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● Evaluation of the main sources of error, namely the signal-to-noise ratio (SNR), the 46 

radiometric calibration and the spectral sampling strategy, 47 

● Analysis of sensibility to the instrumental configurations for each application. 48 

Journal: ISPRS Open Journal of Photogrammetry and Remote Sensing 49 

● Abstract 50 

CNES is currently carrying out a Phase A study to assess the feasibility of a future hyperspectral 51 

imaging sensor (10 m spatial resolution) combined with a panchromatic camera (2.5 m spatial 52 

resolution). This mission focuses on both high spatial and spectral resolution requirements, as 53 

inherited from previous French studies such as HYPEX, HYPXIM, and BIODIVERSITY. To 54 

meet user requirements, cost, and instrument compactness constraints, CNES asked the French 55 

hyperspectral Mission Advisory Group (MAG), representing a broad French scientific 56 

community, to provide recommendations on spectral sampling, particularly in the Short Wave 57 

InfraRed (SWIR) for various applications.  58 

This paper presents the tests carried out with the aim of defining the optimal spectral sampling 59 

and spectral resolution in the SWIR domain for quantitative estimation of physical variables 60 

and classification purposes. The targeted applications are geosciences (mineralogy, soil 61 

moisture content), forestry (tree species classification, leaf functional traits), coastal and inland 62 

waters (bathymetry, water column, bottom classification in shallow water, coastal habitat 63 

classification), urban areas (land cover), industrial plumes (aerosols, methane and carbon 64 

dioxide), cryosphere (specific surface area, equivalent black carbon concentration), and 65 

atmosphere (water vapor, carbon dioxide and aerosols). All the products simulated in this 66 

exercise used the same CNES end-to-end processing chain, with realistic instrument 67 
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parameters, enabling easy comparison between applications. 648 simulations were carried out 68 

with different spectral strategies, radiometric calibration performances and signal-to-noise 69 

Ratios (SNR): 24 instrument configurations × 25 datasets (22 images + 3 spectral libraries).  70 

The results show that a 16/20 nm spectral sampling in the SWIR domain is sufficient for most 71 

applications. However, 10 nm spectral sampling is recommended for applications based on 72 

specific absorption bands such as mineralogy, industrial plumes or atmospheric gases. In 73 

addition, a slight performance loss is generally observed when radiometric calibration accuracy 74 

decreases, with a few exceptions in bathymetry and in the cryosphere for which the observed 75 

performance is severely degraded. Finally, most applications can be achieved with the lowest 76 

SNR, with the exception of bathymetry, shallow water classification, as well as carbon dioxide 77 

and methane estimation, which require the higher SNR level tested. On the basis of these results, 78 

CNES is currently evaluating the best compromise for designing the future hyperspectral sensor 79 

to meet the objectives of priority applications. 80 

1. Introduction 81 

Imaging spectroscopy (IS) is now recognized as a powerful tool for satellite-based Earth 82 

observation. Several sun-synchronous space missions such as Gaofen 5 (Liu et al., 2019), 83 

PRISMA (Meini et al., 2015) or EnMap (Guanter et al., 2015) are already operational (Qian, 84 

2021). They offer global coverage with a revisit time from 4 to 29 days. All these sensors have 85 

a ground sampling distance (GSD) of 30 m which reduces the range of applications due to the 86 

presence of mixed pixels in heterogeneous scenes (Zhao et al., 2014; Transon et al., 2018). 87 

Spatial resolution is considered the « Achille heel » for the recovery of fine-scale surface 88 

parameters. Other authors have mentioned these limitations for crop disease detection (Dutta et 89 

al., 2006; White et al., 2007), forest functional traits estimation (Miraglio et al., 2022), urban 90 
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area classification (Cavalli et al., 2008; Heldens et al., 2011), clay mineral mapping (Gomez et 91 

al., 2015), characterization of acid mine drainage (Davies and Calvin, 2017), monitoring of 92 

industrial gas plumes (methane, carbon dioxyde), smoke (Nesme et al., 2021; Deschamps et al., 93 

2013), or early detection of coral bleaching (Yamano and Tamura, 2004). Ustin and Middleton 94 

(2021) reported that a 10 m GSD is justified to improve the mapping capabilities of crops, 95 

minerals, snow/ice, water resources, vegetation type and condition. 96 

There is therefore a real need to complement existing IS sensors with a new sensor with better 97 

spatial resolution. A number of IS missions are currently under study, such as SHALOM 98 

(Feingersh et Ben-Dor, 2016) and PRISMA-NG (Ansalone et al., 2021). For many years, 99 

French researchers supported by CNES/DGA have been working on specifications of a new 10 100 

m GSD IS sensor under several names: HYPXIM (Briottet et al., 2011; Carrère et al., 2013), 101 

HYPEX-2 (Briottet et al., 2017) and BIODIVERSITY (Briottet et al., 2022). A phase A, led by 102 

CNES was completed in mid-2022 with the aim of proposing an instrument combining 103 

hyperspectral imaging (10 m GSD, spectral range 0.45–2.40 μm, 10 km swath) with 104 

panchromatic imagery (2.5 m GSD) with a revisit time of 5 days. One of the aims of this study 105 

was to define the optimum signal-to-noise ratio (SNR), radiometric image quality and spectral 106 

sampling for different applications, within the constraint of instrument compactness: 107 

geosciences, forestry, coastal and inland waters, urban areas, industrial plumes, cryosphere, and 108 

atmosphere. All these applications have been selected because they require high spatial 109 

resolution, on the order of 10 m, and correspond to the themes identified by Taramelli et al. 110 

(2020). The aim of this work is therefore to present the results of a cross-analysis of these 111 

scientific fields, which will help consolidate the mission requirements and the payload design. 112 
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After describing the input data in §2, the end-to-end simulator for calculating radiance at the 113 

top of the atmosphere is presented in §3, along with the insertion of specific sensor 114 

characteristics (spectral strategy, SNR, radiometric calibration accuracy), the choice of surface 115 

reflectance and the methods used to extract the relevant parameters for each application. The 116 

results are presented in §4, followed by a discussion in §5 and a conclusion in §6. 117 

2. Materials  118 

Two types of input data were used to cover these seven scientific domains: reflectance spectra 119 

measured in the laboratory or simulated using dedicated models, presented in §2.1, and 120 

hyperspectral images (§2.2). 121 

2.1. Laboratory, field and simulated spectra 122 

The use of laboratory measured spectra concerns applications in mineralogy and soil moisture 123 

content (SMC) estimation (geosciences), while the use of simulated spectra concerns 124 

applications in leaf functional traits estimation (vegetation), spectral surface area (SSA) and 125 

equivalent black carbon (eBC) estimation (cryosphere), and atmospheric aerosol and gas 126 

estimation (atmosphere). 127 

For mineralogy estimation, 38 reflectance spectra of 16 minerals of interest (clays, carbonates, 128 

sulphates, rare earth elements (REE), oxy-hydroxides, etc.) with a wide range of chemical 129 

composition and grain size were selected from the United States Geological Survey (USGS) 130 

Spectral Library (https://crustal.usgs.gov/speclab/). The results presented here are limited to the 131 

11 most typical minerals whose spectral characteristics are given in Table 1.  132 
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Table 1. Diagnostic absorption characteristics of 11 representative minerals. Bastnaesite, monazite, and 133 
xenotime have specific absorption peaks in the visible and near-infrared (VNIR) due to varying proportions of rare 134 
earth elements: only the four main absorption peaks are shown. 135 

Mineral USGS Reference Wavelength positions of diagnostic absorption features 

Gypsum Gypsum_HS333.3B ~1.75 µm; secondary absorption ~2.21 µm 

Calcite Calcite_WS272 ~2.34 µm; secondary absorption ~2.16 µm 

Kaolinite Kaolinite_CM9 Doublet ~2.16 µm and ~2.21 µm 

Alunite HS295-3B ~1.76 µm, ~2.16 µm; secondary absorption ~2.32 µm 

Goethite Goethite_GDS134 ~0.66 µm, ~0.91 µm; secondary absorption ~0.50 µm 

Hematite Hematite_HS45.3 ~0.86 µm; secondary absorption ~0.66 µm 

Jarosite Jarosite_GDS635_Na_Cyprus ~0.43, ~0.92, 2.21 and 2.27 µm 

Montmorillonite Montmorillonite_SAz-1 ~2.22 µm 

Bastnaesite Bastnaesite_REE_WS320 ~ 0.58 ,0.74, 0.80 and 0.86 µm 

Monazite Monazite_REE_GDS947_Calif ~ 0.58, 0.75, 0.80 and 0.87 µm 

Xenotime Xenotime_GDS966_Iveland_REE ~ 0.66, 0.75, 0.81 and 0.91 µm 

For coastal habitat classification, a library of field spectra was acquired using an ASD FieldSpec 136 

4 Hi-Res spectroradiometer, which covers the wavelength range from 350 and 2500 nm with 137 

spectral resolution ranging from 3 nm (VIS-NIR) to 8 nm (SWIR). The spectra recorded over 138 

2151 bands were calibrated using a Spectralon to provide reflectance factor measurements. 139 

Three to five spectra were recorded on each target to account for intra-target variability. These 140 

targets have different benthic characteristics: vegetation types (green, red, brown algae and 141 

microphytobenthos) and substrate types (mud, sand, shells and rocks), Sabellaria alveolata 142 

bioconstructions, oyster reefs, etc. This spectral library will enable us to access the potential of 143 

the SWIR for discriminating intertidal benthic feature, given that we have no images in the 144 

coastal zone in this wavelength range. 145 

For SMC, reflectance spectra of 32 soils measured for different gravimetric water contents 146 

ranging from 5% to 85% were extracted from the Les08 database (Lesaignoux et al., 2013; 147 

Figure 1) used to validate the Multilayer rAdiative tRansfer Model of soIl reflectance 148 

(MARMIT) model (Bablet et al., 2018, Dupiau et al., 2022). 149 
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 150 
Figure 1. Reflectance spectra of two soil samples (81StJulien and 31FaugaX1) extracted from the Les08 151 

database (Lesaignoux et al., 2013). https://pss-gitlab.math.univ-paris-diderot.fr/marmit/marmit  152 

For the estimation of leaf functional traits, a spectral database was generated using the DART 153 

ray-tracing model (Gastellu-Etchegorry et al., 2012) coupled to the PROSPECT leaf radiative 154 

transfer model (Jacquemoud et al., 1996) with the input variables described in Table 2. The 155 

objective is to simulate top of canopy reflectance images similar to those acquired by an 156 

airborne hyperspectral sensor (see Miraglio et al., 2022). 157 

Table 2. Range of variation in biochemical and physical properties of trees. FVC: fractional vegetation cover, 158 
LAD: leaf angle distribution, ALA: average leaf angle, LAI: leaf area index, Cab: chlorophyll content, Car: 159 
carotenoid content, EWT: equivalent water thickness, and N: leaf structure parameter in PROSPECT. 160 

Canopy parameter Value and range 

FVC (%) 30, 50, 70, 90 

LAD (°) Ellipsoidal 

ALA (°) 55-65 

LAI (m²/m²) 1-4 

Cab (µg/cm²) 5 - 70 

Car (µg/cm²) 4 - 20 

EWT (g/cm²) 0.001 – 0.025 

LMA (g/cm²) 0.001 – 0.025 

N 1.5 – 2.1 

To estimate the specific surface area (SSA) and the equivalent black carbon (eBC) 161 

concentration, snow reflectance spectra were simulated with the Two-streAm Radiative 162 

TransfEr in Snow model (TARTES, Libois et al., 2013) with the input parameters detailed in 163 
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Table 3. SSA and eBC values were determined using in situ hyperspectral measurements 164 

(Libois et al., 2013; Picard et al., 2016; Dumont et al., 2017; Tuzet et al., 2019, 2020). 165 

Table 3. Definition of the variation ranges of the inputs for the TARTES simulations. 166 

Variable Range 

Spectral range 350-3000 nm at 1 nm resolution 

Specific surface area (SSA) 3-100 kg m-2 

Sun zenith angle 0-80° by 10° step 

Dust  11 values between 0 and 500 10-6 g g-1 

Equivalent black carbon (eBC) concentration 11 values between 0 and 300 10-9 g g-1 

To estimate the composition of the gaseous atmosphere (water vapor, carbon dioxide), 167 

performance is assessed on the basis of a standard mid-latitude summer atmosphere, with a CO2 168 

concentration of 400 ppm. The observation is at nadir and the solar zenith angle is 20°, while 169 

the ground reflectance corresponds to a bright desert-like surface.  170 

For atmospheric aerosols, synthetic TOA radiances were generated using the Generalized 171 

Retrieval of Aerosol and Surface Properties (GRASP, Dubovik et al. 2021) algorithm for a 172 

fixed geometry corresponding to a scattering angle of 150° and selected nominal wavelengths 173 

in the atmospheric windows (419, 441, 492, 546, 669, 770, 865, 2312 nm). Only a subset of 174 

wavelengths was selected, as the spectral characteristics of aerosols vary little in the solar 175 

domain. A mixture of two aerosol types with different size distributions, chemical compositions 176 

and shapes was used for the simulations: a fine mode for pollution particles and a coarse mode 177 

for desert dust. The influence of gases is negligible in this study, as the spectral bands were 178 

selected outside the main gas absorption peaks. The top of atmosphere reflectance ranged from 179 

0.09 to 0.11 at 419 nm and around 0.01 at 2190 nm, representing different aerosol 180 

concentrations over a dark surface (water). Only one scenario is presented here, corresponding 181 

to a constant SNR of 200 in the 400-550 nm spectral range and 100 in the 600-2400 nm spectral 182 

range. 183 
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2.2. Airborne hyperspectral imaging 184 

Images were acquired by airborne sensors with different spectral resolutions: NEO-HySpex (4-185 

7 nm, https://www.neo.no/), NEO-ODIN (3-6 nm, https://www.neo.no/), AVIRIS-C (10 nm, 186 

https://aviris.jpl.nasa.gov/), and AVIRIS-NG (3.7 nm, https://aviris.jpl.nasa.gov/). They all 187 

cover the 0.4-2.5 µm spectral range. Table 4 lists the images and variables of interest for each 188 

scientific field. 189 

Table 4. IS images used in this study, with �� sun zenith angle applied in subsequent simulations and all the 190 
images are acquired at nadir. 191 

Scientific 

domain 

Acquisition 

date 
Location 

Sensor 

characteristics 
Applications: Variable of interest 

Geosciences 

Sept. 2019 �� = 50.5°  

Cherves-

Richemont, 

France 

HySpex:  

GSDVNIR = 0.5 m 

GSDSWIR = 1 m 

Mineralogy: gypsum, calcite 

Sept. 2019 �� = 50.2°  

Chevanceaux, 

France 

HySpex:  

GSDVNIR = 0.5 m 

GSDSWIR = 1 m 

Mineralogy: kaolinite 

June 2020 �� = 15.8°  

Cuprite, NV, 

USA 

AVIRIS-NG 

GSD = 2.9 m 

Mineralogy: alunite, kaolinite, iron 

oxy-hydroxides 

June 2014 �� = 76.1°  

Mountain Pass, 

CA, USA 

AVIRIS-NG 

GSD = 3.7 m 

Mineralogy: bastnaesite (carbonate-

fluoride mineral, REE) 

Vegetation 

Sept. 2015 �� = 47.3°  

Fabas Forest, 

France  

HySpex:  

GSDVNIR = 4 m 

GSDSWIR = 4 m 

Tree species classification 

(temperate forest, LAI = 3 m²/m²): 20 

species 

June 2014 �� = 17.9°  

Tonzi Ranch, 

CA, USA 

(Figure 11)  

AVIRIS-NG 

GSD = 4 m 

Mediterranean woodland savannah, 

(LAI = 0.8 m²/m²): Cab, Car, LMA 

and EWT 

Coastal waters 

July 2016 �� = 31.3 −32.3°  
Roscoff, France 

HySpex 

GSDVNIR = 0.5 m 
Bathymetry 

Sept. 2017 �� = 42.4°  

Porquerolles 

Island, France 

(Figure 13) 

 

HySpex  

GSDVNIR = 1 m 

Bathymetry,  

Water column estimation: 

phytoplancton, SPM, CDOM 

Bottom classification of shallow 

water. 
July 2019 �� = 22.5°  

Camargue, 

France 

HySpex  

GSDVNIR = 1 m 

June, 2019 �� = 25.5°  

Champeaux, 

France 

HySpex  

GSDVNIR = 0.5 m 

Classification of intertidal coastal 

habitats (10 classes) 

Urban area 
June 2015 �� = 20.5°  

Toulon, France 
NEO-ODIN  

GSD = 0.5 m 
Urban land cover (10 classes) 

Industrial site 
Sept. 2015 �� = 58.2 −60.7°  

Fos-sur-Mer, 

France 

HySpex  

GSD = 1.4 m 
Aerosol plume 
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Oct. 2019 �� = 15.0°  

New Mexico, 

USA 

AVIRIS-C 

GSD = 6.6 m 
Methane leaks 

The Fabas forest is composed of six distinct dominant species, including Quercus sp., Douglas 192 

pine (Pseudotsuga menziesii), Laricio pine (Pinus nigra), maritime pine (Pinus pinaster), 193 

Weymouth pine (Pinus strobus) and black locust (Robinia pseudoacacia). These six species 194 

are included in the classification process, along with two additional classes: other conifer and 195 

deciduous trees. 196 

For urban areas, ten classes were considered: tile, vegetation, shadow, high reflectance, asphalt, 197 

bare soil, pavement, road, stadium and stone. 198 

For shallow water bottom classification, three classes were considered for the Porquerolles site 199 

(sand, Posidonia oceanica and Caulerpa taxifolia), and four classes for Camargue site 200 

(sediments, zosters, green algae and red algae). 201 

3. Method 202 

The processing chain is detailed in Figure 2.  203 

 204 

Figure 2. Overview of the end-to-end simulator. 205 

Each application targets one or several variables of interest. For each, a reference value is 206 

defined and hyperspectral data (spectra or images) are produced. The end-to-end simulator 207 

propagates this data at the top of the atmosphere, just as it would have been acquired by a 208 
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satellite. Various satellite performances can be simulated. Next, a specific method is applied to 209 

retrieve the variable of interest from the satellite data. Finally, the estimated value is compared 210 

with the reference value. The discrepancy between the estimation and the reference indicates if 211 

the satellite performances meet the application requirements or not. The end-to-end simulator 212 

and the processing of each application are detailed below. Figure 3 gives the processing orders 213 

and the main parameters used in our simulations. 214 

 215 
Figure 3. Processing order of the end-to-end simulation chain. *: Not applied on applications based on TOA images 216 
(gas content estimation, pan-sharpening), **: Not applied on spectral libraries. ISRF: instrumental spectral response 217 
function, MTF: Modulation transfer function 218 

The End-to-End simulator and the processing for each application are detailed in the following. 219 

3.1. End-to-end simulator 220 

The aim of the end-to-end simulator (Figure 2) is to simulate the output signal, in spectral 221 

radiance unit, that a sensor can acquire, taking into account its own errors, and then to carry out 222 

the atmospheric correction to retrieve the spectral reflectance of the surface. 223 

All data processing was carried out using an end-to-end simulator developed and operated 224 

by the French Space Agency (CNES), so that results could be compared (Figure 2). This 225 

simulator allows two types of input to be taken into account, depending on the data available 226 

for each application: surface reflectance spectra or airborne images expressed in radiance units. 227 

3.1.1. Input top-of-atmosphere spectral radiance 228 

The COMANCHE code (Poutier et al., 2002), based on MODTRAN 5.3 (Berk et al., 2005), 229 

was used to calculate the top-of-atmosphere (TOA) radiance. We chose the MODTRAN 230 
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standard parameters which were coherent with the case studies, i.e. a mid-latitude summer 231 

atmosphere and a rural aerosol type with a 23 km horizontal visibility. The solar angular 232 

conditions were deduced from the input acquisition conditions ( Table 4). A nadir viewing angle 233 

was applied for all images since they were all acquired at nadir. The resulting TOA spectral 234 

radiance is then processed further to simulate the acquired signals in the hyperspectral and 235 

panchromatic channels. 236 

3.1.2. Output top-of-atmosphere spectral radiance  237 

Several scenarios were explored to quantify the instrumental effects on the final products: 238 

● Two signal-to-noise ratios: optimistic (O) [100-400] @Lref and realistic (R) [50-250] @Lref 239 

(Figure 4), with Lref the reference radiance. Gaussian noise with a zero mean and a standard 240 

deviation � was added to the input radiance. � is equal to: 241 

���� = ����� + ����. ���� 242 

with � a constant noise and � a noise associated to the radiance, both depending on the 243 

spectral width, � the TOA radiance, and � the central wavelength of the spectral band. Lref 244 

is defined for an albedo of 0.3, a sun zenith angle of 60° and nadir viewing, a standard mid-245 

latitude winter atmosphere, and a continental aerosol type with a 23 km horizontal visibility. 246 

● Two absolute and interband calibration performances (Figure 5): threshold (t) [5% absolute, 247 

2% interband] and target (T) [3% absolute, 1% interband]. 248 

● Six instrumental spectral response functions (ISRF) defining different sampling strategies, 249 

labelled from #1 to #6 (Table 5). Note that the spectral configurations differ only in the 250 

SWIR. The ISRF defines how sensible are each spectral channel to every incoming 251 

wavelength. The TOA equivalent radiance acquired in a given spectral band � is computed 252 

by: �� = � ��� !�"�.#�"�.$"� ��� % �"�.$"  where ���� is the TOA radiance computed in Paragraph 3.1.1 and 253 
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&'()*��� the spectral response of band �. &'()*��� is modeled as a Gaussian function with 254 

a central wavelength �+� and a full width at half maximum ),-.�.  Table 5 provides the 255 

spectral step (i.e. the distance between �+% and �+�/0) and the spectral width (),-.) of 256 

each sampling strategy. Note that strategy #5 is a sum of Gaussian functions with a linear 257 

increasing ),-.. Several ISRFs were tested as the matrix detector might have a limited 258 

number of lines to record all the spectral bands. This disadvantage can be overcome by 259 

widening the channels spectral width and thus reducing their number. To take into account 260 

that the central wavelength of each band may not be known precisely, the calculation 261 

includes a constant spectral shift of 1 nm, typical from a spectral calibration error.  262 

Note the instrument parameters used are realistic and that the sensor is technologically feasible. 263 

In summary, a scenario is defined by a spectral strategy (#1 to #6), a calibration performance (t 264 

for threshold or T for target) and a SNR (O for optimistic or R for realistic). Each scenario is 265 

then referred to as the triplet (spectral strategy, calibration, SNR). A star indicates that the 266 

comment applies to all possibilities in the triplet component. The reference scenario is (#1, T, 267 

O), i.e. 10 nm wide spectral channels with the lower calibration errors and the best SNR. 268 
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 269 

 270 
Figure 4. Top: reference spectral radiance, Lref, used to define SNR. Bottom left: optimistic SNR. Bottom 271 

right: realistic SNR. 272 
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 273 

Figure 5. Absolute and interband calibration errors: threshold and target. 274 

Table 5. Spectral sampling strategies. The spectral range from 1850 to 1950 nm is unused. 275 

Sampling 

Strategy 

VNIR (400 – 900 nm) SWIR (900 – 1850 nm / 1950 – 2400 nm) 

Spectral 

step (nm) 

Spectral 

width 

(nm) 

Number of 

channels 
Spectral step (nm) Spectral width (nm) 

Number of 

channels 

#1 10 10 51 10 10 136 

#2 10 10 51 20 20 68 

#3 10 10 51 16 16 85 

#4 10 10 51 
22 for λ 1 1.95 

10 for λ 2 2.05 

22 for λ 1 1.95 

10 for λ 2 2.05 
86 

#5 10 10 51 12 

Linear increase from 14 to 17 

nm over [0.9 – 1.3], [1.3 – 1.8], 

and [1.95 – 2.4], 

112 

#6 8 16 63 10 20 136 

In addition, the instrument introduces some blurring into the image, the magnitude of which 276 

depends on the wavelength and is modelled by the modulation transfer function (MTF). Due to 277 

the push-broom acquisition mode, the MTF is not equivalent along and across the satellite track 278 

(Figure 6). When processing the spectral libraries, the MTF simulation is not activated as only 279 

one pixel is processed. 280 
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When processing the spectral libraries, MTF simulation is not activated as only one pixel is 281 

processed. 282 

 283 

Figure 6. Modulation transfer function (MTF) of five spectral bands of the instrument in the frequency domain. 284 

The instrument also features a panchromatic channel (PAN). Four additional images were 285 

generated with two SNR (realistic or optimistic, Figure 4) and two instrumental calibration 286 

performances (threshold or target). Figure 7 shows the normalized sensitivity of the 287 

panchromatic channel and its point spread function at 639 nm. 288 

  289 
Figure 7. (Left) Normalized sensitivity of the panchromatic channel. (Right) Point spread function at 639 nm. 290 

To summarize the end-to-end processing chain, the input TOA radiance is first affected by the 291 

MTF (reduction of the input spatial resolution), then by the ISRF (reduction of the input spectral 292 
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resolution). At this point, the absolute calibration error as well as the inter-band calibration 293 

error are applied. The last step corresponds to the instrumental noise simulation.  294 

In the end, for each input image, this experimental design produced twenty-four simulated 295 

images representative of various instrumental performances. However, the sensor design does 296 

not yet allow us to take into account other potential defects, such as stray light, geometric errors 297 

(geolocation, band registration, etc.), across-track variations in instrument characteristics 298 

(MTF, ISRF, etc.) including the smile effect, polarization sensitivity, directional effects induced 299 

by slowing down the satellite during acquisition or, and detector defects (remanence, dead 300 

pixels, etc.). 301 

3.1.3. Spectral surface reflectance 302 

The complexity of atmospheric correction algorithms allow them to be adapted to different 303 

situations. In this study, simulated data or images have been corrected for atmospheric effects 304 

with high performance so as not to interfere with the other parameters of interest (i.e., 305 

instrument configuration). However, some typical sources of error are accounted for: 306 

● An error of 5 km in horizontal visibility: the upward transfer is performed with a visibility 307 

of 23 km and the downward transfer with a visibility of 18 km. Aerosol type remains 308 

unchanged. 309 

● A 5% error in the water vapor content: the downward transfer is calculated with 95% of the 310 

water vapor content simulated on the upward transfer. 311 

As the upward transfer is done numerically, the atmospheric correction can be carried out with 312 

the same performance whatever the target. This choice makes it possible to compare images 313 

from one application to another. 314 

3.2. Description of methods by scientific field 315 
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For each scientific field covered by this study, Table 6 provides the variables of interest, the 316 

input format, the method used to estimate these variables, the bibliographic reference detailing 317 

the method and the evaluation criteria.318 
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Table 6. Methods used to retrieve application-related variables. SA: Spectral Analyst, SAM: Spectral Angle Mapper, SD: standard deviation, SFF: Spectral Feature Fitting, 319 
SVM: Support Vector Machine, PLS: Partial Least Square, ACE: Adaptive Coherence Estimator, RMSE: Root-Mean-Square Error, PM: Particle Matter. 320 

Scientific 

domain 
Variable of interest 

Type of IS 

inputs (unit) 
Method and author 

Reference value of the 

variable of interest 
Evaluation criteria 

Geosciences 

Mineral composition 
Image (surface 

reflectance) 

Visual assessment 

SAM (Kruse et al., 1993) 

SFF (Clark et al., 1990) 

Mineralogical maps of 

the site 

Position and shape of absorption features 

Identification if SA >  0.7 and SAM <  0.2 

Identification if  SA > 0.7 and max(RMSE of SFF) > 0.1 

Soil moisture content 
Spectra (surface 

reflectance) 

MARMIT model 

(Bablet et al., 2018) 

Laboratory 

measurements 
RMSE between laboratory input and satellite outputs 

Vegetation 

Tree species 

classification 

Image (surface 

reflectance) 

Supervised classification: SVM with Radial Basis 

function (Gimenez et al., 2022) 
In situ measurements  

Mean, RMSE values of Overall Accuracy, F-score over 

the 24 scenarios and 30 iterations each 

Leaf functional traits 
Image (surface 

reflectance)  

Hybrid method using DART/PROSPECT 

simulations and PLSR (Miraglio et al., 2022) 

Traits maps from a high 

spatial resolution image 
RMSE by comparing ISRF #1 and the others ISRF 

Coastal 

zones 

Bathymetry  
Image (surface 

reflectance) 
HYPIP processing chain (Lennon et al., 2013) Lidar measurements SD and RMSE / bathymetric Lidar 

Bathymetry and bio-

optical aquatic 

parameters 

Image (surface 

reflectance) 

Hybrid method based on the Lee model (Lee et al., 

1999, Minghelli et al., 2020) 

Lidar measurements, in 

situ water 

characterization 

RMSE / in situ data (3�%� = 0556 ∑ |9:; <9%|9%
6�=0  / in situ data 

Classification of 

intertidal coastal area 

Image (surface 

reflectance ) 

With and without IS Pansharpening + Fully 

Constrained Least Square – the endmembers are 

known (Heinz and Chang, 2001) 

Manual in situ 

classification map 
Normalized RMSE on abundance 

Intertidal coastal area 
Spectra (surface 

reflectance) 
PLS and discriminant analysis (Lee et al., 2018) In situ field spectra 

Kappa coefficient 

Overall Accuracy 

Urban area 

Urban Land Cover 1 
Image (TOA 

radiance) 

IS Pansharpening, Random Forest classification 

(Loncan et al., 2015) 
Manual classification Good classification rate / reference image 

Urban Land Cover 2 
Image in TOA 

radiance unit 

Upsampling of the IS image, SVM classification, 

fusion with PAN (Ouerghemmi et al., 2017) 
Manual classification Mean F-Score over the classes 

Industrial 

site 

PM1 Flux of 

industrial aerosol 

plume 

Image (TOA 

radiance) 
Multitemporal algorithm (Foucher et al., 2019) In situ measurements 

Estimated error 

High objective: < 80 µg/m3 

Low objective: < 150 µg/m3 

Methane 

concentration of 

industrial plume 

Image (TOA 

radiance) 

Plume detection with ACE detector, quantification 

of the concentration (Nesme et al., 2021) 
JPL estimation 

Estimated error 

High objective: < 1000 ppm.m 

Low objective: < 1500 ppm.m 
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Cryosphere 

Specific Surface Area, 

equivalent black 

carbon content of 

snow 

Spectra (surface 

reflectance) 
Hybrid method with TARTES (Dumont et al., 2017) Simulations 

Bias, standard deviation of the estimates / reference 

inputs 

Atmosphere 

Water vapor and CO2 
Spectra (TOA 

radiance) 
Optimal estimation theory (Herbin et al., 2013) Simulations RMSE 

Aerosols 
Spectra (TOA 

radiance) 

GRASP and optimized fitting following the multi-

term Least Square Method (Dubovik et al., 2021) 
Simulations RMSE 

321 
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3.2.1. Geosciences 322 

A first assessment of the impact of instrument characteristics was carried out qualitatively on 323 

spectra of representative minerals extracted from the spectral library and image pixels. The 324 

positions and shapes of their absorption features enabled us to visually evaluate the different 325 

scenarios, in particular with regards to the spectral strategy. Next, a quantitative assessment 326 

was carried out using the Spectral Analyst (SA) algorithm in the ENVI software 327 

(https://www.nv5geospatialsoftware.com/). This compares the spectra of representative 328 

minerals with those of a reference spectral library at the same spectral resolution, resampled 329 

according to the spectral characteristics (band positions and full width at half maximum) of the 330 

different strategies. This procedure enabled us to assess the impact of instrument calibration 331 

and SNR. To compare the spectra, we used two well-known spectral matching techniques called 332 

Spectral Angle Mapper (SAM) (Kruse et al., 1993) and Spectral Feature Fitting (SFF) (Clark 333 

et al., 1990). SAM determines the spectral similarity between two spectra by treating them as 334 

two vectors in a space whose dimensionality is equal to the number of bands, and calculating 335 

the angle between these vectors. This technique is insensitive to illumination and albedo effects 336 

when used on calibrated reflectance spectra. SFF is based on the least squares method. The 337 

reference spectra are scaled to match the unknown spectra after the continuum is removed from 338 

both (Clark et al., 1990; Mars and Rowan, 2010). SAM and SFF values are calculated on VNIR 339 

(0.4-1.3 µm), SWIR1 (1.3-2.0 µm) and SWIR2 (2.0-2.5 µm) to avoid as far as possible 340 

problems associated with atmospheric corrections in the two main water vapor absorption bands 341 

around 1.4 and 1.9 µm. This also allows us to focus on spectral ranges where the selected 342 

minerals exhibit diagnostic absorption features, which is recommended with these spectral 343 

matching techniques. The SA result is a ranked or weighted score, with higher scores indicating 344 

greater confidence. 345 
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Soil moisture content is estimated by inversion of the MARMIT model, which represents a 346 

wet soil as a dry soil covered by a thin layer of liquid water of thickness � (Bablet et al., 2018). 347 

The dry soil can be fully or partially covered with water, with a coverage fraction equal to >. 348 

The two input parameters of MARMIT, � and > are estimated by minimizing the cost function: 349 

?@��, >� = B∑ C(DEFG��� − (DH$��, �, >�I@"J"K L"   

with L" the number of wavelengths (or channels), (DEFG the measured soil reflectance, and 350 

(DH$ the soil reflectance estimated by MARMIT. The lower and upper bounds of the model 351 

parameters are 0 and 1 for >, 0 and 0.2 cm for �. A calibration step is required to establish a 352 

statistical relationship between the mean water thickness (mean light path) defined as M = � ×353 

> and the measured SMC. The evaluation of the method consists in retrieving SMC by applying 354 

the relation found in the calibration step and comparing it with the measured values. The RMSE 355 

is calculated on 160 SMC values ranging from 5 to 85%. 356 

3.2.2. Vegetation 357 

A supervised support vector machine (SVM) classification is applied together with a radial 358 

basis function (RBF) kernel to classify tree species on the basis of spectral signatures extracted 359 

from the HySpex image and corresponding to the field inventory. Two subsets are randomly 360 

generated, a training one (70%) and a validation one (30%). The training subset is used to 361 

optimize the RBF-SVM hyper-parameters, C and Gamma. The strategy followed is based on 362 

an exhaustive grid search strategy with 5-fold cross validation aimed at maximizing the overall 363 

accuracy (OA) of the classifier. The space defined by C values ranging from 10−2 to 109 and 364 

Gamma values ranging from 10−7 to 10 is explored. The model is then trained using the 365 

parameters obtained and the training subset. Next, the trained SVM classifier is applied to the 366 

validation subset. The method’s performance is evaluated using the OA and F-score, the user 367 
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and producer accuracy for each class. As the scores can depend on initial conditions, the whole 368 

procedure is repeated 30 times and the mean and RMSE of each accuracy score is calculated. 369 

Thirdly, the tree species map is produced using the same scheme with the spectral signature 370 

dataset for the training and the image for application. Ultimately, the relevance of each of the 371 

twenty-four scenarios is evaluated using this classification scheme, and compared using the 372 

mean and standard deviation of the accuracy scores obtained. 373 

Leaf functional traits are estimated using a hybrid method based on training a PLSR on the 374 

previously described spectral database generated by DART. An automatic determination of the 375 

optimal number of latent variables and a selection of the most important variables in the 376 

projection design are performed for the PLSR parameterization. To optimize trait extraction, 377 

the spectral range is adapted to the influence of each trait: 0.5-0.8 µm for chlorophyll (Cab) and 378 

carotenoids (Car), and 1.5–2.4 µm for leaf mass per area (LMA) and equivalent water thickness 379 

(EWT) (Miraglio et al., 2022). Then, the optimal trained PLSR is applied on the airborne image 380 

to derive inversion maps of leaf traits, and the RMSE is calculated by comparing the reference 381 

scenario (#1) with the others (#2 to #6). 382 

3.2.3. Coastal zones 383 

Shallow water bathymetry is estimated in the 400-900 nm range using the SWIM® software 384 

developed by Hytech-imaging (Lennon et al., 2013). SWIM® includes modules for the 385 

correction of the sun glint at the surface and for the correction of the air/water interface. Both 386 

SWIM and HYPIP include modules for uncertainty propagation from the sensor to the final 387 

products. Another method is applied to simultaneously estimate bathymetry and bio-optical 388 

parameters and perform shallow water bottom classification (Lee et al., 1999; Minghelli et al., 389 

2020). The aquatic bio-optical parameters are chlorophyll, suspended particulate matter (SPM), 390 
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colored dissolved organic matter (CDOM), depth, bottom sediment abundance, zosters, green 391 

and red algae. 392 

A fully constrained least squares (FCLS) unmixing method is also applied to the airborne VNIR 393 

image to estimate the abundance of the several seabed species. PLS-DA analysis (Lee et al., 394 

2018) is then used for VNIR-SWIR field spectra to evaluate the discrimination performance of 395 

BIODIVERSITY configurations. This method can be applied to datasets with few observations 396 

and many explanatory variables (spectral reflectance), as is the case with the spectral library 397 

used in this study. 398 

3.2.4. Urban area 399 

Considering that a GSD of 10 m is not sufficient to classify an urban area, a hyperspectral 400 

pansharpening method called Gain is first applied (ULC1). It is inspired by the Brovey 401 

transform applied to the RGB+PAN case (Saroglu et al., 2004), but has been generalized to the 402 

HS+PAN case (Loncan et al., 2015). A supervised classification method (random forest) is then 403 

applied to the resulting image. Ten classes are selected, each composed of twenty spectra. The 404 

calibration and validation phases follow the k-fold method: random selection of five groups 405 

with a uniform distribution of each class, then four groups are used for calibration and the last 406 

one for validation. A second urban land cover (ULC2) method is applied. First, a hyperspectral 407 

image is oversampled (bilinear interpolation) to a GSD of 2.5 m corresponding to the 408 

panchromatic band. Then, a supervised SVM classification is performed. Ten classes are 409 

considered. Fifty training samples were selected for each class, to provide a model unbiased by 410 

the unbalanced distribution of classes. This number is considered sufficient to obtain efficient 411 

classification models, while keeping a sufficient number of validation samples. For each 412 

classification, ten iterations of the classification process (involving random selection of training 413 
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samples) are performed. Then, a fusion process is then applied. The classification results are 414 

evaluated by averaging the F-scores over the classes. 415 

3.2.5. Industrial site 416 

Characterization of PM1 aerosols in an industrial plume uses a multi-temporal algorithm 417 

(Foucher et al., 2019). The objective is to determine the difference between two images 418 

corrected for illumination and viewing angles, acquired in two wind directions to enhance the 419 

PM1 plume signature. The differential model depends on aerosol properties, such as radius, 420 

single scattering albedo, and concentration. A correlation map (adaptive coherence estimator, 421 

ACE) between the temporal differential and the a priori plume signature from different aerosols 422 

types is then calculated. The model assumes a constant layer height of 100 m: for a GSD of 10 423 

m, a mass of 1 g would correspond to a concentration of 100 µg/m3, or a column concentration 424 

of 10-2 g/m2. Pixel concentration is estimated using a linear formalism. To validate the estimate, 425 

the error must be below a given threshold (Table 5). 426 

Industrial methane plumes are characterized in two stages (Nesme et al., 2021). To validate the 427 

estimate, the error must be below a given threshold (Table 5): a low threshold associated with 428 

a flow rate of around 30 g/s, a high threshold associated with a flow rate of around 50 g/s. The 429 

detection map is built from thresholds on the ACE detector, on the residuals, and on a priori 430 

sensitivity. The amount of excess methane is associated with the transmission OPFQ deduced by 431 

inversion of the equation: 432 

�P∗ = �SP ∗ OPFQ (2) 

with �P∗  the sensor radiance corresponding to excess gas in the optical path and �SP ∗ the sensor 433 

radiance of the same pixel without excess gas, both corrected for atmospheric path radiance. 434 

3.2.6. Cryosphere 435 



27 

The snow surface is characterized by two properties accessible from imaging spectroscopy 436 

(Dumont et al., 2017): the specific surface area (SSA), the ratio between the surface area of air-437 

ice and the snow mass and the equivalent black carbon concentration (eBC). The extraction 438 

method finds optimal values for the two variables that minimize the difference between a large 439 

set of measured reflectance data and TARTES simulations. 440 

3.2.7. Atmosphere 441 

The method for quantifying water vapor and carbon dioxide used the Shannon information 442 

content with the formalism proposed by Rodgers (2000). It introduces the theory of optimal 443 

estimation, widely described by Herbin et al. (2013). The a priori errors of the CO2 and H2O 444 

profiles are set at 5% and 10% respectively. The covariance matrix of measurement errors is 445 

deduced from instrument performance and accuracy. The latter is related to the radiometric 446 

noise expressed by the SNR defined as Optimistic-Target, and Realistic-Threshold. The 447 

accuracy of non-retrieved parameters is set to δT = 1K, compatible with the typical values used 448 

by the European Centre for Medium-Range Weather Forecasts on each layer of the temperature 449 

profile for assimilation, and to an uncertainty of 0.5° on the optical path. 450 

The atmospheric aerosol retrieval method uses the GRASP algorithm. The inversion procedure 451 

is based on a statistically optimized least squares method and combines the advantages of a 452 

variety of approaches (Dubovik, 2004). This method has already been applied to PRISMA 453 

images (Litvinov et al., 2021). 454 

4. Results 455 

4.1. Geosciences 456 
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Table 7 presents only a representative subset of the results focusing on cases with spectral 457 

strategies (#1, #2, #5 and #6) and with realistic SNR conditions representing medium and 458 

extreme scenarios. 459 

All diagnostic gypsum absorption bands (Table 1) are observed visually. As expected, there is 460 

also an impact of smoothing due to a lower spectral resolution on the shape of the secondary 461 

2.21 µm absorption for # 2 and # 6. In terms of quantitative evaluation (Table 7), the SAM 462 

score (respectively SFF) is above 0.75 (resp. 0.61) in SWIR1 except for (#2, T, R), and 0.90 463 

(resp. 0.73) in SWIR2. Whatever the scenario, good scores are obtained with SWIR1 except for 464 

(#2, T, R) where gypsum is not identified despite a higher SNR (150:1). 465 

Diagnostic absorption of calcite at ~ 2.34 µm is visible for all scenarios but smoothing (#2, #5, 466 

and #6) has an impact on shape and position, leading to possible confusion with dolomite, 467 

another carbonate, whose absorption is located at ~ 2.33 µm. For all scenarios, secondary 468 

absorption at ~ 2.16 µm is very low. Whatever the scenario (Table 7), the SAM score is > 0.88 469 

and the SFF score > 0.73.  470 

The kaolinite doublet (Table 2) is visible for #1 and slightly visible for #5 and #6 for which the 471 

weaker absorption at ~ 2.16 µm is attenuated (Figure 8). Confusion with other clay minerals is 472 

possible and the crystallinity of kaolinite cannot be characterized because the relative strength 473 

of the doublet absorptions is modified. Unfortunately, the kaolinite doublet is no longer visible 474 

with #2. According to Table 7, in all scenarios, SAM remains > 0.88 and SFF > 0.76. 475 

  476 
Figure 8. Three kaolinite spectra extracted from the Chevanceaux image, from left to right: (#1,T,R), (#5,T,R), 477 
(#2,T,R). 478 
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For gypsum, the diagnostic absorption of alunite at 1.76 µm is visible. The other absorptions 479 

are visible whatever the scenario, except for (#2, T, R) and (#5, T, R) for which there is a small 480 

difference in the right-hand side of the absorption at ~2.16 µm that could hamper identification 481 

when using a feature fitting approach. However, high scores are obtained (SAM > 0.85 and SFF 482 

> 0.77). 483 

Diagnostic absorptions in the VNIR for goethite and hematite can be identified visually 484 

whatever the scenario; meanwhile residual peaks related to atmospheric correction can be 485 

corrected. This is confirmed by the fact that SAM can detect goethite (score > 0.73) but hematite 486 

detection remains more challenging (score > 0.64). In contrast, SFF cannot detect the 487 

corresponding absorption bands (score <  0.53). 488 

All  jarosite absorption bands can be detected visually in the infrared, regardless of the scenario 489 

tested, leading to SAM scores > 0.79 in the VNIR and > 0.91 in the SWIR. High scores > 0.71 490 

are also achieved with SFF except for (#6,T,R). However, whatever the scenario, the jarosite 491 

absorption at ~ 0.45 µm is not clearly visible because it is partially cut off, being located at the 492 

edge of the VNIR; this could be a problem for jarosite identification. 493 

The montmorillonite absorption band is clearly visible for all scenarios except for (#2,T,R), 494 

where a shape change is detected. SAM and SFF scores are high, > 0.9 and > 0.73, respectively. 495 

Finally, rare-earth elements (bastnaesite, monazite and xenotime) spectra show clear diagnostic 496 

absorptions in the VNIR for all scenarios (Figure 9). However, instrument calibration and 497 

atmospheric correction errors induce “peaks” located in the absorption bands of dioxygen (~ 498 

0.76 µm) and water vapor (~ 0.94 and ~ 1.13 µm). This explains the poor SFF scores. On the 499 

contrary, SAM scores are > 0.67, the lowest score being obtained for (#6,T,R). 500 
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 501 
Figure 9. Representative rare-earth elements spectra extracted from the Mountain Pass image. Left: Reference 502 
USGS reflectance spectrum. Right: Reflectance for scenario (#1,t,R) after atmospheric correction. 503 

In general, SAM gives better results than SFF, with scores close to 0.9 in the SWIR2. This 504 

difference can be explained by the fact that SFF compares the shape of spectra that have 505 

undergone continuum removal.506 
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Table 7. SAM/SFF scores from Spectral Analyst (SA) tool (scenario #, t for threshold, T for Target, R for Realistic). Note that SA was performed on a subset of the SWIR2 507 
to avoid the problem caused by CO2 absorption peaks. In the SWIR1, gypsum and alunite scores are estimated by excluding atmospheric water vapor absorption at 1.4 µm. 508 

Mineral (#1, T, R) (#1, t, R) (#2, T, R) (#5, T, R) (#6, T,R) 

 VNIR SWIR 1 SWIR 2 VNIR SWIR1 SWIR 2 SWIR1 SWIR 2 SWIR 1 SWIR 2 VNIR 

Gypsum  0.77/0.64 0.90/0.77  0.75/0.61 0.90/0.84 0.00/0.58 0.94/0.92 0.96/0.94 0.93/0.88  

Calcite   0.91/0.73   0.88/0.82  0.94/0.92  0.94/0.89  

Kaolinite   0.91/0.78   0.88/0.76  0.92/0.85  0.92/0.85  

Alunite  066/0.49 0.89/0.80  0.43/0.00 0.85/0.77 0.00/0.57 0.88/0.84 0.72/0.94 0.90/0.84  

Goethite 0.73/0.47   0.77/0.53       0.84/0.10 

Hematite 0.68/0.27   0.65/0.18       0.64/0.00 

Jarosite 0.80/0.71  0.91/0.70 0.79/0.70  0.87/0.71  0.95/0.91  0.93/0.87 0.85/0.01 

Montmorillonite   0.90/0.73   0.90/0.79  0.95/0.91  0.94/0.88  

Bastnaesite 0.68/0.40   0.67/0.40       0.61/0.03 

Monazite 0.75/0.40   0.75/0.43       0.74/0.15 

Xenotime 0.69/0.60   0.71/0.70       0.64/0.21 

 509 

 510 



32 

Estimated soil moisture content is unaffected by the scenarios, with a mean RMSE of 2.6% and 511 

a standard deviation of 0.1%. 512 

4.2. Vegetation 513 

The overall accuracy (OA) performance is summarized in Table 8 for tree classification. 514 

Table 8. Overall accuracy performance of tree classification. 515 

 Optimistic Realistic 

 Target Threshold Target Threshold 

#1 0.82 ± 0.03 0.83 ± 0.03 0.76 ± 0.04 0.76 ± 0.03 

#2 0.81 ± 0.02 0.81 ± 0.03 0.74 ± 0.03 0.74 ± 0.04 

#3 0.82 ± 0.03 0.81 ± 0.03 0.75 ± 0.03 0.77 ± 0.02 

#4 0.82 ± 0.03 0.81 ± 0.03 0.75 ± 0.03 0.75 ± 0.03 

#5 0.82 ± 0.03 0.82 ± 0.03 0.78 ± 0.03 0.76 ± 0.03 

#6 0.83 ± 0.04 0.84 ± 0.02 0.77 ± 0.03 0.79 ± 0.04 

The overall accuracy of optimistic simulations (mean OA value 0.82) is better than that of 516 

realistic simulations (mean OA value 0.76), whatever the sampling strategy. Performance 517 

depends only on the SNR (7% loss between optimistic and realistic), but not on calibration. 518 

For the estimation of leaf functional traits, the optimistic and realistic scenarios perform 519 

similarly regardless of the trait studied, and are not further discriminated in the following. 520 

Figure 12 shows the Cab, Car, LMA and EWT maps obtained with scenario (#1, T, O). 521 

Comparison of leaf trait estimation performance for sampling strategies #2 to #6 versus #1 leads 522 

to an average RMSE of 2.2 µg/cm² for Cab (average standard deviation of 0.5 µg/cm²), 0.8 523 

µg/cm² for Car (resp. 0.1 µg/cm²), 0.0008 g/cm² for LMA (resp. 0.0003 g/cm²) and 0.0014 524 

g/cm² for EWT (resp. 0.0000 g/cm²). In fact, the same RMSE values are found for EWT 525 

whatever the scenario. The performance of threshold compared with target deteriorates slightly, 526 

with an average increase in RMSE of 0.5 µg/cm² for Cab, 0.1 µg/cm² for Car and 0.0004 g/cm² 527 

for LMA. Overall, irrespective of calibration performance and SNR level, the quality of leaf 528 

trait estimation with scenarios #2 to #6 is similar to that of scenario #1. 529 
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These results can be compared to absolute RMSE values of 8.5 µg/cm² for Cab under the same 530 

conditions (Miraglio et al., 2020), or to an RMSE of 8.1 μg/cm² for a sparse coniferous forest 531 

(Zarco-Tejada et al., 2019). For Car, Miraglio et al. (2020) found an RMSE of 2.24 µg/cm², 532 

Zarco-Tejada et al. (2013) an RMSE of 0.9 μg/cm² on crops and Asner et al. (2015) an RMSE 533 

of 0.2 µg/cm² on tropical forests. On tropical forests, Chadwick et Asner (2016) found an RMSE 534 

of 0.0020 g/cm² and Asner et al. (2015) an RMSE of 0.0023 g/cm² for LMA. Buddenbaum et 535 

al. (2015) estimated EWT on European beech seedlings with an RMSE of 0.0007 g/cm2, within 536 

a range of 0.001 to 0.008 g/cm2. Li et al. (2008) retrieved EWT with an RMSE of 0.0132 g/cm² 537 

from optical libraries and simulated data.  538 

4.3. Coastal zones 539 

For bathymetry, since scenarios #1 to #5 have the same spectral strategy in the VNIR, only 540 

scenarios #1 and #6 will be compared. Table 9 summarized the results for the three images used 541 

to estimate bathymetry. 542 

Table 9. Bathymetry performance obtained on the three images. 543 

 RMSE (m) 

Site Roscoff Porquerolles Island Camargue 

Scenario #1-5 #6 #1-5 #6 #1-5 #6 

Optimistic, Target 1.0 1.2 1.5 1.2 0.3 0.4 

Optimistic, Threshold 1.7 1.8 2.0 1.6 0.4 0.5 

Realistic, Target 1.2 1.2 2.2 1.4 0.3 0.4 

Realistic, Threshold 1.8 1.8 2.8 1.7 0.4 0.5 

Water depth is estimated at between 0 and 10 m in Porquerolles Island and between 0 and 2.5 544 

m in Camargue.  545 

For Roscoff, the (*,T,*) scenarios give better results than the (*,t,*) scenarios (decrease of 546 

around 0.7 m). Scenario #6 tends to smooth out the results, with a noise distribution similar to 547 

that of scenario #1. The impact of calibration is therefore the most critical factor. The 548 

performance of bathymetric products calculated with the target calibration is consistently better 549 
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than that calculated with the threshold calibration. Using the best configuration (#1,T,*), 550 

bathymetric product performance is close to that calculated with the original HySpex data. The 551 

SNR effect is insignificant, but caveats can be made about the impact of noise inherent in the 552 

source data, which could have an impact on the calibration present value and noise effects. 553 

For Porquerolles, the target calibration gives better results than the threshold calibration (Figure 554 

14). The difference between derived bathymetry and the in-situ data is small (RMSE < 2.8 m 555 

corresponding to a relative error < 30%). Note, however, that retrieval in threshold calibration 556 

remains acceptable. Retrieval performance is better for #6 than for #1. For Camargue, the target 557 

calibration provides 20% better bathymetry retrieval than that obtained with the threshold 558 

calibrations. The latter is not acceptable: the relative difference between bathymetry retrieval 559 

and in-situ data is ~ 80%. Performance is consistently better for sampling strategy #1 than for 560 

sampling strategy #6. 561 

For remote sensing of coastal ecosystems, the retrieval of bathymetry using simulated data is 562 

always of interest. A relative error < 30% remains satisfactory and is generally accepted by the 563 

community (Dekker et al., 2011). A relative error < 20% should ideally be sought to 564 

significantly improve understanding of these ecosystems. For the classification of shallow 565 

water bottoms, Tables 10 and 11 give the classification results obtained for Porquerolles Island 566 

and Camargue. 567 

Table 10. RMSE error for bottom abundance fraction retrieval in Porquerolles Island. 568 

Scenario Sand (%) 
Posidonia 

oceanica (%) 

Caulerpa taxifolia 

(%) 

(#1,O,T) 29 33 8 

(#6,O,T) 28 32 4 

(#1,O,t) 30 33 4 

(#6,O,t) 29 33 4 

(#1,R,T) 38 46 24 

(#6,R,T) 29 34 11 

(#1,R,t) 30 35 4 

(#6,R,t) 28 32 4 
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Table 11. RMSE error for bottom abundance fraction retrieval in Camargue. 569 

Scenario SPM (%) Zoster (%) Green algae (%) Red algae (%) 

(#1,O,T) 11. 19. 23. 23. 

(#6,O,T) 15. 2. 17. 26. 

(#1,O,t) 20. 7. 25. 49. 

(#6,O,t) 34. 5. 10. 49. 

(#1,R,T) 14. 17. 15. 27. 

(#6,R,T) 17. 6. 16. 32. 

(#1,R,t) 2. 11. 18. 49. 

(#6,R,t) 31. 9. 9. 49. 

For Porquerolles, the average RMSE found for retrieval of bottom abundance fractions varies 570 

according to the background (Figure 14): sand (30-28%), Posidonia oceanica (32-46%) and 571 

Caulerpa taxifolia (4-24%). The lowest RMSE is obtained on the latter with an RMSE < 10% 572 

except for (#1,T,R) and (#6,T,R). The best scenarios are (#6,T,O), (#6,T,O), (#1,t,O), (#6,t,O), 573 

(#1,t,R) and (#6,t,R). For Camargue, the RMSE error is between 2% and 49% for all scenarios. 574 

The retrieval of zoster species (between 2% and 19%) leads to the best results. Overall, the best 575 

scenario for estimating the four variables is (#6,T,O). Inversion performance is globally higher 576 

for Camargue than for Porquerolles Island. As the bathymetry of Camargue is much lower than 577 

that of Porquerolles Island, the TOA radiance is higher, which reduces the influence of sensor 578 

noise on retrieval performance. A degradation in sensor calibration induces a significant 579 

decrease in inversion performance and thus reduces the ability to correctly derive bathymetry 580 

in shallow water. Sensitivity to SNR shows that a strategy involving wider spectral bands is 581 

preferred (i.e., Porquerolles Island). The narrow spectral band strategy only has an advantage 582 

when SNR is not the limiting factor, typically for shallow water sites such as Camargue. 583 

Estimates of abundance fraction of bottom species proved to be inconsistent and non-584 

exploitable (RMSE > 3 m) for bottom depths > 10 m. 585 

For coastal habitat classification, unmixing performance was evaluated on the VNIR 586 

hyperspectral image and compared with the reference. RMSE performance is very similar 587 

across all scenarios (average RMSE 4.65%, average standard deviation 3.73%). A slight 588 

improvement is obtained using pansharpened images (4.26% and 3.40%, respectively). This is 589 
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not surprising given the high spatial heterogeneity of these areas and the need for fine spatial 590 

resolution to improve the accuracy of biological component estimates. The best performances 591 

were obtained with (#6,T,O) and (#1,T,O), and the worst with (#1,t,R) with or without prior 592 

pansharpening. 593 

Finally, PLS-DA applied to the VNIR-SWIR spectral library on a limited number of scenarios 594 

(#1,T,R), (#2,T,R), (#5,T,R), (#1,t,R) led to better performances than those obtained with VNIR 595 

images (Kappa ranging from 0.76 to 0.92). Among the four scenarios tested, the best 596 

performance is obtained with (#2,T,R), underlining the importance of SNR in the discriminant 597 

process. 598 

4.4. Urban land cover 599 

Whatever the scenario, performance is very similar. With the ULC1 method (Figure 15), overall 600 

accuracy performance is between 66 and 67% with target calibration and ~ 65% ± 0.1 with 601 

threshold calibration. With the ULC2 method, all scenarios are similar, with an F-score of ~ 602 

54% ± 0.1. This classification is based primarily on the overall spectral shape of the reflectance 603 

and is therefore insensitive to spectral strategies. 604 

4.5. Industrial site 605 

To estimate PM1 aerosols, only the VNIR is used. Consequently, only sampling strategies #1 606 

and #6 are considered. First, the detection performance of the aerosol plumes present in the 607 

images is evaluated by estimating the percentage of true positives and false positives compared 608 

with the airborne image used as a reference (Table 12). As performance does not depend on 609 

calibration, only an average value is given. 610 
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Table 12. Detection rate compared with the airborne image. 611 

 True positive (%) False positive (%) 

#1, Optimistic 56 19 

#6, Optimistic 64 23 

#1, Realistic 64 21 

#6, Realistic 67 23 

The detection rate varies from 56% to 67% and the false detection rate from 19% to 23%. There 612 

is no trend between these values and changes in the instrument specifications, especially with 613 

the optimization of segmentation parameters. Table 13 shows the average sensitivity to aerosol 614 

properties estimated from the differential image for #1 and #6. This includes uncertainty due to 615 

instrumental mode, native noise, registration errors and radiative transfer model assumptions. 616 

This image was acquired with a high sun zenith angle and a low spatial extent of the plume. 617 

With this particular geometry, the downward solar flux does not pass through the plume, 618 

leading to poor soot estimation whatever the strategy. 619 

Table 13. Average sensitivity to PM1 mass concentration for the aerosol model studied. 620 

Scenario 
Concentration (µg/m3) 

Known aerosol type  
Radius (nm) Absorptance (%) 

Concentration (µg/m3) 

Unknown aerosol type  

(#1,T,O) 73 42 30 140 

(#6,T,O) 74 43 40 160 

(#1,t,O) 91 90 5 145 

(#6,t,O) 92 57 4 140 

(#1,T,R) 82 45 30 280 

(#6,T,R) 79 53 40 190 

(#1,t,R) 106 100 50 260 

(#6,t,R) 98 70 50 170 

When the aerosol model is known, the high objective of 80 µg/m3 is reached for (*,T,O), and 621 

the acceptable low objective of 150 µg/m3 is reached for all scenarios. However, when the 622 

aerosol model is unknown (uncertainties in radius and soot fraction), the increase in uncertainty 623 

depends on the sensitivity of the estimate of aerosol radius and soot content. Only scenarios 624 

(#1,T,O), (#1,t,O) and (#6,t,O) meet the low objective.  625 

Table 14 presents the methane estimates. 626 
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Table 14. Methane abundances (ppm.m) for each scenario. Note that the reference value obtained from the 627 
airborne image is 510 ppm.m. 628 

 Optimistic Realistic 

Sampling Target Threshold Target Threshold 

#1 900 980 1330 1490 

#2 980 1050 1300 1510 

#3 900 1120 1310 1420 

#4 930 1020 1330 1410 

#5 890 1000 1250 1450 

#6 800 860 1070 1160 

In the case of a realistic SNR and a threshold value for calibration, sampling strategy  #3 should 629 

achieve the low objective of 1500 ppm.m. Sampling strategy #1 is better than #3 in the case of 630 

high SNR (optimistic), but has no advantage in the case of low SNR (realistic). Sampling 631 

strategy #6 performs better at all SNRs and should provide results within the high objective of 632 

1000 ppm.m. However, due to the low spectral resolution, it leads to an increase in false alarms 633 

compared to the other strategies, which induced a bias in the flow rate estimation. For sampling 634 

strategies #1 to #5, the high objective is only achieved in the case of high SNR (optimistic). 635 

4.6. Cryosphere 636 

Table 15 shows the retrieval results for specific surface area (SSA) and equivalent black carbon 637 

(eBC) concentration. 638 

Table 15. Mean bias and standard deviation on retrieved SSA and eBC. The SSA reference value is 2 ± 1 639 
m²/kg. The black carbon reference value is 18 ± 14 ng/g. 640 

 Optimistic Realistic 

Variable (*,T,O) (*,t,O) (*,T,R) (*,t,R) 

SSA (m²/kg) 4 ± 2 7 ± 4 4 ± 3 8 ± 4 

eBC ( ng/g) 84 ± 56 102 ± 64 83 ± 56 101 ± 64 

The results show that instrumental noise and sampling strategy have a negligible effect 641 

compared to calibration errors. SSA retrieval is generally satisfactory, while eBC concentration 642 

retrieval is more challenging. In some cases, degradation of the spectral strategy slightly 643 

modifies sensitivity to other errors. Thus, a high-performance calibration should enable these 644 

two key parameters to be estimated, whereas a low-performance calibration will only give 645 
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access to SSA. The retrieval of SSA and eBC concentration is not affected by the change in 646 

spectral resolution from 10 to 20 nm in the SWIR. 647 

4.7. Atmosphere 648 

Table 16 summarizes the total uncertainties of the H20 and CO2 atmospheric columns. As the 649 

variations in performance are not very large, only the two extreme cases (*,T,O) and (*,t,R) are 650 

shown. 651 

Table 16. Mean error and standard deviation on H20 and CO2 estimates calculated for the six sampling 652 
strategies. 653 

 H20 (%) CO2 (%) 

Scenario (*,T,O) (*,t,R) (*,T,O) (*,t,R) 

 4.5 ± 0.8 5.7 ± 1.0 2.3 ± 0.2 2.5 ± 0.1 

For water vapor, whatever the sampling strategy, the degradation in SNR and image quality 654 

leads to a slight increase in the average uncertainty from 4.5 to 5.7%. Total uncertainty on the 655 

tropospheric CO2 profile is minimum at around 2.0 with (#1,T,0), corresponding to an 656 

uncertainty of 8 ppm on the estimated tropospheric CO2 column. It is maximum at around 2.6 657 

with (#2,T,R), corresponding to an uncertainty of 10.5 ppm on the estimated tropospheric CO2 658 

column. Thus, sampling strategy #1 is the best option, while #2 is the least favorable. In contrast 659 

to H2O, the best SNR is preferable to spectral resolution for a better estimation of the 660 

tropospheric CO2 column. Finally, in the case of simultaneous restitution of both gas 661 

concentrations, the choice of spectral strategy will depend mainly on the measurement noise. 662 

Figure 10 shows retrieved versus assumed AOT in the forward radiance simulations, the former 663 

thus representing the reference (true) values, at 492 nm and 865 nm. Consistently good spectral 664 

retrieval indicates correct aerosol model identification. The figure shows the AOT correlations 665 

for SNR =200 (spectral bands centered on 419, 441, 492 and 546 nm) and SNR = 100 (spectral 666 

bands centered on 669, 770, 865 and 2190 nm) for the scenario (#1,T,R). A slight degradation 667 

compared to the noise-free case (not presented here) was noted in the simulations. At the same 668 
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time, the retrieved AOT values and spectral dependence are reasonably good: R is ~ 0.99 and 669 

RMSE from 0.023 to 0.036. These performances are considered to be of reasonable quality, 670 

since the same simulations, but without noise, led to RMSEs of 0.015 and 0.025, demonstrating 671 

that intrinsic GRASP uncertainty explains a large part of the RMSE. With an SNR of 50, the 672 

retrieval convergence algorithm is very poor for all channels.  673 

 674 

Figure 10. Top: Correlation between retrieved and assumed aerosol optical thickness (AOT) in forward radiance 675 
simulations for SNR = 200 (spectral bands centered on 419, 441, 492 and 546 nm) and SNR = 100 (spectral bands 676 
centered on 669, 770, 865 and 2190 nm). AOTs are presented at 492 nm and 865 nm. R is the correlation 677 
coefficient, RMSE the root mean square error, N the number of points. Bottom: Histograms of absolute differences 678 
in AOT (black for all, red for AOT < 0.2 and blue for AOT > 0.2). 679 

5. Discussion 680 

5.1. End-to-end simulation 681 

These end-to-end simulations were performed with realistic instrument characteristics. All 682 

products simulated in this exercise used the same end-to-end processing chain, with similar and 683 

realistic instrumentation parameters, which facilitated comparisons between the different 684 
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applications. This work was based on 24 instrument configurations × 27 spectral datasets (22 685 

images + 5 spectral libraries) leading to 648 simulations with different (spectral strategy, 686 

calibration performance and SNR) combinations. However, some limitations were identified. 687 

One of the first limitations was that all the instrumental defects were not taken into account 688 

such as the straylight, the geometrical errors (geolocation, band co-registration, etc.), the across-689 

track variations of the instrument characteristics (MTF, ISRF, etc. including the smile effect for 690 

instance), the polarization sensitivity and the detector defects (such as remanence, dead pixels, 691 

etc.). Another limitation was the potential overestimation of the performance of the atmospheric 692 

correction. Only the water vapor content and the aerosols load errors were considered. The 693 

following sources of errors have been neglected: carbon dioxide abundance, aerosol type and 694 

the environment effects. Some applications may show better performance here than the ones 695 

actually achievable on satellite images. However, the comparison between applications and 696 

between different instrumental configurations should remain relevant. Another limitation of 697 

this approach was to consider that the performance of the atmospheric correction was constant 698 

whatever the performance of the instrument. In practice, the degradation of the instrument will 699 

also degrade the atmospheric correction, and will therefore affect the final products even more. 700 

The quality of the atmosphere correction was closely related to the calibration performance 701 

because the atmospheric water vapor correction uses absorption bands that must be calibrated. 702 

But the calibration of bands affected by the atmosphere is more difficult with methods based 703 

on ground acquired data (known as vicarious methods), and thus dedicated on-board calibration 704 

facilities are required. 705 

5.2. Dependence to the application methods and their input datasets 706 

The results of this study were obtained with specific estimation methods on specific input 707 

datasets. The relative performances observed in this context gave valuable information for the 708 
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satellite design with seven applications covered; but further work will be required to consolidate 709 

the conclusions at an even larger scale. For coastal habitat classification, the SWIR spectral 710 

range improved classification performance when using spectral libraries. This observation 711 

needs to be evaluated at the image level. SMC was estimated with the MARMIT model (Bablet 712 

et al., 2018) but an updated version called MARMIT-2 is now available (Dupiau et al., 2021) 713 

and could improve our results. Impurities in snow were not well estimated, one reason being 714 

related to the choice of the inverse method, so future work would focus on developing a new 715 

and more adapted method. The urban area classification was performed using the hyperspectral 716 

pansharpening method named GAIN. The presence of mixed pixels limited the performance of 717 

the method. Constans et al. (2021) proposed a new method handling mixed pixels which will 718 

be evaluated in the future. 719 

5.3. Synthesis of the results 720 

Table 17 summarizes the results. This is followed by discussions on spectral strategy (§5.3.1), 721 

SNR (§5.3.2) and calibration performance (§5.3.3). 722 
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Table 17. Summary of thematic performance by strategy. The color code is as follow: □ indicates that performance 723 
is achieved, □ indicates that performance is around the objective threshold, □ indicates that performance is below the 724 
objective threshold. When necessary, the objective threshold (Δ) is indicated in the first row. 725 

 
Optimistic 

 

Realistic 

 

Thematic Target Threshold Target Threshold 

Mineralogy 11 minerals 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 
Soil Moisture Content ΔSMC/SMC=10% 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 
Tree Species Classification 8 classes 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 
Forest EBV 

ΔCab~8 µg.cm²
ΔCar~1-2 µg.cm²

ΔEWT~0.001 g.cm²
ΔLMA~0.002 g.cm²

 
1, 2, 3, 4, 5, 6
1, 2, 3, 4, 5, 6
1, 2, 3, 4, 5, 6
1, 2, 3, 4, 5, 6

 
1, 2, 3, 4, 5, 6
1, 2, 3, 4, 5, 6
1, 2, 3, 4, 5, 6
1, 2, 3, 4, 5, 6

 
1, 2, 3, 4, 5, 6 
1, 2, 3, 4, 5, 6 
1, 2, 3, 4, 5, 6 
1, 2, 3, 4, 5, 6 

 
1, 2, 3, 4, 5, 6 
1, 2, 3, 4, 5, 6 
1, 2, 3, 4, 5, 6 
1, 2, 3, 4, 5, 6 

Bathymetry ΔDepth<1 m 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 
Bottom Classification of Shallow Water 6 

classes 
1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 

Classification of Coastal habitats (without 
Fusion) 

1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 

Urban Land Cover 10 classes 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 
Industrial Plant Gas ΔCH4 =1000 ppm.m 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 
Industrial Plant Gas ΔCO2 =150000 ppm.m 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 
Industrial Plant Aerosol: aerosol model 

known 
ΔAOT=80µg/cm²
ΔAOT=150µg/cm²

 
1, 2, 3, 4, 5, 6
1, 2, 3, 4, 5, 6

 
1, 2, 3, 4, 5, 6
1, 2, 3, 4, 5, 6

 
1, 2, 3, 4, 5, 6 
1, 2, 3, 4, 5, 6 

 
1, 2, 3, 4, 5, 6 
1, 2, 3, 4, 5, 6 

Industrial Plant Aerosol: aerosol model not 
known  ΔAOT=150µg/cm² 

1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 

Cryosphere: ΔSSA=2 m².kg-1 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 
Cryosphere ΔeBC=18 nb.g-1 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 
Atmospheric Gas H2O, ΔH2O/H2O (10%) 1, 2, 3, 4, 5, 6 Not tested Not tested 1, 2, 3, 4, 5, 6 
Atmospheric Gas CO2 1, 2, 3, 4, 5, 6 Not tested Not tested 1, 2, 3, 4, 5, 6 
Atmospheric Aerosol with revisit or auxiliary 

(type, abundance) 
1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 

5.3.1. Spectral strategy 726 

As Table 5 shows, the different spectral strategies are fairly equivalent over the VNIR and 727 

variable over the SWIR. Two types of results can be distinguished, depending on the variable 728 

to be extracted.  729 

First, when searching for local spectral features characterizing a material, the method's 730 

performance is highly dependent on the spectral strategy. This is the case for mineralogy, where 731 

the kaolinite doublet can only be discriminated with sampling strategies #1 and #4. Sampling 732 

strategies #5 and #6 are acceptable for some minerals, but lead to confusions for others. 733 

Sampling strategies #2 and #3 fail to achieve the objectives set for mineralogy. These results 734 

confirm the work of Swayze et al. (2003), who predict a spectral resolution of 10 nm to 735 
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discriminate clays and more specifically kaolinite. Sun et al. (2006) estimate that a spectral 736 

sampling interval of 8.2 nm and an SNR > 200 between 1.95 and 2.4 µm does not affect the 737 

identification of the 15 minerals tested. Furthermore, kaolinite (resp. dickite) cannot not be 738 

detected if the spectral sampling interval is > 16.4 nm (resp. 12.3 nm). On the other hand, 739 

Chabrillat et al. (2002) showed that a spectral resolution of 17 nm reduces the ability to detect 740 

kaolinite in a mixture, as the Al-OH doublet is not well sampled, but allows the detection of 741 

smectites or illites. Although the spectral resolution of HyMAP (~17 nm) is almost half that of 742 

AVIRIS (~10 nm), Kruse (2002) showed that both sensors can separate calcite from dolomite 743 

and the three varieties of sericite present in Northern Grapevine mountains (NV, USA). 744 

Spectral sampling #2 is not recommended for H2O and CO2 estimates, but the best spectral 745 

strategy depends strongly on SNR. Spectral sampling #6 is not recommended for bathymetry 746 

and aerosol plume. For the gas plume, spectral sampling #5 fails to detect CH4 accurately (< 747 

1500 ppm.m). 748 

Methods based on the use of the global spectral shape do not depend on the spectral sampling 749 

strategy. This is the case for SMC, tree species classification, tree functional trait estimation, 750 

bathymetry, shallow water bottom classification, coastal habitat classification, urban land 751 

cover, snow and ice characterization, and aerosols. They depend on either the SNR (bathymetry, 752 

classification in general) and/or instrument calibration (bathymetry, classification, 753 

characterization of industrial plant and snow). Gomez et al. (2018) evaluated the predictive 754 

performance of clay soil properties as a function of spectral configuration and showed that it 755 

did not depend on spectral sampling, which ranged from 5 to 100 nm. For species identification, 756 

Jianxin Jia et al. (2022) compared the classification performance of eleven species with 757 

different bandwidths, which ranged from 9.6 to 153.6 nm. They conclude that classification 758 

performance is similar for a bandwidth ranging from 9.6 to 19.2 nm, and if the bandwidth is 759 

widened, leading to a similar SNR, spatial resolution can be improved. Serbin et Townsend 760 
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(2020) recommended spectral sampling and FWHM of 10 nm for leaf pigments (Cab, Car), of 761 

20 nm for EWT and LMA. These results are in line with our results.  762 

5.3.2. Signal-to-noise ratio 763 

For applications using specific absorption bands, performance depends firstly on SNR 764 

(optimistic/realistic) and secondly on calibration performance. Estimates are slightly degraded 765 

between optimistic and realistic, but most of the applications tested depend little or not on the 766 

SNR studied, with the exception of bathymetry and shallow water classification due to low 767 

reflectance, carbon dioxide and methane. 768 

For mineralogy, according to Kruse et al. (2002), an SNR of at least 100 in the SWIR is required 769 

for mineral detection, so the realistic SNR is slightly above this limit, while the optimistic SNR 770 

is higher, as for the PRISMA or EnMap instruments (Peyghambari and Zhang, 2021). Below 771 

this value, applications such as calcite-dolomite or clay discrimination, mineral mapping, soil 772 

component discrimination or sediment detection is critical (Transon et al., 2018). Thus, such 773 

discrimination will be difficult if not impossible with the current SNR of the mission. Sun et al. 774 

(2006) estimate that an SNR of at least 200 at 2100 nm is required to map minerals with linear 775 

spectral unmixing. Chabrillat et al. (2002) show that detection of dark clays or dark Granero 776 

shales requires an SNR > 600 to detect them partially. 777 

5.3.3. Calibration performance 778 

Most of the applications tested depend little or not at all on the calibration scenarios, with the 779 

exception of bathymetry (not filled for threshold) and cryosphere (equivalent black carbon 780 

concentration not estimated with threshold). A slight loss in performance was observed between 781 

target and threshold calibrations. Whatever the spectral strategy, scenarios with target 782 

calibration performance and optimistic SNR clearly delivered similar performance. Scenarios 783 

with threshold calibration performance and optimistic SNR and scenarios with target 784 
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calibration performance and realistic SNR represent a good compromise. With the SNR used 785 

in this study, the impact of instrument calibration on mineralogy is low. There is no obvious 786 

difference between target and threshold cases. Spectral calibration and atmospheric correction 787 

errors should be taken with care, as they can induce peaks at H2O and CO2 wavelengths, which 788 

can be problematic for the identification of certain minerals, depending on the algorithm 789 

selected. 790 

6. Conclusion 791 

CNES is working on a hyperspectral mission (0.40-2.45 µm, 10 m GSD, 10 km swath) with a 792 

panchromatic camera (2.5 m GSD). A phase A study has just been completed in mid-2022. A 793 

large French scientific community has been involved to optimize the instrument design. Taking 794 

into account the technological constraints of the SWIR detector, an analysis of several spectral 795 

sampling strategies was conducted to assess their impact on end-user applications (mineralogy, 796 

vegetation, coastal area, urban area, industrial site, cryosphere and atmosphere). 797 

An end-to-end simulator has been developed to generate the hyperspectral images that the 798 

satellite under design will acquire, taking into account the main instrumental effects. It will be 799 

improved by including other sources of error when the instrument design matures. 800 

It has also been shown that most of applications can be realized with an optimistic SNR level 801 

and target calibration, whatever the sampling scenario. With optimistic SNR and threshold 802 

calibration, most applications have been achieved, with the exception of bathymetry and 803 

cryosphere (eBC). With realistic SNR and a target calibration, most applications have been 804 

achieved, with the exception of industrial aerosols. Finally, with realistic SNR and threshold 805 

calibration, most applications have been achieved, with the exception of bathymetry, bottom 806 

classification of shallow water, industrial aerosol and cryosphere (eBC). We also found that 807 

some spectral strategies were unable to track certain spectral features for mineralogy and 808 
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industrial gas estimation. All scenarios tested were simulated with the same atmospheric 809 

uncertainty on water vapor content and aerosol optical thickness, regardless of instrument 810 

configuration. 811 

Based on these results, CNES is studying the best compromise for designing the hyperspectral 812 

sensor that will meet the objectives of the priority applications. These preliminary conclusions 813 

need to be confirmed by further studies, in particular taking into account the dependence 814 

between scenario and atmospheric correction performance, as well as improvements in 815 

estimation methods. Other applications will be evaluated, such as crop characterization, 816 

pollution monitoring and plastic detection. 817 

Appendix 818 

This appendix completes the results obtained in this work: maps of leaf functional traits, 819 

shallow water bottom classification and urban land cover. 820 

Figure 11 is an RGB image of the Tonzi site. Figure 12 shows the Cab, Car, LMA and EWT 821 

maps estimated on QUDO with sampling strategy (#1,T,O). 822 

 823 

Figure 11. Tonzi site (CA, USA) 824 
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 825 

 826 

Figure 12. Leaf functional trait maps obtained with scenario (#1,T,O). Top left: Cab. Top right: Car. Bottom 827 
left: LMA. Bottom right: EWT. 828 

Figure 13 is an RGB image of the Porquerolles site. Figure 14 shows maps of water parameters 829 

(chl, SPM, CDOM), depth and seabed abundance with (#1,T,O). 830 

 831 

Figure 13. The true color hyperspectral image captured by HYSPEX for the Porquerolles site. 832 
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 833 

Figure 14. Estimation of water parameters (chl, SPM, CDOM), depth and seabed abundance with (#1,T,O) at 834 
Porquerolles site. 835 

Figure 15 is an RGB image of the Toulon area with the classification map obtained with 836 

(#1,T,O). 837 

  838 

Figure 15. Left: RGB reference image of Toulon at 2.5 m GSD. Right: Classification map with (#1,T,O). 839 
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