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e Evaluation of the main sources of error, namely digmal-to-noise ratio (SNR), the

radiometric calibration and the spectral samplimngtsgy,

e Analysis of sensibility to the instrumental configtions for each application.

Journal: ISPRS Open Journal of Photogrammetry and Remotsiriggen

° Abstract

CNES is currently carrying out a Phase A studysteas the feasibility of a future hyperspectral
imaging sensor (10 m spatial resolution) combinéd @ panchromatic camera (2.5 m spatial
resolution). This mission focuses on both highigband spectral resolution requirements, as
inherited from previous French studies such as H¥,HEYPXIM, and BIODIVERSITY. To
meet user requirements, cost, and instrument camgescconstraints, CNES asked the French
hyperspectral Mission Advisory Group (MAG), repmetseg a broad French scientific
community, to provide recommendations on spectmading, particularly in the Short Wave

InfraRed (SWIR) for various applications.

This paper presents the tests carried out withaitineof defining the optimal spectral sampling
and spectral resolution in the SWIR domain for diative estimation of physical variables
and classification purposes. The targeted applicatiare geosciences (mineralogy, soll
moisture content), forestry (tree species clasgifin, leaf functional traits), coastal and inland
waters (bathymetry, water column, bottom clasdiicain shallow water, coastal habitat
classification), urban areas (land cover), indaktplumes (aerosols, methane and carbon
dioxide), cryosphere (specific surface area, edeintablack carbon concentration), and
atmosphere (water vapor, carbon dioxide and aespsAll the products simulated in this

exercise used the same CNES end-to-end processiam, cwith realistic instrument
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parameters, enabling easy comparison between appiis. 648 simulations were carried out
with different spectral strategies, radiometricilmation performances and signal-to-noise

Ratios (SNR): 24 instrument configuration25 datasets (22 images + 3 spectral libraries).

The results show that a 16/20 nm spectral samplitige SWIR domain is sufficient for most
applications. However, 10 nm spectral samplingesommended for applications based on
specific absorption bands such as mineralogy, tndliglumes or atmospheric gases. In
addition, a slight performance loss is generallyasbed when radiometric calibration accuracy
decreases, with a few exceptions in bathymetryiarde cryosphere for which the observed
performance is severely degraded. Finally, mosliegins can be achieved with the lowest
SNR, with the exception of bathymetry, shallow watassification, as well as carbon dioxide
and methane estimation, which require the highd® &\el tested. On the basis of these results,
CNES is currently evaluating the best compromiseésigning the future hyperspectral sensor

to meet the objectives of priority applications.

1. Introduction

Imaging spectroscopy (IS) is now recognized as wepil tool for satellite-based Earth
observation. Several sun-synchronous space missiocts as Gaofen 5 (Liu et al., 2019),
PRISMA (Meini et al., 2015) or EnMap (Guanter et 8D15) are already operational (Qian,
2021). They offer global coverage with a revisiti¢ifrom 4 to 29 days. All these sensors have
a ground sampling distance (GSD) of 30 m which ceduhe range of applications due to the
presence of mixed pixels in heterogeneous scer®o(&t al., 2014; Transon et al., 2018).
Spatial resolution is considered the « Achille hedbr the recovery of fine-scale surface
parameters. Other authors have mentioned thedatioms for crop disease detection (Dutta et

al., 2006; White et al., 2007), forest functionalits estimation (Miraglio et al., 2022), urban
4



91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

area classification (Cavalli et al., 2008; Heldenal., 2011), clay mineral mapping (Gomez et
al., 2015), characterization of acid mine draindgavies and Calvin, 2017), monitoring of
industrial gas plumes (methane, carbon dioxydepkeniNesme et al., 2021; Deschamps et al.,
2013), or early detection of coral bleaching (Yamand Tamura, 2004). Ustin and Middleton
(2021) reported that a 10 m GSD is justified to rioye the mapping capabilities of crops,

minerals, snow/ice, water resources, vegetatioa &y condition.

There is therefore a real need to complement egi$8 sensors with a new sensor with better
spatial resolution. A number of IS missions arerentty under study, such as SHALOM
(Feingersh et Ben-Dor, 2016) and PRISMA-NG (Ansel@t al., 2021). For many years,
French researchers supported by CNES/DGA haveweging on specifications of a new 10
m GSD IS sensor under several names: HYPXIM (Bziat al., 2011; Carrére et al., 2013),
HYPEX-2 (Briottet et al., 2017) and BIODIVERSITY (iBttet et al., 2022). A phase A, led by
CNES was completed in mid-2022 with the aim of <pg an instrument combining
hyperspectral imaging (10 m GSD, spectral ranges-240 um, 10 km swath) with
panchromatic imagery (2.5 m GSD) with a revisitdiof 5 days. One of the aims of this study
was to define the optimum signal-to-noise ratio RINadiometric image quality and spectral
sampling for different applications, within the etmraint of instrument compactness:
geosciences, forestry, coastal and inland watdsajuareas, industrial plumes, cryosphere, and
atmosphere. All these applications have been selebecause they require high spatial
resolution, on the order of 10 m, and corresponthéothemes identified by Taramelli et al.
(2020). The aim of this work is therefore to prasere results of a cross-analysis of these

scientific fields, which will help consolidate tih@ssion requirements and the payload design.
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After describing the input data in 82, the end-tolsimulator for calculating radiance at the
top of the atmosphere is presented in 83, alondy whe insertion of specific sensor

characteristics (spectral strategy, SNR, radiomestlibration accuracy), the choice of surface
reflectance and the methods used to extract tlegaet parameters for each application. The

results are presented in 84, followed by a disomssi 85 and a conclusion in §6.

2. Materials

Two types of input data were used to cover thegersscientific domains: reflectance spectra
measured in the laboratory or simulated using @dedc models, presented in §2.1, and

hyperspectral images (§82.2).

2.1. Laboratory, field and simulated spectra

The use of laboratory measured spectra concerdgaigms in mineralogy and soil moisture

content (SMC) estimation (geosciences), while tlse wf simulated spectra concerns
applications in leaf functional traits estimatioregetation), spectral surface area (SSA) and
equivalent black carbon (eBC) estimation (cryosphieand atmospheric aerosol and gas

estimation (atmosphere).

For mineralogy estimation, 38 reflectance spedtreaninerals of interest (clays, carbonates,
sulphates, rare earth elements (REE), oxy-hydrexide.) with a wide range of chemical
composition and grain size were selected from thi#ed States Geological Survey (USGS)

Spectral Library (https://crustal.usgs.gov/speglaliie results presented here are limited to the

11 most typical minerals whose spectral charadiesiare given in Table.1
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Table 1. Diagnostic absorption characteristics of 11 repregave minerals. Bastnaesite, monazite, and
xenotime have specific absorption peaks in thédlsand near-infrared (VNIR) due to varying projpmis of rare
earth elements: only the four main absorption peakshown.

Mineral USGS Reference Wavelength positions of diagnostic absorption features
Gypsum Gypsum_HS333.3B ~1.75 um; secondary absorption ~2.21 um
Calcite Calcite_WS272 ~2.34 um; secondary absorption ~2.16 um
Kaolinite Kaolinite_CM9 Doublet ~2.16 um and ~2.21 pym
Alunite HS295-3B ~1.76 um, ~2.16 pm; secondary absorption ~2.32 um
Goethite Goethite_GDS134 ~0.66 um, ~0.91 pm; secondary absorption ~0.50 um
Hematite Hematite_HS45.3 ~0.86 um; secondary absorption ~0.66 um
Jarosite Jarosite_GDS635_Na_Cyprus ~0.43, ~0.92, 2.21 and 2.27 um
Montmorillonite Montmorillonite_SAz-1 ~2.22 um
Bastnaesite Bastnaesite_ REE_WS320 ~0.58,0.74, 0.80 and 0.86 pm
Monazite Monazite_ REE_GDS947_Calif ~0.58, 0.75, 0.80 and 0.87 um
Xenotime Xenotime_GDS966_Iveland_REE ~0.66, 0.75, 0.81 and 0.91 pm

For coastal habitat classification, a library etdi spectra was acquired using an ASD FieldSpec
4 Hi-Res spectroradiometer, which covers the wangtterange from 350 and 2500 nm with
spectral resolution ranging from 3 nm (VIS-NIR)&mm (SWIR). The spectra recorded over
2151 bands were calibrated using a Spectralon duige reflectance factor measurements.
Three to five spectra were recorded on each téogatcount for intra-target variability. These
targets have different benthic characteristics:etatipn types (green, red, brown algae and
microphytobenthos) and substrate types (mud, ssimells and rocks)Sabellaria alveolata
bioconstructions, oyster reefs, etc. This spettredry will enable us to access the potential of
the SWIR for discriminating intertidal benthic faed, given that we have no images in the

coastal zone in this wavelength range.

For SMC, reflectance spectra of 32 soils measuoedlifferent gravimetric water contents
ranging from 5% to 85% were extracted from the Bed@tabase (Lesaignoux et al., 2013;
Figure 1) used to validate the Multilayer rAdiatitRansfer Model of soll reflectance

(MARMIT) model (Bablet et al., 2018, Dupiau et &Q022).
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151 Figure 1. Reflectance spectra of two soil samples (81StJudieth 31FaugaX1) extracted from the Les08

152 database (Lesaignoux et al., 2013). https://p$abgihath.univ-paris-diderot.fr/marmit/marmit

153 For the estimation of leaf functional traits, acpal database was generated using the DART
154 ray-tracing model (Gastellu-Etchegorry et al., 20d@upled to the PROSPECT leaf radiative
155 transfer model (Jacquemoud et al., 1996) with tipaiti variables described in Table 2. The
156 objective is to simulate top of canopy reflectamoages similar to those acquired by an

157 airborne hyperspectral sensor (see Miraglio ekaR?).

158 Table 2. Range of variation in biochemical and physicalgarties of trees. FVC: fractional vegetation cover
159 LAD: leaf angle distribution, ALA: average leaf dagLAl: leaf area index, Cab: chlorophyll conte@ar:
160 carotenoid content, EWT: equivalent water thicknassl N: leaf structure parameter in PROSPECT.

Canopy parameter Value and range
FVC (%) 30, 50, 70, 90
LAD (°) Ellipsoidal
ALA (°) 55-65

LAI (m?/m?) 1-4

Cab (ug/cm?) 5-70

Car (ug/cm?) 4-20

EWT (g/cm?) 0.001 - 0.025

LMA (g/cm?) 0.001 - 0.025
N 1.5-21

161 To estimate the specific surface area (SSA) and dbeivalent black carbon (eBC)
162 concentration, snow reflectance spectra were sieullavith the Two-streAm Radiative

163 TransfEr in Snow model (TARTES, Libois et al., 2DW8th the input parameters detailed in



164 Table 3. SSA and eBC values were determined usirgjtu hyperspectral measurements

165 (Libois et al., 2013; Picard et al., 2016; Dumanale 2017; Tuzet et al., 2019, 2020).

166 Table 3. Definition of the variation ranges of the inputs foe TARTES simulations.
Variable Range
Spectral range 350-3000 nm at 1 nm resolution
Specific surface area (SSA) 3-100 kg m?
Sun zenith angle 0-80° by 10° step
Dust 11 values between 0 and 500 10 g g1
Equivalent black carbon (eBC) concentration 11 values between 0 and 300 10° g g!

167 To estimate the composition of the gaseous atmospfwater vapor, carbon dioxide),
168 performance is assessed on the basis of a stami@ddtitude summer atmosphere, with a=CO
169 concentration of 400 ppm. The observation is atrreattl the solar zenith angle is 20°, while

170 the ground reflectance corresponds to a brightrtéke surface.

171 For atmospheric aerosols, synthetic TOA radiancesevgenerated using the Generalized
172 Retrieval of Aerosol and Surface Properties (GRAB&hovik et al. 2021) algorithm for a
173 fixed geometry corresponding to a scattering anglE50° and selected nominal wavelengths
174 in the atmospheric windows (419, 441, 492, 546, 669, 865, 2312 nm). Only a subset of
175 wavelengths was selected, as the spectral chasticerof aerosols vary little in the solar
176 domain. A mixture of two aerosol types with diffetsize distributions, chemical compositions
177 and shapes was used for the simulations: a fineerfardpollution particles and a coarse mode
178 for desert dust. The influence of gases is nedéggib this study, as the spectral bands were
179 selected outside the main gas absorption peaksopha atmosphere reflectance ranged from
180 0.09 to 0.11 at 419 nm and around 0.01 at 2190 representing different aerosol
181 concentrations over a dark surface (water). Only/soenario is presented here, corresponding
182 to a constant SNR of 200 in the 400-550 nm specrae and 100 in the 600-2400 nm spectral

183 range.
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2.2. Airborne hyper spectral imaging

Images were acquired by airborne sensors withréifitespectral resolutions: NEO-HySpex (4-

7 nm,_https://www.neo.no/), NEO-ODIN (3-6 nm, httpgsww.neo.no/), AVIRIS-C (10 nm,

https://aviris.jpl.nasa.gov/), and AVIRIS-NG (3.™nhttps://aviris.jpl.nasa.gov/). They all

cover the 0.4-2.5 um spectral range. Table 4 tlimsmages and variables of interest for each

scientific field.

Table 4. IS images used in this study, wiih sun zenith angle applied in subsequent simulatiosall the

images are acquired at nadir.

Sc1ent.1f1c Acquisition Location Senso.r . Applications: Variable of interest
domain date characteristics
Cherves- HySpex:
Zelzic. 52 8 é9o Richemont, GSDvnr=0.5m  Mineralogy: gypsum, calcite
ST France GSDswr =1 m
Sept. 2019 Chevanceaux HySpex:
. pt- o " GSDwwr=0.5m Mineralogy: kaolinite
Geosciences 6 = 50.2 France
GSDswir = 1 m
June 2020 Cuprite, NV,  AVIRIS-NG Mineralogy: alunite, kaolinite, iron
05 = 15.8° USA GSD=29m oxy-hydroxides
June 2014 Mountain Pass, AVIRIS-NG Mineralogy: bastnaesite (carbonate-
O = 76.1° CA, USA GSD=3.7m fluoride mineral, REE)
HySpex: Tree species classification
ze}:c. j-? fo Ej:;j:oresb GSDvnir =4 m (temperate forest, LAl =3 m?/m?): 20
: S ' GSDswir =4 m species
Vegetation : -
2014 Tonzi Ranch, AVIRIS-NG Mediterranean woodland savannah,
]Hunf . CA,USA oD A (LAT = 0.8 m/m?): Cab, Car, LMA
ST (Figure 11) and EWT
July 2016 H
— _ ySpex
252 go31.3 Roscoff, France GSDvik = 0.5 m Bathymetry
Porquerolles
Sept. 2017 Island, France HySpex Bathymetry, . .
O = 42.4° (Figure 13) GSDvai = 1 m Water column estimation:
Coastal waters®s ' & phytoplancton, SPM, CDOM
Bottom classification of shallow
July 2019 Camargue, HySpex water
Og = 22.5° France GSDwnr =1 m '
June, 2019 Champeaux, = HySpex Classification of intertidal coastal
05 = 25.5° France GSDvwnr=0.5m  habitats (10 classes)
June 2015 NEO-ODIN
Urban area B = 20.5° Toulon, France GSD =05 m Urban land cover (10 classes)
Sept. 2015 Cerie
Industrial site 65 = 58.2 — Fos-sur-Mer, - HySpex Aerosol plume
60.7° France GSD=14m

10
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Oct. 2019 New Mexico, AVIRIS-C

0 =150°  USA GSD = 6.6 m Methane leaks

The Fabas forest is composed of six distinct dontispecies, includinQuercussp., Douglas
pine Pseudotsuga menzidsiiLaricio pine Pinus nigrg, maritime pine Rinus pinastey,
Weymouth pine Rinus strobusand black locustRobinia pseudoacacjaThese six species
are included in the classification process, aloitt ¥wo additional classes: other conifer and

deciduous trees.

For urban areas, ten classes were consideredidgetation, shadow, high reflectance, asphalt,

bare soil, pavement, road, stadium and stone.

For shallow water bottom classification, three sésswere considered for the Porquerolles site
(sand, Posidonia oceanicaand Caulerpa taxifolig, and four classes for Camargue site

(sediments, zosters, green algae and red algae).

3. Method

The processing chain is detailed in Figure 2.

Out of instrument spectrum Two outputs before processing:
TOA radiance level: industrial plants,
urban areas, atmosphere

Top of atmosphere spectrum

Radiance

/4

Spectrum of the
ground target

Spectrum of the target,
estimated from space

W.mZsr ! pm
Rndlancel
[W.mZsr'pm']

> Py Wavelength [um]

Surface reflectance level: natural
vegetation, coastal and inland
waters, cryosphere

2 Instrument

Reflectance

I Lighting and atmosphere
Wavelength [um] 1
ngth [ ,;ﬂ

-

Figure 2. Overview of the end-to-end simulator.

Each application targets one or several variabfeisterest. For each, a reference value is
defined and hyperspectral data (spectra or images)produced. The end-to-end simulator

propagates this data at the top of the atmosphesteas it would have been acquired by a
11



209 satellite. Various satellite performances can brifated. Next, a specific method is applied to
210 retrieve the variable of interest from the sateltiata. Finally, the estimated value is compared
211 with the reference value. The discrepancy betwkemrstimation and the reference indicates if
212 the satellite performances meet the applicationirements or not. The end-to-end simulator
213 and the processing of each application are dethidédmiv. Figure 3 gives the processing orders

214 and the main parameters used in our simulations.

: \ re- p-welling nstrumen \ mospheric ost-
High Pre- Up-well Inst t At h Post \
spectral |\ Processing radiative o1) MTE* \  correction’ processing \ BOA |mag:
\ = \ 2
and *1) NODATA transfer *2) ISRF *95 % water *Restore initial \ B 8 e
spatial \ '"f'””‘g +100 % water *3) Absolute vapour format . bythe
resolution / *2) Spectral vapour calibration error / +18 km visibility / satellite
BOA /  upsampling «23 km visibility *4) Inter-band y / under
X calibration error ) design
image *5) Noise / /

————————— = ——————'; — = — -

216 Figure 3. Processing order of the end-to-end simulation chaiNot applied on applications based on TOA inmge
217 (gas content estimation, pan-sharpening), **: Nugled on spectral libraries. ISRF: instrumentatcpal response
218 function, MTF: Modulation transfer function

219 The End-to-End simulator and the processing foh @aplication are detailed in the following.

220 3.1. End-to-end simulator

221 The aim of the end-to-end simulator (Figure 2pisitnulate the output signal, in spectral
222 radiance unit, that a sensor can acquire, takitogaocount its own errors, and then to carry out
223 the atmospheric correction to retrieve the speotfédctance of the surface.

224 All data processing was carried out using an eper simulator developed and operated
225 Dby the French Space Agency (CNES), so that resoltdd be compared (Figure 2). This
226 simulator allows two types of input to be takerbiatcount, depending on the data available
227 for each application: surface reflectance specatearborne images expressed in radiance units.
228 3.1.1. Input top-of-atmospher e spectral radiance

229 The COMANCHE code (Poutier et al., 2002), based@DTRAN 5.3 (Berk et al., 2005),

230 was used to calculate the top-of-atmosphere (TCQjance. We chose the MODTRAN

12
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253

standard parameters which were coherent with tee studies, i.e. a mid-latitude summer

atmosphere and a rural aerosol type with a 23 knedmtal visibility. The solar angular

conditions were deduced from the input acquisitionditions ( Table 4). A nadir viewing angle

was applied for all images since they were all aeguat nadir. The resulting TOA spectral

radiance is then processed further to simulateatitpiired signals in the hyperspectral and

panchromatic channels.

3.1.2. Output top-of-atmospher e spectral radiance

Several scenarios were explored to quantify theungental effects on the final products:

e Two signal-to-noise ratiosptimistic(O) [100-400] @Lref andealistic (R) [50-250] @ Lt
(Figure 4), with Lt the reference radiance. Gaussian noise with arzeem and a standard

deviationo was added to the input radianees equal to:

o) =Ja) + b(1).L(A)

with a a constant noise arida noise associated to the radiance, both deperxdirthe
spectral width the TOA radiance, antlthe central wavelength of the spectral bdnsl.
is defined for an albedo of 0.3, a sun zenith anf&0° and nadir viewing, a standard mid-
latitude winter atmosphere, and a continental a¢tgpe with a 23 km horizontal visibility.
e Two absolute and interband calibration performaiiEggire 5)threshold(t) [5% absolute,
2% interband] antarget(T) [3% absolute, 1% interband].
e Six instrumental spectral response functions (IS&RFining different sampling strategies,
labelled from #1 to #6 (Table 5). Note that thecéga configurations differ only in the
SWIR. The ISRF defines how sensible are each speclrannel to every incoming

wavelength. The TOA equivalent radiance acquired given spectral bands computed

- [ISRR(L0.a

by:L; = TISRF, (DA whereL(A) is the TOA radiance computed in Paragraph 3.1d1 an

13
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ISRF; (1) the spectral response of bandSRF;(1) is modeled as a Gaussian function with

a central wavelength;,; and a full width at half maximuiWHM;. Table 5 provides the
spectral step (i.e. the distance betwggnandA.,, ;) and the spectral widthF(V HM) of

each sampling strategy. Note that strategy #5sisna of Gaussian functions with a linear
increasingFWHM. Several ISRFs were tested as the matrix detedtgint have a limited
number of lines to record all the spectral bandss Tisadvantage can be overcome by
widening the channels spectral width and thus redutbeir number. To take into account
that the central wavelength of each band may nokrnmevn precisely, the calculation
includes a constant spectral shift of 1 nm, typfoain a spectral calibration error.
Note the instrument parameters used are realisticreat the sensor is technologically feasible.
In summary, a scenario is defined by a spectratesjy (#1 to #6), a calibration performance (t
for thresholdor T fortarge?) and a SNR (O fooptimisticor R forrealistic). Each scenario is
then referred to as the triplet (spectral strategjibration, SNR). A star indicates that the
comment applies to all possibilities in the triptetmponent. The reference scenario is (#1, T,

0), i.e. 10 nm wide spectral channels with the logaibration errors and the best SNR.
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274  Figure5. Absolute and interband calibration errors: thredlaid target.

275 Table 5. Spectral sampling strategies. The spectral raraye 850 to 1950 nm is unused.
VNIR (400 — 900 nm) SWIR (900 - 1850 nm / 1950 — 2400 nm)
Sampling Spectral
Strategy Spectral width Number of Spectral step (nm) Spectral width (nm) Number of
step (nm) (nm) channels channels
#1 10 10 51 10 10 136
#2 10 10 51 20 20 68
#3 10 10 51 16 16 85
22 for A< 1.95 22 for A< 1.95
4 10 10 o1 10 for A > 2.05 10 for A > 2.05 86
Linear increase from 14 to 17
#5 10 10 51 12 nmover [0.9-13], [1.3-1.8], 112
and [1.95 - 2.4],
#6 8 16 63 10 20 136

276 In addition, the instrument introduces some blgrnimo the image, the magnitude of which
277 depends on the wavelength and is modelled by thautation transfer function (MTF). Due to
278 the push-broom acquisition mode, the MTF is noivejant along and across the satellite track
279 (Figure 6). When processing the spectral libraties MTF simulation is not activated as only
280 one pixel is processed.
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When processing the spectral libraries, MTF simaitats not activated as only one pixel is

processed.
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Figure 6. Modulation transfer function (MTF) of five spectitznds of the instrument in the frequency domain.

The instrument also features a panchromatic chafi#®N). Four additional images were
generated with two SNR (realistic or optimisticgiie 4) and two instrumental calibration
performances (threshold or target). Figure 7 shakaes normalized sensitivity of the

panchromatic channel and its point spread fun&ta®89 nm.
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Figure7. (Left) Normalized sensitivity of the panchromatltaninel. (Right) Point spread function at 639 nm.

To summarize the end-to-end processing chainnihet iTOA radiance is first affected by the

MTF (reduction of the input spatial resolution)etiby the ISRF (reduction of the input spectral
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resolution). At this point, the absolute calibratierror as well as the inter-band calibration

error are applied. The last step corresponds tm8teumental noise simulation.

In the end, for each input image, this experimedtsign produced twenty-four simulated
images representative of various instrumental perdnces. However, the sensor design does
not yet allow us to take into account other potmtefects, such as stray light, geometric errors
(geolocation, band registration, etc.), acrossktraariations in instrument characteristics
(MTF, ISRF, etc.) including the smile effect, patation sensitivity, directional effects induced
by slowing down the satellite during acquisition and detector defects (remanence, dead
pixels, etc.).

3.1.3. Spectral surfacereflectance

The complexity of atmospheric correction algorithaei®w them to be adapted to different
situations. In this study, simulated data or imaggm#e been corrected for atmospheric effects
with high performance so as not to interfere witlke tother parameters of interest (i.e.,
instrument configuration). However, some typicalrees of error are accounted for:

e An error of 5 km in horizontal visibility: the upwatransfer is performed with a visibility
of 23 km and the downward transfer with a visiildf 18 km. Aerosol type remains
unchanged.

e A 5% error in the water vapor content: the downwaadsfer is calculated with 95% of the

water vapor content simulated on the upward transfe

As the upward transfer is done numerically, thecspheric correction can be carried out with

the same performance whatever the target. Thisehoiakes it possible to compare images

from one application to another.

3.2. Description of methods by scientific field
18



316 For each scientific field covered by this studyplEa6 provides the variables of interest, the
317 input format, the method used to estimate thesahlas, the bibliographic reference detailing

318 the method and the evaluation criteria.
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319

Table 6. Methods used to retrieve application-related védembSA: Spectral Analyst, SAM: Spectral Angle Map®BD: standard deviation, SFF: Spectral Featiftiad;

320  SVM: Support Vector Machine, PLS: Partial Least &gy ACE: Adaptive Coherence Estimator, RMSE: Rde&n-Square Error, PM: Particle Matter.
Sc1ent1.f1c Variable of interest Type of I.S Method and author Refel:ence val.ue of the Evaluation criteria
domain inputs (unit) variable of interest
Image (surface Visual assessment Mineralosical maps of Position and shape of absorption features
Mineral composition refglectance) SAM (Kruse et al., 1993) thge site P Identification if SA > 0.7 and SAM < 0.2
Geosciences SFF (Clark et al., 1990) Identification if SA > 0.7 and max(RMSE of SFF) > 0.1
. . Spectra (surface MARMIT model Laboratory . .
Soil moisture content reflectance) (Bablet et al., 2018) measurements RMSE between laboratory input and satellite outputs
Tree species Image (surface  Supervised classification: SVM with Radial Basis In situ measurements Mean, RMSE values of Overall Accuracy, F-score over
Vegetation classification reflectance) function (Gimenez et al., 2022) H H the 24 scenarios and 30 iterations each
. ., Image (surface Hybrid method using DART/PROSPECT Traits maps from a high .
Leaf functional traits reflectance) simulations and PLSR (Miraglio et al., 2022) spatial resolution image RMSE by comparing ISRF #1 and the others ISRE
Bathymetry IHrl:fglzc(;lrlerf:)C ¢ HYPIP processing chain (Lennon et al., 2013) Lidar measurements SD and RMSE / bathymetric Lidar
Bat?yg:;rz ir:tlilcmo- Image (surface Hybrid method based on the Lee model (Lee et al., Lidar Irslietisbl\]r:trenrents, mn R%{()SE / irll Asiu.l| data
P q reflectance) 1999, Minghelli et al., 2020) ater RE(%) = 2yN Pl i gity data
Coastal parameters characterization N i
zones With and without IS Pansharpening + Fully

Classification of
intertidal coastal area

Image (surface

Constrained Least Square — the endmembers are
reflectance )

known (Heinz and Chang, 2001)

Spectra (surface

Intertidal coastal area PLS and discriminant analysis (Lee et al., 2018)

reflectance)
Urban Land Cover 1 Imag.e (TOA IS Pansharpening, Random Forest classification
radiance) (Loncan et al., 2015)

Urban area

Urban Land Cover 2 Image in TOA  Upsampling of the IS image, SVM classification,

radiance unit fusion with PAN (Ouerghemmi et al., 2017)
PM1 Flux of

industrial aerosol Imag.e (TOA Multitemporal algorithm (Foucher et al., 2019)
. radiance)
Industrial plume
site Methane

Image (TOA  Plume detection with ACE detector, quantification

concentration of . .
radiance) of the concentration (Nesme et al., 2021)

industrial plume

20

Manual in situ

e Normalized RMSE on abundance
classification map

Kappa coefficient

In situ field spectra Overall Accuracy

Manual classification Good classification rate / reference image

Manual classification Mean F-Score over the classes

Estimated error
High objective: < 80 pg/m?
Low objective: < 150 pg/m?3
Estimated error
High objective: <1000 ppm.m
Low objective: < 1500 ppm.m

In situ measurements

JPL estimation



Specific Surface Area,
equivalent black  Spectra (surface

Cryosphere carbon content of reflectance) Hybrid method with TARTES (Dumont et al., 2017) Simulations
Snow
Water vapor and CO: Sp::ctlringe?A Optimal estimation theory (Herbin et al., 2013) Simulations
Atmosphere L - . .
Aerosols Spectra (TOA  GRASP and optimized fitting following the multi- Simulations

radiance) term Least Square Method (Dubovik et al., 2021)
321

21

Bias, standard deviation of the estimates / reference
inputs

RMSE

RMSE
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3.2.1. Geosciences

A first assessment of the impact of instrument abt@ristics was carried out qualitatively on
spectra of representative minerals extracted frlioenspectral library and image pixels. The
positions and shapes of their absorption featunabled us to visually evaluate the different
scenarios, in particular with regards to the spédirategy. Next, a quantitative assessment
was carried out using the Spectral Analyst (SA)oatgm in the ENVI software

(https://www.nv5geospatialsoftware.com/This compares the spectra of representative

minerals with those of a reference spectral lib@ryhe same spectral resolution, resampled
according to the spectral characteristics (bandipos and full width at half maximum) of the
different strategies. This procedure enabled usstess the impact of instrument calibration
and SNR. To compare the spectra, we used two welvk spectral matching techniques called
Spectral Angle Mapper (SAM) (Kruse et al., 1993)l &pectral Feature Fitting (SFF) (Clark
et al., 1990). SAM determines the spectral sintydsetween two spectra by treating them as
two vectors in a space whose dimensionality is etutne number of bands, and calculating
the angle between these vectors. This technigasessitive to illumination and albedo effects
when used on calibrated reflectance spectra. SBaged on the least squares method. The
reference spectra are scaled to match the unknpegtra after the continuum is removed from
both (Clark et al., 1990; Mars and Rowan, 2010)MS#d SFF values are calculated on VNIR
(0.4-1.3 pm), SWIR1 (1.3-2.0 um) and SWIR2 (2.0-@) to avoid as far as possible
problems associated with atmospheric correctiottsatwo main water vapor absorption bands
around 1.4 and 1.9 um. This also allows us to fanuspectral ranges where the selected
minerals exhibit diagnostic absorption featuresjctvis recommended with these spectral
matching techniques. The SA result is a rankededghted score, with higher scores indicating

greater confidence.

22



346 Soil moisture content is estimated by inversiorthef MARMIT model, which represents a
347 wet soil as a dry soil covered by a thin layerngdild water of thicknesk (Bablet et al., 2018).
348 The dry soil can be fully or partially covered wiklater, with a coverage fraction equakto

349 The two input parameters of MARMIT,ande are estimated by minimizing the cost function:

XZ (L (:‘) _ \/Z;i(Rmeas(/l) — Rmod(/l, L, E))Z

nm
350 with n; the number of wavelengths (or channely),.,s the measured soil reflectance, and
351 R,,.q the soil reflectance estimated by MARMIT. The lovaed upper bounds of the model
352 parameters are 0 and 1 fgr0 and 0.2 cm foL. A calibration step is required to establish a
353 statistical relationship between the mean watektieéss (mean light path) defined@s= L X
354 e and the measured SMC. The evaluation of the meatbosists in retrieving SMC by applying
355 the relation found in the calibration step and carmg it with the measured values. The RMSE

356 s calculated on 160 SMC values ranging from 55%8
357 3.2.2. Vegetation

358 A supervised support vector machine (SVM) clasaifan is applied together with a radial
359 basis function (RBF) kernel to classify tree spgadie the basis of spectral signatures extracted
360 from the HySpex image and corresponding to thel fieyentory. Two subsets are randomly
361 generated, a training one (70%) and a validatiom @©%). The training subset is used to
362 optimize the RBF-SVM hyper-parameters, C and Ganirha. strategy followed is based on
363 an exhaustive grid search strategy with 5-fold €sadidation aimed at maximizing the overall
364 accuracy (OA) of the classifier. The space defibgdC values ranging from 10to 1 and

365 Gamma values ranging from 10to 10 is explored. The model is then trained usimg
366 parameters obtained and the training subset. Nextrained SVM classifier is applied to the

367 validation subset. The method’s performance isuatatl using the OA and F-score, the user
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390

and producer accuracy for each class. As the scaredepend on initial conditions, the whole
procedure is repeated 30 times and the mean andER¥I8ach accuracy score is calculated.
Thirdly, the tree species map is produced usingstmee scheme with the spectral signature
dataset for the training and the image for appbeatUltimately, the relevance of each of the
twenty-four scenarios is evaluated using this di@asion scheme, and compared using the

mean and standard deviation of the accuracy scitasmed.

Leaf functional traits are estimated using a hylonethod based on training a PLSR on the
previously described spectral database generat®d\BRT. An automatic determination of the
optimal number of latent variables and a selectbrthe most important variables in the
projection design are performed for the PLSR patarnzation. To optimize trait extraction,
the spectral range is adapted to the influencadt ¢rait: 0.5-0.8 um for chlorophyll (Cab) and
carotenoids (Car), and 1.5-2.4 um for leaf masspa (LMA) and equivalent water thickness
(EWT) (Miraglio et al., 2022). Then, the optimaditted PLSR is applied on the airborne image
to derive inversion maps of leaf traits, and the$8Vis calculated by comparing the reference

scenario (#1) with the others (#2 to #6).

3.2.3. Coastal zones

Shallow water bathymetry is estimated in the 400-8t range using the SWIM® software
developed by Hytech-imaging (Lennon et al.,, 201I8)WVIM® includes modules for the
correction of the sun glint at the surface andtlier correction of the air/water interface. Both
SWIM and HYPIP include modules for uncertainty @gation from the sensor to the final
products. Another method is applied to simultanBoastimate bathymetry and bio-optical
parametersind perform shallow watdrottom classification (Lee et al., 1999; Minghelial.,

2020). The aquatic bio-optical parameters are oployll, suspended particulate matter (SPM),
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colored dissolved organic matter (CDOM), depthidmtsediment abundance, zosters, green

and red algae.

A fully constrained least squares (FClL®mixing method is also applied to the airborne RNI

image to estimate the abundance of the severaédesiecies. PLS-DA analysis (Lee et al.,
2018) is then used for VNIR-SWIR field spectra valeate the discrimination performance of
BIODIVERSITY configurations. This method can be bBggto datasets with few observations
and many explanatory variables (spectral refleegres is the case with the spectral library

used in this study.

3.2.4. Urban area

Considering that a GSD of 10 m is not sufficientctassify an urban area, a hyperspectral
pansharpening method called Gain is first appligtlQl). It is inspired by the Brovey
transform applied to the RGB+PAN case (Sarogld.e2@04), but has been generalized to the
HS+PAN case (Loncan et al., 2015). A supervisessdiaation method (random forest) is then
applied to the resulting image. Ten classes aesets®l, each composed of twenty spectra. The
calibration and validation phases follow the k-folgthod: random selection of five groups
with a uniform distribution of each class, thenrfguoups are used for calibration and the last
one for validation. A second urban land cover (UL@2thod is applied. First, a hyperspectral
image is oversampled (bilinear interpolation) toG&D of 2.5 m corresponding to the
panchromatic band. Then, a supervised SVM classidic is performed. Ten classes are
considered. Fifty training samples were selecte@éeh class, to provide a model unbiased by
the unbalanced distribution of classes. This nungeonsidered sufficient to obtain efficient
classification models, while keeping a sufficientmber of validation samples. For each

classification, ten iterations of the classificatfgrocess (involving random selection of training
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samples) are performed. Then, a fusion procedwers applied. The classification results are

evaluated by averaging the F-scores over the dasse

3.2.5. Industrial site

Characterization of PM1 aerosols in an industriaime uses a multi-temporal algorithm
(Foucher et al., 2019). The objective is to detaemihe difference between two images
corrected for illumination and viewing angles, aced in two wind directions to enhance the
PM1 plume signature. The differential model depemdsaerosol properties, such as radius,
single scattering albedo, and concentration. Aetation map (adaptive coherence estimator
ACE) between the temporal differential and theiarpplume signature from different aerosols
types is then calculated. The model assumes aardriayer height of 100 m: for a GSD of 10
m, a mass of 1 g would correspond to a concentrafid 00 pg/m, or a column concentration
of 102 g/n?. Pixel concentration is estimated using a lineamfilism. To validate the estimate,

the error must be below a given threshold (Table 5)

Industrial methane plumes are characterized instages (Nesme et al., 2021). To validate the
estimate, the error must be below a given threstidlle 5): a low threshold associated with
a flow rate of around 30 g/s, a high threshold aessed with a flow rate of around 50 g/s. The
detection map is built from thresholds on the AGHedtor, on the residuals, and on a priori
sensitivity. The amount of excess methane is aagtaativith the transmissiar,, deduced by
inversion of the equation:

Ly = Lng Tgaz (2)
with Ly the sensor radiance corresponding to excess dhe wptical path anfl, ; the sensor

radiance of the same pixel without excess gas, tmttected for atmospheric path radiance.

3.2.6. Cryosphere
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The snow surface is characterized by two propedaEessible from imaging spectroscopy
(Dumont et al., 2017): the specific surface areaXSthe ratio between the surface area of air-
ice and the snow mass and the equivalent blaclonacbncentration (eBC). The extraction

method finds optimal values for the two variablest tminimize the difference between a large

set of measured reflectance data and TARTES simonfat

3.2.7. Atmosphere

The method for quantifying water vapor and carb@xide used the Shannon information
content with the formalism proposed by Rodgers (200 introduces the theory of optimal
estimation, widely described by Herbin et al. (20I3e a priori errors of the G@nd HO
profiles are set at 5% and 10% respectively. Thagance matrix of measurement errors is
deduced from instrument performance and accuraly. ldtter is related to the radiometric
noise expressed by the SNR defined Gytimistic-Target and Realistic-Threshold The
accuracy of non-retrieved parameters is séfte 1K, compatible with the typical values used
by the European Centre for Medium-Range Weathexdasts on each layer of the temperature

profile for assimilation, and to an uncertainty0o5° on the optical path.

The atmospheric aerosol retrieval method uses B®SF algorithm. The inversion procedure
is based on a statistically optimized least squarethod and combines the advantages of a
variety of approaches (Dubovik, 2004). This metlmad already been applied to PRISMA

images (Litvinov et al., 2021).

4. Results

4.1. Geosciences
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Table 7 presents only a representative subseteofdabults focusing on cases with spectral
strategies (#1, #2, #5 and #6) and wigalistic SNR conditions representing medium and
extreme scenarios.

All diagnostic gypsum absorption bands (Table &)@rserved visually. As expected, there is
also an impact of smoothing due to a lower specésblution on the shape of the secondary
2.21 pum absorption for # 2 and # 6. In terms ofngtetive evaluation (Table 7), the SAM
score (respectively SFF) is above 0.75 (resp. Ar6EWIR1 except for (#2, T, R), and 0.90
(resp. 0.73) in SWIR2. Whatever the scenario, ggmmies are obtained with SWIR1 except for
(#2, T, R) where gypsum is not identified despitegner SNR (150:1).

Diagnostic absorption of calcite at ~ 2.34 um ghile for all scenarios but smoothing (#2, #5,
and #6) has an impact on shape and position, lgadipossible confusion with dolomite,
another carbonate, whose absorption is located 283 um. For all scenarios, secondary
absorption at ~ 2.16 um is very low. Whatever ttenario (Table 7), the SAM score is > 0.88
and the SFF score > 0.73.

The kaolinite doublet (Table 2) is visible for #ideslightly visible for #5 and #6 for which the
weaker absorption at ~ 2.16 um is attenuated (Ei§urConfusion with other clay minerals is
possible and the crystallinity of kaolinite canbetcharacterized because the relative strength
of the doublet absorptions is modified. Unfortuhgtthe kaolinite doublet is no longer visible

with #2. According to Table 7, in all scenarios,NsAemains > 0.88 and SFF > 0.76.
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Figure 8. Three kaolinite spectra extracted from the Chevamcémage, from left to right: (#1,T,R), (#5,T,R),
(#2,T,R).
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For gypsum, the diagnostic absorption of alunité.@6 um is visible. The other absorptions
are visible whatever the scenario, except for #2R) and (#5, T, R) for which there is a small
difference in the right-hand side of the absorptibr2.16 um that could hamper identification
when using a feature fitting approach. Howeverlsigores are obtained (SAM > 0.85 and SFF
> 0.77).

Diagnostic absorptions in the VNIR for goethite ameimatite can be identified visually
whatever the scenario; meanwhile residual peakdeglto atmospheric correction can be
corrected. This is confirmed by the fact that SAM detect goethite (score > 0.73) but hematite
detection remains more challenging (score > 0.6d)contrast, SFF cannot detect the
corresponding absorption bands (score < 0.53).

All jarosite absorption bands can be detectedalligin the infrared, regardless of the scenario
tested, leading to SAM scores > 0.79 in the VNIR ar0.91 in the SWIR. High scores > 0.71
are also achieved with SFF except for (#6,T,R). e\mv, whatever the scenario, the jarosite
absorption at ~ 0.45 um is not clearly visible heseait is partially cut off, being located at the
edge of the VNIR; this could be a problem for j@e&entification.

The montmorillonite absorption band is clearly bisifor all scenarios except for (#2,T,R),

where a shape change is detected. SAM and SFFss@ar@igh, > 0.9 and > 0.73, respectively.

Finally, rare-earth elemenfisastnaesite, monazite and xenotime) spectra sleavaiagnostic
absorptions in the VNIR for all scenarios (Figune Mowever, instrument calibration and
atmospheric correction errors induce “peaks” logatethe absorption bands of dioxygen (~
0.76 pm) and water vapor (~ 0.94 and ~ 1.13 umis &kplains the poor SFF scores. On the

contrary, SAM scores are > 0.67, the lowest scemegoobtained for (#6,T,R).
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502 Figure 9. Representative rare-earth elements spectra exdréics the Mountain Pass image. Left: Reference
503 USGS reflectance spectrum. Right: Reflectancedenario (#1,t,R) after atmospheric correction.

504 In general, SAM gives better results than SFF, sttbres close to 0.9 in the SWIR2. This
505 difference can be explained by the fact that SHRApares the shape of spectra that have

506 undergone continuum removal.
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507 Table 7. SAM/SFF scores from Spectral Analyst (SA) tool (s #, t for threshold, T for Target, R for Retit). Note that SA was performed on a subset@SWIR2
508 to avoid the problem caused by £ébsorption peaks. In the SWIR1, gypsum and alstitees are estimated by excluding atmosphericrwatgor absorption at 1.4 pm.

Mineral (#1, T, R) #1,t,R) #2, T,R) #5,T,R) (#6, T,R)
VNIR SWIR 1 SWIR 2 VNIR SWIR1 SWIR 2 SWIR1 SWIR 2 SWIR 1 SWIR 2 VNIR
Gypsum 0.77/0.64 = 0.90/0.77 0.75/0.61 = 0.90/0.84 | 0.00/0.58 @ 0.94/0.92 | 0.96/0.94 0.93/0.88
Calcite 0.91/0.73 0.88/0.82 0.94/0.92 0.94/0.89
Kaolinite 0.91/0.78 0.88/0.76 0.92/0.85 0.92/0.85
Alunite 066/0.49 ' 0.89/0.80 0.43/0.00 | 0.85/0.77 @ 0.00/0.57 @ 0.88/0.84 0.72/0.94 @ 0.90/0.84
Goethite 0.73/0.47 0.77/0.53 0.84/0.10
Hematite 0.68/0.27 0.65/0.18 0.64/0.00
Jarosite 0.80/0.71 0.91/0.70 = 0.79/0.70 0.87/0.71 0.95/0.91 0.93/0.87  0.85/0.01
Montmorillonite 0.90/0.73 0.90/0.79 0.95/0.91 0.94/0.88
Bastnaesite 0.68/0.40 0.67/0.40 0.61/0.03
Monazite 0.75/0.40 0.75/0.43 0.74/0.15
Xenotime 0.69/0.60 0.71/0.70 0.64/0.21
509
510
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Estimated soil moisture content is unaffected leystenarios, with a mean RMSE of 2.6% and

a standard deviation of 0.1%.

4.2. Vegetation

The overall accuracy (OA) performance is summarinethble 8 for tree classification.

Table 8. Overall accuracy performance of tree classifarati

Optimistic Realistic

Target Threshold Target Threshold
#1 0.82 £0.03 0.83 +0.03 0.76 + 0.04 0.76 £ 0.03
#2 0.81 +£0.02 0.81 +0.03 0.74 £0.03 0.74 £ 0.04
#3 0.82+0.03 0.81+0.03 0.75+0.03 0.77 +0.02
#4 0.82 £0.03 0.81 +0.03 0.75 +0.03 0.75+0.03
#5 0.82 £0.03 0.82 +0.03 0.78 £0.03 0.76 £ 0.03
#6 0.83 £0.04 0.84 +0.02 0.77 £0.03 0.79 £ 0.04

The overall accuracy adptimistic simulations (mean OA value 0.82) is better thaat tbf
realistic simulations (mean OA value 0.76), whatever the gimy strategy. Performance

depends only on the SNR (7% loss betwajgtimisticandrealistic), but not on calibration.

For the estimation of leaf functional traits, tbptimistic and realistic scenarios perform
similarly regardless of the trait studied, and ao¢ further discriminated in the following.
Figure 12 shows the Cab, Car, LMA and EWT mapsiobthwith scenario (#1, T, O).
Comparison of leaf trait estimation performances@mpling strategies #2 to #6 versus #1 leads
to an average RMSE of 2.2 pg/cm? for Cab (aversgedard deviation of 0.5 pg/cm?), 0.8
pg/cm? for Car (resp. 0.1 pg/cm?), 0.0008 g/cm2LgtA (resp. 0.0003 g/cm?) and 0.0014
g/cmz2 for EWT (resp. 0.0000 g/cm?). In fact, thensaRMSE values are found for EWT
whatever the scenario. The performancinadsholdcompared withargetdeteriorates slightly,
with an average increase in RMSE of 0.5 pg/cm&aln, 0.1 pg/cmz2 for Car and 0.0004 g/cm?
for LMA. Overall, irrespective of calibration perfnance and SNR level, the quality of leaf

trait estimation with scenarios #2 to #6 is simitathat of scenario #1.
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These results can be compared to absolute RMSEwafB.5 pg/cmz? for Cab under the same
conditions (Miraglio et al., 2020), or to an RMSEB0l ng/cm? for a sparse coniferous forest
(Zarco-Tejada et al., 2019). For Car, Miraglio ket(2020) found an RMSE of 2.24 pg/cm?,
Zarco-Tejada et al. (2013) an RMSE of (idglcm? on crops and Asner et al. (2015) an RMSE
of 0.2 pg/cmz on tropical forests. On tropical &isg Chadwick et Asner (2016) found an RMSE
of 0.0020 g/cm? and Asner et al. (2015) an RMSH.0023 g/cm? for LMA. Buddenbaum et
al. (2015) estimated EWT on European beech seedliity an RMSE of 0.0007 g/Gwithin

a range of 0.001 to 0.008 g/€nhi et al. (2008) retrieved EWT with an RMSE 00032 g/cm?

from optical libraries and simulated data.

4.3. Coastal zones

For bathymetry, since scenarios #1 to #5 have ah@esspectral strategy in the VNIR, only
scenarios #1 and #6 will be compared. Table 9 sumeaththe results for the three images used

to estimate bathymetry.

Table 9. Bathymetry performance obtained on the three images

RMSE (m)
Site Roscoff Porquerolles Island Camargue
Scenario #1-5 #6 #1-5 #6 #1-5 #6
Optimistic, Target 1.0 1.2 1.5 1.2 0.3 0.4
Optimistic, Threshold 1.7 1.8 2.0 1.6 0.4 0.5
Realistic, Target 1.2 1.2 2.2 14 0.3 0.4
Realistic, Threshold 1.8 1.8 2.8 1.7 0.4 0.5

Water depth is estimated at between 0 and 10 noriguerolles Island and between 0 and 2.5

m in Camargue.

For Roscoff, the (*,T,*) scenarios give better fdesthan the (*,t,*) scenarios (decrease of
around 0.7 m). Scenario #6 tends to smooth outethdts, with a noise distribution similar to
that of scenario #1. The impact of calibration lerefore the most critical factor. The

performance of bathymetric products calculated Wigtargetcalibration is consistently better
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than that calculated with théareshold calibration. Using the best configuration (#1,T,%)
bathymetric product performance is close to thktutated with the original HySpex data. The
SNR effect is insignificant, but caveats can be enaldout the impact of noise inherent in the

source data, which could have an impact on théreion present value and noise effects.

For Porquerolles, thargetcalibration gives better results than theesholdcalibration (Figure
14). The difference between derived bathymetrythedn-situ data is small (RMSE < 2.8 m
corresponding to a relative error < 30%). Note, éesv, that retrieval ithresholdcalibration
remains acceptable. Retrieval performance is bieité6 than for #1. For Camargue, theget
calibration provides 20% better bathymetry retrietvean that obtained with th#hreshold
calibrations. The latter is not acceptable: thatret difference between bathymetry retrieval
and in-situ data is ~ 80%. Performance is condigtbetter for sampling strategy #1 than for

sampling strategy #6.

For remote sensing of coastal ecosystems, thevatrof bathymetry using simulated data is
always of interest. A relative error < 30% remasatisfactory and is generally accepted by the
community (Dekker et al., 2011). A relative error20% should ideally be sought to
significantly improve understanding of these ectmys. For the classification of shallow
water bottoms, Tables 10 and 11 give the classibicaesults obtained for Porquerolles Island

and Camargue.

Table 10. RMSE error for bottom abundance fraction retrigadPorquerolles Island.

Scemario  Sand () FoSidonia - Caulerpa taxiflia
(#1,0,T) 29 33 8

(#6,0,T) 28 32 4

(#1,0,1) 30 33 4

(#6,0,1) 29 33 4

(#1L,R,T) 38 46 24
(#6,R,T) 29 34 11

(#1LR 1) 30 35 4

(#6,R 1) 28 32 4
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Table 11. RMSE error for bottom abundance fraction retrigmaCamargue.

Scenario SPM (%) Zoster (%) Green algae (%) Red algae (%)
(#1,0,T) 11. 19. 23. 23.
(#6,0,T) 15. 2. 17. 26.
(#1,0,1) 20. 7. 25. 49.
(#6,0,1) 34. 5. 10. 49.
#1,R,T) 14. 17. 15. 27.
(#6,R,T) 17. 6. 16. 32.
(#1LRt) 2. 11. 18. 49.

(#6,R ) 31. 9. 9. 49.

For Porquerolles, the average RMSE found for reditief bottom abundance fractions varies
according to the background (Figure 14): sand @%)X Posidonia oceanic#32-46%) and
Caulerpa taxifolia(4-24%). The lowest RMSE is obtained on the lattéh an RMSE < 10%
except for (#1,T,R) and (#6,T,R). The best scesare (#6,T,0), (#6,T,0), (#1,t,0), (#6,t,0),
(#1,t,R) and (#6,t,R). For Camargue, the RMSE asrbetween 2% and 49% for all scenarios.
The retrieval of zoster species (between 2% and) 1€4ds to the best results. Overall, the best
scenario for estimating the four variables is (#0)T Inversion performance is globally higher
for Camargue than for Porquerolles Island. As titymetry of Camargue is much lower than
that of Porquerolles Island, the TOA radiance ghbr, which reduces the influence of sensor
noise on retrieval performance. A degradation insee calibration induces a significant
decrease in inversion performance and thus redheesbility to correctly derive bathymetry
in shallow water. Sensitivity to SNR shows thatrategy involving wider spectral bands is
preferred (i.e., Porquerolles Island). The narrpectral band strategy only has an advantage
when SNR is not the limiting factor, typically fehallow water sites such as Camargue.
Estimates of abundance fraction of bottom speciewean to be inconsistent and non-

exploitable (RMSE > 3 m) for bottom depths > 10 m.

For coastal habitat classification, unmixing periance was evaluated on the VNIR
hyperspectral image and compared with the refereR6BSE performance is very similar
across all scenarios (average RMSE 4.65%, averagelasd deviation 3.73%). A slight
improvement is obtained using pansharpened imag28% and 3.40%, respectively). This is
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not surprising given the high spatial heterogeneitthese areas and the need for fine spatial
resolution to improve the accuracy of biologicaingmnent estimates. The best performances
were obtained with (#6,T,0) and (#1,T,0), and tlesivwith (#1,t,R) with or without prior

pansharpening.

Finally, PLS-DA applied to the VNIR-SWIR spectrddrbry on a limited number of scenarios
#1,T,R), #2,T,R), (#5,T,R), (#1,t,R) led to befrerformances than those obtained with VNIR
images (Kappa ranging from 0.76 to 0.92). Among tber scenarios tested, the best
performance is obtained with (#2,T,R), underlinihg importance of SNR in the discriminant

process.

4.4, Urban land cover

Whatever the scenario, performance is very similath the ULC1 method (Figure 15), overall
accuracy performance is between 66 and 67% taithet calibration and ~ 65% = 0.1 with
thresholdcalibration. With the ULC2 method, all scenarios aimilar, with an F-score of ~
54% + 0.1. This classification is based primaritytbe overall spectral shape of the reflectance

and is therefore insensitive to spectral strategies

45. Industrial site

To estimate PM1 aerosols, only the VNIR is usechgequently, only sampling strategies #1
and #6 are considered. First, the detection pedooa of the aerosol plumes present in the
images is evaluated by estimating the percentage®positives and false positives compared
with the airborne image used as a reference (THbleAs performance does not depend on

calibration, only an average value is given.
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Table 12. Detection rate compared with the airborne image.

True positive (%) False positive (%)
#1, Optimistic 56 19
#6, Optimistic 64 23
#1, Realistic 64 21
#6, Realistic 67 23

The detection rate varies from 56% to 67% andalsefdetection rate from 19% to 23%. There
is no trend between these values and changes ingtiement specifications, especially with

the optimization of segmentation parameters. TaBlshows the average sensitivity to aerosol
properties estimated from the differential image#fb and #6. This includes uncertainty due to
instrumental mode, native noise, registration areord radiative transfer model assumptions.
This image was acquired with a high sun zenithaagid a low spatial extent of the plume.
With this particular geometry, the downward sollxfdoes not pass through the plume,

leading to poor soot estimation whatever the gjsate

Table 13. Average sensitivity to PM1 mass concentration ffierderosol model studied.

Concentration (p1g/m?) Concentration (pg/m?)

Scenario Known aerosol type Radius (nm)  Absorptance (%) 11,1 1 own aerosol type
(#LTIO) 73 42 30 140
(#6,T,0) 74 43 40 160
(#1,50) 91 90 5 145
(#6,5,0) 92 57 4 140
(#1,T,R) 82 45 30 280
(#6,TR) 79 53 40 190
(F1,LR) 106 100 50 260
(#6,LR) 98 70 50 170

When the aerosol model is known, the high objeativ80 pg/nd is reached for (*,T,0), and

the acceptable low objective of 150 ud/im reached for all scenarios. However, when the
aerosol model is unknown (uncertainties in radng oot fraction), the increase in uncertainty
depends on the sensitivity of the estimate of a¢n@lius and soot content. Only scenarios

(#1,T,0), (#1,t,0) and (#6,t,0) meet the low ohbjext

Table 14 presents the methane estimates.
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Table 14. Methane abundances (ppm.m) for each scenarice Mheit the reference value obtained from the
airborne image is 510 ppm.m.

Optimistic Realistic
Sampling Target Threshold Target Threshold
#1 900 980 1330 1490
#2 980 1050 1300 1510
#3 900 1120 1310 1420
#4 930 1020 1330 1410
#5 890 1000 1250 1450
#6 800 860 1070 1160

In the case of eealistic SNR and @hresholdvalue for calibration, sampling strategy #3 sdoul
achieve the low objective of 1500 ppm.m. Sampliingtegy #1 is better than #3 in the case of
high SNR Optimistig, but has no advantage in the case of low SMRlIigtic). Sampling
strategy #6 performs better at all SNRs and shprddide results within the high objective of
1000 ppm.m. However, due to the low spectral reéswiyit leads to an increase in false alarms
compared to the other strategies, which induceadsib the flow rate estimation. For sampling

strategies #1 to #5, the high objective is onlyie@add in the case of high SNBptimistig.

4.6. Cryosphere

Table 15 shows the retrieval results for specifidace area (SSA) and equivalent black carbon

(eBC) concentration.

Table 15. Mean bias and standard deviation on retrieved S8AeBC. The SSA reference value i 4
mz2/kg. The black carbon reference value is=18! ng/g.

Optimistic Realistic
Variable (*,T,0) *,t,0) (*,T,R) (*tR)
SSA (m?/kg) 442 7+4 4+3 8+4
eBC (ng/g) 84 £ 56 102 + 64 83 £56 101 + 64

The results show that instrumental noise and sagpitrategy have a negligible effect
compared to calibration errors. SSA retrieval isagally satisfactory, while eBC concentration
retrieval is more challenging. In some cases, digien of the spectral strategy slightly
modifies sensitivity to other errors. Thus, a hggrformance calibration should enable these

two key parameters to be estimated, whereas a &fnance calibration will only give
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access to SSA. The retrieval of SSA and eBC coratgom is not affected by the change in

spectral resolution from 10 to 20 nm in the SWIR.

4.7. Atmosphere

Table 16 summarizes the total uncertainties oHfteand CQ atmospheric columns. As the
variations in performance are not very large, ah&/two extreme cases (*,T,0) and (*,t,R) are

shown.

Table 16. Mean error and standard deviation opDHand CQ estimates calculated for the six sampling
strategies.

H20 (%) CO:2 (%)
Scenario (*T,0) (*tR) (*T,0) (*tR)
45+08 57+1.0 2.3+0.2 25+0.1

For water vapor, whatever the sampling strategy,dibgradation in SNR and image quality
leads to a slight increase in the average unceéytiom 4.5 to 5.7%. Total uncertainty on the
tropospheric C® profile is minimum at around 2.0 with (#1,T,0),r@sponding to an
uncertainty of 8 ppm on the estimated troposph@@e column. It is maximum at around 2.6
with (#2,T,R), corresponding to an uncertainty 8f5lppm on the estimated tropospheric.CO
column. Thus, sampling strategy #1 is the besbapthile #2 is the least favorable. In contrast
to HO, the best SNR is preferable to spectral resolufar a better estimation of the
tropospheric C® column. Finally, in the case of simultaneous testn of both gas

concentrations, the choice of spectral strateglydeipend mainly on the measurement noise.

Figure 10 shows retrieved versus assumed AOT ifotlsard radiance simulations, the former
thus representing the reference (true) value92ndn and 865 nm. Consistently good spectral
retrieval indicates correct aerosol model iderdtiien. The figure shows the AOT correlations
for SNR =200 (spectral bands centered on 419,49 and 546 nm) and SNR = 100 (spectral
bands centered on 669, 770, 865 and 2190 nm) éosdbnario (#1,T,R). A slight degradation

compared to the noise-free case (not presentefl Wwasenoted in the simulations. At the same
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time, the retrieved AOT values and spectral depecelare reasonably good: R is ~ 0.99 and
RMSE from 0.023 to 0.036. These performances amgidered to be of reasonable quality,
since the same simulations, but without noisetde®MSEs of 0.015 and 0.025, demonstrating
that intrinsic GRASP uncertainty explains a larget of the RMSE. With an SNR of 50, the

retrieval convergence algorithm is very poor férchlannels.
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AOT at 492 nm AOT at 865 nm
T T T T

0.9F

T T
Y=1.0‘64X-OA020 ¥=0.971X-0.014

—— R=0.988 RMSE=0.036 ";"), = “fg:” RMSE=0.023 /‘,_'f::‘
0.8k N=456 S 016 Jesen 28 v/
0.7 - 05k i
°
g 0.6 1 =
2 L o4r -+
] - 4 @
o 0.5 =
= g o3l ]
o 0.4+ 1 & X
= Q
0.3 T 02+ .
0.2 -
7 0.1 e
0.1 #/ .
/ 1 1 1 1 7 1 1 1 1 1 1
0.2 0.4 0.6 0.8 0.1 0.2 0.3 0.4 0.5 0.6
AOT Assumed AOT Assumed

o
o

O Total: Avg=-0.02 ; Std=0.01; N=456;
) <0.2: Avg=-0.02 ; 5td=0.01; N=305;
3 >0.2: Avg=-0.03 ; 5td=0.01; N=151;

0.35 1 0 Total: Avg=-0.00 ; Std=0.04; N=456;
) <0.2: Avg=-0.01 ; 5td=0.03; N=155;
0.30 1 3 >0.2: Avg=0.01 ; Std=0.04; N=301;

0.25

°
@

o
K

0.20 1
0.15 4

Probability

Probability

0.10 4

01
0.05

0.00 T T ¥ T T T 1
-0.100 —0.075 -0.050 —=0.025 0.000 0.025 0.050 0.075 0.100

AOT Retrieved — AOT Assumed AOT Retrieved — AOT Assumed

0.0 N
-0.100 -0.075 =-0.050 =-0.025 0.000 0.025 0.050 0.075 0.100

Figure 10. Top: Correlation between retrieved and assumedsakoptical thickness (AOT) in forward radiance
simulations for SNR = 200 (spectral bands centeredl19, 441, 492 and 546 nm) and SNR = 100 (spdxarals
centered on 669, 770, 865 and 2190 nm). AOTs aesepted at 492 nm and 865 nm. R is the correlation
coefficient, RMSE the root mean square error, Nntl@ber of points. Bottom: Histograms of absolutiecences

in AOT (black for all, red for AOT < 0.2 and bluerfAOT > 0.2).

5. Discussion

5.1. End-to-end simulation

These end-to-end simulations were performed witlistec instrument characteristics. All
products simulated in this exercise used the satid¢eeend processing chain, with similar and

realistic instrumentation parameters, which faaiéti comparisons between the different
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applications. This work was based on 24 instruncenfigurations x 27 spectral datasets (22
images + 5 spectral libraries) leading to 648 satiohs with different (spectral strategy,
calibration performance and SNR) combinations. Heresome limitations were identified.
One of the first limitations was that all the instrental defects were not taken into account
such as the straylight, the geometrical errorsl¢@ation, band co-registration, etc.), the across-
track variations of the instrument characterist3 F, ISRF, etc. including the smile effect for
instance), the polarization sensitivity and theedtdr defects (such as remanence, dead pixels,
etc.). Another limitation was the potential overasttion of the performance of the atmospheric
correction. Only the water vapor content and thesas load errors were considered. The
following sources of errors have been neglectetharadioxide abundance, aerosol type and
the environment effects. Some applications may sbetter performance here than the ones
actually achievable on satellite images. HoweMee, comparison between applications and
between different instrumental configurations sdormain relevant. Another limitation of
this approach was to consider that the performahtiee atmospheric correction was constant
whatever the performance of the instrument. Intgrecthe degradation of the instrument will
also degrade the atmospheric correction, and meligfore affect the final products even more.
The quality of the atmosphere correction was closelated to the calibration performance
because the atmospheric water vapor correctionalsesption bands that must be calibrated.
But the calibration of bands affected by the atrhese is more difficult with methods based
on ground acquired data (known as vicarious medhadsl thus dedicated on-board calibration

facilities are required.

5.2. Dependenceto the application methods and their input datasets

The results of this study were obtained with spe@ktimation methods on specific input

datasets. The relative performances observedsrcthntext gave valuable information for the
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satellite design with seven applications covered flrther work will be required to consolidate
the conclusions at an even larger scale. For doaghdtat classification, the SWIR spectral
range improved classification performance when gispectral libraries. This observation
needs to be evaluated at the image level. SMC stanaed with the MARMIT model (Bablet
et al., 2018) but an updated version called MARMI now available (Dupiau et al., 2021)
and could improve our results. Impurities in snoerevnot well estimated, one reason being
related to the choice of the inverse method, saréuvork would focus on developing a new
and more adapted method. The urban area claswificafs performed using the hyperspectral
pansharpening method named GAIN. The presencexadhmixels limited the performance of
the method. Constans et al. (2021) proposed a netivatt handling mixed pixels which will

be evaluated in the future.

5.3. Synthesis of the results

Table 17 summarizes the results. This is followgdliscussions on spectral strategy (85.3.1),

SNR (85.3.2) and calibration performance (85.3.3).
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723 Table 17. Summary of thematic performance by strategy. The color code is as follow: I indicates that performance

724 s achieved, O indicates that performance is around the objective threshold, I indicates that performance is below the
725 objective threshold. When necessary, the objective threshold (A) is indicated in the first row.

Optimistic Realistic
Thematic Target Threshold Target Threshold
Mineralogy 11 minerals I, I, I, I, 56 I, I, I, I, 56 I, I, I, I, 56 I, I, I, I, 56
Soil Moisture Content ASMC/SMC=10% 128456 123456 123456 123456
Tree Species Classification 8 classes I, I, I, I, I,I I, I, I, I, I,I I, I, I, I, I,I I, I, I. I. I.I
Forest EBV
Acab~8pgem’ U2B8456 128456 128456 L2BAGE
ACar~1-2 pgem?  1,2,3,4,56 1,2,3,456 1,2,3,456 1,2,3,45,6
AEWT~0.001 gcm® 1,2,3,4,56 1,2,3,456 1,2,3,45,6 1,2,3,45,6
ALMA~0.002gem® 128456 128456 128456 123456
Bathymetry ADepth<1 m I, I, I, I, I, I I, I, I, I, I,I 1,2,3,4,56 I, I, I, I, I,I
Bottom Classification of Shallow Water 6
classes 128456 123456 123456 WBEBEHEE
Classification of Coastal habitats (without
Fusion) 128456 128456 128456 L2BUBE
Urban Land Cover 10 classes 128456 128456 128456 [L2BASE
Industrial Plant Gas ACH4=1000 ppm.m I, I, I, I, I, I I, I, I, I, I,I i, I, I, I, I, I I, I, I, I, I,I
Industrial Plant Gas ACO2 =150000 ppm.m I, I, I, I, I,I I, I, I, I, I,I i, I, I, I, I,I I, I, I, I, I,I
Industrial Plant Aerosol: aerosol model
known
woronwse FHEEEE EEEEED BEERED BEER
AAOT=150pg/cm?> ©~&2ER
Industrial Plant A I: 1 model not
known AAOT=150ug/enre 128456 128456 HNEEAEE HEBHEE
Cryosphere: ASSA=2 m? kg1 123456 123456 123456 123456
Cryosphere AeBC=18 nb.g! 1,23456 MBE8BHEBE 123456 HEBHEEE
Atmospheric Gas H20, AH20/H20 (10%) 123456 Not tested Not tested 123456
Atmospheric Gas CO2 I, I, I, I, I, I Not tested Not tested I, I, I, I, I, I
Atmospheric Aerosol with revisit or auxiliary I' I' I, I, I' I I, I, I' I' I, I I' I' I, I, I' I I, I, I' I' I, I

(type, abundance)

726 5.3.1. Spectral strategy

727 As Table 5 shows, the different spectral strategiesfairly equivalent over the VNIR and
728 variable over the SWIR. Two types of results cardisénguished, depending on the variable

729 to be extracted.

730 First, when searching for local spectral featurbaracterizing a material, the method's
731 performance is highly dependent on the spectratiesyy. This is the case for mineralogy, where
732 the kaolinite doublet can only be discriminatedhwsampling strategies #1 and #4. Sampling
733 strategies #5 and #6 are acceptable for some nsndrat lead to confusions for others.

734 Sampling strategies #2 and #3 fail to achieve thjeabives set for mineralogy. These results

735 confirm the work of Swayze et al. (2003), who peoeda spectral resolution of 10 nm to
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discriminate clays and more specifically kaoliniBun et al. (2006) estimate that a spectral
sampling interval of 8.2 nm and an SNR > 200 betwke®85 and 2.4 um does not affect the
identification of the 15 minerals tested. Furtherepdkaolinite (resp. dickite) cannot not be
detected if the spectral sampling interval is >4186m (resp. 12.3 nm). On the other hand,
Chabrillat et al. (2002) showed that a spectradltg®on of 17 nm reduces the ability to detect
kaolinite in a mixture, as the Al-OH doublet is na¢ll sampled, but allows the detection of
smectites or illites. Although the spectral resoluiof HyMAP (~17 nm) is almost half that of

AVIRIS (~10 nm), Kruse (2002) showed that both sessan separate calcite from dolomite

and the three varieties of sericite present in iNort Grapevine mountains (NV, USA).

Spectral sampling #2 is not recommended feD knd CQ estimates, but the best spectral
strategy depends strongly on SNR. Spectral sampfinig not recommended for bathymetry
and aerosol plume. For the gas plume, spectral lssgmb fails to detect CHaccurately (<

1500 ppm.m).

Methods based on the use of the global spectralestia not depend on the spectral sampling
strategy. This is the case for SMC, tree speci@sstication, tree functional trait estimation,
bathymetry, shallow water bottom classificationastal habitat classification, urban land
cover, snow and ice characterization, and aeroSbésy depend on either the SNR (bathymetry,
classification in general) and/or instrument -catlmn (bathymetry, classification,
characterization of industrial plant and snow). Ganet al. (2018) evaluated the predictive
performance of clay soil properties as a functibspectral configuration and showed that it
did not depend on spectral sampling, which rangaa 6 to 100 nm. For species identification,
Jianxin Jia et al. (2022) compared the classificaperformance of eleven species with
different bandwidths, which ranged from 9.6 to B58m. They conclude that classification
performance is similar for a bandwidth ranging fréré to 19.2 nm, and if the bandwidth is

widened, leading to a similar SNR, spatial resoluttan be improved. Serbin et Townsend
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(2020) recommended spectral sampling and FWHM airhi@or leaf pigments (Cab, Car), of

20 nm for EWT and LMA. These results are in linéhwour results.

5.3.2. Signal-to-noiseratio

For applications using specific absorption bandsifgpmance depends firstly on SNR
(optimistidrealistic) and secondly on calibration performance. Estisiate slightly degraded
betweeroptimisticandrealistic, but most of the applications tested depend littlaot on the

SNR studied, with the exception of bathymetry ahdllsw water classification due to low

reflectance, carbon dioxide and methane.

For mineralogy, according to Kruse et al. (2008)S&R of at least 100 in the SWIR is required
for mineral detection, so thiealistic SNR is slightly above this limit, while tleptimisticSNR

is higher, as for the PRISMA or EnMap instrumemsyghambari and Zhang, 202Below
this value, applications such as calcite-dolomitelay discrimination, mineral mapping, soll
component discrimination or sediment detectionriigcal (Transon et al., 2018). Thus, such
discrimination will be difficult if not impossibleith the current SNR of the mission. Sun et al.
(2006) estimate that an SNR of at least 200 at 20005 required to map minerals with linear
spectral unmixing. Chabrillat et al. (2002) showttdetection of dark clays or dark Granero

shales requires an SNR > 600 to detect them gartial

5.3.3. Calibration performance

Most of the applications tested depend little aratcall on the calibration scenarios, with the
exception of bathymetry (not filled fahreshold and cryosphere (equivalent black carbon
concentration not estimated witireshold. A slight loss in performance was observed betwee
target and threshold calibrations. Whatever the spectral strategy, &ges with target
calibration performance araptimistic SNR clearly delivered similar performance. Scesari

with threshold calibration performance andptimistic SNR and scenarios witkarget
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calibration performance amédalistic SNR represent a good compromise. With the SNR used
in this study, the impact of instrument calibratimm mineralogy is low. There is no obvious
difference betweetargetandthresholdcases. Spectral calibration and atmospheric diwrec
errors should be taken with care, as they can mgeaks at HD and CQ wavelengths, which
can be problematic for the identification of cemtaninerals, depending on the algorithm

selected.

6. Conclusion

CNES is working on a hyperspectral mission (0.44521m, 10 m GSD, 10 km swath) with a
panchromatic camera (2.5 m GSD). A phase A stugyjust been completed in mid-2022. A
large French scientific community has been involigedptimize the instrument design. Taking
into account the technological constraints of tél$ detector, an analysis of several spectral
sampling strategies was conducted to assessitigéct on end-user applications (mineralogy,

vegetation, coastal area, urban area, industtel@yosphere and atmosphere).

An end-to-end simulator has been developed to gemehe hyperspectral images that the
satellite under design will acquire, taking inte@agnt the main instrumental effects. It will be

improved by including other sources of error whes instrument design matures.

It has also been shown that most of applicationsbearealized with an optimistic SNR level
and target calibration, whatever the sampling sten&Vith optimistic SNR andthreshold
calibration, most applications have been achievath the exception of bathymetry and
cryosphere (eBC). Withealistic SNR and darget calibration, most applications have been
achieved, with the exception of industrial aerosbisally, withrealistic SNR andthreshold
calibration, most applications have been achiewgith the exception of bathymetry, bottom
classification of shallow water, industrial aeroaold cryosphere (eBC). We also found that

some spectral strategies were unable to trackicestzectral features for mineralogy and
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industrial gas estimation. All scenarios tested ensimulated with the same atmospheric
uncertainty on water vapor content and aerosolcapthickness, regardless of instrument

configuration.

Based on these results, CNES is studying the lbespomise for designing the hyperspectral
sensor that will meet the objectives of the pnoapplications. These preliminary conclusions
need to be confirmed by further studies, in paléiciaking into account the dependence
between scenario and atmospheric correction pediocey as well as improvements in
estimation methods. Other applications will be eatdd, such as crop characterization,

pollution monitoring and plastic detection.

Appendix

This appendix completes the results obtained ia work: maps of leaf functional traits,

shallow water bottom classification and urban laader.

Figure 11 is an RGB image of the Tonzi site. Figleshows the Cab, Car, LMA and EWT

maps estimated on QUDO with sampling strategy (#1).T

Tonzi Ranch (T2)
4261500N

4261000N

1335006 134000€ 134300€

Figure 11. Tonzi site (CA, USA)
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827 Figure 12. Leaf functional trait maps obtained with scena#a,T,0). Top left: Cab. Top right: Car. Bottom

828  left: LMA. Bottom right: EWT.

829 Figure 13 is an RGB image of the Porquerolles Bigure 14 shows maps of water parameters

830 (chl, SPM, CDOM), depth and seabed abundance wit{T(O).

831

832 Figure 13. The true color hyperspectral image captured by HYSRr the Porquerolles site.
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Figure 14. Estimation of water parameters (chl, SPM, CDOMptHeand seabed abundance with (#1,T,0) at
Porquerolles site.

Figure 15 is an RGB image of the Toulon area with tlassification map obtained with

#1,T,0).

Figure 15. Left: RGB reference image of Toulon at 2.5 m GSD. Rigtassification map with (#1,T,0).
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