurement Unit (IMU) and
barometer sensors, and then are input to the neural network.
The output of neural network is the motion types set.

b) Testing stage: In the testing stage, first, a Wi-Fi finger-
print positioning is used to find out the initial 3-dimensional
position. Then, PDR is fused with the building map and
geomagnetic fingerprint positioning result to estimate the
2-dimensional trajectory. Meanwhile the motion recognition

Fig. 4. Main algorithm of WHU-FIVE system.

Fig. 5. IOT2US system overview.

result is used to revise some error estimation of PDR. Lastly,
the motion on stairs is used to estimate the layer id. Combined
with the layer id, the 2-dimensional trajectory can be built up
to 3-dimensional trajectory.

For the final testing trajectory estimation, the IMU is
used to provide the original PDR. The recognized in-situ
steering motion is used to weed out the corresponding steps
and the phone-holding posture is used to revise the heading
of PDR. Then the revised PDR is fused with the building
map and book-shelf layout in particle filtering algorithm to
obtain further trajectory estimation. The geomagnetic finger-
print matching positioning result is then fused with the previ-
ously estimated trajectory in Kalman Filter (KF) algorithm to
obtain the final 2-dimensional trajectory estimates. Combining
the layer estimation result and the 2-dimensional estimates,
the final 3-dimensional trajectory is obtained. The algorithm
of testing stage of the system as shown in Fig. 4.

2) Team IOT2US: IOT2US team system includes four main
stages: 1) the floor and region decisioning based on Wi-Fi;
2) the mobility mode detection; 3) the landmark detection;
and 4) the PDR algorithm and information fusion. Six types
of sensor data were fused in the whole processing of the track
reconstruction and each part involved some of them, as can
be seen in Fig. 5. In the following paragraphs every stage is
explained in detail.

a) Wi-Fi: According to the training data, there are five
floors involved in this Track. To determine the floor informa-
tion and get the rough location of the user, Wi-Fi Received
Signal Strength (RSS) information is used to decide the floor
and region. Here region is defined as the area that each
training logfile covers.
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There are two phases in the Wi-Fi process. The RSS fin-
gerprints which contains time, floor, region and key-value pair
of MAC and RSS, are built from the training data set during
the offline phase. The RSS fingerprint can be represented as
a vector of (time, f loor , region, mac, rss). And during the
online phase, the Wi-Fi RSS information in the evaluation
logfile is compared with the RSS fingerprints to compute the
most suitable location. More specifically, there are two steps
in the online phase.

First, the floor and the region of estimation of the point
are determined with respect to the wireless Access Point
(AP) availability. A coefficient (λ) is defined to indicate the
possibility to estimate a point appearing in the region to which
the RSS fingerprint belongs,

λ = 1 − n

ne + nr
(3)

where, the ne is the number of APs detected at the estimation
point, the nr is the number of APs detected at the RSS
fingerprint. The n is the number of APs detected at the
estimation point and the RSS fingerprint at the same time.
This coefficient λ is calculated for every RSS fingerprint that
belongs to the same region. The region with the minimum
sum λ is the estimated region to which the estimation point
belongs to. Then the floor based on this estimated region can
be obtained.

Second, to get the rough location of the estimation point,
the RSS information is compared against all RSS fingerprints.
The Euclidean distance in the signal space between the esti-
mation point and every RSS fingerprint is calculated as:

d =
√√√√ m∑

i=1

(
rssi

e − rssi
r

)
(4)

where, the rssi
e and rssi

r are the RSS values of the i -th
AP detected at the estimation point and the RSS fingerprint,
respectively.

b) Movement modes recognition: Different modes of mobil-
ity can be detected using machine learning or deep learn-
ing algorithms using multi-sensors data. For this Track,
four categories of motion modes were introduced: normal
walking, turning, climbing (stairs), descending (stairs). The
process chain mainly includes data segmentation, labelling,
feature extraction and classification. In IOT2US team system,
accelerometer, gyroscope, magnetic field, and pressure are
used for motion modes classification. Some statistical char-
acteristics (e.g., mean, max, derivative) of these time series
in time-domain are extracted as features. Decision tree and
Support Vector Machine (SVM) are investigated to classify
these motion modes.

c) Landmark detection: Map information is one of the most
important clues that can help to correct the trajectory. Tradi-
tional map matching trends to make use of the structure of the
rooms, corridors and tunnels to restrict the trajectory. However,
this request too many details of the map and sometimes to
measure the building structure in detail is a heavy workload.
Hence, some landmarks are identified that activities can only
happen at certain places as Correction Reference Points (CRP)
to correct the trajectory.

Fig. 6. Light intensity determined CRPs in IOT2US system.

Through analyzing the relationship between the real envi-
ronment and sensors data, three types of CRP can be identified,
which are determined by Barometer, Ambient light sensor,
and door-crossing activity: 1) the activity of climbing and
descending stairs can only happen at stairs, and hence, with
a rough location using Wi-Fi can give at least two CRPs.
2) Light intensity measured by Ambient light sensor also
has relationship with activities. As an example of walking
across bookshelf activity, as shown in Fig. 6, the activity of
walking out of the bookshelf and turning backing is recorded
as a peak in light intensity. The light determined CRPs also
can be determined at place of crossing doors, enter/leave the
building and approaching to a window. 3) The third type of
CRP determined by door-crossing is similar with the first one
that requires recognize the door-crossing activity and Wi-Fi to
find a rough location to determine the position of a door.

d) PDR and Information Fusion: Step counting, step/stride
length estimation and heading determination are three crucial
processes for PDR positioning systems. Peak detection [18] is
used to count steps, the Weinberg method [19] to estimate step
length and complementary filter [20] for heading determina-
tion. To overcome this the traditional PDR algorithm issue of
error accumulation over elapsed time, information is fused,
including movement modes, floors, regions and landmarks.
First, as the sensor data may show distinctive characteristics
when a user performs different activities, movement modes
are used to finely tune the parameters of step counting and
step length estimation. For example, when a user is climbing
or descending stairs, the parameters of step counting and
step length estimation algorithms is accordingly adjusted to
improve their performance. Second, before calculating loca-
tions using PDR, Wi-Fi is used to determine the absolute floor
and the region information where the user roughly locates.
This process assisted IOT2US to provide absolute location to
help calculating the PDR trajectory and determining a CRP.
And third, if the user is detected as reaching at a CRP, but
the calculation result diverges from it, the heading is adjusted,
step length and the previous track, to drive the trajectory back
to the CRP.

3) Team XMU_ATR: XMU_ATR proposed XMU_PDR sys-
tem. It is a multi-source indoor positioning system using
information obtained from a Inertial Measurement Unit (IMU),
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Fig. 7. Framework of XMU_ATR team system: XMU_PDR.

Wi-Fi, magnetometer, barometer and indoor maps, jointly.
Fig. 7 shows the framework of the proposed system. There
are four main functional modules described as in the following
paragraphs.

a) Inverted pendulum model based Pedestrian Dead Reckoning
(PDR): A raw trajectory is obtained from the inertial data
using an inverted pendulum model based PDR algorithm [21]
by estimating every pedestrian step length and heading angle
directly. The proposed system uses an inverted pendulum
model to calculate the step length. To achieve 3-D positioning,
the barometer is used to estimate the transition of floors.
In the PDR system, heading errors are one of the main factors
when estimating positions which will lead to a decrease in
positioning accuracy over time, other information needs to be
introduced to correct the trajectory.

b) Wi-Fi fingerprints matching: Wi-Fi fingerprints matching
is a reliable way to obtain absolute indoor position. Since
the ground truth of some reference points in the training
set is provided, the Wi-Fi Received Signal Strength (RSS) is
extracted at the reference points as fingerprints to build up the
fingerprints database. Weighted k-Nearest Neighbor (WKNN)
algorithm is used to match the Wi-Fi Access Point (AP)
between fingerprints database and the RSS from evaluation
data. Since the initial point is unknown, the trajectory obtained
by PDR can only be presented in a temporary navigation frame
automatic defined by the dead-reckoning system. Therefore,
the result of Wi-Fi positioning can be used to estimate the
transformation relationship between the navigation frame and
the geographic frame, including coordinate translation and
rotation.

c) Magnetic fingerprints matching: The indoor magnetic
field can be treated as a time invariance distribution in
spatiality. The accuracy of spatial resolution can achieve
centimeter level in a small area. The magnetic fingerprints
matching is used for trajectory refinement. Since the trajectory

to be evaluated may have some overlap with the training
set, the observations of magnetometer in the training set are
also used as labeled fingerprints. A modified dynamic time
warping algorithm is used in this part which can deal with
the matching problem between two sequences with different
directions. A matching threshold is set to decide whether the
matching is successful. If there is a trajectory in the evaluation
set match to part of trajectories from the training set, this track
can be located on the map.

d) Map matching: To reduce positioning error accumulated
from the noise of inertial observations, the map information is
used for trajectory calibration. The optimal estimation under
the map constraint especially the track at specific locations
such as walls, doors, and stairs are realized. The floorplan is
presented in the form of grids, and a loss function is defined to
adjust trajectory actions referring to walls and some specified
behavior patterns.

4) Naver Labs Europe (NLE) Team: Naver Labs
Europe (NLE) Team system is based on extending the
localization pipeline developed for IPIN 2019 [1] challenge
with new components. The pipeline is a sensor fusion
framework deploying smartphone inertial sensors, Wi-Fi
measurements, magnetic field data and landmarks. The main
components are described in the following paragraphs:

a) Floor detection: Floor is detected using a standard
k-Nearest Neighbor (KNN) classifier trained on barometer and
Wi-Fi data.

b) Activity detection: User’s activity (walking, standing,
going up or down the stairs) is identified by applying spectral
analysis on the accelerometer data and simple thresholds.

c) PDR: User steps are first identified by applying peaks
detection to accelerometer data.Then, the acceleration features
are extracted and a model is trained for the step length/speed in
a given sliding window. Together with the orientation sensor,
a first order approximation PDR of user’s track is built.
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Fig. 8. Magnetic field based localization from the NLE team system. Magnetic field data captured by the mobile phone are transformed in time
series. Encoded into 2D images, they form an input for Convolutional neural network (CNN) and Recurrent Neural Network (RNN) trained to predict
the user’s position.

d) Semi-supervised Variational Auto-Encoder (VAE) for Wi-Fi:
A radiomap is constructed from the Wi-Fi data provided in the
training and the validation data sets. Recorded data provides a
Wi-Fi scan reading every 4 seconds approximately, but without
an exact position where this scan was taken. Using the inertial
sensor data, the approximate position can be inferred by using
the semi-supervised Variational Auto-Encoder (VAE) [22].

e) Magnetic field based localization: This component for
indoor localization uses magnetic field data captured by the
mobile phone. In indoor environment, magnetic anomalies are
created by different ferromagnetic objects. To benefit from
their presence, the state of the art landmark-based classi-
fication [23] is extended. Once the magnetometer captures
changes of the Earth’s magnetic field due to indoor magnetic
anomalies, they are transformed in multi-variate times series.
Temporal patterns are then converted in visual ones by using
1D convolutions with Recurrent plots, Gramian Angular Fields
and Markov Transition Fields (see Fig. 8). This represents
magnetic field data as image sequences and permits to deploy
convolutional layers to associate magnetic patterns with partic-
ular places. A deep regression is trained on the user’s position
and combined convolutional and recurrent layers in the deep
network [24].

f) Deep PDR: PDR is processed by applying deep learn-
ing. Acceleration and orientation sensor data streams are
pre-processed and represented as 2D images analogously to
the magnetic field data. CNN and RNN are used to extract
underlying hidden correlations between different sensors and
modalities to learn a model of user local displacement. This
allows coping with sensor noise and replaces the manual
feature extraction which is frequently a subject to data noise
and sophisticated thresholding, including tuning to different
pedestrian profiles, depending on gender, age, height etc.
The deep PDR model is learned to predict relative (x, y)
displacements. The relative displacement model is trained
using the regression loss on available annotated data.

The deep PDR model is locally accurate but accumulates
errors over time. This PDR drift is compensated by using
global localization components based on Wi-Fi and magnetic
field based localization.

g) Landmarks and pseudo labels: CNN/Deep Neural Net-
work (DNN) models require large-scale training data. How-
ever, genuine ground truth annotations are sparse and available
for a limited number of landmarks. On the other hand, raw
sensor data are massively generated at a high rate. So, sensor
data is annotated with pseudo labels and a large annotated set

for training CNN/DNNs is generated. Pseudo labeling is based
on simpler tasks of user walking and landmark detection and
an interpolation of user’s behaviour between the landmarks
using the first order approximation PDR.

h) Prediction fusion and map projection: Relative predictions
provided by deep PDR and absolute predictions provided by
Wi-Fi and magnetic field data are combined using an Extended
Kalman Filter (EKF). The output of the filter is then fine-
tuned, by projecting it on the paths that were traversed while
collecting training and validation sets, to make sure that the
final result lies within the navigation space in the building.

5) Team UMinho: The UMinho team approach for the
2020 competition (Fig. 9) was based on a Particle Filter (PF)
to fuse Wi-Fi fingerprinting positioning with motion, heading
and atmospheric pressure data. In a calibration or initialization
phase, the positioning system is prepared by creating a space
model (floor plan) and a Wi-Fi radio map created using the
training data. The radio map and the floor plan are then used
in the Validation and Evaluation phases by the PF to estimate
the trajectory using PDR obtained from motion and heading
data.

a) Creating the Wi-Fi Radio Map: The Wi-Fi radio map was
created using the provided Training data sets. To obtain a
higher quality radio map, correction techniques are applied
to the trajectories obtained through PDR (module 2). The
correction approach uses the ground truth points included
in the Training data sets (POSI) to correct the distance and
heading for each training trajectory. The description of the
training data sets specifies that the user travels along a straight
path between two consecutive POSIs, making it possible to
estimate the travel distance error and the heading error between
two POSIs. The segment between the two POSIs is then
corrected proportionally by re-doing the PDR between the
two POSIs, adjusting each step length and heading value so
that the estimated position at the second POSI matches the
ground truth. This approach works for the Training trajectories,
except the ones including stairs. The corrected trajectories
from module 2 are fused with Wi-Fi, pressure and POSI data
in module 3 to estimate the floor and (x, y) position for
each Wi-Fi sample in the Training data set. The radio map
is obtained from this process.

b) Floor plan integration: The floor plan is integrated by
processing the provided bitmaps or vector images for each
floor. Some processing is required to incorporate the floor
plan into the PF (module 1). The first step is to remove some
elements that may prevent the particles from moving freely
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Fig. 9. Overview of the UMinho team approach.

between the existing spaces, such as doors represented in the
floor plan. Then the floor plan is converted to binary format.

c) Estimating the final trajectory: The final trajectory is
estimated by processing the Evaluation data set which is
provided with the same types of data available in the Train-
ing data sets, except for the ground truth POSIs. Module
4 is responsible for estimating the displacement using the
accelerometer measurements. The movement displacement is
assessed by an algorithm that estimates the user’s steps and
corresponding length (algorithm also applied in module 3).
The displacement and heading information for the Evaluation
trajectory are obtained from module 4, necessary to perform
PDR, which is integrated into the PF (module 6). Wi-Fi and
pressure samples are combined in module 5 to estimate the
floor and the z coordinate for each Wi-Fi sample. The radio
map, created in the initialization phase, is used to perform
Wi-Fi fingerprinting and improve the floor estimation. These
enhanced Wi-Fi samples are then fused with the displacement
and heading samples in the PF. The PF (module 6), based on
the solution presented in [25], performs sensor fusion of Wi-Fi
fingerprinting with PDR (displacement and heading). Particles
are created around the initial position, which is estimated using
Wi-Fi fingerprinting. Particles states follow a PDR motion
model considering noise in the heading and displacement.
Particles’ weights are updated based on Wi-Fi fingerprinting,
using a distance function to convert the distance between the
particle and the Wi-Fi position estimate into a weight. Higher
weights are assigned to particles closer to the Wi-Fi position
estimate. To reduce errors from Wi-Fi fingerprinting, a partial
radio map is used, considering only Wi-Fi samples that are in
the neighbourhood of the PF estimated position. Particles with
lower weights, including those that hit walls or obstacles, are
resampled based on the multinomial resampling method. The
floor changes provided by module 5 allow the PF to adjust
the motion model when a user changes floors, reducing the
step length. The PF also performs adjustments when a floor
transition is detected to ensure that all particles are moved into

the current floor. The final pose is obtained from the particles’
positions and headings weighted average.

6) Team Imec-WAVES: imec-WAVES team positioning sys-
tem consists of 4 parts: Pedestrian Dead Reckoning, RSS
fingerprinting, floor (transition) detection and PF. Fig. 10
shows a flowchart of the system. These steps are introduced
in detail in the following paragraphs.

a) Pedestrian dead reckoning: The PDR algorithm fuses
the data of accelerometers, gyroscopes and magnetometers to
estimate the trajectory. It consists of step detection, heading
estimation and step length estimation. Step detection and head-
ing estimation are based on [26]. For step length estimation,
an adaptive Weinberg model is used [27]. The phone carrying
mode is determined for each step by a KNN-classifier. The
features used are average and variance of both roll and pitch
from the AHRS data during one step. The competition training
data include one carrying mode: holding the smartphone in
front of the body. However, the competition introduction
document mentions realistic movements (e.g. phone call).
Therefore, additional training data was created by the team
where an actor walked for several minutes while pretending to
make a phone call. If a phone call is detected in the evaluation
data, the heading is flipped 180◦.

b) RSS fingerprinting: The radiomap is constructed by
interpolating between the known coordinates in the training
data [1], [2]. The Euclidean distance metric is used to match
RSS vectors in the validation/evaluation data with RSS vectors
in the radio map. The metric can only be applied to a subset of
RSS values for each vector, depending on the APs the vectors
have in common. A penalty is added to the Euclidean distance
for each AP that is not in the subset. This prevents a (false)
good match when the RSS vectors have only a few APs in
common but with similar RSS values. The weighted centroid
of the three best matches is selected as the estimated position.

c) Floor (transition) detection: The barometer is used to
estimate height changes. The average pressure during each
detected step is converted to a height difference relative to
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Fig. 10. System flowchart of imec-WAVES team.

the first step [28]. If the absolute height change is more
than 1.5 m within a window of 15 consecutive steps, these
steps are labeled as ‘on stairs’. However, the pressure changes
with time regardless of the actual height difference. Therefore,
if the time between two steps is more than 20 s, the height
difference between these steps is removed to prevent false
stair detections when standing still for a long time. The
height difference during each sequence of ‘on stairs’ labels
is then used to estimate the floor difference. The middle
step of each ‘on stairs’ sequence is labeled as ‘transition’.
The barometer method can accurately detect transitions, but
can have errors in the estimated floor differences because
the true floor height is unknown. The visited floor itself
can be determined by matching RSS measurements with the
radiomap, but sometimes the wrong floor is matched for a
short time interval. The Viterbi algorithm, which was used for
the previous competition to perform localization [29], is now
used to find the most likely sequence of visited floors by fusing
these RSS matching and barometer methods.

d) Particle filtering: A PF is used to fuse the output of pre-
vious parts and to perform map matching. To enable the latter,
the provided floor plan images are converted to XML files
containing the locations of each wall, staircase and elevator.
This is done with the WHIPP tool [30], [31]. The locations of
bookshelves in the evaluation environment are deduced from
the training data and regarded as walls. The implemented PF
is the Backtracking Particle Filter (BPF) [32]. During each
iteration, the BPF uses new information to update current
and previous states. At initialization, thousands of particles
are generated uniformly over the floor plan. The amount of
particles is drastically reduced during the next iterations when
the filter starts to converge. The length and heading of the
detected steps are used to propagate the particles. Artificial
Gaussian noise added to the heading depends on the detected
carrying mode. The floor plan is used to remove all particles
that crossed a wall during propagation, as this is physically not
possible. If RSS measurements are available for the current
step, the position is estimated and a Gaussian curve is used
to weigh the particles based on their distance to the estimated
position. If the step is labeled as ‘on stairs’, the weights of
particles outside of staircases are decreased. If the step is

Fig. 11. The membership functions used by the YAI team system for the
received RSS values.

labeled as ‘transition’, the next floor plan and radiomap are
loaded.

7) Team YAI: One of the most popular positioning methods
for indoor positioning is the fingerprinting method. However,
the accuracy of positioning results suffers from the definition
of distance among the Received Signal Strength (RSS) values
and the fingerprinting table. Because the unit of the received
Wi-Fi RSS value is dBm, the similarity calculation is prone to
errors when performing fingerprinting positioning. YAI team
proposes a fuzzy-based pre-processing method so that the
RSS entries in the fingerprinting database can be converted
into the corresponding defuzzification values. In the following
paragraphs the system is introduced in detail.

a) Fuzzy-based pre-processing: The membership function
used is the bell-shape membership function, which could be
expressed as follows:

μ(x) =
(

1 +
∣∣∣∣ x − c

a

∣∣∣∣
2b

)−1

(5)

where the parameters a, b, and c would affect the width
and slope associated with the bell-shape. Using the training
data, the parameters in (5) are obtained. Fig. 11 illustrates the
membership functions used in this competition.

The defuzzification method used is based on the weighted
average formula as follows:

y∗ =
∑N

i=1 yi μi (x)∑N
i=1 μi (x)

(6)
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Fig. 12. The defuzzification process used by the YAI team system.

TABLE IV
AN EXEMPLARY FINGERPRINT MAP WITH THE PROPOSED

FUZZY-BASED PRE-PROCESSING OF YAI TEAM SYSTEM

where x is the received RSS values, μi (x) denotes the degree
of membership for the i -th rule, yi is the weight of the
i -th rule, and N = 5 is the number of rules used. Fig. 12
shows the mapping for the defuzzification process used. Using
the mapping function as shown in Fig. 12, a fuzzy-processed
fingerprint map is obtained. An example to explain the main
idea is illustrated in Table IV. Note that “na” denotes the
RSS value and it is below the receiving sensitivity of a Wi-Fi
module on a smartphone. In this case, the demapping function
maps “na” to 0, which means the RSS value is very weak.
Then this fuzzy-processed fingerprint map can be leveraged
to get the location with the conventional localization method.

b) Simulation results: To evaluate the performance of the
proposed positioning algorithm the competition files were
used. Using the testing data, the resulting Cumulative Dis-
tribution Function (CDF) curves (see Fig. 13) of the errors
in positioning are obtained. It can be seen that when locating
using only Wi-Fi, the third quartile of the positioning errors are
3.539 m. After improving the fuzzy-based pre-processing, the
value could further drop to 2.189 m, thus significantly reducing
the positioning errors.

8) Team Indora: The positioning method of Indora team sys-
tem is designed for the smartphone users in the scenario with
known map floor plans, smartphones equipped with sensors,
and with no additional infrastructure installed in the building,
which is in accord with the competition Track rules. The

Fig. 13. The resulting CDF of the positioning errors with respect to the
testing data set with the YAI’s system.

main research focus is on the Bayesian filtering component,
especially the comparison of grid-based approaches with the
particle filter present in various solutions including systems
introduced by other competitors.

a) System description: The proposed positioning sys-
tem [33] consists of multiple components merged together
using the Bayesian filtering. A floor transition is detected
using barometer measurements. However, these transitions
were also identified using the Wi-Fi fingerprinting method as
the incorrect floor detection has significant effect on the overall
performance in the competition. The Bayes filter calculation
corresponds to the movement on a single floor. The filter prob-
abilistically estimates a current state which is defined as the 2D
position on the selected floor. A calculation (consisting of the
transition phase and the evaluation phase) is triggered when
a step is detected. The transition phase is performed using
PDR, i.e., the step direction is obtained from inertial sensors
and together with the expected step length introduces a new
estimation calculated from the prior position. Noisy sensor
measurements, incorrect step length model, and other aspects
are resolved by the filter which increases the uncertainty of
the current estimation. The uncertainty is reduced during the
evaluation phase utilizing the map. The map model (based on
the tessellation) is generated from annotated floor plans using a
custom tool. This framework was applied on the IPIN 2018 [1]
and IPIN 2019 [2] competitions using the centroid grid filter as
the Bayesian filtering implementation. Another method for the
positioning was derived from the existing system by replacing
the grid filter with the particle filter, improved step length
calculation, and using Wi-Fi fingerprinting as an additional
method for the evaluation phase of the filtering. The position
is chosen among particles (or grid cells in the former approach)
with the maximum belief value, i.e., the position within the
building with the highest assigned probability.

b) Competition strategy: The proposed framework is
designed for the real-time positioning. This aspect was taken
into account during the off-site competition. Every trial was
simulated on the smartphone in the same manner as for the
on-site localization. However, the input sensor file was split for
the processing convenience to individual files with consecutive
steps on a single floor, i.e., the floor transition detection
method was performed on raw sensor measurements and all
parts were processed separately.
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First attempt was computed using the particle filter and the
Wi-Fi fingerprinting method. Second attempt consists of the
method output using the centroid grid filter. The main focus
was on the parameter configuration in this submission. The
centroid grid filter was applied on IPIN 2018 [1] and IPIN
2019 [2] competitions. In [33], the method was compared with
other grid-based approaches and the recommended configura-
tion was discussed. Multiple parameter settings were explored
based on the previous observations leading to the selection of
the final competition submission. Third result was obtained as
a combination of both approaches. The particular method was
chosen for each floor individually according to the author’s
consideration based on visualized trajectories.

c) Results analysis: The third attempt was a combination of
both applied methods. The centroid grid filter was selected on
a segment corresponding to the second floor and the particle
filter approach was chosen for all other floors. However,
the achieved result did not outperform other attempts. Official
third quartiles of errors are 6.85 m (particle filter), 8.39 m (grid
filter), and 7.02 m (mixed). The analysis with known ground
truth positions revealed the incorrect time shift of the first
segment on the third floor. Corrected positions obtained the
third quartile of errors 3.86 m, 4.46 m, and 3.89 m. For better
understanding of the system performance, the first approach
was replayed without the Wi-Fi fingerprinting method. The
method with the particle filter component resulted in 4.38 m.
This result is similar to the centroid grid filter (4.49 m). These
two systems differs only in the applied Bayesian filtering
implementation. The results supported former observations as
the grid approach is more stable in the prediction (2.7 m
mean of errors) and the particle filter provides a light-
weight approach for the computation but it requires additional
approach to reduce outliers (4.3 m mean of errors). The Wi-Fi
fingerprinting erased large errors on some checkpoints, e.g.,
seven consecutive positions with errors above 14 m including
three positions above 24 m were corrected with the Wi-Fi
to reasonable values with the maximum 7.2 m and minimum
under 1 m.

9) Team TJU: Fig. 14 shows the block diagram of the
approach proposed by TJU team. It consists of four stages:
1) the PDR, 2) magnetic fingerprinting, 3) the floor recognition
and 4) the trajectory fusion. The proposed approach uses
the magnetic fingerprinting and PDR to separately generate
the trajectory of the device, and fuses the two estimated
trajectories to produce precise trajectory by Kalman Filter
(KF). In addition, the current floor is detected relying on Wi-Fi
database for each floor, and the transitions between floors
depends on air pressure measurements. The details of the four
stages are described in the following paragraphs.

a) PDR backbone: The PDR backbone is implemented
following two steps:

• step detection using peak detection method;
• adaptive position updating strategies according to peak

values:
{

rp = rp−1,
∥∥fp

∥∥ ≤ γ

rp = rp−1 + SL
[
cosψ sinψ

]
,

∥∥fp
∥∥ > γ (7)

Fig. 14. Flowchart of the heading estimation algorithm proposed by TJU
team system.

Fig. 15. Flowchart of the heading estimation algorithm proposed by TJU
team.

where r refers to 2D position; p is the timestamp of a
specific force norm peak; SL refers to a constant step
length; ψ refers to estimated heading;

∥∥fp
∥∥ refers to the

peak value of specific force norm; and γ is the threshold
to recognize still state and motion.

Generally, the orientation of the device is estimated using
accelerometer and gyroscope readings. The magnetometer was
rarely used indoors due to the distortion of the magnetic field.
In spite of the drawbacks of indoor magnetic data, filtered
magnetic field can still enhance the orientation estimation [34].
Inspired by TJU team previous work [35], the original Madg-
wick algorithm [36] is improved to achieve high-accuracy and
robust heading estimation. Fig. 15 shows the flowchart of the
proposed heading estimation algorithm. When the agent is still,
its attitude is frozen to avoid introducing errors. Otherwise,
MadgwickAHRS algorithms based on different data streams
are triggered according to quality of magnetic fields. The
improved method is immune to magnetic disturbance but
long-term motion in magnetically disturbed environment may
degrade the performance of the improved heading method.

b) Magnetic fingerprinting: Magnetic fingerprinting can be
formulated as a classification problem. Namely, a classification
model can be trained using magnetic features labeled by
reference position indexes. Instead of using magnetometer
readings mb as an observation directly, they are transformed
into magnetic vector mn = {X,Y, Z} under navigation frame
(n-frame). Since X and Y are changed with directions, hor-
izontal intensity, H = √

X2 + Y 2, vertical intensity, Z , and
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total intensity, F , are used as features to train a machine
learning-based model. The benefit is that H , Z and F are
immune to sensor orientations and there is no need to collect
the data of all directions at a reference point.

During data collection, a participant stays at a reference
point for a short while or walks slowly through a reference
point. Therefore, the data in 0.5 s before and after the reference
point timestamp is considered as that at the point, and extract
all data for entire training data set. As a consequence, a raw
data set labeled by reference point indexes is built. To enhance
the data set, a one-element sliding window with a size of N is
used to extract the data of each raw 1 s fragment for each ref-
erence point. Then, the extracted data in the sample window is
transformed into the feature {Hi:i+N−1, Zi:i+N−1 , Fi:i+N−1 }.
Finally, several machine learning-based models are trained,
such as KNN, SVM, Naive Bayes and ensemble models. After
10-fold cross validation, it can be found that the 1-NN model
achieves the highest F1-score of 0.9949.

c) Floor recognition: In this stage, the training data are
used to create a radio map for each floor using received
signal strength (RSS) measurements. RSS values in existing
MAC address list are used to train a random forest model
to determine the floor ID. However, since the Wi-Fi data is
collected with a very low frequency of approximately 0.25 Hz,
it cannot provide enough time resolution to determine the
precise transitions between floors. Therefore, barometer data
with a higher frequency of 5 Hz is used to detect the floor
transitions. A mean filter was used to smooth the barome-
ter data before calculating the data difference in successive
timestamps. Then, the start and end of the transition between
floors can be clearly identified. Wi-Fi data assisted with
barometer data can estimate the vertical trajectory of a user
well.

d) Fusion using Kalman filter: The PDR system outputs
high-frequency 2D positions, while reference points with a
lower frequency are recognized by magnetic fingerprinting
model. A Kalman filter acts as a bridge to relate two sys-
tems. The filter outputs the corrected path using the relative
estimations from the PDR model (time update) and absolute
position estimations from the magnetic positioning system
(measurement update).

10) Team Next-Newbie Reckoners (NNReckoners):
NNReckoners team’s method focused on two main parts:
position prediction using Random Forest prediction model
and IMU position estimate using Wi-Fi propagation and PF
(Fig. 16). In other words, the team approached the competition
data set with 2 challenges in mind: 1) increasing the volume
of Wi-Fi data to train the prediction model, and 2) leverage
the IMU to improve position estimate by Wi-Fi.

In order to build the RSS data set to train the prediction
model, enough data is required. Hence, data augmentation
was adopted to improve the model performance. With the data
extrapolation, modifying the RSS at detected AP by increasing
the signal strength by 5, the original Wi-Fi data set was
enlarged by 30 times [37].

Complementing the Wi-Fi prediction, PDR was applied by
incorporating the step count, stride length and orientation
calculated from the IMU sensor. The idea of Wi-Fi propagation

Fig. 16. NNReckoners tean system overview.

was to trust the Wi-Fi prediction and recursively estimate
the position using the step counts and bearings obtained in
between.

Additionally, a particle filter was used to identify the
best possible route taken with respect to the derived PDR
algorithm. A set of particles was first distributed within the
bounds of the map as provided by the competition organis-
ers. Subsequently, a simulation is started from the starting
timestamp to the ending timestamp where each particle was
moved in accordance to the step data and bearing obtained
from the PDR algorithm. Each particle contained a weight
and a history of coordinates. If a Wi-Fi position estimate is
available, the weight of particles within a radius from the
estimated position and its estimated distance error is further
increased. It was set due to the fact that Wi-Fi prediction
was observed to produce shorter distance errors than PDR.
At the end of the simulation, the particles with the highest
weight are selected, and the final route is determined by
looping through and averaging the history of coordinates for
all selected particles.

V. TRACK 4: FOOT-MOUNTED IMU-BASED POSITIONING

A. Track Description
Track 4 was dedicated to foot-mounted inertial and GNSS

navigation in an off-site context. Data were collected with the
PEdestrian Reference SYstem (PERSY) sensor (see Table VI)
developed by the GEOLOC team at University Gustave Eif-
fel. Track chairs collected the data by walking through the
competition area over a 1.2 km walk path spanning four
different floors, using lifts, escalators and travelators. Also a
few outdoor parts were included as shown in Fig. 17, as well
as some breaks of various duration. Track 4 followed the
same data collection strategies as the off-site competitions
organised in previous years [1], [2]. In contrast with all the
other Tracks, where competitors were provided with a detailed
map beforehand and could make use of that information,
competitors in Track 4 could not use of any map information.

Two data sets were given to competitors. Data set num 1
was taken on a single static location for several hours, and
was meant to be used for sensor calibration, by enabling
competitors to compute noise and measurement bias of inertial
sensors (Allan variance). Data set num 2 was the data recorded
on the Atlantis shopping mall area following 6 different steps,
as shown in Table V and in Fig. 18.



5026 IEEE SENSORS JOURNAL, VOL. 22, NO. 6, MARCH 15, 2022

Fig. 17. PERSY and description of Track 4 over Atlantis shopping mall.

TABLE V
STEPS DESCRIPTION COMPOSING Data Set Num 2

Fig. 18. Temporal view of steps composing Data set num 2.

The competitors’ objective was to re-build the trajectory
realised by the Track chairs. The evaluation was done by
comparing 2D position and floor level estimated by each team
to the coordinates of 67 reference points (key points). To do
so, a Table containing timestamps of expected key points
was shared, and competitors had to provide the corresponding
coordinates.

TABLE VI
INFORMATION ABOUT EMBEDDED SENSORS INSIDE PERSY

Data Set and supplementary materials –e.g. data sheet of
sensors embedded in PERSY– were provided to competitors
of Track 4. These contents and the ground truth location
for evaluation are now available for further benchmarking
in [38]. This package complements the ones from the previous
editions [39] and [40].

B. Competition Area
For IPIN 2020, due to Covid-19 situation, Track4 com-

petition was held in “Atlantis Le centre”, a large shopping
mall close to Nantes - France. This site has already been
used in IPIN 2018 for all competition Tracks, and a very
accurate survey was realised. This has eased the design of the
ground truth (see [1] for details on the survey). There were
multiple difficulties when surveying such a big shopping mall:
wide areas, lifts, escalators, and even a carousel, as illustrated
in Fig. 19. Complexity related to the Covid-19 also led the
Track chairs to make loops on the path in order to respect the
direction of travel, as shown in Figure 20.

C. Indoor Positioning Solutions Provided by Competitors
1) Team WHUGNSS: The classic zero-velocity update algo-

rithm (Zero-velocity update (ZUPT)) based foot-mounted
pedestrian dead reckoning consists of a strap-down inertial
navigation algorithm, a stance phase detection algorithm, and
an error state Kalman filter. However, the classic ZUPT-based
Foot-PDR [41], [42] cannot overcome the influence of the
complex motion of the pedestrian. The WHU-GNSS team
system is based on several schemes designed to improve
navigation performance, as shown in Fig. 21.

The core algorithm is the strap-down inertial navigation
algorithm. On this basis, a zero-speed detection method with
adaptive threshold setting is used to adapt to different users.
Next, the motion pattern recognition algorithm is used to
distinguish whether the user is walking normally or taking the
escalator and elevator, and uses constant speed, Zero-velocity
update (ZUPT), Zero angular rate update (ZARU), Improved
heuristic drift elimination (iHDE), linear trajectory and height
constraints to improve the position estimation accuracy accord-
ing to the discrimination results. In addition, the magnetic field
will be used to detect whether the user has returned to the place
where they have walked, so as to correct the current navigation
state with the historical estimated position. And when the user
comes to an outdoor scene, the GNSS signal will be used to
improve the final positioning performance.

a) The multi-constraint algorithms: The classic Generalized
Likelihood Ratio Test (GLRT) method is one of the most
common algorithms for detecting the stance phase [43], [44].
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Fig. 19. Track4 difficulties over the path.

Fig. 20. Left part: imposed direction of travel. Right part: multi-floor
environment.

Fig. 21. Block diagram of multi-constraints-based foot-mounted PDR
algorithm of WHU-GNSS team system.

In the WHU-GNSS team system, an improved adaptive thresh-
old is used instead of the fixed threshold method to detect the
stance-phase in each gait cycle. The adaptive threshold method
is adaptable to different gait frequencies in dynamic motion.
Once the stance phase is detected, a zero velocity vector is
used to estimate and correct the navigation error [41].

The heading angle error and the z-axis gyroscope bias of
the ZUPT algorithm are unobservable. Thus, the following
methods are used to constrain the error divergence of the
heading angle. First, the Zero angular rate update (ZARU)
algorithm is employed to estimate the gyroscope bias and
heading angle error [45]. Compared with the stance phase
detection algorithm, a stricter fixed threshold is used and a
more extended continuous period to determine the update
chance of ZARU. Second, when a pedestrian is determined
to be walking in a straight-line path or the corridor’s primary

orientation, the Improved heuristic drift elimination (iHDE)
and the straight-line constraint algorithms are applied to esti-
mate the heading angle and the z-axis gyroscope bias [46],
[47]. These algorithms can effectively improve the perfor-
mance and reliability of pedestrian navigation.

The height error divergence is also a significant problem in
Foot-PDR, especially for multi-floor navigation and position-
ing applications. In the absence of a barometer, an effective
height constraint algorithm is adopted to reduce the error
drift along the vertical channel. When pedestrians go up and
downstairs, the slope angle can be considered constant in most
cases [48]. In the WHU-GNSS solution, the stride length
and the slope angle between adjacent footsteps are used to
determine whether the pedestrian is walking on a plane or
going up and downstairs. Then the slope-based or plane-based
height constraint algorithm is used to improve the estimated
height accuracy in Foot-PDR.

The other extreme scenario is the escalator or lift. Usually,
escalators run at a constant speed. When a pedestrian stands
relatively static on the escalator, the specific forces measured
by the foot-mounted IMU are almost all derived from local
gravity. The gravity information can be fused in a tightly
coupled manner in the WHU-GNSS solution, so the drifting
error can be constrained even when a pedestrian stands still
on an escalator. Moreover, when the pedestrian takes a lift,
the specific forces (i.e., the accelerations) will exhibit clear
acceleration motion and deceleration motion process. The
vertical (up or down) velocity information of the pedestrian
can be estimated using acceleration and deceleration motions.
Thus, the vertical velocity can be as observation information
to improve the performance and stability of the Foot-PDR.

Many ferromagnetic materials exist in indoor building struc-
tures. So, magnetometers cannot be used to determine the
heading angle in Foot-PDR directly. Yet, combined with a
rough position, the magnetic field signals can recognize similar
areas when the pedestrians return to places they have walked
before. This meaningful information can help improve the
robustness of Foot-PDR in practical application.

The Foot-PDR is integrated with GNSS signals in a
loosely-coupled manner [42]. Satellites with small elevations
should be discarded to avoid the gross error as much as
possible. Besides, some measurements with low quality judged
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Fig. 22. The scheme of foot-mounted PDR system based on
multi-constraint algorithms proposed by AIR team.

by the innovation vector’s magnitude and covariance need to
be rejected in the Kalman Filter (KF). Furthermore, the adap-
tively robust filtering algorithm is used to control the effects
of inaccurate measurements in the WHU-GNSS solution and
improve system accuracy.

The optimal inertial sensor parameters (i.e., the bias insta-
bility of gyroscopes and accelerometers, the angular random
walk, and the velocity random walk) are determined through
the provided long-term static data. The magnetometer is also
calibrated through the classic ellipsoid fitting method.

2) Team AIR: The pedestrian foot-mounted PDR system
proposed by AIR team is shown in Fig. 22.

In the above framework, five constraint algorithms are
included in the middle modules: Stance & Still Phase Detec-
tion, the Heuristic Drift Elimination (HDE), the Height Update
Algorithm (HUPT), the Zero-velocity update (ZUPT), and
the Earth Magnetic Yaw. Meanwhile, the Stance & Still
Phase Detection includes two components: the Generalized
Likelihood Ratio Test (GLRT) detector algorithm used under
the condition of the slow and normal pedestrian gait speed, and
the Hidden Markov Model (HMM) detector algorithm used
under the condition of the dynamic and fast pedestrian gait
speed. After that, using the improved HDE and HUPT method
to estimate current position errors, ZUPT is used to estimate
the velocity error, while Earth Magnetic Yaw based on quasi-
Static Magnetic Field (QSMF) method is used to estimate the
heading error.

a) The multi-constraint algorithms: A gait or a walk cycle
consists of two phases: the swing and stance phase. In the
swing phase, the foot is not in contact with the ground. In con-
trast, the foot contacts the ground in the stance phase. GLRT
algorithm has obvious advantages for zero speed detection
of stable pedestrian gait velocity, while HMM algorithm has
a good effect for zero speed detection of dynamic and fast
pedestrian gait speed. Thus, the two methods are combined to
achieve the dynamic human stance & still phase detection [49].

Fig. 23. Revise the current step’s inertial recursive position with the
position calculated from the stride heading in the AIR team system.

When the Stance & Still Phase Detection detects the stance
and swing phases of human foot gait from the data from
IMUs, ZUPT method is used to constraint the velocity diver-
gence [50].

HDE algorithm is a very useful method to constraint the
system’s heading drift, if the indoor reference heading can
be known in advance. In the AIR team method, the initial
heading is used to calculate several possible reference direc-
tions of pedestrian walking [48]. Then, unlike the existing
HDE method, which mainly corrects inertia recursive heading,
the closest reference direction is used to calculate the estimate
position at the current footstep, then uses the position error
between the estimate position and the inertia recursive position
to restrain the position divergence. The procedure is shown in
Fig. 23.

Height divergence is a major problem in Inertial Navigation
System (INS)-based foot-mounted PDR system in multi-story
positioning. If a pedestrian is walking on a plane, the slope of
the current stride is approximately zero degree, if that, keep
the height always unchanged. While walking on a staircase,
the method proposed uses the actual slope of the stairs (usually
20 45 degrees) to calculate the height change of the current
stride, which can be used to constrain the height divergence
of the current stride [48]. If pedestrian is on an elevator or
escalator, it mainly can be effectively determined by analyzing
the characteristics of acceleration, especially the acceleration
in the vertical direction.

The magnetic field is very useful to estimate the heading of
the system, but the magnetic disturbance has a severely effect
on the estimation. In AIR team system, an improved QSMF
method combined with a compass filter is used to estimate
the heading in the perturbed magnetic field [51]. In addition,
in areas where pedestrians repeatedly walk, a series of mag-
netic sequence information is used for pedestrian trajectory
matching to improve the effect of heading constraint.

3) Team Free-Walking: The positioning system proposed by
team Free-Walking is shown in Fig. 24.

The Free-Walking system combines data pre-processing,
motion mode recognition, INS mechanization, adaptive zero
velocity detection, ZUPT-aided Kalman Filter (KF) and alti-
tude constraint. The data pre-processing includes sensor cali-
bration, filtering and Coordinate system transformation. After
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Fig. 24. System architecture of proposed pedestrian inertial navigation
based on motion mode recognition proposed by Free-Walking team.

pre-processing, motion mode recognition algorithms are used
to help adaptive threshold ZUPT detection. Then a ZUPT-
based KF is used to get position information. Meanwhile,
motion mode results is also used to constraint height error.

a) Error-constraint method based on walking mode: For
pedestrian positioning, the human motion modes describe
the overall movement of pedestrians. The pedestrian motion
modes are particularly important for pedestrian navigation,
while the pedestrian motion modes are variable during the
procedure of pedestrian navigation. Therefore, a walking mode
classifier is designed (see Fig. 25) based on the stacked
denoising autoencoder [52] and temporal Convolutional neural
network (CNN) with attention to recognize eight pedestrian
motion modes [53], [54].

ZUPT-aided INS has ability to suppress navigation errors.
Free-Walking team uses the periodic gait-cycle window to
divide the pedestrian movement into discrete gait cycles; then,
the minimum value in each gait cycle is taken as the zero-speed
state point. The time length of the gait cycle is different
under different motions. The gait-cycle duration is adaptively
adjusted based on the classification result of walking mode
to adapt to various pedestrian motions [55]. Compared to
the existing methods, the proposed method does not need
to set the zero-speed detection threshold, and performs well
for zero-speed interval detection under various pedestrian
movements. The stationary state of the foot during the stance
phase is taken and feeds the zero-velocity information (pseudo-
measurement) into KF to compensate for the velocity, the posi-
tion and the attitude errors.

The height errors in Strapdown Inertial Navigation System
(SINS) solution will grow without boundary and cannot be
eliminated by ZUPT measurements. When a user walks on the
same floor, the altitude does not change. The altitude changes
only when the user goes up and down stairs. Therefore,
the vertical displacement of pedestrian is constrained by two

factors: stair height and motion mode. If the height of each
stair in a multi-floor building is fixed, the height of each gait
cycle is determined by the number of walking stairs in that
gait cycle. Therefore, the classification result of walking mode
is used to constrain the height error.

4) Team BHSNIP: The Pedestrian Navigation System (PNS)
based on Inertial navigation system–extended Kalman filter–
zero velocity update (IEZ) –also referred as INS-EKF-ZUPT–
is widely used in complex environments without external
infrastructure owing to its characteristics of autonomy and
continuity. However, due to the poor observability of heading
errors to ZUPT and the instability of vertical inertial channels,
further corrections of the estimated trajectories under the
IEZ framework are still needed to obtain higher positioning
accuracy.

In order to achieve high performance for PNS in
terms of accuracy and robustness, BHSNIP team integrates
the Micro-Electro-Mechanical Systems–Inertial Measurement
Unit (MEMS-IMU) and Global Positioning System (GPS)
as shown in Fig. 26. In this scheme, MEMS-IMU provides
the 3-axis accelerometer, 3-axis magnetometer, and 3-axis
gyroscope readings which are [ fx fy fz], [magx magy magz],
and [ωx ωy ωz] in the body frame, respectively. The main
work has the following features:

1) Aiming at the weakly observability of heading drift
for MEMS-IMU, the iHDE algorithm is proposed. The
algorithm has the following three steps: First, heading
information is extracted from pedestrian’s straight-line
motion track, which is used to construct four or eight
datum directions of the building; second, building head-
ing information is utilized to estimate yaw errors of tra-
jectories that satisfy specified rules; and third, these yaw
errors are utilized as the EKF observation to estimate the
state error of the navigation parameters.

2) In order to deal with the problem that the inertial vertical
channel is unstable under the traditional IEZ framework,
which makes it impossible to locate the floor by SINS
solutions, the improved step height equidistant (ISHE) is
exploited. At the beginning, the adaptive network-based
fuzzy inference system (ANFIS) is used to identify
different vertical modes including elevator, escalator
and staircase (walking upstairs, horizontal movement,
and walking downstairs). Then, the floor information or
altitude is estimated by ISHE.

3) To detect the stance phase accurately, adaptive-ZUPT
algorithm is used based on backward neural network.
In conventional researches, positioning performance is
easily affected by the ZUPT with fixed threshold,
because it is difficult to determine ZUPT conditions for
jump, fast walking, running.

4) GPS is fused with MEMS-IMUMEMS-IMU through
Robust Extended Kalman Filter (REKF), which can
remove the contaminated points of GPS signal. What
is more, GPS can provide global coordinates.

Fig. 27 shows the horizontal trajectory. The estimated track
starts from the red circle and the blue line represents the
moving trail of the pedestrian based on the proposed method.
The positive direction of abscissa and longitudinal represents
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Fig. 25. Pedestrian walking mode recognition based on the stacked denoising autoencoder and temporal convolutional network with attention in
the Free-Walking team system.

Fig. 26. Scheme of BHSNIP team positioning system.

Fig. 27. Estimated horizontal trajectory by Team BHSNIP for Track 4 of
IPIN Competition 2020.

East and north respectively. The track in the figure is shown
in relative coordinates that will be transformed into the
WGS84 coordinate system.

Fig. 28 illustrates the three-dimensional trajectory. The esti-
mated track also starts from the red circle and the blue
line represents the moving trail of the pedestrian based on
the proposed method. The x-axis, y-axis and z-axis of the

Fig. 28. Estimated 3D trajectory by Team BHSNIP for Track 4 of IPIN
Competition 2020.

coordinate system represent east, north and up respectively.
The relative coordinates representing the track in Fig. 28 will
be transformed to the WGS84 coordinate system.

VI. TRACK 5: XDR CHALLENGE IN

MANUFACTURING 2020
A. Track Description

The purpose of Track 5 is to evaluate the practical perfor-
mance of indoor localisation methods under realistic industrial
scenarios. Indoor localisation competitions have been held,
named “PDR Challenge” or “xDR Challenge” as the official
competitions or the relevant event in past IPIN conferences.
Track 5 is a sequel of the PDR/xDR Challenge series compe-
tition, which is named as “xDR Challenge in Manufacturing
2020”. In this year’s competition, the competitors are asked
to estimate the trajectory of employees working in the factory
and forklifts driven in the factory.

As specific industrial scenarios, the target for PDR Chal-
lenge 2017 and xDR Challenge 2018 were picking operation
in a warehouse [56], while for xDR Challenge 2019 it was
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serving in a restaurant and manufacturing operations in a
factory. The scenario of the competition for 2020 was manu-
facturing operations in a factory. Competitors were required
to estimate operators’ trajectory and forklifts’ trajectory in
the factory by utilising indoor localisation methods based on
dead reckoning algorithm, positional correction methods with
Bluetooth Low Energy (BLE) beacons and other information
provided.

Characteristics of Track 5 can be summarised as follows:
1) Utilising the Data Actually Used in the Operation: Similar to

other Tracks, Track 5 aims to compare practical performance
of indoor localisation methods or systems under realistic
industrial scenarios. Its most remarkable characteristic is that
the data provided to competitors is obtained from by an
analysing system for manufacturing operation which was used
during real operation [57], after approval of provision of the
data actually used.

The operators are carrying Android devices which measure
sensor data for the analysis based on indoor localisation.
This means that in Track 5 data is not provided by an actor
following a predetermined path, but by real operators doing
their daily job. This adds significant difficulty in estimating
the trajectory with respect to other Tracks, mostly because
the target movements include various types of motion during
the manufacturing operations, rather than simply walking at
constant speed and staying still for a while.

As the data set, we provided measured sensor data that
include angular velocity, acceleration, magnetism, atmospheric
pressure, and RSSI of BLE beacons. Also, partial ground
truth positions are provided for correcting the position. These
ground truth data are assumed to be available from the record
of the operations and required for long-term estimation by
indoor localisation. The lengths of the data are in units of
working hours. The lengths per data are about 2 hours to
7 hours.

2) Evaluating Dead Reckoning Methods for Various Types of
Moving Objects: The PDR/xDR Challenge series competitions
deal with indoor localisation methods based on various types
of the dead reckoning methods. Dead reckoning for vehicle
is called Vehicle Dead-Reckoning (VDR). The term “xDR” is
used to indicate various types of dead reckoning. The target
of the Track 5 is not only operators working in the factory,
but also forklifts driven in the factory. Dead reckoning of the
vehicle such as the forklifts is a quite challenging topic. Thus,
there are two separated sub-Tracks for PDR and VDR.

3) Multi-Faceted Evaluation of Performance for Indoor Local-
isation Methods: In order to evaluate practical performance
under industrial scenarios, multi-faceted evaluation metrics has
been used. The evaluation metrics in the PDR/xDR Challenges
has been revised. As the evaluation metrics for this year’s
competition, a three-evaluation indicators and three-negative
check criteria were adopted as follows:
Evaluation indicators about error

• Absolute error – Circular Error (CE): absolute 2D posi-
tional error compared with ground truth position.

• Error distribution bias – Circular Accuracy (CA): eval-
uating degree of bias of error distribution in 2D error
space.

• Error accumulation gradient (EAG): evaluating speed of
error accumulation caused by relative tracking with dead
reckoning.

Negative Checks
• Requirement of moving velocity: checking if local mov-

ing speeds in the trajectory are less than a defined
threshold.

• Requirement of validity of trajectory: checking the incur-
sion of the trajectory into un-walkable area.

• Coverage ratio: check if each evaluation point has corre-
sponding submitted results.

Each evaluation indicator and criterion are converted into
evaluation indexes up to 100 and weighted summed for
calculating the integrated index which determines the winner
of the competition. We adopted median of CEs (C E50) as
an indicator of the absolute error. The error accumulation is
the one of main concerns in relative tracking method such
as xDR. In order to evaluate the error accumulation, BLE
signals in the data set have been intentionally and partially
deleted [56]. Partial ground-truth position is provided for error
correction and for evaluating the speed of error accumulation
from the correction points where the ground truth position
is provided. Competitors are required to deal with these
unique characteristics of the data set. C E75 has not been
used for determining the winner, but only for comparison
according to the EvAAL framework. However, C E75 can be
easily calculated by using our evaluation script for calculating
evaluation indicators and negative checks. Please refer to the
script shared on the GitHub for further details [58].

B. Competition Area
The target field for the PDR subtrack is shown in Fig. 29.

The target field of the VDR subtrack is shown in Fig. 30.
We provided some examples as sample data sets. In the figures,
examples of the movements of an operator and a forklift
are shown in blue dots. The yellow dots represent examples
of the partial ground truth data for correcting the positional
errors. The black coloured areas represents the un-walkable
areas. Competitors are able to avoid the incursion into the
un-walkable area by using map matching techniques. BLE
beacons are arranged in the target area for absolute localisation
and positional correction. According to the demands of the
factory for maintenance, solar-powered BLE beacons, Fujitsu’s
PulsarGum, are used. The interval of signal emission is 1.26 s
at minimum, but it is not guaranteed and varies in proportion to
the amount of generated electricity. Competitors are required
to deal with this characteristic of the beacon.

C. Indoor Positioning Solutions Provided by Competitors
1) Team KawaguchiLab: Team KawaguchiLab has stud-

ied IMU-based indoor localization using smartphone. In the
2020 competition, the challenge was to integrate Kawaguchi-
Lab IMU-based research with non-IMU sensor based system
(BLE, map information), and to build a robust indoor position-
ing system. KawaguchiLab system is simple because it makes
no complex assumptions. Therefore, even in a Track 5 envi-
ronment where there are few movement constraints, it works
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Fig. 29. The target area of PDR subtrack in Track 5.

Fig. 30. The target area of VDR subtrack in Track 5.

Fig. 31. The scheme of three steps indoor localization system of
KawaguchiLab team system.

robustly, although there is a trade-off for some loss of accu-
racy. Fig. 31 shows overview of KawaguchiLab team system.
It consists of three phases: denoising, dead reckoning, and
compensation.

a) Denoising phase: Gyroscopes have an offset that
depends on the inherent characteristics of the sensor and
temperature. It causes a serious cumulative errors in dead
reckoning. Hence, they are removed using real-time offset
removal algorithm: First, whether the sensor is stationary or
moving is obtained with an Fast Fourier Transform (FFT)
based method; second, the offset by averaging the angular
velocity while stationary is calculated. Finally, the angular
velocityis calibrated using the latest updated offset.

b) Dead reckoning phase: In speed estimation, Deep Neural
Network (DNN) base method is used [59]–[61]. Deep neural
network architecture consist of Long Short-Term Mem-
ory (LSTM) and full-connected layer LSTM extract time
series features of 3-axis acceleration by sliding window and
full-connected layer converts time series features to speed.
This approach gains robustness to noisy data and work with
various gaits.

In heading estimation, first, gravity direction ĝDC S is
estimated using Multiplicative Extended Kalman Filter
(MEKF) [62]. DCS represents the device coordinate system.
Secon, angular velocity ωDC S is projected to gravity to get the
horizontal angular velocity ω̂GC S

z . GCS represents the global
coordinate system. Projection process is as follows:

ω̂GC S
z = −ω

DC S · ĝDC S

�ĝDC S� (8)

Finally, the heading is calculated by integrating time-series
horizontal angular velocity. Integration process is as follows:

ĥ =
∑

ω̂GC S
z dt (9)

c) Compensation phase: Pseudo reference position from
BLE signal is generated to compensate trajectory. BLE signals
are searched using sliding window for about 10 s. Then, the
distance from BLE beacon to subject is estimated using three
or more BLE signals. A pseudo reference position by using
these distance.

Similarity transformation model [63] is used to compensate
the trajectory using the true reference position and pseudo
reference position. The parameter of this model is updated
using similitude ratio. The similitude ratio s is calculated
by using actual moving distance d and estimated moving
distance de.

s = d

de
(10)

The parameter alpha is updated by multiplying similitude
ratio (α0 = 1).

αk = sαk−1 (11)

Finally, the α is multipied to the estimated position change.
The path is generated using map image as physical con-

straints to avoid obstacles. The shortest path from one ref-
erence point to the next one is calculated and with astar
algorithm the next reference point is searched.

2) Team YONAYONA: YONAYONA team indoor positioning
technology is implemented in two stages: absolute position
determination using BLE signals and map matching using
map information. Using the acceleration and angular velocity
measured by the IMU is a relative positioning approach, which
often causes drifting errors. Therefore, YONAYONA system
first efficiently estimates the location based on the RSSI,
position, and signal strength parameters, and then corrects
for the natural behavior of the person’s walking speed and
direction. A major challenge for this algorithm is to deal with
the situation when the number of observed BLE beacons is not
enough or when there is a wall between the previous predicted
position and the next predicted position.
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a) Absolute position determination: Since the number of
BLE beacons observed is not constant, absolute positioning
is calculated by selecting three beacons with high RSSI at a
certain time (every 0.5 s in this implementation). The distance
between the observer and the beacons can be computed by
RSSI and Ptx (measured RSSI 0.1 m away from the beacon).
As a result of trying various approaches to estimate the
position based on the distance data, such as trilateration,
position averaging, and position averaging with power value
weighting, the average-weighted method, which has the least
error, is applied in this algorithm.

b) Map matching: In this section, an algorithm is build
to predict realistic human movement based on the map data
provided by the competition organizers. In cases where a line
connecting two points estimated by absolute surveying would
encroach into a wall, an inaccessible point with a nearby
accessible one is replaced. Then, the estimated points are
connected with each other in a smooth trajectory so that the
walking speed can be kept within a sensible range.

c) Problem: This algorithm relies on absolute position
estimations, which makes it difficult to deal with situations
where there is a large error in the value of the signal received
from the beacons, or where the number of signals received is
not sufficient. In this implementation, the estimation accuracy
within the Absolute Localization Inapplicable Period (ALIP)
time set at a specific time was reduced, resulting in a larger
error. In fact, there were not enough time to build an algorithm
that also implemented PDR and VDR by the competition
deadline, so it is not possible to refer to relative positioning.
A possible improvement to this technique is to design a robust
system using the Kalman Filter (KF) from two estimates, one
for absolute positioning and one for relative positioning.

VII. TRACK 6: SMARTPHONE-BASED VEHICLE

POSITIONING WITHOUT ADDITIONAL EQUIPMENT

A. Track Description
The goal of Track 6 is to evaluate the performance of

different integrated navigation solutions based on the sensors
of vehicle-mounted smartphone, such as GNSS, MEMS and
magnetometer, etc. A Huawei mate20 smartphone was used
to record raw multi-sensor data in the vehicle scene and
a reference system based on Differential Global Navigation
Satellite System (DGNSS) and Fiber Optic Gyro Inertial
Navigation System (FOG-INS) with an expected accuracy of
5 cm at 1 Hz provided the ground truth. Two data sets were
provided. The first one containing the ground-truth reference
was used for sensor and algorithm calibration. The second
one was for the calculation of the coordinates and accuracy
evaluation.

B. Competition Area
The test route of Track 6 (see Fig. 32) includes an outdoor

scenario with unobstructed satellite view, an attenuation sce-
nario with partially obstructed view and an indoor scenario
without satellite view. In the test process (see Fig. 33), there
were several long interruptions of GNSS signal and an irreg-
ular test route was adopted. Besides the navigation measure-
ments derived from the sensors installed in smartphone, there

Fig. 32. The test route and GNSS condition of Track 6.

were no external aid information and no prior knowledge of
the test route. The competitors could only rely on smartphone
to calculate the vehicle position.

The test area of Track 6 was selected in Haidian airport
and surrounding areas, Beijing. The whole test route was about
19 km and consisted of two phases: the initial alignment phase
and the final evaluation phase. The initial alignment phase was
carried out in an open sky scene. It can be specifically divided
into the sensor calibration stage (traverse the posture states,
about 3 minutes), the static initial alignment (about 5 minutes),
and the dynamic alignment (several running, stop and turn
around, about 15 minutes). The evaluation stage was carried
out in the scene of GNSS signal obstruction and simulated
interruption. It can be specifically divided into three stages:

1) frequent GNSS signal attenuation stage: obstructed
buildings, tree shades, etc. – about 25 minutes;

2) simulated GNSS absent signal stage: completely inter-
rupted, simulated by turning off the Mobile phone GNSS
positioning function;

3) indoor parking stage – about 3 minutes.

Following the EvAAL evaluation criteria, the 75% hor-
izontal positioning error of competitors output points was
evaluated.

C. Indoor Positioning Solutions Provided by Competitors
1) Team WHU&AutoNavi: WHU&Autonavi Team system

uses GNSS/INS integrated positioning as the basic algorithm
and focus on making full use of vehicle motion constraint
information and magnetometer observations to provide stable
positioning services. Fig. 34 shows the flowchart of the vehicle
integrated positioning algorithm based on smartphone built-in
sensors. And the algorithm can be divided into 3 parts:
1) GNSS/INS integrated positioning algorithm (the red dotted
part), 2) the vehicle motion model constraints (the orange
part), and 3) magnetic heading constraint (the green part).

a) GNSS/INS integrated positioning algorithm: GNSS/
INSintegrated positioning is the most basic and backbone
algorithm in vehicle positioning scenarios. INS is used as
a bridge to correlate all available observations, and GNSS,
as the only available absolute positioning method in the
offline mode of the smartphone, determines the positioning
performance of the system.

INS mechanization is employed to integrate the gyros and
accelerometer output. Due to the low performance of the
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Fig. 33. The test process of Track 6.

Fig. 34. Flowchart of the vehicle integrated positioning algorithm based
on smartphone built-in sensors of the WHU&Autonavi Team system.

smartphone built-in sensors, the influence of the angular rate
and sculling effect caused by the rotation of Earth and motion
speed can be ignore [64], [65]. Therefore, the rigorous INS
mechanization can be simplified to achieve more efficient
calculations.

An Extended Kalman Filter (EKF) is employed to fuse
GNSS and INS for reducing the error caused by non-linearity.
And the 20-dimensional navigation error state includes posi-
tion, velocity, attitude, gyroscope bias, accelerometer bias,
misalignment angle (the angular difference between the smart-
phone built-in sensor and the vehicle coordinate system), and
the lever arm parameters (the offset of the sensor measure-
ment center to the center of the vehicle coordinate system).
To maximize the navigation performance of the sensor, the per-
formance parameters of the gyroscope and accelerometer are
adjusted according to the three sets of training data given by
the competition.

For smartphones, the distance between the GNSS antenna
and the IMU measurement center is very close (e.g., several
centimeters), and the GNSS position accuracy in single-point
positioning mode is at the meter level, so the GNSS antenna
and the IMU measurement center can be considered to over-
lap. Besides, since the standard deviation cannot accurately
determine the true positioning accuracy of the GNSS position,
the chi-square test is used to eliminate the gross errors in the
GNSS position to ensure the reliability of the filtering [66].

b) Vehicle motion model constraints: To deal with scenarios
where GNSS signals are interfered in a complex environ-
ment, the vehicle motion constraint model is fully used to
improve the relative positioning capability of the system.
WHU&Autonavi ystem simply divides the vehicle motion
state into stationary and moving by using the raw output of
gyroscope and accelerometer.

Stationary state: When the vehicle is judged to be sta-
tionary, it can be considered that the speed of the vehicle
is zero, that is, Zero-velocity update (ZUPT). ZUPT is an
effective means to control the accumulation of velocity error.
At the same time, the heading of the vehicle should remain
unchanged, and all heading errors can be considered to be
caused by sensor errors. The WHU&Autonavi system stores
the heading angle at the initial moment of the stationary
period and constructs a virtual heading angle observation
value, so as to achieve the purpose of effectively controlling
the accumulation of heading angle error, called Zero Integrated
Heading Rate (ZIHR) [67].

Motion state: For the normal driving behavior of ordinary
users, the vehicle will only move forward or backward. Based
on such objective facts, it can be assumed that the lateral
and vertical speeds in the vehicle coordinate system (that is,
the v system) are always zero [67]. However, the forward
speed of the vehicle still cannot be accurately obtained.
WHU&Autonavi Team system uses rticl supervised learn-
ing method to train the vehicle forward speed prediction
model [68], and the error can be controlled within 0.5 m s−1.

Due to the random disassembly and reinstallation of the
smartphone, the problem of the installation angle and lever
arm parameters is not fixed. At this time, traditional direct
setting or pre-calibration methods do not have the conditions
for implementation. Automatic calibration of the installation
angle and lever arm parameters can make the vehicle motion
constraint algorithm more applicable.

c) Magnetic heading constraints: The magnetic interference
caused by the vehicle shell can be equivalent to the magne-
tometer bias. So, the heading angle calculated based on the
magnetometer observations can still accurately reflect the true
heading angle change after the calibration and deduction of the
magnetometer bias. Besides, the quasi-Static Magnetic Field
(QSMF) is employed for avoiding environmental magnetic
interference [69].

2) SZU-Mellivora Capensis: The data collection of Track 6 is
located near the Beijing Haidian Airport. Its goal is to evaluate
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the performance of vehicle navigation solutions based on the
integration of different sensors such as GNSS, MEMS, and
magnetometers on in-vehicle smartphones. This test is under
typical urban road conditions. The smartphone is fixed inside
the vehicle, and data is collected through the phone sensor.
A single test process lasts about 1 hour and the test route con-
sists of static initial alignment phase (about 5 minutes), open
environment phase (about 20 minutes), obstructed environment
phase where the GNSS signal is attenuated or blocked by the
surrounding buildings or trees (about 25 minutes, during which
the GNSS positioning results will be frequently interrupted)
and no GNSS signal phase (underground parking lots about
10 minutes, with no GNSS positioning results). The driving
process of the test vehicle includes going straight, left/right
turning, reversing and parking.

To get the update of the vehicle’s position, SZU-Mellivora
Capensis team system obtain its velocity and heading. As for
the velocity update, the system uses accelerometer and gyro-
scope, extract their data and align the coordinates, and then
train them through proposed Deep Neural Network (DNN) to
get the predicted velocity. The same is true for the heading
prediction, but raw data used comes from the gyroscope,
the magnetometer and the AHRS. Based on the prediction of
velocity and heading, the relative displacement of the vehicle
can be inferred. Then, the federated filter is used for data
fusion. The weight factor is modified through observability
to improve the filter and achieve high-precision localization.
Finally, a smoothing filter is applied in this method.

The traditional inertial dead-reckoning mentioned above to
estimate the motion of the vehicle is a challenging prob-
lem. To reduce this unavoidable inertial drift, a data-driven
approach is used to inertial tracking. Referring to the network
structure on IONet, the motion state of the vehicle is predicted
by a trained deep Recurrent Neural Network (RNN). The
RNN maintains the local hidden state within a time window,
and then extracts the potential features of the time series.
These features affect the state output at the next moment,
thus enabling an effective recovery of the potential connection
between data features and vehicle motion. The time window
size is chosen as 1 s (50 frames). The data within the window
are (n × 3 × 50) dimensional long-term dependent feature
vectors constructed by stacking aligned n sensors. The changes
of �_v and �_h in 1 s can be predicted by Equation 12:

(v,�h) = RN N((ai , wi ,mi , gi)
T
t ) (12)

Unlike previous data-driven-inertial tracking work,
the regression of the displacement vector is split into two
separate parts: velocity estimation and heading estimation.
The division of the regression task reduces the impact of
extraneous sensors on prediction accuracy. In the velocity
estimation part, input data are the 3-axis accelerometer and
3-axis gravity sensor data for a one-second period, which
are corrected for the coordinate system alignment described
above. The output is the average velocity over this time
period, based in the two-dimensional plane. In the heading
estimation section, input data are the 3-axis gyroscope and
3-axis magnetometer data during the time period, and the
output is the sum of the heading changes in one second. The

Fig. 35. The RNN framework of the proposed method by ZU-Mellivora
Capensis team.

above input data is the best combination of sensors after the
experiments performed.

Fig. 35 shows the RNN framework proposed in this system.
A two-layer Long Short-Term Memory (LSTM) is used as the
core module to solve the gradient explosion and vanishing
problem of traditional RNNs, and it can effectively exploit
the long-term dependence of time series. Each LSTM layer
has 256 hidden nodes well above the dimensionality of the
input data. This is in order to give enough inputs to the
LSTM units so that the LSTM can fully utilize its function of
selecting useful information. To avoid the overfitting problem,
a dropout layer is added after each LSTM layer to increase
the orthogonality between the features in each layer. Finally,
a fully connected layer is placed to regress the velocity and
heading changes, respectively. The loss function is defined in
terms of the mean square error between the motion parameters
and the ground truth. The ADAM optimizer is chosen to
minimize this loss value and learn to obtain the best parameters
within the RNN.

After obtaining the velocity and heading, the trajectory
points can be expressed as:{

x = x0 + vdt · cos(h0 +�h)

y = y0 + vdt · sin(h0 +�h)
(13)

3) Team YAI: YAI Team system uses three types of sensor
data in this competition, namely ACCE, AHRS, GNSS. In the
data pre-processing part, the ACCE and AHRS data were
averaged per second to obtain data with a frequency of 1 Hz,
while the missing GNSS were marked. First, the displacement
of the vehicle per second is obtained by adding the initial
velocity of the original GNSS to the ACCE data. Then,
the YAW angle data of AHRS is initialized. After setting the
initial direction angle, the angle ranges from minus 180 to
180 degrees.

The proposed framework used Kalman Filter (KF) for
tracking. Fig. 36 shows the flow chart of the proposed tracking
framework. The prepossessed data was introduced into the
Kalman filter and GNSS to get KF gain to correct the error.
Because the KF relied on the previous path to calculate,
it does not work well during the missing section and may
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Fig. 36. Flow chart for the proposed tracking framework of YAI team
system.

Fig. 37. The estimated driving direction during the testing period, where
the horizontal axis is time with the unit second and the vertical axis is the
estimated angle.

produce significant cumulative errors, especially when the
device encounters a large-scale angle variation. Fig. 37 shows
the estimated driving direction during the testing period. The
angle variation is obtained by the difference among a short
period, 5 s in this competition. The framework calculated the
missing sections of each route depending on the degrees of
the angle variation with a threshold of 90 degree. For the
small-scale angle variation, the above method was used to
compensate for the missing section. For the large-scale angle

variation, the KF was changed to one-dimensional to address
this issue. To be more specific, KF gain is let to not change
the lateral displacement, while only affecting one-dimensional
displacement. Afterwards, the AHRS is directly multiplied
instead to estimate the direction of travel.

VIII. TRACK 7: CHANNEL IMPULSE RESPONSES

A. Track Description
Environments with complex Radio-Frequency (RF)

propagation conditions such as indoor, urban or industrial
environments have been a challenge for the RF positioning
community for a long time. Especially in industrial
environments, the abundance of metal objects causing
absorption, reflection, diffraction and scattering of the signals
leads to highly complex signal propagation that is hard to
model analytically. Therefore, classic RF positioning methods
relying on multi-angulation or multi-lateration are difficult to
apply.

Received Signal Strength (RSS) based positioning exploit-
ing the spatial significance of the propagation conditions has
been used in these environments for many years. However,
recently the use of Channel Impulse Responsess (CIRs),
containing information on the whole signal propagation path,
including Multipath Component (MPC) has been proposed.
While the specialised hardware and firmware components used
to obtain these signals are not yet available in mass user prod-
ucts like smartphones, the introduction of Ultra-Wide Band
(UWB) technology into newer generations of devices means
that CIR-based positioning is a promising possibility even for
low-cost applications in the near future. Since CIRs contains a
variety of spatial and environment-related information, it has
been used for positioning in three different ways:

• Model error mitigation [70], [71]: CIRs are used to
classify propagation conditions like a missing line-of-
sight (LoS) link or to estimate model errors caused by
multipath components. The goal is to use CIRs to enhance
classic positioning methods.

• Fingerprinting [72], [73]: CIRs is assumed to be spatially
significant and the relation of the signal propagation to
the environment is exploited for positioning by implicit
modelling using a set of pre-recorded training data.

• Multipath-SLAM [74]–[77]: CIRs is used to jointly esti-
mate the position of virtual anchors (i.e. characteristic
reflection points) or other significant features and the user
positions.

Since, in recent years, many research groups have been
working on CIR-based positioning in adverse environments,
a data set to compare different approaches under a common
evaluation framework is highly beneficial to the community.
Hence, a robotic scenario data set has been introduced using
the popular Decawave DW1000 UWB chip. For this, an indus-
trial environment in a testing hall has been reconstructed,
equipped with state-of-the-art positioning reference systems.

B. Competition Area
The environment resembles an industrial setting: it includes

metal shelves, industrial vehicles and other objects that



POTORTÌ et al.: OFF-LINE EVALUATION OF INDOOR POSITIONING SYSTEMS IN DIFFERENT SCENARIOS 5037

Fig. 38. Measurement setup. The industrial environment consists of
metal shelves and industrial vehicles. The Receiver/Anchor tags are
highlighted with red boxes, the transmitter/mobile node is highlighted
with a green circle.

Fig. 39. Data distribution of the recorded data set. The objects in the
environment are indicated in green: Metal shelves filled with goods (1)
and (3); industrial vehicles (2) and (4) and a large metal box (5). The
anchor node positions are depicted as red squares.

influence the radio signal propagation in the environment.
The measurement setup is depicted in Fig. 38: the stationary
anchor nodes (highlighted with red boxes) are placed around
the area and the mobile node (highlighted with a green circle)
is attached to a wooden table to ensure a constant height.
The measurement setup was such that the mobile node was
configured as a transmitter and the stationary anchor nodes
were configured as receivers. The wooden table was moved
throughout the environment at constant speed (as best as
possible). Hence, the environment and data resembles a robotic
scenario.

Fig. 39 shows the distribution of the acquired data within
the environment. The trajectories of the transmitter nodes are
in-between the various objects; the size of the area is approx-
imately 1 m × 20 m. In total, about 300,000 channel impulse
responses were captured over a time period of approximately
1.5 h. The sampling interval of the data was about 10 Hz.
For clearance, a constant sampling interval is not available,
as straightforward re-sampling of CIR data is not possible
because of the complexity of the signals. Of these, a tem-
porally coherent set of 230,000 CIRs is available for training
purposes, while another coherent set of 70,000 data points
is used for testing/evaluation. This corresponds to exactly
20 minutes of recording time. A detailed description of the file
format and the system specifications as well as downloadable
links for the anchor/node configuration and the training and
test data is available at http://evaal.aaloa.org/images/2020/
ta7-v4.pdf.

C. Indoor Positioning Solutions Provided by Competitors
1) Team YAI: First, the proposed system by team YAI

converts the real and imaginary parts of the Channel Impulse

Fig. 40. The network architecture of the used DNN for CIR-based
positioning of YAI team proposed system.

Responses (CIR) into the magnitude, where the phase informa-
tion is removed [78], [79]. All CIRs collected were organised
by each receiver at the same location and at the same time.

After processing the CIR signals, the proposed system
utilizes deep learning to build a mapping between the CIR
magnitude and location. In the indoor environment, the size of
1 m2 is taken as a grid, and then the position where the existing
data appears is divided into 15 × 19 grid cells, numbered
0–284. Then, each grid is regarded as a class and each
classifier is trained for a reviewer. This way, the positioning
problem can be viewed as a classification problem. A typical
machine learning DNN follows, to train a classifier for a
receiver. In the learning procedure, the temporal magnitude
CIR is directly regarded as a static feature vector to learn
the grid information by DNN. The DNN network architecture
used in the experiments include 8 layers, 465,373 neurons, and
the activation function is softmax. A categorical-crossentropy
follows to train the network parameters. Fig. 40 shows the
network architecture of the used DNN. Finally, six receivers
contain six independent classifiers that are able to convert the
CIR magnitude into a grid.

Finally, the proposed system uses an ensemble approach to
combine the estimation results from the six classifiers. In order
to make the final answer more precise, the voting method is
used first. That is, the final result is obtained by the majority
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Fig. 41. Flow chart of the system proposed by YAI team for CIR-based
positioning.

voting from the six receivers. If voting from the six receivers
results in a tie, the proposed system will select the receiver
that contains the strongest CIR magnitude. This is under
the assumption that the strongest CIR magnitude encounters
less deviation and interference. The answer reported by that
strongest receiver is viewed as the final estimation. If all six
receivers have different answers, the proposed system will
choose the one having the best performance at the offline
training stage. Fig. 41 shows the flow chart of the proposed
framework while Fig. 1 shows the final results.

IX. RESULTS AND LESSONS LEARNED

In Track 3 Smartphone 11 teams were registered and
submitted their final results. 9 out of 11 teams scored under
7 m, with the best one at 1 m. Despite the challenges imposed
by the evaluation scenario, with some open areas and a few
unmapped locations, 4 teams achieved a positioning error
lower than 2 m. Competitors had a few months to process
the pre-collected data. The key to success is the sensor fusion
approach, which was adopted by all systems which obtained
a score below 3 m. Kalman Filter (KF) and all its variants are
very popular for this task.

In Track 4 Foot-mounted IMU 5 teams were registered,
of which 4 accepted to publish their results. There were two
final scores under 7 m. What was really amazing is the score
reached by the winner: 0.5 m on such a scenario is impressive.
The key of success is an excellent implementation of ZUPT.
Techniques seem to be really up to scratch now, at least on
scenarios with a constant walking pattern. For IPIN 2021,

Track 4 plans to add a running pattern for a more challenging
competition.

In Track 5 xDR in manufacturing 4 teams registered and
2 submitted their final results. Final scores (CE75) of the
Track 5’s winners is higher than in other Tracks. Considering
the fact that the data are measured in actual industrial situation,
the achieved results in PDR-subtrack can to be regarded as
positive.

The results in the VDR sub-track are worse than expected,
exceeding 7 m. One possible reason is the lack of BLE
beacons in the area of the VDR sub-track. Another one may
be the lack of awareness surrounding VDR methods: maybe
educational campaigns are needed to spread knowledge about
VDR methods among researchers and practitioners.

In Track 6 On-vehicle smartphone 3 teams were registered
and submitted their final results. Two final scores were under
30 m, with the best one at 7 m. The key of success is the perfect
use of vehicle motion constraint information and magne-
tometer observations including ZUPT, ZIHR, Non-Holonomic
Constraints (NHC) and magnetic heading. Considering the
long interruptions of GNSS signal in the test data, more to
the point is to maintain the vehicle heading accurate.

In Track 7 Channel impulse response only one team
participated in the competition, reaching an evaluation score
of 1.4 m. We expect future editions to see more widespread
participation in this Track which is focused on a still little-
known, leading-edge method.

A. Lessons Learned
Maybe the most important results of the IPIN competition

are comments made by competitors and observations made by
Track chairs about the competing systems performance. Here
we summarise the most important ones.

1) Competitor Observations:
• Some competitors reported that the heading estimation is

a critical step for systems based on sensor fusion. It seems
that it only might work well when the smartphone is held
in front of the body. This was mostly the case in the
evaluation trajectory, except for one relatively short time
interval. To improve accuracy, it is necessary to use a
PDR algorithm that can better handle realistic movement
and different walking modes. Thus, more phone carrying
modes are required both at calibration and evaluation
phases to handle realistic scenarios.

• Floor plans are essential for map-based localisation
approaches. It may be beneficial for such competitors to
have access to additional information about the building,
i.e., pictures, videos, etc. The better understanding of
the building with its specifics leads to more informed
decisions regarding the system components and parameter
configurations.

• Some competitors used visual inspection to choose the
final submitted trajectories. This approach is not straight-
forward when comparing two trajectory candidates with-
out knowing the ground truth locations of the evaluation
points. Although it was quite feasible to identify entry
and exit positions for the floor transition in the estimated
trajectories, the path accuracy especially in larger open
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areas was difficult to rate. After the competition, know-
ing the ground truth location of the evaluation points,
competitors realised that more rigorous methods for trials
comparison are needed instead of relying in simple visual
consideration.

• Deep learning requires large scale annotation to train
accurate models. As the challenge data is sparsely anno-
tated, one can proceed by pseudo-labelling non-annotated
sensor data. This weak annotation works well in narrow
corridors where the user’s position can be accurately
approximated. However, in open spaces, like in Track 3
Smartphone, weak annotations are harder to get straight.
Approximation of user’s position is less accurate and
this added noise hurts the performance of deep learning
models. This raises the issue of finding alternate ways to
densely annotate sensor data.

• In Track 4 Foot-mounted IMU, there are some special
scenes such as carousels, frequent stair, elevator switching
as well as frequent pedestrian walking modes switching.
Therefore, designing an accurate real-time algorithm to
recognise localisation environment and walking mode is
essential for foot-mounted pedestrian positioning.

• Some competitors for Track 4 Foot-mounted IMU learned
how to analyse the foot-mounted IMU’s signal charac-
teristics in two unique scenes (escalator or lift) as well
as the pedestrian positioning algorithms in these two
unique indoor environments. Because the IMU noise is
different between dynamic and static conditions, it was
possible to fine-tune the sensor parameters based on the
Allan variance. The adjustment method is to meet the
optimal result of zero-speed correction under long-term
static data. Moreover, some re-visits of the trajectory were
found and made use of such valuable opportunities to
correct the drift of foot-INS through close loop adjust-
ment (smoothing like Simultaneous Localization and Map
(SLAM)). How to improve the stability and reliability of
Foot-INS is also an important issue.

2) Track Chairs Observations:

• Regarding Track 3 Smartphone, this is the fifth year in
a row using the same data collection strategy and format
to store the data. Despite that, it does not lose interest
from the research community and has achieved gradual
improvements in results year after year, showing that
Track 3 is very competitive, and research teams are still
interested in participating. Some teams have reported that
this Track, with the collected data sets, have allowed them
to improve their systems year by year.

• In Track 4 Foot-mounted IMU, this year we witnessed
a wide range of resulting performance, with the winner
doing much better than the other competitors. That means
that in the future Track 4 competition will have to be
more competitive and at the same time will have to pay
attention to let the doors open to new competitors. One
possible solution would be to add complex pattern like
running or jumping; organisers also envisage to use a
novel sensor delivering barometer data in addition to
GNSS, IMU and magnetometer signals.

• For Track 5 xDR in manufacturing, we have kept chal-
lenging new trails in evaluation. Due to the difficulty in
the realistic scenarios and the novelty of the competitions,
some teams gave up before submitting the results; as
a result, the number of the participants was less than
expected. In order to attract more competitors, it is better
to provide chances for using the evaluation framework
and evaluation indicators. Sharing the evaluation scripts
on GitHub will help promoting the evaluation framework.
Moreover, development of the VDR method should be
encouraged for boosting competitions of VDR.

• This was the debut year for Track 6 On-vehicle smart-
phone. Performance of competing system was widely
varied, with the top two teams at about 10 n, which is
within the expected range. In IPIN 2021 an odometer
sensor could be added to make it closer to the vehicle
scene. At the same time, considering that more and more
mobile phones can support differential positioning, dif-
ferential positioning results will be provided to improve
positioning accuracy. In addition, changing the posture
of the mobile phone during the test will be considered,
as this is a typical case in the real scene.

• Track 7 Channel impulse response is based on CIR, which
is a novel topic and as such has not attracted many
competitors. Since, in terms of RF signalling, most of
the indoor positioning community is focusing on RSS- or
range-based methods, a more detailed description of CIR-
and other channel-based methods, including an exten-
sive reference to recently published related approaches
could have made the implied positioning task clearer.
Furthermore, an example processing pipeline could have
provided more guidance in handling the data. The amount
of training data could have been reduced to allow for
less computationally demanding computations. In the end,
we believe that interest in this are is bound to grow with
time, given its great promises.

X. CONCLUSION

The IPIN Competition has been highly relevant for the
indoor positioning community since the first edition held in
Busan (Korea) in 2014. Based on the EvAAL framework,
the purpose of IPIN competitions is to evaluate positioning
solutions from academy and industry in challenging environ-
ments, using realistic procedures on a level field.

For the first time, the 2020 edition did not host on-site
Tracks (Tracks 1 and 2), because of worldwide travel
restrictions. However, the number of off-site Tracks was a
record-high. The evaluation areas included a library build-
ing, a shopping mall, an indoor-outdoor road Track and
industrial-oriented environments.

Of the 21 teams competing online in 2020 in Tracks 3–7,
20 accepted to contribute to this paper and concisely described
their algorithm workflow. This collection is arguably the best
description we can get today of state-of-the-art in personal
indoor localisation systems at the algorithmic level.

21 competing teams and 95 attendants to the final online
event witness a vibrant activity in the personal positioning
field. This activity is focused on creating an environment
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where indoor localisation systems can provide general and
cheap ways to position, track and navigate people indoors as
easily as GNSS does outdoors.

Most competitors of smartphone-based systems have
employed as many sources of information as possible for posi-
tioning, making it clear that not only good sensing capabilities
are relevant for positioning, but also rich context information
(maps, images, videos) plays a key role in enhancing position-
ing accuracy.

In the previous section we have presented a short overview
of results. We find them impressive, especially with respect to
what was available just few years ago.

Yet, these observed results highlight a significant gap
between the accuracy reported in the literature and the results
obtained in the competition. It is far too easy to find accuracies
reported in the literature which are unrealistically good with
respect to what we observe in on-site Tracks. What is more
uncomfortable is finding the same even with respect to off-site
Tracks, which generally provide far better results.

This is mostly due to insufficient test and evaluation proce-
dures, as the vast majority of papers in the literature present
results obtained by simulation or trial in a small lab. Some
papers present results obtained in larger areas (usually one
floor of an office or university building) with an actor walking
at a natural pace. Still, very few papers that we know of
consider testing in unfamiliar areas, thus minimising the effect
of building a system tuned to the laboratory environment.

Indoor localisation and seamless location-based services are
enablers for an enormous market that will develop in the near
future. The IPIN competitions have played an essential role in
the academic and industrial research in this field; as far as we
can tell they are going to play it for the foreseeable future as
well.
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